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Abstract. We consider Holder continuous cocycles over an accessible partially hyperbolic
system with values in the group of diffeomorphisms of a compact manifold M. We
obtain several results for this setting. If a cocycle is bounded in C!*7, we show
that it has a continuous invariant family of y-Holder Riemannian metrics on M.
We establish continuity of a measurable conjugacy between two cocycles assuming
bunching or existence of holonomies for both and pre-compactness in C° for one of
them. We give conditions for existence of a continuous conjugacy between two cocycles
in terms of their cycle weights. We also study the relation between the conjugacy
and holonomies of the cocycles. Our results give arbitrarily small loss of regularity
of the conjugacy along the fiber compared to that of the holonomies and of the
cocycle.
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1. Introduction and statement of the results

Cohomology of group-valued cocycles over hyperbolic and, later, partially hyperbolic
systems has been extensively studied, starting with the work of LivSic [Liv71, Liv72],
who obtained definitive results for commutative groups and some results for more general
groups. The theory has many applications to rigidity of hyperbolic and partially hyperbolic
systems and actions. The case of non-commutative groups such as GL(n, R) is more
complicated, and groups of diffeomorphisms present further difficulties. The study of
diffeomorphism-valued cocycles over hyperbolic systems was started in [NT95, NT96],
and continued in [NT98, KtN07, dILW10, dILW11, ASV13, BaK15, KP16, AKL18,
S19, DX20].
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In this paper we study cohomology of diffeomorphism-valued cocycles over acces-
sible partially hyperbolic systems. The central question in this area is existence and
regularity of a conjugacy, or transfer map, between two cocycles. One of our main
theorems gives conditions for continuity of a measurable conjugacy between two cocycles.
Such a result is new even for hyperbolic systems in the base. It yields, in particular,
continuity of a measurable conjugacy to the identity for any bunched cocycle. Another
theorem shows that bounded cocycles are isometric, which extends our recent results
in [S19] to partially hyperbolic systems. We also give conditions for existence of a
conjugacy between two arbitrary cocycles in terms of their cycle weights. Results of
this type were established in [KtN07] for cohomology to a constant cocycle, and used
to obtain certain cocycle rigidity for higher-rank hyperbolic abelian group actions in
[KtNO07, DX20].

In this paper we study cocycles depending Holder continuously on the base point.
When the dependence on the base point is smooth, one can apply the theory of smooth
partially hyperbolic systems to the skew product, as in [NT98, KtN07, DX20]. Our
approach is different, and an important role in the arguments is played by the holonomies
of the cocycles and their relation with a conjugacy. We also use results from [ASV13]
on continuity of invariant sections of fiber bundles over partially hyperbolic systems. In
our setup, it is important to consider the regularity of the conjugacy along the fiber,
which may be lower than that of the cocycles. For a conjugacy to the identity cocycle,
the regularity can be bootstrapped to that of the cocycle [dILW11], but there are no such
results for two general cocycles. We obtain a conjugacy almost as regular as the holonomies
of the cocycle, which, in turn are almost as regular as the cocycle satisfying sufficient
bunching.

We now formulate the main definitions and results.

1.1. Basic definitions. Let X be a compact connected manifold. A diffeomorphism
f of X is partially hyperbolic if there exist a non-trivial Df-invariant splitting of the
tangent bundle TX = E* @ E€ @ E", a Riemannian metric on X, and positive continuous
functions A < 1, A< 1, &, é such that for any x € X and any unit vectors v’ € E*(x),
v¢ € E°(x),and V¥ € E%(x),

IDAOOI < A(x) < §@) < IDAO)N < @)~ <20 < DA (LD

The sub-bundles E¥, E*, and E€ are called stable, unstable, and center. ES and E* are
tangent to the stable and unstable foliations W* and W, respectively. If the center bundle
is trivial, f is called Anosov.

The diffeomorphism f is center bunched if the functions A, )A», &, é can be chosen so
that A < £€ and A < EE.

An su-path in X is a concatenation of finitely many subpaths which lie entirely in a
single leaf of W* or W*. The diffeomorphism f is called accessible if any two points in
X can be connected by an su-path.

We say that f is volume-preserving if it has an invariant probability measure p in the
measure class of a volume induced by a Riemannian metric. It was proved in [BW10]
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that any essentially accessible center bunched C? partially hyperbolic diffeomorphism f
is ergodic with respect to such .

Definition 1.1. Let f be ahomeomorphism of a compact metric space X. Let M be a com-
pact manifold and let A be a function from X to Diff ¢ (M). The Diff ¢ (M)-valued cocycle
over f generated by A isthe map A : X x Z — Diff (M) defined by A(x, 0) = Id and,
forn e N,

A, n)=A" = A(f"'x)o---0A(x) and A(x,—n)=A" = (A'}_,,x)—l.

Clearly, A satisfies the cocycle equation A"k = Al}kx o Ak,

In this paper we consider the group Diff®(M) of homeomorphisms of a compact
manifold M and the groups Diff (M), g > 1, of diffeomorphisms of M. We denote by
|l.lca the usual C9 norm adapted to the manifold setting, set |g|cs = ||gllca + lgYica,
and consider a distance d¢q on Diff 4(M); see §2.1.

We say that a Diff (M)-valued cocycle A is S-Hdlder, 0 < B < 1, if there exists a
constant ¢ > 0 such that

dca(Ax, Ay) < cdx(x,y)? forallx,y e X. (1.2)

1.2. Holder continuous cocycles with bounded set of values are isometric. The follow-
ing theorem gives a partially hyperbolic version of [S19, Theorem 1.3], where we consid-
ered Diff?(M)-valued cocycles with bounded periodic data over hyperbolic systems.

THEOREM 1.2. Let f : X — X be an accessible center bunched C? partially hyperbolic
diffeomorphism preserving a volume L.

Let 0 < y < 1, and let A be a B-Holder continuous Diff '+tY (M)-valued cocycle over
(X, f) such that the set { |Al|c1+y : x € X, n € Z} is bounded. Then there exists a
family of Riemannian metrics {ty : x € X} on M such that:

@ Ax: (M, ) = (M, tpy) is an isometry for each x € X;

(b) each 1y is y-Holder continuous on M, and

(¢) 1ty depends continuously on x in C* distance for each 0 < o < y;

(d) foreach 0 < a <y, ty depends Holder continuously on x along the leaves of W*
and W" in C% distance with exponent (y — o).

If (X, f) is a hyperbolic system and a cocycle A is as above, then, additionally, for each

0 < a < y the metric t, depends Holder continuously on x € X in C* distance with

exponent B(y — ).

In the theorem above, by a hyperbolic system we mean either a transitive Anosov
diffeomorphism, or a mixing diffeomorphism of a locally maximal hyperbolic set, or a
mixing subshift of finite type; see [S19, §2.1] or [KtH] for definitions.

1.3. Existence and regularity of holonomies. An important role in the study of
non-commutative cocycles, and in particular diffeomorphism-valued cocycles, is played by
their holonomies. For example, in Theorem 1.2, essential invariance of t under holonomies
helps to obtain its regularity.
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Definition 1.3. Let (X, f) be a hyperbolic or partially hyperbolic system, and let A be
a Diff 4 (M)-valued cocycle over (X, f). We say that A has stable holonomies Hf}:s in
Diff " (M) if

HAS = 1iT (.A’;)*1 o A% exists in Diff” (M) for every x € X and y € W (x),
n—+0oQ

X,y

and the map (x, y) — ny’s into Diff" (M) is continuous on the set of pairs (x, y) where
x € X and y € Wi (x). If r =0, we also require that the homeomorphisms fo}y’s are
Holder continuous with uniform exponent and constant for all such pairs (x, y).

The unstable holonomies fo} 3 are similarly defined as

HIS = lim (A} oA} wherey € W (x).

We say that A has holonomies if it has both stable and unstable ones.

Clearly, H{%*/" = 1d for every x € X. We say that the stable holonomies of A are
B’-Hélder along the stable leaves if, for some c; > 0,
dcr (Hf’:vs, Id) < ¢y dx(x, y)ﬂ/ forall x € X and y € Wi .(x), (1.3)

Holder continuity of H** along the unstable leaves is defined similarly.

Existence of holonomies for cocycles has been extensively studied. We summarize
the results for homeomorphism- and diffeomorphism-valued cocycles. They show that
Holder continuity and certain bunching, or domination, assumptions on the cocycle imply
existence of its holonomies and their Holder continuity along the stable and unstable
leaves. We formulate results for stable holonomies. The statements for unstable holonomies
are similar, with A in place of A.

Let (X, f) be a hyperbolic or partially hyperbolic system, and let

A=max {A(x): x € X} where A(x)isasin (1.1). (L.4)
Let A be a 8-Holder continuous Diff 9 (M)-valued cocycle, ¢ > 1, and let
o = max max{||DA,]|, ||DA;1 I} where | DA | = max || D;Ax]l. (1.5)
xeX teM

(E1) [KtNO7, Proposition 3.3], [ASV13, Proposition 3.10], [Proposition 3.1]. If g = 1
and 0A? < 1, then A has stable holonomies in Diff °(M), and they are B-Holder
along the leaves of W¥. Instead of o as in (1.5), we can take o such that, for some
constant K,

IDAY| < Kol forevery x € X andn € Z.

(E2) [BaK15, Proposition 3.1] If 2 < ¢ € N such that 62¢~11# < 1, then A has stable
holonomies in Diff 9~! (M), and they are B-Holder along the leaves of W*.

(E3) [Propositions 3.3] If k <r < g < k+ 1, where k € N, and there exist n and K
such that n2¢+D/@=r) . 38 < 1 and [A%lca < Kn" forall x € X and n € N, then
A has stable holonomies in Diff” (M), and they are 8(q — r)-Holder along the
leaves of W*.

(E3') [Remark 3.4] Ifk<r <qg <k+1, where k € N, A is a Diff**!1(M)-valued
cocycle with bounded | Ay | ki1, and o2 FDEFD/@=r) 38 ~ 1 then A has stable
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holonomies in Diff” (M), and they are B(q — r)-Holder continuous along the
leaves of W¥.

1.4. Continuity of a measurable conjugacy between two cocycles. We consider a
conjugacy, or transfer map, between two cocycles. If it exists, the cocycles are called
cohomologous.

Definition 1.4. Let A and B be Diff (M)-valued cocycles over (X, f). A conjugacy
between A and B is a function ® : X — Diff” (M) such that

Al =@y 0B o ® ! foralln € Zandx € X, (1.6)

or equivalently, A, = ® ¢, 0 By o & ! forallx € X.

A conjugacy can be considered in various regularities, for example continuous, Holder
continuous, or measurable. In the latter case we understand that ® is defined and satisfies
(1.6) on a set of full measure.

A key step in proving regularity of a measurable conjugacy is showing that it intertwines
the holonomies of the cocycles.

Definition 1.5. Let A and B be cocycles with holonomies, and let ® be a conjugacy
between them. We say that & intertwines the holonomies of A and BonasetY C X if

HY™ = @y 0 HOPM o ®7' forall x, y € Y such that y € W/ (x). (1.7)
In the following theorem we establish continuity of a measurable conjugacy between
cocycles over partially hyperbolic diffeomorphisms. If the holonomies of the cocycles
are Holder continuous along the leaves of W* and W¥, as we have in (E1)-(E3’), then
the conjugacy is also Holder continuous along the leaves. We note that without suitable
assumptions a measurable conjugacy may not be continuous even if f is an Anosov
diffeomorphism and the cocycles are linear, close to identity, and one of them is constant
[PWal1, §9].

THEOREM 1.6. Let f : X — X be an accessible center bunched C? partially hyperbolic

diffeomorphism preserving a volume . Let A and B be Diff 1(M)-valued cocycles over

(X, f). Suppose that the set {B, : x € X, n € Z} has compact closure in Diff *(M) and

that A and ‘B have holonomies in Diff" (M), where eitherr =0or1 <r <gq.

(@) Let ®: X — Diff" (M) be a u-measurable conjugacy between A and B. Then ®
coincides on a set of full measure with a bounded conjugacy ® : X — Diff" (M)
which intertwines the holonomies of A and B. The function ® : X — Diff P (M) is
continuous for p = r if r is an integer, and any p < r otherwise.

(b) Suppose that r > 1 and the stable and unstable holonomies of A and B are B'-Hélder
along the stable and unstable leaves respectively in the sense of (1.3). Then the
conjugacy o : X — Diff” (M) is Holder continuous along the stable and unstable
leaves with exponent B'(r — p’) for any p’ suchthatr — 1 < p’ < r ifr is an integer,
and |r| < p' < r otherwise.
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By the results on existence of holonomies, instead of assuming existence and Holder
regularity of the holonomies we can assume that A and ‘B are Holder continuous cocycles
with suitable bunching as in (E1)—(E3").

Remark 1.7. In the case of B =1Id, all assumptions on B are satisfied, and we obtain
continuity of a measurable conjugacy to the identity cocycle. Results of this type are often
referred to as measurable Livsic theorems.

To the best of our knowledge, Theorem 1.6 is the first result of this type for
diffeomorphism-valued cocycles even over a hyperbolic system and with B = Id.

The theorem applies to a volume-preserving Anosov diffeomorphism since it is
accessible by the local product structure of the stable and unstable manifolds, and trivially
center bunched. In this case we also obtain Holder continuity of ® on X.

COROLLARY 1.8. If f in Theorem 1.6 is an Anosov diffeomorphism, r > 1, and the
stable and unstable holonomies of A and B are B'-Hélder along the stable and unstable
leaves respectively, then ® : X — Diff r (M) is Holder continuous on X with exponent
B'(r — p') for any p’ as in the theorem.

1.5. Existence and properties of a conjugacy intertwining holonomies. ~We begin with
the result that a Holder continuous conjugacy between sufficiently bunched cocycles
intertwines their holonomies.

PROPOSITION 1.9. Let (X, f) be a hyperbolic or partially hyperbolic system, and let . be
as in (1.4). Let A and B be Diff ' (M)-valued cocycles over (X, f) so that Ay, By : X —
Diff (M) are B-Hélder continuous. If there exist constants K and o such that

orf <1 and |DA"| < Ko, |DB"|| < Ko™ foreveryx € X andn € Z,

then A and B have stable holonomies in Diff ® (M), and any B-Holder continuous
conjugacy ® : X — Diff ® (M) between A and B intertwines the stable holonomies.

We note that Holder continuity of the conjugacy with exponent less than 8 does not
guarantee the intertwining, even for linear cocycles over hyperbolic systems; see [KaS16,
Proposition 4.4] based on examples in [dIL92, NT9S].

Since intertwining of the holonomies is a ‘pointwise’ property, it suffices to obtain
it in the lowest regularity. Once the intertwining is established, further properties of the
conjugacy can be obtained, as stated in Proposition 1.10 below. Also, if f is an Anosov
diffeomorphism and the cocycles are smooth along the base X, the main result of [NT98]
can be used to obtain smoothness of an intertwining conjugacy.

Let f: X — X be an accessible partially hyperbolic diffeomorphism, and let A be a
Diff ¢ (M)-valued cocycle over (X, f) with the stable and unstable holonomies H** and
H”*_ An su-cycle in X is a closed su-path, which we view as a sequence of points

P = Py, ={x0, X1, ..., Xk—1, Xk = x0} where xj1 € WS (x), i =0,...,k—1.
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We define the cycle weight of P as

A,P
on = Hy_ x 00 Hyxy 0 Hyp s (1.8)
As/u . . . .
where Hy, », | = Hy; xs/+“1 if x; .1 € W%/*(x;). One can similarly consider the weight ’}-[j%’,fk

for an su-path P = Py ,, from x¢ to x.

PROPOSITION 1.10. Let f: X — X be an accessible C' partially hyperbolic diffeo-

morphism. Let A and B be Diff O(M)-valued cocycles over (X, f) with the stable and

unstable holonomies H/"* and HB*/" in Diff © (M). Let ® : X — Diff (M) be any

conjugacy between A and B which intertwines their holonomies. Then the following

statements hold.

(@) & conjugates cycle weights, that is, ’Hf’PX =®,0 ’HXB’P" o <I>;l for any
su-cycle Py.

(b) More generally, ’Hfbp =®,0 ’HE;P ) CID;1 for any su-path P = P .

(¢) @ is uniquely determined by its value at one point.

(d @ : X — Diff®(M) is continuous.

(e) If for some r > 1, HA/* and HBs/" gre in Diff" (M) and ®,, € Diff" (M) for
some xg € X, then ® is a bounded function from X to Diff" (M), and ® : X —
Diff P (M) is continuous for p = r if r is an integer, and for any p < r otherwise.

The next theorem gives a sufficient condition for existence of a continuous conjugacy
intertwining holonomies. By the previous proposition, condition (b) is also necessary.

THEOREM 1.11. Let f : X — X be an accessible C' partially hyperbolic diffeomor-
phism. Let A and B be Diff9(M)-valued cocycles over (X, f) with holonomies in
Diff" (M), wherer =0or1 <r <gq.
(a)  Suppose that there exist a fixed point xo € X and &y, € Diff" (M) such that

(al) HQ’P =®d, 0 ’H%P o d>;01 for every su-cycle Py, and

(a2) Ayy = Py 0 By 0 Dyl
(b) More generally, suppose that there exist xo € X and @, € Dift" (M) satisfying

(bl)=(al) and i i

(b2) Agy = P10 Byy q~>;01, where ® px, = H ko @y 0 (Hph )7

Jfor some su-path P = Py, rx, from xq to fxo.

Then there exists a unique conjugacy ® between A and B with value ®, at xo that
intertwines H* and H®. The Sfunction ® : X — Diff" (M) is bounded and ® : X —
Diff P (M) is continuous for p = r if r is an integer, and for any p < r otherwise.

Case (a) can be viewed as a sufficient condition for extending a conjugacy from a given
value at a fixed point. The value ® fy, in (b2) does not depend on the choice of a path
Py, fxo due to the first assumption. If x¢ is a fixed point for f, then for the trivial path
from xo to fxp = xo the condition in (b2) becomes Ay, = P, o By, o CD;OI, so (b) indeed
generalizes (a).

As a corollary of Theorem 1.11(b) we obtain the following result on conjugacy to a
constant cocycle. A similar result was established in [KtN07, Proposition 5.6] for cocycles
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which depend smoothly on the base point over partially hyperbolic systems satisfying a
stronger accessibility assumption.

COROLLARY 1.12. Let f : X — X be an accessible C' partially hyperbolic diffeomor-
phism. Let A be Diff1(M)-valued cocycle over (X, f) with holonomies in Diff" (M),
wherer = 0or 1 <r < q. Suppose that

APy,

Hyo =1Id forevery su-cycle Py, based at some point xp € X. (1.9)

Then there exists a bounded conjugacy ® : X — Diff" (M) between A and a constant
cocycle such that ® : X — Diff (M) is continuous for p = r if r is an integer, and for
any p < r otherwise, and ® satisfies

@, 007" = HS" forallx,y € X such that y € W*'*(x). (1.10)
In particular, if Ay, =1d at a fixed point xo and (1.9) holds, then A is conjugate to the
identity cocycle via ® as above with ® (xg) = Id.

If condition (1.9) holds for some x¢ € X, then it holds for every x € X, since by
accessibility for any su-cycle based at x one can consider a corresponding su-cycle based
at xg.

We note that a constant cocycle conjugate to A is not unique in general. Also, if A is
conjugate to a constant cocycle via a conjugacy intertwining their holonomies, then (1.10)
holds and (1.9) follows.

This paper is organized as follows. In §2 we define distances on the spaces Diff " (M)
and give estimates for norms and distances between compositions of diffeomorphisms.
In §3 we formulate and prove results on existence and properties of holonomies of
Diff 4 (M)-valued cocycles. In §4 we prove Theorem 1.2; in §5 we prove Proposition 1.10,
Theorem 1.6 and Corollary 1.8; and in §6 we prove Proposition 1.9, Theorem 1.11, and
Corollary 1.12.

2. Distances on Diff" (M) and estimates
2.1. Distances on the space of diffeomorphisms Diff"(M). This subsection draws on
[dILW10, §5] and [S19, §2.2].

We fix a smooth background Riemannian metric and the corresponding distance daq
on M.

We denote the space of homeomorphisms of M by Diff®(M), and for g, h €
Diff " (M) we set

do(g, 1) = max di(g(t), h(t)) and deo(g, ) = do(g, h) +do(g™ ' n7h.  (2.1)

We consider r > 1. The C” topology on the group of diffeomorphisms Diff” (M) can
be defined using coordinate patches and the C" norm in the Euclidean space. For any
g € Diff "(M),r e N={1,2,...}, we define its C" size as

lglcr = llgllcr + lg ' llcr where ||gllcr = max daq(g(t), 1) + max max | D!gl|,
teM 1<i<r teM
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where Df g is the derivative of g of order i at ¢, and its norm is defined as the norm of the
corresponding multilinear form from 7; M to T, ;)M with respect the Riemannian metric.
Forr =k + «a withk € Nand 0 < o < 17, where « = 1™ means Lipschitz, the definition
is similar, with

lgllcr = ligllcx + sup{lDfg — Digll -dp(t, )™ 2 1,6 € M, 0 < dpm(t, 1) < €).

Here € is chosen small compared to the injectivity radius of M so that the tangent bundle
is locally trivialized via parallel transport and the difference makes sense.

A natural distance d¢r(g, ) on Diff" (M), r € N, was defined in [dILW10] as the
infimum of the lengths of piecewise C! paths in Diff " (M) connecting & with g and A~
with g~!, where the length of a path py is

Ler(ps) = max max/ ”—(D, Ps)

0<i<r teM

For r = k + «, one also adds the corresponding Holder term:

ds where

d
Ler(ps) = Lex(ps) +tnelil\i[i/ ‘%”(kas)”a,t

ID*glls = sup{l|D%g — DFgll -dp(', )™« 1 e M, 0 <dp(t, 1) < o).

For sufficiently C"-close diffeomorphisms, the distance d¢r (g, ) is Lipschitz equivalent
to |lg — hllcr + llg~" — h !¢, where the difference is understood using local trivial-
ization. Specifically, there exist constants ¥ and §y > O depending only on r and the
Riemannian metric so that

k" 'der(g,h) < llg —hler + g™ —h™er <k der(g, h) provided that

o 2.2)

either dcr(g, h) < dolgle or llg —hllcr + g™ —h ™ er < Solgle: -

2.2. Estimates of norms and distances. Lemma 2.1 follows directly from [dILO98,
Proposition 5.5], and Lemma 2.2 relies on further results in that paper.

LEMMA 2.1. [dILO98] For any r > 1 there exists a constant M, such that, for any h, g €
(M),

7 ogller < My llhlicr (14 liglicr)”

LEMMA 2.2. [S19, Lemma 3.6] Let g =k+y, r =k+«, and p =q —r, where k €
Nand 0 <o <y < 17. There exists a constant M = M(r, q, M, K) such that, for any
g, & € Diff (M) and hy, hy € Diff" (M) with |hy|cr, |halcr < K,

dcr(gohiog, gohyog)

~ r ~—1 -1 r P (23)
< M(lgllca(M+11&ller)” + 18 lea (L4 lig™ ller)") - der (hys ha)
provided that dcr (hy, hy) < Solhy |E,1 and the right-hand side of (2.3) is less than
~ o _ —1
So(MF (1 + |hilen) lgler (L +18ller)” + 18 er A+1g™ Hen)) ™. @4

where &q is as in (2.2).
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3. Existence and properties of the holonomies
In this section we state and prove some results on existence and properties of the
holonomies, first in Diff °(M) and then in Diff” (M), r > 1. We formulate the results for
stable holonomies. We note that we only consider pairs of points lying on the same stable
leaf, and so only the contracting property of the stable leaves plays a role. The statements
and proofs for the unstable holonomies are similar.

The local stable manifold of x, W (x), is a ball in W®(x) centered at x of a small

loc
radius p. We choose p sufficiently small so that, in particular, for A as in (1.4),

dx(f"x, f"y) < M'dx(x,y) forallx € X,y € W} (x),andn € N. (3.1)

Results similar to the next proposition can be found in [KtN07, Proposition 3.3] and
[ASV13, Proposition 3.10]. We state and prove the result, including Holder continuity
along the leaves, joint continuity, and uniqueness, under a weaker assumption of Holder
continuity of Ay as a function into Diff 0(M) rather than Diff ' (M).

PROPOSITION 3.1. Let (X, f) be a hyperbolic or partially hyperbolic system, and let
A be a Diff ' (M)-valued cocycle over (X, f) so that A, : X — Diff (M) is B-Holder

continuous. Suppose that there exist constants K and o such that
oM <1 and I DAZ| < Ko foreveryx € X andn € Z. (3.2)

Then for any x € X and y € W*(x), the limit H;fly’s = limn_>+oo(flg’,)_l o Al exists in
Diff 0(/\/l) and satisfies the following statements.

(H1) H“ =1d and HA; o HYS = HY*, which imply (H{5 )" = HJ.

(H2) ny = (AN~ Io anx fy oAg foralln e N.

(H3%) There exists a constant ¢ such that

deo(H} . 1d) < cdx(x, )’ forallx € X and y € W, (x).

(H40) The map (x, y) — HXA}’S into Diffo(./\/l) is continuous on the set of pairs (x, y),
where x € X and y € lOC()c)

(HS) The homeomorphisms Hx,y‘v are Holder continuous with uniform exponent and
constant for all pairs (x, y) as above.

Moreover, a family of maps {Hf}is txeX, ye Wix)} in Diff " (M) satisfying (H2)

and (H3O) is unique.

With A = max,cx ):(x), a similar result holds for the unstable holonomies that satisfy the
following in place of (H2):

H2) H{ = (A7) lon Ny poay oA foralln € N.

Remark 3.2. Holonomies of a cocycle are sometimes defined as any family of homeo-
morphisms I:I)é ’ys satisfying properties (H1), (H2), (H4%), and (H5) for nonlinear cocycles
(see, for example, [ASV13]), and the holonomies H A5 as in Definition 1.3 are referred to as
standard holonomies to distinguish them [KaS16]. Without condition (H39), uniqueness of
holonomies may fail even for linear cocycles, as discussed in [KaS16] after Corollary 4.9.
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Proof. The maps Hy , are constructed for x € X and y € Wi .(x), and then extended to
the whole leaf W¥(x) by the invariance property (H2). We fix x and y € W (x) and
consider the sequence of diffeomorphisms ((A;)*l o Al)n>0.

For g1, g2 € Diff *(M), we consider do(g1, g2) and do(g1, g2) as in (2.1). We write
xp for f"x and y, for f"y. Since A is S-Holder continuous and (3.1) holds, we obtain

do(A} 0 Ay, Td) = do(A} 0 Ay, ALl 0 Ay,)
=do(A}', AL < deo(Ay,. Ay,)
< K1 dx (v, yo)? < Ky dx(x, y)? - 2", (33)
It follows that
do((AD) ™ o AL, (ATTH ™ o ALt

=do((A}) " oldo AL, (AN o (Ay,) " o Ay, 0 AY)

=do((A}) ™" o1d, (AN~ o ((Ay,) " 0 Ay,)) < Ko - do(A} 0 Ay,, 1d)

< Ko" - Krdx(x, )P - 2" = K3 dx(x, y)? - 6" where § =01 < 1.

The same estimate holds for dy between the inverses, and so there exists a constant Ky
such that, for all x € X and y € W} (x),

deo (AP~ o AL (ATFH™Ho ATHY < K3 dx (x, y)P - 60",

Thus ((Ag’,)_l o A%) is a Cauchy sequence in Diff 0(M), and so it has a limit H fy’s there.
The convergence is uniform in all (x, y) with y € W (x). For each n € N, (Ag)_1 o A%
depends continuously on (x, y), hence so does the limit fo}y’s and we obtain (H4Y).
Properties (H1) and (H2) are easy to verify. For (H3?), we note that (Ag)_1 o Ag =1d,

so for every n € N we have

n—1

deo (A o AL, 1d) < > " deo((A) ™ o AL, (ATTH ™! o ALHY
i=0

oo
< K3 dx(x, y)ﬂ . Z 0" < cdy(x, y)’s, and hence do(H;
i=0

L, 1d) < cdx(x, ).

A proof of (HS) is given in [ASV13, Proposition 3.10], and it uses only the assumptions
of this proposition.

Finally, we prove uniqueness. Let H = {H, y} and H= {I:Ix,y} be two such families.
By property (H2) it suffices to verify that Hy ), = I:Ix,y for any x € X and y € W} _(x).
We fix such x and y. Then, using property (H2), assumption (3.2), and property (H3%), we
obtain

do(Hy.y. Hyy) = do((A}) " 0 Hy, y, 0 A%, (A ' o Hy, y, 0 AY)

=do(A}) " o Hy,.y,. (AD7'oH,, )< Ko" dy(Hy,y,. H,y,)
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< Ko™ - 2c(dx (xn, yn))P < Ko™ - 2¢(dx (x, y)A")P

=K' (cAP)" > 0 asn - 0o
since oA < 1. Thus Hy y = Hy . O

The next proposition establishes existence and regularity of holonomies in Diff” (M),
where r > 1.

PROPOSITION 3.3. Let A be a B-Hélder Diff 1 (M)-valued cocycle over a hyperbolic or
partially hyperbolic system, where q = k + y, withk e Nand0 <y < 17.Letk <r <gq
and let p = q — r. Suppose that there exist constants ) and K such that

n?rOAPe <1 and |A"|co < K7 forallx € X andn € N. (3.4)

Then, for any x € X and y € W*(x), the limit fo}y’s = lim,— 400 (A;)’1 o Al exists in
Diff" (M) and satisfies (H1) and (H2) as in Proposition 3.1, and the following statements
also hold.

(H3") There exists a constant ¢y such that

dCr(Hﬁ’yS, Id) < ¢y dx(x, y)ﬂp forallx € X and y € W} (x).

(H4") The map (x, y) — fo}y’s into Diff " (M) is continuous on the set of pairs (x, y),
where x € X and'y € Wy (x).

Under the same assumptions, a similar result holds for the unstable holonomies.

Parts (H1), (H2), and (H3") were established for cocycles over hyperbolic systems
in [S19, Proposition 3.3 and Remark 3.4]. The same argument applies in the partially
hyperbolic case since it involves only points on a stable manifold. The key estimate is that,
for all sufficiently close x, y with y € Wi (x) and all n € N,

der (A~ o AL (AT o AT < K/ dy(x, )PP - 6" where § < 1.

This yields that (A;)_1 o A% converges to ny?s in Diff " (M) uniformly in such (x, y).

Hence Hf}is depends continuously on (x, y) and we obtain (H4").

Remark 3.4. Suppose that k € N and A is a Diff **!(M)-valued cocycle with bounded
|Ax|ck+1. Then condition (3.4) can be deduced from the bunching assumption that

o = max max{| DA, DA} satisfies o2C+HDEED/P 5B
xe

Indeed, By Lemma 5.5 in [dILW10], there exists a constant ¢ such that
| D" A% < co™"l foreveryx € Xand1 <m <k + 1.
Since | Ay |0 is bounded, it follows that there exists a constant ¢’ such that
A ca < JA" | cret < "o *FD" forevery x € X and n € N.

If g2 +D&+D/p 3B < 1, then o2 +D&+D . 38p ~ 1, and so condition (3.4) is satisfied

for n = okt
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4. Proof of Theorem 1.2
The first part of the proof is essentially the same for the hyperbolic and partially hyperbolic
cases, and it follows the arguments in [S19], so we just outline it. We will give a detailed
last part of the proof in the partially hyperbolic case.

Let (X, f) be ahyperbolic or partially hyperbolic system. We consider the vector bundle
Vover X x M with fiber V(, ;) = T; M and the linear cocycle

D,y = DiAy on'V over the skew product F(x, 1) = (f(x), Ax(1)).

The iterates of D are given by D’gx n i Tt M — Tapey M, where D’(“x n = DA% Since
the value set of the cocycle A is bounded in Diff *7 (M), ||DZ’XJ) || is uniformly bounded
in (x,7) € X x M and n € Z, and there exists a constant ¢, such that

1DCs) = Dienyll < c2 e, t")Y  for all nearby t,t' € M and n € Z.

The space 7™ of inner products on R” identifies with the space of real symmetric
positive definite m x m matrices, which is isomorphic to GL(m, R)/SO(m, R). The group
GL(m, R) acts transitively on 7" via A[E]= AT EA. The space 7™ with a certain
GL(m, R)-invariant metric is a Riemannian symmetric space of non-positive curvature
[La, Ch. XII, Theorem 1.2]. Using a background Riemannian metric on V, we identify an
inner product with a symmetric linear operator. For each (x, ) € X x M, we denote the
space of inner products on V(, ;) by 7(xr), and so we obtain a bundle Tover X x M with
fiber 7(y.1). We equip the fibers of 7 with the Riemannian metric d7-as above. A measurable
(continuous) Riemannian metric on Vis a measurable (continuous) section of 7. A metric t
is called bounded if the distance between t(, ;) and T(y ;) is uniformly bounded on X x M
for some continuous metric T on V. The pushforward of an inner product 7(y ;) on V(x5 to
VF(x,) by the linear cocycle D is given by

(D) T @1, v2) = Ty (D) 1), Dy (2)  for vi, v2 € Virgen.

We say that a metric t is D-invariant if D, (t) = 7.

First, [S19, §4.1] gives an everywhere defined bounded measurable section 7 of V
invariant under the cocycle D. Then [S19, Proposition 4.2] yields that for each x € X
the metric 7, is y-Holder continuous on M; more precisely, there exists a constant c3 such
that

AT (T(xp), Txyy) < c3dpm(t,1")Y forallx € X and 7,1 € M. 4.1)

We take any 0 < o < y. By Proposition 3.3, boundedness of the set of values of A in
Diff 17 (M) gives existence and regularity of the stable and unstable holonomies H* =
H*S and H* = H’" in Diff '+ (M). By property (H3") of holonomies, for all x € X
and y € W/ (x),

der (HS%, 1d) < ¢1 dx(x, y)P*  where p =y —a. 4.2)

We define the stable sets W* for the map F(x,t) of X x M using the stable
holonomies. For any (x, t) € X x M,

Wi, ) ={(y.1) e X x M: y e W(x), ' = H} (1)}
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These sets satisfy the contraction property dyx aq(F"(x,t), F"(y,t")) — 0 as n — o0
forany (x, 1) € X x Mand (y, ') € W* (x, 1). The unstable sets W* are defined similarly
using the unstable holonomies.

The next proposition establishes essential invariance of t under the derivatives of H*
along the stable sets in X x M. Similar invariance holds for the unstable holonomies.

PROPOSITION 4.1. [S19, Proposition 4.4] Let v be an ergodic F-invariant measure on
X x M. If T is a v-measurable D-invariant metric on V, then there exists an F-invariant
set E C X x M withv(E) = 1 such that

t(y, 1) = (D Hy )« (t(x, 1)) forall (x,1), (y,1') € E with (y,1') € Wi (x, ).

In the hyperbolic case, we denote the measure of maximal entropy on X by p, and in
the partially hyperbolic case we denote the invariant volume on X by p. Let my be the
normalized volume induced by the metric T along the fiber M,. We define a measure [
on X x M by i = [ m, du(x). This measure is F-invariant, but not necessarily ergodic.
Applying Proposition 4.1 to its ergodic components, we obtain the following corollary.

COROLLARY 4.2. [S19, Corollary 4.5] There exists a set G C X x M with ﬂ(é) =1
such that T on G is invariant under the holonomies, that is,

t(y.t) = (DiH} )(t(y. 1)) forall (x,t) € G and all (y. 1) € G N W (x, ).

The next proposition gives p-essential invariance of 7, as a Riemannian metric on the
whole fiber M, = M, under the stable and unstable holonomies of A.

PROPOSITION 4.3. [S19, Proposition 4.6] There exists a set G C X with u(G) = 1 such
that, for any x, y, y' € G with y € W (x) and y' € W' (x), the diffeomorphisms

H;,: (M, 1) - (M, 1y) and H;‘,y/ t (M, 1) > (M, ty) are isometries.

We denote by 7(M) the space of a-Holder continuous Riemannian metrics on M
equipped with C* distance d7g. The w-essential invariance of v under the holonomies
together with (4.2) yields p-essential Holder continuity of t as a function from X to
T¥(M) along the stable and unstable leaves in X.

COROLLARY 4.4. [S19, Corollary 4.7] The function x — t is Bp-Holder continuous on
G along the stable and unstable leaves in X as a function from X to T* (M), that is,

A7 (T, Ty) < ca dx(x, y)ﬂp forallx,y € G withy € Ws/u(x). 4.3)

loc

Then in the hyperbolic case Holder continuous dependence of t, on x € X follows using
local product structure of the measure of maximal entropy © and of the stable and unstable
manifolds, as done in [S19, §4.5].

In the partially hyperbolic case we use the following results from [ASV13]. We
formulate them using our notation.

Definition 4.5. [ASV13, Definition 2.9] Let (X, f) be a partially hyperbolic system,
and let A be a continuous fiber bundle over X. A stable holonomy on N is a family
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hfc’y N — Ny of y-Holder homeomorphisms, with uniform y > 0, defined for all x, y

in the same stable leaf of f and satisfying:

(@) hj ohy,=hy andh} =]Id;

(b) the map (x,y,n) — hfc’y (n) is continuous when (x, y) varies in the set of pairs of
points in the same local stable leaf.

Unstable holonomy is defined analogously, for pairs of points in the same unstable leaf.

We consider the fiber bundle A over X with fiber Ny = T%(M) of continuous
Riemannian metrics on M and the maps hfc,y induced by H)‘g’y on these metrics. Property
(a) in the definition above holds by (H1) in Proposition 3.3. By (H4"), the diffeomorphisms
H; |, depend continuously in Diff 1+ (M) on (x, y), wherex € X and y € Wit . (x), which
yielyds property (b). By the continuity, Hy , are uniformly bounded in Diff I+ (M) over
(x,y) as above. It follows that the maps &y , are Holder homeomorphisms of N with
uniform Holder exponent and constant.

Definition 4.6. [ASV13, Definition 2.10] A measurable section ¥ : X — A of the fiber
bundle NV is called s-invariant if h. y(W(x) =W(y) for every x, y in the same stable leaf
and essentially s-invariant if this relation holds restricted to some full measure subset. The
definition of u-invariance is analogous. Finally, W is bi-invariant if it is both s-invariant
and u-invariant, and it is bi-essentially invariant if it is both essentially s-invariant and
essentially u-invariant.

A set in X is called bi-saturated if it consists of full stable and unstable leaves.

THEOREM 4.7. [ASV13, Theorem D] Let f : X — X be a C? partially hyperbolic center

bunched diffeomorphism preserving a volume i, and let N be a continuous fiber bundle

with stable and unstable holonomies and with refinable fiber. Then:

(a) for every bi-essentially invariant section ¥ : X — N, there exist a bi-saturated set
Xy with full measure, and a bi-invariant section U Xy — N that coincides with
W at (1 almost every point;

(b) if f is accessible then Xy = X and \V is continuous.

By the remark after [ASV13, Definition 2.10], every Hausdorff topological space with
a countable basis of topology is refinable. Since the space 7°(M) is separable, the fiber
Ny = TY(M) of Nis refinable. The section W(x) = 1, of Nis bi-essentially invariant by
Proposition 4.3. Applying Theorem 4.7, we and conclude that, up to modification on a set
of measure zero, 7 is continuous as a function from X to 7°(M) and bi-invariant on X.
The latter implies that Corollary 4.4 hold on G = X, and part (d) follows.

It remains to show that T is continuous as a function from X to 7%(M). Since t
is a continuous function from a compact set X to 7°(M), it is bounded in T°(M).
The estimate (4.1) implies that

SUp{dT{(T(x) Tey) - Am(E, )™V 1 x € Xandt #1 € M} < cs.

Hence the set {ry : x € X} is bounded in 77 (M). Since « < y, the embedding of
TY (M) into T*(M) is compact (see, for example, [dILO98, Proposition 3.3]), and
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hence the set {r,} has compact closure in 7%(M). It follows that 7 : X — T*(M) is
continuous. Indeed, suppose that x, — x in X, but 7y, /4 7 in T*(M). Then (zy,)
has a subsequence converging to some 7 # T, in 7%(M) and hence in 7°(M), which
contradicts the convergence of (ty,) to 7y in T9(M). Thus Ty, = Ty iIn T¥(M).

This completes the proof for the partially hyperbolic case.

5. Proofs of Proposition 1.10, Theorem 1.6 and Corollary 1.8

5.1. Proof of Proposition 1.10. The last part of the proposition will be used in the proof

of Theorem 1.6. Parts (a) and (b) follow immediately from the Definitions 1.5 and (1.8).
To prove (c), we fix x € X. Since f is accessible, for every y € X there is an su-path

P = Py y from x to y. Then by (b) we have

@y =HLE 0 @0 (P (.1

Turning to (d) and (e), suppose that H*4/# and H®*/* are in Diff" (M), where r = 0
or r > 1. Then so are H** and H®*? for any su-path P, and accessibility together with
(5.1) implies that if &, € Diff " (M), then ®(y) € Diff" (M) forall y € X.

Now for r > 1 we show that the function ® : X — Diff" (M) is bounded. The
holonomies H* and H?® are uniformly bounded in Diff” (M) over all x € X and y €
Wi .(x) by the continuity property (H4), and we set

Ky =sup{|H S |cr: x € X, y € Wi (x), D= A, B}.

Forany x € X and y € W} _(x) we have @, = H;fl}’,s/” od, o Hy?x’s/“. For r > 1, we use

Lemma 2.1 twice to obtain the estimate
I®yller = 1HL o @y 0 HE ler < MPIIH ller (1 + 1@ ller)” (1 + 1, ller)”
<MKy - (14 ®lle) A+ Kp) =K' (14 [|®xlcr)
Since f is accessible, there exist constants L and K such that, for any x, y € X, there
exists an su-path from x to y with at most L subpaths of length at most K, each lying in a
single leaf of W* or W [W13, Lemma 4.5]. For any y € X, we consider such a path from

X0 to y and, starting with @, apply the above estimate a bounded number of times. Thus
we obtain

I®yllcr < K" = K"(Kg, |®xllcr, K, L,r) forally € X.

Now we establish continuity of ®. For r =0 or r > 1, we let £ = |r] be the integer
part of r, and consider the fiber bundle A/ over X with fiber Diff £(M). For any x € X,
y € W¥(x), and y’ € W"(x) we define maps hy , : Ny — Ny and h, v Ny — Ny by

L s s A, B,
I, (g) = HYy ogo HYY and Ry () =Hy ' ogoHyY.

Since @ intertwines H”* and H® we have ®(y) = hfc,y(Cbx) and ®(y') = hi y,(@x), that
is, @ is invariant under 4° and A". It is well known that, for any ¢ € N U {0}, Diff ¢ (M)
is a topological group and so the map (g, k) — g o h from Diff ¢ (M) x Diff *(M) to
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Diff (M) is continuous. Also, by property (H4) of the holonomies, the maps (x, y) >
fo} y/ Bos/t into Diff £(M) are continuous on the set of pairs (x, y) where y € Wi (x), and
s/u

it follows that the maps (x, y, g) = hyy (g) into Diff £(M) are continuous. Therefore, by
its invariance, ® a bi-continuous section of A in the sense of the definition below.

Definition 5.1. [ASV13, Definition 2.12] A measurable section ¥ : X — N of a contin-
uous fiber bundle N is s-continuous if the map (x, y, ¥(x)) — W(y) is continuous on
the set of pairs of points (x, y) in the same local stable leaf. The u-continuity is defined
similarly using unstable leaves. Finally, W is bi-continuous if it is both s-continuous and
u-continuous.

We apply the theorem below to conclude that ® : X — Diff¢(M) is continuous,
completing the proof for the case of an integer r = ¢.

THEOREM 5.2. [ASV13, Theorem E] Let X — X be a C! partially hyperbolic accessible
diffeomorphism and N be a continuous fiber bundle. Then every bi-continuous section
¥ : X — Nis continuous on X.

The argument above does not apply with a non-integer r in place of its integer part
£ since the composition of C" maps does not depend continuously on the terms in C”
distance in general; see [dILO98, Example 6.4].

Finally, suppose that r is not an integer. As we showed above, ® : X — Diff" (M) is
bounded and ® : X — Diff (M) is continuous. We take p such that £ < p < r. Since the
embedding of Diff" (M) into Diff 7 (M) is compact, it follows as at the end of the proof
of Theorem 1.2 that ® : X — Diff ” (M) is continuous.

5.2. Proof of Theorem 1.6. Part (a) of Theorem 1.6 follows from Propositions 5.3
and 5.4 below, and Proposition 1.10(e). In Proposition 5.3 we prove that a measurable
conjugacy intertwines the holonomies of A and B on a set of full measure. Then in
Proposition 5.4 we show that it coincides on a set of full measure with a continuous
conjugacy which intertwines the holonomies on X. Finally, we apply Proposition 1.10(e)
to obtain the regularity of the conjugacy.

PROPOSITION 5.3. Let (X, f) be either a partially hyperbolic diffeomorphism or a
hyperbolic system, and let u be an ergodic f-invariant measure. Let A and B be
Diff °(M)-valued cocycles over (X, f). Suppose that the set {B : x € X, n € Z} has
compact closure in Diff (M) and that, foranyx € X andy € W*¥(x),

As . ny—1 n B,s _ . ny—1 n P cee0
HS _nlirfw(ﬁy) o A} and H _ngriloo(fly) o A} exist in Diff “(M).

Let ® : X — Diff (M) be a p-measurable conjugacy between A and B. Then ®
intertwines the stable holonomies H”* and H®* of A and B on a set of full measure.
A similar statement holds for the unstable holonomies.

We note that continuity of the map (x, y) — H;‘}}is is not assumed in this proposition.
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Proof. We will give a proof for the stable holonomies. We will show that, for all x and
y € W*(x) in a set of full measure,

oo HAS o0y = HYS. (5.2)

Since the map ® is yu-measurable and the space Diff ®(M) is separable, by Lusin’s
theorem there exists a compact set S C X with u(S) > 1/2 such that  : X — Diff O(./\/l)
is uniformly continuous on S.

Let Y be the set of points in X for which the frequency of visiting the set S equals
u(S) > 1/2. By Birkhoff’s ergodic theorem, u(Y) = 1. Let x and y € W¥(x) be in Y.
Then there exists a sequence {n;} such that f" x and f™ y are in S for all i. We denote x,, =
f"x and y, = f"y. Since dx(xp,, yn;) = 0 as i — oo and ® is uniformly continuous
on S,

dco(®y,,, @y, ) > 0 asi — oo.
For dj as in (2.1) it follows that
do(d>;n: 0 ®,, , 1d) >0 asi— oo. (5.3)
Now we establish (5.2). Since Ay = d,, © BY o @, !, we have
o (Ao Al o d, = (BY) o q’iﬂ. oy, o B (5.4)
We show that the left-hand side converges to CI>}_,1 o ny’s o ®, and the right-hand side

converges to Ho;' in dy.
For a homeomorphism g of M and § > O we define

wg(8) = sup{da(g¥(1), g*(1)) : x=1,-1, 1,/ € Mandd(t,1') <3§}.

Since g is uniformly continuous on M, w¢(8) — 0asé — 0.
Since {B% : x € X, n € Z} has compact closure in Diff *(M), the family {B?} is
uniformly equicontinuous. It follows that

wp(8) = sup{wgz(S) cxeX,neZ)—0 asé— 0.

We observe that if g, h,, k € Diff ® (M) and h,, — h in Diff (M), then

do(gohpok, gohok)=dy(gohy,, goh) =< wy(dy(h,, h)) — 0.
Since (A;’,)*1 oAl — nyfs in Diff (M), it follows that

do(QD;l o (fl;‘,)_1 oA’ o @, d>y_1 o fo’ly’s o®,) >0 asn— oo.
Denoting g,, = (B';i)_l, hp, = ®(yn,) "' o ®(x,), and ky,, = BY', we estimate

dO(gni o hni o kn,-, 8n; © Ido kn,) = dO(gni o hn,-: 8n; © Id) < wg (dO(hnp Id)).

Since do(hy,;, Id) — 0 by (5.3), we obtain

do((B3) ™o q>;n§ o @y, o B, (B~ o BY) > 0.
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Finally, as do(B") ™! o BY, Hyy') — 0,

do(BY) Mo @)l 0@y, o BY, HP') — 0.

Therefore, (5.4) together with the above estimates implies that

dD;,l o fo})’,“ od, = Hf}:s or equivalently, H;fl)ts =®d,0 ny’s od !,

and we conclude that & intertwines the stable holonomies of A and B on the set Y. O]

PROPOSITION 5.4. Let f : X — X be an accessible center bunched C? partially hyper-
bolic diffeomorphism preserving a volume . Let A and B be Diff 9 (M)-valued cocycles
over (X, f) with holonomies in Diff *(M).

Let ®: X — Diff®(M) be a w-measurable conjugacy between A and B which
intertwines their holonomies on a set Y C X of full measure. Then ® coincides on a set
of full measure with a continuous conjugacy ® : X — Diff (M) which intertwines the
holonomies of A and B on X.

Proof. Foreveryx € Y,y € W¥(x)NY and y’ € W¥(x) NY, we have

A, B,sy—1 A, B, A, B,
Oy =H; od,y0(H;') =H/ o®oH,’ and dy= Hx’yf‘ od, 0 Hy,’x”.
(5.5)

Now we apply Theorem 4.7. We consider the fiber bundle N over X with fiber
Diff °(M). Since the space Diff ®(M) is separable, the fiber bundle is refinable. As in
the proof of Proposition 1.10, for any x € X, y € W¥(x), and y' € W¥(x) we consider the
maps hy , : Ny — Ny and hiy Ny — Ny given by

A A, B,
(@)= H{ ogo HYY and RY ,(g) = Hl ' ogoHYY.

The family {hy ,} is a stable holonomy in the sense of Definition 4.5. Indeed, by property
(H1) of H” and HZ* we have hfmx = Id, and for any y, z € W*(x),
(R}, 0hs )(Q) = HyY o HY o g o HF o HY® = H{Y o g o HE® =1 _(9).

Since the map (g, h) — g o h from Diff ®(M) x Diff (M) to Diff °(M) is continuous,
and Hx/} 3’ and H;fl}’,s depend continuously on (x, y) with y € Wj! (x), it follows that the
map (x, y, g) — h;y (g) is continuous. Also, by property (HS) the maps H,fy’s and ny’s
are Holder with a uniform constant K and exponent . Then, for any g, g’ € Diff ® (M),
we have

do(H{S o go HPS, HI% og' o HEY) = do(HYY 0 g, HIY 0g)) < K do(g. g)7.

yx o
A similar estimate holds for the inverses, and we obtain
deo (RS (), B (8) < K deo(g. 8)Y .

Thus the homeomorphisms £} | are also Holder with uniform constant and exponent.
Similarly, we see that {A v,} is an unstable holonomy.
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Since (5.5) can be restated as ®, = A3  (P,) and &y = h’)‘( y,(Cbx), the conjugacy @ is

X,y
a bi-essentially invariant section of A as in Definition 4.6. Then Theorem 4.7 yields that

® coincides on a set of full measure with a continuous conjugacy ® : X — Diff ®(M)
that is invariant under 4* and h". The latter means that is ® intertwines the holonomies of
A and B on X. O

For r = 0, the two propositions above yield part (a) of the theorem. To complete the
proof for r > 1, we apply the last part of Proposition 1.10 to the continuous conjugacy
® : X — Diff (M) which intertwines the holonomies. This completes the proof of (a).

We now turn to (b). We assume that » > 1 and the holonomies of A and B satisfy
the Holder condition (1.3). We write ® for ® to simplify the notation. We give a proof
of Holder continuity of & along W¥; the argument for W* is similar, using the unstable
holonomies. The stable holonomies of A and B are uniformly bounded in Diff" (M) over
allx € X and y € W (x) by (H4"), and we showed already that ® : X — Diff" (M) is
bounded. So we set

Ky =sup{|[HD S o+ x € X, y € Wi (x), D= A, B},
Ko = sup{|Px|cr : x € X}.

Forany x € X and y € Wj; (x), we use Lemma 2.1 to estimate

IHL o ®yller < My |HL Nler (1 + [[@xlle)” < My Kp(1+ Ko) =K1,
105" o (S er < My 107 er (14 IHE)  ler)” < M Ko (14 Ky)' =K.
If r is an integer, we take r — 1 < p’ < r, if r is not an integer, we take |r| < p’ < r, and
we set p = r — p’. In the estimates below, we use Lemma 2.2 with ¢ = r, r = p/, and
either g = Id or g = Id:
dep(hiog, hpog) < M@ Yg e + (1 + |I§||Cp/)”,) “dey (hy, ho)?,
dey(goht, gohy) < MQPlIgler + (L4 1g ™ Nlep)?) - dey (1. h2)”.
Since @ intertwines the holonomies, ®, = H fy’s od, o0 Hﬁgs, and we estimate
ey Dy, @y) =dey (Dr, HY 0y 0 HYY)
<dey(do @y, HIY o @) +dey (HL o ®y) o1d, (H{S o @) 0 HY)
< M- @107 er + (L4 [@xll o)) - (dey (Id, HE))
+ M- QP HE 0 @pller + (1 + IHL 0 @0 o)) - (dey (1d, HE))P
< K3+ (der(1d, H{Y)? + Ky - (der (1d, HE)P < Ks - dy (x, )P

In each of the two applications of Lemma 2.2 above, the assumptions of the lemma
are satisfied. Indeed, since h; = 1Id and h; = ny/B’s we have |hi|cr, |h2]lcr < Kg,
and by property (1.3) we have d, (h1, ha) < 80|h1|;[17, for all sufficiently close x and

€ Wlfjc(x). Also, the expression in (2.4) is uniformly bounded below by some ¢” > 0,

and so the second assumption also holds provided that dy (x, y) is small enough.

https://doi.org/10.1017/etds.2020.131 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2020.131

Diffeomorphism cocycles over partially hyperbolic systems 283

We conclude that, for any sufficiently close x € X and y € W} (x),
ey (Or, ®y) < Ks - dy(x, )P, (5.6)

The same estimate holds for any sufficiently close x € X and y € W}? (x). This concludes
the proof of Theorem 1.6.

Proof of Corollary 1.8. We have already established Holder continuity of & along W*
and W". Let x € X, and let z be sufficiently close to x so that the intersection Wi .(x) N
Wie(2) consists of a single point, which we denote by y. Then, by (5.6),

dey (Or, ®y) < Ks-dx(x, )PP and  d,y(®y, ;) < Ks-dx(y, 2",

and it follows that d .,y (®y, ®;) < Ko - dx (x, )P

6. Proofs of Proposition 1.9, Theorem 1.11 and Corollary 1.12

6.1. Proof of Proposition 1.9.  Both cocycles have stable holonomies in Diff ®(M) by
Proposition 3.1.

In the proof we use only Holder continuity of ® along W¥; specifically, that there exists
a constant K such that

deo(®y, Dy) < Ky dx(x, y)P forallx € X and y € W (x).

By the invariance property (H2) of holonomies, it suffices to prove the intertwining for
ye Wi (x). Wefixx € Xand y € Wy (x). As in (3.3), we obtain that, for all n € N,

do(®})' 0 @y, 1) < K dx(x, y)f - 27
Since A" = ® 7, 0 B o d!, we have
Do (AN oAl od, = (B od) ! o dy, 0B (6.1)

Since @y is a homeomorphism of a compact manifold, <I>y’] is uniformly continuous
on M. Since (A7)~ o A7 — HYS* uniformly on M, it follows that
do(@}' o (A To Ao dy, @) o H 0 @y)
_ -1 ny—1 n —1 A,s
= d()(CDy o ((.Ay) o AY), Qo H{YY) — 0 asn — oo.

Also,

do((B;)fl o CD;nl od, o Bﬁ, (B;)fl o BZ)
=do(B}) ™ o (@) 0 ®y,). (B ' old) < Ko - do((®} 0 Dy,), Id)
<Ko" K dx(x, ) A" = KKy dx(x, )’ - (0Af)" > 0 asn — oo.

Since do((Bgl,)_1 o BY, ny’s) — 0, it follows that

do(BY) o @ o dy o BL, HES) — 0.
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Thus the left-hand side of (6.1) converges to d>;1 o ny’s o ®, and the right-hand side

converges to H. E’ y"v in C O(M), and we conclude that @ intertwines the stable holonomies
of A and B.

6.2. Proof of Theorem 1.11. 'We will prove (b), and then (a) follows.
We write x in place of xq. For every y € X, we define

Oy =H5 o @y o (M) where P = Py yisan su-path fromx toy.  (6.2)

The value @, does not depend on the choice of a path from x to y, and hence is
well defined. Indeed, let (Py y)’1 {y = xk, xg—1, - . ., X1, X0 = x}, let f’x 2y be another
su-path P, , from x to y, and let P y be the correspondlng value. Then (Py y) Py yisan
su-cycle, and, using (bl), we obtain

o 0 b, = HE 00 o (HEN) T o HILT 0 @ 0 (HES)T!
= HE:VP o db; o ”Hf’P_IP od, o (HE;P)_I
= ’HE;P o ’HXB’P_II; ) (Hf’yﬁ)_1 =1d

Let z € W*/“(y). Then

Ev/u) 1_ Av/u B,s/u

CD _H.A?/M Hﬁ;P0¢xo(HB P)— (H OCD O(H )—1’

and so ® intertwines the holonomies. Then it follows by Proposition 1.10(e) that & : X —
Diff " (M) is bounded and ® : X — Diff ” (M) is continuous for p = r if r is an integer,
and for any p < r otherwise.

It remains to show that ® is a conjugacy, that is, it satisfies

Ay =ds0By0 <D;1 forally € X.

We consider a point y € M and an su-path P = P, , from x to y. Then f(P) is an su-path
from fx to fy. It follows from the definition of ® that, for any z, w € M and any su-path
P, from z to w, we have ®,, = Hf,f o®d, o0 (”H?f;f)_l, and in particular for z = fx
and w = fy,

A, f(P P
Oy =Hp T o0 po P (6.3)

By properties (H2, H2) of the holonomies, for any z € X, w € W%/*(z),

A, s/u
fafw

H —.A o HA s/u (‘AZ)_]’
and it follows that

P =Ayo HXA’;P o (A~ and, similarly, HPT P By o ’HE’yP o (B~ L

fx.fy fx.fy
(6.4)
Since the definition of @ 7, in (b2) is consistent with (6.2), by (b2) we have
U)o ® sy 0By = Dy (6.5)
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Combining (6.3), (6.4), and (6.5), we obtain
Dpy=Ay o HE 0 AT 0 @y 0By o (HEF) T 0 B!
=A, o?—[ﬁf o®, 0 (HZF) 1o By_l =Ayodyo0 B;l.

X,y

6.3. Proof of Corollary 1.12. Let B be a constant cocycle. Then its stable and unstable
holonomies are trivial, that is, HE V’X/ “ = 1d, and hence H>-* = Id for every su-cycle P.

So in this case condition (bl) in Theorem 1.11 is (1.9), and condition (b2) can be
rewritten as

Byy = cp;()1 o (HA’P y o Ay, 0 @y, for some path P= ﬁxo,.f'xo.

x0,fx0

We choose any &, € Diff" (M), for example ®,, = Id, and define a constant cocycle
B = By,. Then it follows by Theorem 1.11(b) that A is conjugate to B via a bounded
function ® : X — Diff" (M) such that ® : X — Diff 7(M) is continuous. Also, ®
intertwines the holonomies of A and B, which in the case of constant B means (1.10).

We note that in this construction a constant cocycle B is determined by the choice of
®,, and does not depend on P by the assumption (1.9).

In the case when xy is fixed and A, = Id, we obtain B = B,, = Id.
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