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Abstract. We consider Hölder continuous cocycles over an accessible partially hyperbolic
system with values in the group of diffeomorphisms of a compact manifold M. We
obtain several results for this setting. If a cocycle is bounded in C1+γ , we show
that it has a continuous invariant family of γ -Hölder Riemannian metrics on M.
We establish continuity of a measurable conjugacy between two cocycles assuming
bunching or existence of holonomies for both and pre-compactness in C0 for one of
them. We give conditions for existence of a continuous conjugacy between two cocycles
in terms of their cycle weights. We also study the relation between the conjugacy
and holonomies of the cocycles. Our results give arbitrarily small loss of regularity
of the conjugacy along the fiber compared to that of the holonomies and of the
cocycle.
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1. Introduction and statement of the results
Cohomology of group-valued cocycles over hyperbolic and, later, partially hyperbolic
systems has been extensively studied, starting with the work of Livšic [Liv71, Liv72],
who obtained definitive results for commutative groups and some results for more general
groups. The theory has many applications to rigidity of hyperbolic and partially hyperbolic
systems and actions. The case of non-commutative groups such as GL(n, R) is more
complicated, and groups of diffeomorphisms present further difficulties. The study of
diffeomorphism-valued cocycles over hyperbolic systems was started in [NT95, NT96],
and continued in [NT98, KtN07, dlLW10, dlLW11, ASV13, BaK15, KP16, AKL18,
S19, DX20].
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264 V. Sadovskaya

In this paper we study cohomology of diffeomorphism-valued cocycles over acces-
sible partially hyperbolic systems. The central question in this area is existence and
regularity of a conjugacy, or transfer map, between two cocycles. One of our main
theorems gives conditions for continuity of a measurable conjugacy between two cocycles.
Such a result is new even for hyperbolic systems in the base. It yields, in particular,
continuity of a measurable conjugacy to the identity for any bunched cocycle. Another
theorem shows that bounded cocycles are isometric, which extends our recent results
in [S19] to partially hyperbolic systems. We also give conditions for existence of a
conjugacy between two arbitrary cocycles in terms of their cycle weights. Results of
this type were established in [KtN07] for cohomology to a constant cocycle, and used
to obtain certain cocycle rigidity for higher-rank hyperbolic abelian group actions in
[KtN07, DX20].

In this paper we study cocycles depending Hölder continuously on the base point.
When the dependence on the base point is smooth, one can apply the theory of smooth
partially hyperbolic systems to the skew product, as in [NT98, KtN07, DX20]. Our
approach is different, and an important role in the arguments is played by the holonomies
of the cocycles and their relation with a conjugacy. We also use results from [ASV13]
on continuity of invariant sections of fiber bundles over partially hyperbolic systems. In
our setup, it is important to consider the regularity of the conjugacy along the fiber,
which may be lower than that of the cocycles. For a conjugacy to the identity cocycle,
the regularity can be bootstrapped to that of the cocycle [dlLW11], but there are no such
results for two general cocycles. We obtain a conjugacy almost as regular as the holonomies
of the cocycle, which, in turn are almost as regular as the cocycle satisfying sufficient
bunching.

We now formulate the main definitions and results.

1.1. Basic definitions. Let X be a compact connected manifold. A diffeomorphism
f of X is partially hyperbolic if there exist a non-trivial Df -invariant splitting of the
tangent bundle T X = Es ⊕ Ec ⊕ Eu, a Riemannian metric on X, and positive continuous
functions λ < 1, λ̂ < 1, ξ , ξ̂ such that for any x ∈ X and any unit vectors vs ∈ Es(x),
vc ∈ Ec(x), and vu ∈ Eu(x),

‖Dfx(vs)‖ < λ(x) < ξ(x) < ‖Dfx(vc)‖ < ξ̂(x)−1 < λ̂(x)−1 < ‖Dfx(vu)‖. (1.1)

The sub-bundles Es , Eu, and Ec are called stable, unstable, and center. Es and Eu are
tangent to the stable and unstable foliations Ws and Wu, respectively. If the center bundle
is trivial, f is called Anosov.

The diffeomorphism f is center bunched if the functions λ, λ̂, ξ , ξ̂ can be chosen so
that λ < ξξ̂ and λ̂ < ξ ξ̂ .

An su-path in X is a concatenation of finitely many subpaths which lie entirely in a
single leaf of Ws or Wu. The diffeomorphism f is called accessible if any two points in
X can be connected by an su-path.

We say that f is volume-preserving if it has an invariant probability measure μ in the
measure class of a volume induced by a Riemannian metric. It was proved in [BW10]
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that any essentially accessible center bunched C2 partially hyperbolic diffeomorphism f

is ergodic with respect to such μ.

Definition 1.1. Let f be a homeomorphism of a compact metric space X. Let M be a com-
pact manifold and let A be a function from X to Diff q(M). The Diff q(M)-valued cocycle
over f generated by A is the map A : X × Z → Diff q(M) defined by A(x, 0) = Id and,
for n ∈ N,

A(x, n) = An
x = A(f n−1x) ◦ · · · ◦ A(x) and A(x, −n) = A−n

x = (An
f −nx

)−1.

Clearly, A satisfies the cocycle equation An+k
x = An

f kx
◦ Ak

x .

In this paper we consider the group Diff 0(M) of homeomorphisms of a compact
manifold M and the groups Diff q(M), q ≥ 1, of diffeomorphisms of M. We denote by
‖.‖Cq the usual Cq norm adapted to the manifold setting, set |g|Cq = ‖g‖Cq + ‖g−1‖Cq ,
and consider a distance dCq on Diff q(M); see §2.1.

We say that a Diff q(M)-valued cocycle A is β-Hölder, 0 < β ≤ 1, if there exists a
constant c > 0 such that

dCq (Ax , Ay) ≤ c dX(x, y)β for all x, y ∈ X. (1.2)

1.2. Hölder continuous cocycles with bounded set of values are isometric. The follow-
ing theorem gives a partially hyperbolic version of [S19, Theorem 1.3], where we consid-
ered Diff2(M)-valued cocycles with bounded periodic data over hyperbolic systems.

THEOREM 1.2. Let f : X → X be an accessible center bunched C2 partially hyperbolic
diffeomorphism preserving a volume μ.

Let 0 < γ ≤ 1, and let A be a β-Hölder continuous Diff 1+γ (M)-valued cocycle over
(X, f ) such that the set { |An

x |C1+γ : x ∈ X, n ∈ Z } is bounded. Then there exists a
family of Riemannian metrics {τx : x ∈ X} on M such that:
(a) Ax : (M, τx) → (M, τf x) is an isometry for each x ∈ X;
(b) each τx is γ -Hölder continuous on M, and
(c) τx depends continuously on x in Cα distance for each 0 < α < γ ;
(d) for each 0 < α < γ , τx depends Hölder continuously on x along the leaves of Ws

and Wu in Cα distance with exponent β(γ − α).
If (X, f ) is a hyperbolic system and a cocycle A is as above, then, additionally, for each
0 < α < γ the metric τx depends Hölder continuously on x ∈ X in Cα distance with
exponent β(γ − α).

In the theorem above, by a hyperbolic system we mean either a transitive Anosov
diffeomorphism, or a mixing diffeomorphism of a locally maximal hyperbolic set, or a
mixing subshift of finite type; see [S19, §2.1] or [KtH] for definitions.

1.3. Existence and regularity of holonomies. An important role in the study of
non-commutative cocycles, and in particular diffeomorphism-valued cocycles, is played by
their holonomies. For example, in Theorem 1.2, essential invariance of τ under holonomies
helps to obtain its regularity.
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Definition 1.3. Let (X, f ) be a hyperbolic or partially hyperbolic system, and let A be
a Diff q(M)-valued cocycle over (X, f ). We say that A has stable holonomies H

A,s
x,y in

Diff r (M) if

HA,s
x,y = lim

n→+∞(An
y)

−1 ◦ An
x exists in Diff r (M) for every x ∈ X and y ∈ Ws(x),

and the map (x, y) 
→ H
A,s
x,y into Diff r (M) is continuous on the set of pairs (x, y) where

x ∈ X and y ∈ Ws
loc(x). If r = 0, we also require that the homeomorphisms H

A,s
x,y are

Hölder continuous with uniform exponent and constant for all such pairs (x, y).
The unstable holonomies H

A,u
x,y are similarly defined as

HA,u
x,y = lim

n→−∞(An
y)

−1 ◦ An
x where y ∈ Wu(x).

We say that A has holonomies if it has both stable and unstable ones.

Clearly, H
A, s/u
x,x = Id for every x ∈ X. We say that the stable holonomies of A are

β ′-Hölder along the stable leaves if, for some c1 > 0,

dCr (HA,s
x,y , Id) ≤ c1 dX(x, y)β

′
for all x ∈ X and y ∈ Ws

loc(x), (1.3)

Hölder continuity of HA,u along the unstable leaves is defined similarly.
Existence of holonomies for cocycles has been extensively studied. We summarize

the results for homeomorphism- and diffeomorphism-valued cocycles. They show that
Hölder continuity and certain bunching, or domination, assumptions on the cocycle imply
existence of its holonomies and their Hölder continuity along the stable and unstable
leaves. We formulate results for stable holonomies. The statements for unstable holonomies
are similar, with λ̂ in place of λ.

Let (X, f ) be a hyperbolic or partially hyperbolic system, and let

λ = max {λ(x) : x ∈ X} where λ(x) is as in (1.1). (1.4)

Let A be a β-Hölder continuous Diff q(M)-valued cocycle, q ≥ 1, and let

σ = max
x∈X

max{‖DAx‖, ‖DA−1
x ‖} where ‖DAx‖ = max

t∈M
‖DtAx‖. (1.5)

(E1) [KtN07, Proposition 3.3], [ASV13, Proposition 3.10], [Proposition 3.1]. If q = 1
and σλβ < 1, then A has stable holonomies in Diff 0(M), and they are β-Hölder
along the leaves of Ws . Instead of σ as in (1.5), we can take σ such that, for some
constant K ,

‖DAn
x‖ ≤ Kσ |n| for every x ∈ X and n ∈ Z.

(E2) [BaK15, Proposition 3.1] If 2 ≤ q ∈ N such that σ 2q−1λβ < 1, then A has stable
holonomies in Diff q−1(M), and they are β-Hölder along the leaves of Ws .

(E3) [Propositions 3.3] If k ≤ r < q < k + 1, where k ∈ N, and there exist η and K

such that η2(r+1)/(q−r) · λβ < 1 and |An
x |Cq ≤ Kηn for all x ∈ X and n ∈ N, then

A has stable holonomies in Diff r (M), and they are β(q − r)-Hölder along the
leaves of Ws .

(E3′) [Remark 3.4] If k ≤ r < q < k + 1, where k ∈ N, A is a Diff k+1(M)-valued
cocycle with bounded |Ax |Ck+1 , and σ 2(r+1)(k+1)/(q−r) · λβ < 1, then A has stable
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holonomies in Diff r (M), and they are β(q − r)-Hölder continuous along the
leaves of Ws .

1.4. Continuity of a measurable conjugacy between two cocycles. We consider a
conjugacy, or transfer map, between two cocycles. If it exists, the cocycles are called
cohomologous.

Definition 1.4. Let A and B be Diff q(M)-valued cocycles over (X, f ). A conjugacy
between A and B is a function 
 : X → Diff r (M) such that

An
x = 
f nx ◦ Bn

x ◦ 
−1
x for all n ∈ Z and x ∈ X, (1.6)

or equivalently, Ax = 
f x ◦ Bx ◦ 
−1
x for all x ∈ X.

A conjugacy can be considered in various regularities, for example continuous, Hölder
continuous, or measurable. In the latter case we understand that 
 is defined and satisfies
(1.6) on a set of full measure.

A key step in proving regularity of a measurable conjugacy is showing that it intertwines
the holonomies of the cocycles.

Definition 1.5. Let A and B be cocycles with holonomies, and let 
 be a conjugacy
between them. We say that 
 intertwines the holonomies of A and B on a set Y ⊆ X if

H
A,s/u
x,y = 
y ◦ H

B,s/u
x,y ◦ 
−1

x for all x, y ∈ Y such that y ∈ Ws/u(x). (1.7)

In the following theorem we establish continuity of a measurable conjugacy between
cocycles over partially hyperbolic diffeomorphisms. If the holonomies of the cocycles
are Hölder continuous along the leaves of Ws and Wu, as we have in (E1)–(E3′), then
the conjugacy is also Hölder continuous along the leaves. We note that without suitable
assumptions a measurable conjugacy may not be continuous even if f is an Anosov
diffeomorphism and the cocycles are linear, close to identity, and one of them is constant
[PWa01, §9].

THEOREM 1.6. Let f : X → X be an accessible center bunched C2 partially hyperbolic
diffeomorphism preserving a volume μ. Let A and B be Diff q(M)-valued cocycles over
(X, f ). Suppose that the set {Bn

x : x ∈ X, n ∈ Z} has compact closure in Diff 0(M) and
that A and B have holonomies in Diff r (M), where either r = 0 or 1 ≤ r ≤ q.
(a) Let 
 : X → Diff r (M) be a μ-measurable conjugacy between A and B. Then 


coincides on a set of full measure with a bounded conjugacy 
̃ : X → Diff r (M)

which intertwines the holonomies of A and B. The function 
̃ : X → Diff p(M) is
continuous for p = r if r is an integer, and any p < r otherwise.

(b) Suppose that r > 1 and the stable and unstable holonomies of A and B are β ′-Hölder
along the stable and unstable leaves respectively in the sense of (1.3). Then the
conjugacy 
̃ : X → Diff p′

(M) is Hölder continuous along the stable and unstable
leaves with exponent β ′(r − p′) for any p′ such that r − 1 ≤ p′ < r if r is an integer,
and r� ≤ p′ < r otherwise.
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By the results on existence of holonomies, instead of assuming existence and Hölder
regularity of the holonomies we can assume that A and B are Hölder continuous cocycles
with suitable bunching as in (E1)–(E3′).

Remark 1.7. In the case of B ≡ Id, all assumptions on B are satisfied, and we obtain
continuity of a measurable conjugacy to the identity cocycle. Results of this type are often
referred to as measurable Livšic theorems.

To the best of our knowledge, Theorem 1.6 is the first result of this type for
diffeomorphism-valued cocycles even over a hyperbolic system and with B ≡ Id.

The theorem applies to a volume-preserving Anosov diffeomorphism since it is
accessible by the local product structure of the stable and unstable manifolds, and trivially
center bunched. In this case we also obtain Hölder continuity of 
 on X.

COROLLARY 1.8. If f in Theorem 1.6 is an Anosov diffeomorphism, r > 1, and the
stable and unstable holonomies of A and B are β ′-Hölder along the stable and unstable
leaves respectively, then 
̃ : X → Diff p′

(M) is Hölder continuous on X with exponent
β ′(r − p′) for any p′ as in the theorem.

1.5. Existence and properties of a conjugacy intertwining holonomies. We begin with
the result that a Hölder continuous conjugacy between sufficiently bunched cocycles
intertwines their holonomies.

PROPOSITION 1.9. Let (X, f ) be a hyperbolic or partially hyperbolic system, and let λ be
as in (1.4). Let A and B be Diff 1(M)-valued cocycles over (X, f ) so that Ax , Bx : X →
Diff 0(M) are β-Hölder continuous. If there exist constants K and σ such that

σλβ < 1 and ‖DAn
x‖ ≤ Kσ |n|, ‖DBn

x‖ ≤ Kσ |n| for every x ∈ X and n ∈ Z,

then A and B have stable holonomies in Diff 0(M), and any β-Hölder continuous
conjugacy 
 : X → Diff 0(M) between A and B intertwines the stable holonomies.

We note that Hölder continuity of the conjugacy with exponent less than β does not
guarantee the intertwining, even for linear cocycles over hyperbolic systems; see [KaS16,
Proposition 4.4] based on examples in [dlL92, NT98].

Since intertwining of the holonomies is a ‘pointwise’ property, it suffices to obtain
it in the lowest regularity. Once the intertwining is established, further properties of the
conjugacy can be obtained, as stated in Proposition 1.10 below. Also, if f is an Anosov
diffeomorphism and the cocycles are smooth along the base X, the main result of [NT98]
can be used to obtain smoothness of an intertwining conjugacy.

Let f : X → X be an accessible partially hyperbolic diffeomorphism, and let A be a
Diff q(M)-valued cocycle over (X, f ) with the stable and unstable holonomies HA,s and
HA,u. An su-cycle in X is a closed su-path, which we view as a sequence of points

P = Px0 = {x0, x1, . . . , xk−1, xk = x0} where xi+1 ∈ Ws/u(xi), i = 0, . . . , k − 1.
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We define the cycle weight of P as

HA,P
x0

= Hxk−1,xk
◦ · · · ◦ Hx1,x2 ◦ Hx0,x1 , (1.8)

where Hxi ,xi+1 = H
A,s/u
xi ,xi+1 if xi+1 ∈ Ws/u(xi). One can similarly consider the weight HA,P

x0,xk

for an su-path P = Px0,xk
from x0 to xk .

PROPOSITION 1.10. Let f : X → X be an accessible C1 partially hyperbolic diffeo-
morphism. Let A and B be Diff 0(M)-valued cocycles over (X, f ) with the stable and
unstable holonomies HA,s/u and HB,s/u in Diff 0(M). Let 
 : X → Diff 0(M) be any
conjugacy between A and B which intertwines their holonomies. Then the following
statements hold.
(a) 
 conjugates cycle weights, that is, HA,Px

x = 
x ◦ HB,Px
x ◦ 
−1

x for any
su-cycle Px .

(b) More generally, HA,P
x,y = 
y ◦ HB,P

x,y ◦ 
−1
x for any su-path P = Px,y .

(c) 
 is uniquely determined by its value at one point.
(d) 
 : X → Diff 0(M) is continuous.
(e) If for some r ≥ 1, HA,s/u and HB,s/u are in Diff r (M) and 
x0 ∈ Diff r (M) for

some x0 ∈ X, then 
 is a bounded function from X to Diff r (M), and 
 : X →
Diff p(M) is continuous for p = r if r is an integer, and for any p < r otherwise.

The next theorem gives a sufficient condition for existence of a continuous conjugacy
intertwining holonomies. By the previous proposition, condition (b) is also necessary.

THEOREM 1.11. Let f : X → X be an accessible C1 partially hyperbolic diffeomor-
phism. Let A and B be Diff q(M)-valued cocycles over (X, f ) with holonomies in
Diff r (M), where r = 0 or 1 ≤ r ≤ q.
(a) Suppose that there exist a fixed point x0 ∈ X and 
x0 ∈ Diff r (M) such that

(a1) HA,P
x0

= 
x0 ◦ HB,P
x0

◦ 
−1
x0

for every su-cycle Px0 , and
(a2) Ax0 = 
x0 ◦ Bx0 ◦ 
−1

x0
.

(b) More generally, suppose that there exist x0 ∈ X and 
x0 ∈ Diff r (M) satisfying
(b1) = (a1) and
(b2) Ax0 = 
f x0 ◦ Bx0 ◦ 
−1

x0
, where 
f x0 = HA,P̃

x0,f x0
◦ 
x0 ◦ (HB,P̃

x0,f x0
)−1

for some su-path P̃ = P̃x0,f x0 from x0 to f x0.
Then there exists a unique conjugacy 
 between A and B with value 
x0 at x0 that
intertwines HA and HB. The function 
 : X → Diff r (M) is bounded and 
 : X →
Diff p(M) is continuous for p = r if r is an integer, and for any p < r otherwise.

Case (a) can be viewed as a sufficient condition for extending a conjugacy from a given
value at a fixed point. The value 
f x0 in (b2) does not depend on the choice of a path
Px0,f x0 due to the first assumption. If x0 is a fixed point for f , then for the trivial path
from x0 to f x0 = x0 the condition in (b2) becomes Ax0 = 
x0 ◦ Bx0 ◦ 
−1

x0
, so (b) indeed

generalizes (a).
As a corollary of Theorem 1.11(b) we obtain the following result on conjugacy to a

constant cocycle. A similar result was established in [KtN07, Proposition 5.6] for cocycles
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which depend smoothly on the base point over partially hyperbolic systems satisfying a
stronger accessibility assumption.

COROLLARY 1.12. Let f : X → X be an accessible C1 partially hyperbolic diffeomor-
phism. Let A be Diff q(M)-valued cocycle over (X, f ) with holonomies in Diff r (M),
where r = 0 or 1 ≤ r ≤ q. Suppose that

HA,Px0
x0 = Id for every su-cycle Px0 based at some point x0 ∈ X. (1.9)

Then there exists a bounded conjugacy 
 : X → Diff r (M) between A and a constant
cocycle such that 
 : X → Diff p(M) is continuous for p = r if r is an integer, and for
any p < r otherwise, and 
 satisfies


y ◦ 
−1
x = H

A,s/u
x,y for all x, y ∈ X such that y ∈ Ws/u(x). (1.10)

In particular, if Ax0 = Id at a fixed point x0 and (1.9) holds, then A is conjugate to the
identity cocycle via 
 as above with 
(x0) = Id.

If condition (1.9) holds for some x0 ∈ X, then it holds for every x ∈ X, since by
accessibility for any su-cycle based at x one can consider a corresponding su-cycle based
at x0.

We note that a constant cocycle conjugate to A is not unique in general. Also, if A is
conjugate to a constant cocycle via a conjugacy intertwining their holonomies, then (1.10)
holds and (1.9) follows.

This paper is organized as follows. In §2 we define distances on the spaces Diff r (M)

and give estimates for norms and distances between compositions of diffeomorphisms.
In §3 we formulate and prove results on existence and properties of holonomies of
Diff q(M)-valued cocycles. In §4 we prove Theorem 1.2; in §5 we prove Proposition 1.10,
Theorem 1.6 and Corollary 1.8; and in §6 we prove Proposition 1.9, Theorem 1.11, and
Corollary 1.12.

2. Distances on Diff r (M) and estimates
2.1. Distances on the space of diffeomorphisms Diff r (M). This subsection draws on
[dlLW10, §5] and [S19, §2.2].

We fix a smooth background Riemannian metric and the corresponding distance dM
on M.

We denote the space of homeomorphisms of M by Diff 0(M), and for g, h ∈
Diff 0(M) we set

d0(g, h) = max
t∈M

dM(g(t), h(t)) and dC0(g, h) = d0(g, h) + d0(g
−1, h−1). (2.1)

We consider r ≥ 1. The Cr topology on the group of diffeomorphisms Diff r (M) can
be defined using coordinate patches and the Cr norm in the Euclidean space. For any
g ∈ Diff r (M), r ∈ N = {1, 2, . . . }, we define its Cr size as

|g|Cr = ‖g‖Cr + ‖g−1‖Cr where ‖g‖Cr = max
t∈M

dM(g(t), t) + max
1≤i≤r

max
t∈M

‖Di
t g‖,
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where Di
t g is the derivative of g of order i at t , and its norm is defined as the norm of the

corresponding multilinear form from TtM to Tg(t)M with respect the Riemannian metric.
For r = k + α with k ∈ N and 0 < α ≤ 1−, where α = 1− means Lipschitz, the definition
is similar, with

‖g‖Cr = ‖g‖Ck + sup{‖Dk
t g − Dk

t ′g‖ · dM(t , t ′)−α : t , t ′ ∈ M, 0 < dM(t , t ′) < ε0}.
Here ε0 is chosen small compared to the injectivity radius of M so that the tangent bundle
is locally trivialized via parallel transport and the difference makes sense.

A natural distance dCr (g, h) on Diff r (M), r ∈ N, was defined in [dlLW10] as the
infimum of the lengths of piecewise C1 paths in Diff r (M) connecting h with g and h−1

with g−1, where the length of a path ps is

�Cr (ps) = max
0≤i≤r

max
t∈M

∫ ∥∥∥∥ d

ds
(Di

t ps)

∥∥∥∥ ds.

For r = k + α, one also adds the corresponding Hölder term:

�Cr (ps) = �Ck (ps) + max
t∈M

∫ ∣∣∣∣ d

ds
‖(Dkps)‖α,t

∣∣∣∣ ds where

‖Dkg‖α,t = sup{‖Dk
t ′g − Dk

t g‖ · dM(t ′, t)−α : t ′ ∈ M, 0 < dM(t , t ′) < ε0}.
For sufficiently Cr -close diffeomorphisms, the distance dCr (g, h) is Lipschitz equivalent
to ‖g − h‖Cr + ‖g−1 − h−1‖Cr , where the difference is understood using local trivial-
ization. Specifically, there exist constants κ and δ0 > 0 depending only on r and the
Riemannian metric so that

κ−1dCr (g, h) ≤ ‖g − h‖Cr + ‖g−1 − h−1‖Cr ≤ κ dCr (g, h) provided that

either dCr (g, h) < δ0|g|−1
Cr or ‖g − h‖Cr + ‖g−1 − h−1‖Cr < δ0|g|−1

Cr .
(2.2)

2.2. Estimates of norms and distances. Lemma 2.1 follows directly from [dlLO98,
Proposition 5.5], and Lemma 2.2 relies on further results in that paper.

LEMMA 2.1. [dlLO98] For any r ≥ 1 there exists a constant Mr such that, for any h, g ∈
Cr(M),

‖h ◦ g‖Cr ≤ Mr ‖h‖Cr (1 + ‖g‖Cr )r .

LEMMA 2.2. [S19, Lemma 3.6] Let q = k + γ , r = k + α, and ρ = q − r , where k ∈
N and 0 ≤ α < γ ≤ 1−. There exists a constant M = M(r , q, M, K) such that, for any
g, g̃ ∈ Diff q(M) and h1, h2 ∈ Diff r (M) with |h1|Cr , |h2|Cr ≤ K ,

dCr (g ◦ h1 ◦ g̃, g ◦ h2 ◦ g̃)

≤ M
(‖g‖Cq (1 + ‖g̃‖Cr )r + ‖g̃−1‖Cq (1 + ‖g−1‖Cr )r

) · dCr (h1, h2)
ρ

(2.3)

provided that dCr (h1, h2) ≤ δ0|h1|−1
Cr and the right-hand side of (2.3) is less than

δ0
(
M2

r (1 + |h1|Cr )r (‖g‖Cr (1 + ‖g̃‖Cr )r + ‖g̃−1‖Cr (1 + ‖g−1‖Cr )r )
)−1, (2.4)

where δ0 is as in (2.2).
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3. Existence and properties of the holonomies
In this section we state and prove some results on existence and properties of the
holonomies, first in Diff 0(M) and then in Diff r (M), r ≥ 1. We formulate the results for
stable holonomies. We note that we only consider pairs of points lying on the same stable
leaf, and so only the contracting property of the stable leaves plays a role. The statements
and proofs for the unstable holonomies are similar.

The local stable manifold of x, Ws
loc(x), is a ball in Ws(x) centered at x of a small

radius ρ. We choose ρ sufficiently small so that, in particular, for λ as in (1.4),

dX(f nx, f ny) ≤ λndX(x, y) for all x ∈ X, y ∈ Ws
loc(x), and n ∈ N. (3.1)

Results similar to the next proposition can be found in [KtN07, Proposition 3.3] and
[ASV13, Proposition 3.10]. We state and prove the result, including Hölder continuity
along the leaves, joint continuity, and uniqueness, under a weaker assumption of Hölder
continuity of Ax as a function into Diff 0(M) rather than Diff 1(M).

PROPOSITION 3.1. Let (X, f ) be a hyperbolic or partially hyperbolic system, and let
A be a Diff 1(M)-valued cocycle over (X, f ) so that Ax : X → Diff 0(M) is β-Hölder
continuous. Suppose that there exist constants K and σ such that

σλβ < 1 and ‖DAn
x‖ ≤ Kσ |n| for every x ∈ X and n ∈ Z. (3.2)

Then for any x ∈ X and y ∈ Ws(x), the limit H
A,s
x,y = limn→+∞(An

y)
−1 ◦ An

x exists in
Diff 0(M) and satisfies the following statements.
(H1) H

A,s
x,x = Id and H

A,s
y,z ◦ H

A,s
x,y = H

A,s
x,z , which imply (H

A,s
x,y )−1 = H

A,s
y,x .

(H2) H
A,s
x,y = (An

y)
−1 ◦ H

A,s
f nx, f ny ◦ An

x for all n ∈ N.
(H30) There exists a constant c such that

dC0(H
s
x,y , Id) ≤ c dX(x, y)β for all x ∈ X and y ∈ Ws

loc(x).

(H40) The map (x, y) 
→ H
A,s
x,y into Diff 0(M) is continuous on the set of pairs (x, y),

where x ∈ X and y ∈ Ws
loc(x).

(H5) The homeomorphisms H
A,s
x,y are Hölder continuous with uniform exponent and

constant for all pairs (x, y) as above.
Moreover, a family of maps {HA,s

x,y : x ∈ X, y ∈ Ws(x)} in Diff 0(M) satisfying (H2)
and (H30) is unique.

With λ = maxx∈X λ̂(x), a similar result holds for the unstable holonomies that satisfy the
following in place of (H2):
(H2′) H

A,u
x, y = (A−n

y )−1 ◦ H
A,u
f −nx, f −ny

◦ A−n
x for all n ∈ N.

Remark 3.2. Holonomies of a cocycle are sometimes defined as any family of homeo-
morphisms H̃

A, s
x,y satisfying properties (H1), (H2), (H40), and (H5) for nonlinear cocycles

(see, for example, [ASV13]), and the holonomies HA,s as in Definition 1.3 are referred to as
standard holonomies to distinguish them [KaS16]. Without condition (H30), uniqueness of
holonomies may fail even for linear cocycles, as discussed in [KaS16] after Corollary 4.9.
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Proof. The maps Hs
x,y are constructed for x ∈ X and y ∈ Ws

loc(x), and then extended to
the whole leaf Ws(x) by the invariance property (H2). We fix x and y ∈ Ws

loc(x) and
consider the sequence of diffeomorphisms ((An

y)
−1 ◦ An

x)n≥0.
For g1, g2 ∈ Diff 0(M), we consider d0(g1, g2) and dC0(g1, g2) as in (2.1). We write

xn for f nx and yn for f ny. Since A is β-Hölder continuous and (3.1) holds, we obtain

d0(A
−1
yn

◦ Axn , Id) = d0(A
−1
yn

◦ Axn , A−1
xn

◦ Axn)

= d0(A
−1
yn

, A−1
xn

) ≤ dC0(Ayn , Axn)

≤ K1 dX(xn, yn)
β ≤ K1 dX(x, y)β · λnβ . (3.3)

It follows that

d0((A
n
y)

−1 ◦ An
x , (An+1

y )−1 ◦ An+1
x )

= d0((A
n
y)

−1 ◦ Id ◦ An
x , (An

y)
−1 ◦ (Ayn)

−1 ◦ Axn ◦ An
x)

= d0((A
n
y)

−1 ◦ Id, (An
y)

−1 ◦ ((Ayn)
−1 ◦ Axn)) ≤ Kσn · d0(A

−1
yn

◦ Axn , Id)

≤ Kσn · K2 dX(x, y)β · λnβ = K3 dX(x, y)β · θn where θ = σλβ < 1.

The same estimate holds for d0 between the inverses, and so there exists a constant K4

such that, for all x ∈ X and y ∈ Ws
loc(x),

dC0((An
y)

−1 ◦ An
x , (An+1

y )−1 ◦ An+1
x ) ≤ K3 dX(x, y)β · θn.

Thus ((An
y)

−1 ◦ An
x) is a Cauchy sequence in Diff 0(M), and so it has a limit H

A,s
x,y there.

The convergence is uniform in all (x, y) with y ∈ Ws
loc(x). For each n ∈ N, (An

y)
−1 ◦ An

x

depends continuously on (x, y), hence so does the limit H
A,s
x,y and we obtain (H40).

Properties (H1) and (H2) are easy to verify. For (H30), we note that (A0
y)

−1 ◦ A0
x = Id,

so for every n ∈ N we have

dC0((An
y)

−1 ◦ An
x , Id) ≤

n−1∑
i=0

dC0((Ai
y)

−1 ◦ Ai
x , (Ai+1

y )−1 ◦ Ai+1
x )

≤ K3 dX(x, y)β ·
∞∑
i=0

θi ≤ c dX(x, y)β , and hence dC0(H
s
x,y , Id) ≤ c dX(x, y)β .

A proof of (H5) is given in [ASV13, Proposition 3.10], and it uses only the assumptions
of this proposition.

Finally, we prove uniqueness. Let H = {Hx,y} and H̃ = {H̃x,y} be two such families.
By property (H2) it suffices to verify that Hx,y = H̃x,y for any x ∈ X and y ∈ Ws

loc(x).
We fix such x and y. Then, using property (H2), assumption (3.2), and property (H30), we
obtain

d0(Hx,y , H̃x,y) = d0((A
n
y)

−1 ◦ Hxn, yn ◦ An
x , (An

y)
−1 ◦ H̃xn, yn ◦ An

x)

= d0((A
n
y)

−1 ◦ Hxn, yn , (An
y)

−1 ◦ H̃xn, yn) ≤ Kσn · d0(Hxn, yn , H̃xn, yn)
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≤ Kσn · 2c(dX(xn, yn))
β ≤ Kσn · 2c(dX(x, y)λn)β

= K ′(σλβ)n → 0 as n → ∞
since σλβ < 1. Thus Hx,y = H̃x,y .

The next proposition establishes existence and regularity of holonomies in Diff r (M),
where r ≥ 1.

PROPOSITION 3.3. Let A be a β-Hölder Diff q(M)-valued cocycle over a hyperbolic or
partially hyperbolic system, where q = k + γ , with k ∈ N and 0 < γ ≤ 1−. Let k ≤ r < q

and let ρ = q − r . Suppose that there exist constants η and K such that

η2(r+1)λβρ < 1 and |An
x |Cq ≤ Kηn for all x ∈ X and n ∈ N. (3.4)

Then, for any x ∈ X and y ∈ Ws(x), the limit H
A,s
x,y = limn→+∞(An

y)
−1 ◦ An

x exists in
Diff r (M) and satisfies (H1) and (H2) as in Proposition 3.1, and the following statements
also hold.
(H3r ) There exists a constant c1 such that

dCr (HA,s
x,y , Id) ≤ c1 dX(x, y)βρ for all x ∈ X and y ∈ Ws

loc(x).

(H4r ) The map (x, y) 
→ H
A,s
x,y into Diff r (M) is continuous on the set of pairs (x, y),

where x ∈ X and y ∈ Ws
loc(x).

Under the same assumptions, a similar result holds for the unstable holonomies.
Parts (H1), (H2), and (H3r ) were established for cocycles over hyperbolic systems

in [S19, Proposition 3.3 and Remark 3.4]. The same argument applies in the partially
hyperbolic case since it involves only points on a stable manifold. The key estimate is that,
for all sufficiently close x, y with y ∈ Ws

loc(x) and all n ∈ N,

dCr ((An
y)

−1 ◦ An
x , (An+1

y )−1 ◦ An+1
x ) ≤ K ′ dX(x, y)βρ · θ̃ n where θ̃ < 1.

This yields that (An
y)

−1 ◦ An
x converges to H

A,s
x,y in Diff r (M) uniformly in such (x, y).

Hence H
A,s
x,y depends continuously on (x, y) and we obtain (H4r ).

Remark 3.4. Suppose that k ∈ N and A is a Diff k+1(M)-valued cocycle with bounded
|Ax |Ck+1 . Then condition (3.4) can be deduced from the bunching assumption that

σ = max
x∈X

max{‖DAx‖, ‖D(Ax)
−1‖} satisfies σ 2(r+1)(k+1)/ρ · λβ < 1.

Indeed, By Lemma 5.5 in [dlLW10], there exists a constant c such that

‖DmAn
x‖ ≤ c σm|n| for every x ∈ X and 1 ≤ m ≤ k + 1.

Since |Ax |C0 is bounded, it follows that there exists a constant c′ such that

|An
x |Cq ≤ c′|An

x |Ck+1 ≤ c′′σ (k+1)n for every x ∈ X and n ∈ N.

If σ 2(r+1)(k+1)/ρ · λβ < 1, then σ 2(r+1)(k+1) · λβρ < 1, and so condition (3.4) is satisfied
for η = σk+1.
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4. Proof of Theorem 1.2
The first part of the proof is essentially the same for the hyperbolic and partially hyperbolic
cases, and it follows the arguments in [S19], so we just outline it. We will give a detailed
last part of the proof in the partially hyperbolic case.

Let (X, f ) be a hyperbolic or partially hyperbolic system. We consider the vector bundle
V over X × M with fiber V(x,t) = TtM and the linear cocycle

D(x,t) = DtAx on V over the skew product F(x, t) = (f (x), Ax(t)).

The iterates of D are given by Dn
(x,t) : Tt M → TAn

x(t) M, where Dn
(x,t) = DtA

n
x . Since

the value set of the cocycle A is bounded in Diff 1+γ (M), ‖Dn
(x,t)‖ is uniformly bounded

in (x, t) ∈ X × M and n ∈ Z, and there exists a constant c2 such that

‖Dn
(x,t) − Dn

(x,t ′)‖ ≤ c2 dM(t , t ′)γ for all nearby t , t ′ ∈ M and n ∈ Z.

The space T m of inner products on R
m identifies with the space of real symmetric

positive definite m × m matrices, which is isomorphic to GL(m, R)/SO(m, R). The group
GL(m, R) acts transitively on T m via A[E] = AT EA. The space T m with a certain
GL(m, R)-invariant metric is a Riemannian symmetric space of non-positive curvature
[La, Ch. XII, Theorem 1.2]. Using a background Riemannian metric on V, we identify an
inner product with a symmetric linear operator. For each (x, t) ∈ X × M, we denote the
space of inner products on V(x,t) by T(x,t), and so we obtain a bundle T over X × M with
fiber T(x,t). We equip the fibers of T with the Riemannian metric dT as above. A measurable
(continuous) Riemannian metric on V is a measurable (continuous) section of T. A metric τ

is called bounded if the distance between τ(x,t) and τ̃(x,t) is uniformly bounded on X × M
for some continuous metric τ̃ on V. The pushforward of an inner product τ(x,t) on V(x,t) to
VF(x,t) by the linear cocycle D is given by

((D(x,t))∗(τ(x,t)))(v1, v2) = τ(x,t)(D
−1
(x,t)(v1), D −1

(x,t)(v2)) for v1, v2 ∈ VF(x,t).

We say that a metric τ is D-invariant if D∗(τ ) = τ .
First, [S19, §4.1] gives an everywhere defined bounded measurable section τ of V

invariant under the cocycle D. Then [S19, Proposition 4.2] yields that for each x ∈ X

the metric τx is γ -Hölder continuous on M; more precisely, there exists a constant c3 such
that

dT (τ(x,t), τ(x,t ′)) ≤ c3 dM(t , t ′)γ for all x ∈ X and t , t ′ ∈ M. (4.1)

We take any 0 < α < γ . By Proposition 3.3, boundedness of the set of values of A in
Diff 1+γ (M) gives existence and regularity of the stable and unstable holonomies Hs =
HA,s and Hu = HA,u in Diff 1+α(M). By property (H3r ) of holonomies, for all x ∈ X

and y ∈ W
s/u

loc (x),

dCr (H
s/u
x,y , Id) ≤ c1 dX(x, y)βρ where ρ = γ − α. (4.2)

We define the stable sets W̃ s for the map F(x, t) of X × M using the stable
holonomies. For any (x, t) ∈ X × M,

W̃ s(x, t) = {(y, t ′) ∈ X × M : y ∈ Ws(x), t ′ = Hs
x,y(t)}.
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These sets satisfy the contraction property dX×M(F n(x, t), Fn(y, t ′)) → 0 as n → ∞
for any (x, t) ∈ X × M and (y, t ′) ∈ W̃ s(x, t). The unstable sets W̃u are defined similarly
using the unstable holonomies.

The next proposition establishes essential invariance of τ under the derivatives of Hs

along the stable sets in X × M. Similar invariance holds for the unstable holonomies.

PROPOSITION 4.1. [S19, Proposition 4.4] Let ν be an ergodic F -invariant measure on
X × M. If τ is a ν-measurable D-invariant metric on V, then there exists an F -invariant
set E ⊂ X × M with ν(E) = 1 such that

τ(y, t ′) = (DtH
s
x,y)∗(τ (x, t)) for all (x, t), (y, t ′) ∈ E with (y, t ′) ∈ W̃ s

loc(x, t).

In the hyperbolic case, we denote the measure of maximal entropy on X by μ, and in
the partially hyperbolic case we denote the invariant volume on X by μ. Let mx be the
normalized volume induced by the metric τ along the fiber Mx . We define a measure μ̂

on X × M by μ̂ = ∫
mx dμ(x). This measure is F -invariant, but not necessarily ergodic.

Applying Proposition 4.1 to its ergodic components, we obtain the following corollary.

COROLLARY 4.2. [S19, Corollary 4.5] There exists a set Ĝ ⊂ X × M with μ̂(Ĝ) = 1
such that τ on Ĝ is invariant under the holonomies, that is,

τ(y, t ′) = (DtH
s
x,y)∗(τ (y, t)) for all (x, t) ∈ Ĝ and all (y, t ′) ∈ Ĝ ∩ W̃ s

loc(x, t).

The next proposition gives μ-essential invariance of τx , as a Riemannian metric on the
whole fiber Mx = M, under the stable and unstable holonomies of A.

PROPOSITION 4.3. [S19, Proposition 4.6] There exists a set G ⊂ X with μ(G) = 1 such
that, for any x, y, y′ ∈ G with y ∈ Ws

loc(x) and y′ ∈ Wu
loc(x), the diffeomorphisms

Hs
x,y : (M, τx) → (M, τy) and Hu

x,y′ : (M, τx) → (M, τy′) are isometries.

We denote by T α(M) the space of α-Hölder continuous Riemannian metrics on M
equipped with Cα distance dTα . The μ-essential invariance of τ under the holonomies
together with (4.2) yields μ-essential Hölder continuity of τ as a function from X to
T α(M) along the stable and unstable leaves in X.

COROLLARY 4.4. [S19, Corollary 4.7] The function x 
→ τx is βρ-Hölder continuous on
G along the stable and unstable leaves in X as a function from X to T α(M), that is,

dTα(τx , τy) ≤ c4 dX(x, y)βρ for all x, y ∈ G with y ∈ W
s/u

loc (x). (4.3)

Then in the hyperbolic case Hölder continuous dependence of τx on x ∈ X follows using
local product structure of the measure of maximal entropy μ and of the stable and unstable
manifolds, as done in [S19, §4.5].

In the partially hyperbolic case we use the following results from [ASV13]. We
formulate them using our notation.

Definition 4.5. [ASV13, Definition 2.9] Let (X, f ) be a partially hyperbolic system,
and let N be a continuous fiber bundle over X. A stable holonomy on N is a family
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hs
x,y : Nx → Ny of γ -Hölder homeomorphisms, with uniform γ > 0, defined for all x, y

in the same stable leaf of f and satisfying:
(a) hs

y,z ◦ hs
x,y = hs

x,z and hs
x,x = Id;

(b) the map (x, y, η) 
→ hs
x,y(η) is continuous when (x, y) varies in the set of pairs of

points in the same local stable leaf.

Unstable holonomy is defined analogously, for pairs of points in the same unstable leaf.

We consider the fiber bundle N over X with fiber Nx = T 0(M) of continuous
Riemannian metrics on M and the maps hs

x,y induced by Hs
x,y on these metrics. Property

(a) in the definition above holds by (H1) in Proposition 3.3. By (H4r ), the diffeomorphisms
Hs

x,y depend continuously in Diff 1+α(M) on (x, y), where x ∈ X and y ∈ Ws
loc(x), which

yields property (b). By the continuity, Hs
x,y are uniformly bounded in Diff 1+α(M) over

(x, y) as above. It follows that the maps hs
x,y are Hölder homeomorphisms of N with

uniform Hölder exponent and constant.

Definition 4.6. [ASV13, Definition 2.10] A measurable section � : X → N of the fiber
bundle N is called s-invariant if hs

x,y(�(x)) = �(y) for every x, y in the same stable leaf
and essentially s-invariant if this relation holds restricted to some full measure subset. The
definition of u-invariance is analogous. Finally, � is bi-invariant if it is both s-invariant
and u-invariant, and it is bi-essentially invariant if it is both essentially s-invariant and
essentially u-invariant.

A set in X is called bi-saturated if it consists of full stable and unstable leaves.

THEOREM 4.7. [ASV13, Theorem D] Let f : X → X be a C2 partially hyperbolic center
bunched diffeomorphism preserving a volume μ, and let N be a continuous fiber bundle
with stable and unstable holonomies and with refinable fiber. Then:
(a) for every bi-essentially invariant section � : X → N, there exist a bi-saturated set

X� with full measure, and a bi-invariant section �̃ : X� → N that coincides with
� at μ almost every point;

(b) if f is accessible then X� = X and �̃ is continuous.

By the remark after [ASV13, Definition 2.10], every Hausdorff topological space with
a countable basis of topology is refinable. Since the space T 0(M) is separable, the fiber
Nx = T 0(M) of N is refinable. The section �(x) = τx of N is bi-essentially invariant by
Proposition 4.3. Applying Theorem 4.7, we and conclude that, up to modification on a set
of measure zero, τ is continuous as a function from X to T 0(M) and bi-invariant on X.
The latter implies that Corollary 4.4 hold on G = X, and part (d) follows.

It remains to show that τ is continuous as a function from X to T α(M). Since τ

is a continuous function from a compact set X to T 0(M), it is bounded in T 0(M).
The estimate (4.1) implies that

sup{dT(τ(x,t), τ(x,t ′)) · (dM(t , t ′))−γ : x ∈ X and t �= t ′ ∈ M} ≤ c3.

Hence the set {τx : x ∈ X} is bounded in T γ (M). Since α < γ , the embedding of
T γ (M) into T α(M) is compact (see, for example, [dlLO98, Proposition 3.3]), and

https://doi.org/10.1017/etds.2020.131 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.131


278 V. Sadovskaya

hence the set {τx} has compact closure in T α(M). It follows that τ : X → T α(M) is
continuous. Indeed, suppose that xn → x in X, but τxn �→ τx in T α(M). Then (τxn)

has a subsequence converging to some τ̂ �= τx in T α(M) and hence in T 0(M), which
contradicts the convergence of (τxn) to τx in T 0(M). Thus τxn → τx in T α(M).

This completes the proof for the partially hyperbolic case.

5. Proofs of Proposition 1.10, Theorem 1.6 and Corollary 1.8
5.1. Proof of Proposition 1.10. The last part of the proposition will be used in the proof
of Theorem 1.6. Parts (a) and (b) follow immediately from the Definitions 1.5 and (1.8).

To prove (c), we fix x ∈ X. Since f is accessible, for every y ∈ X there is an su-path
P = Px,y from x to y. Then by (b) we have


y = HA,P
x,y ◦ 
x ◦ (HB,P

x,y )−1. (5.1)

Turning to (d) and (e), suppose that HA,s/u and HB,s/u are in Diff r (M), where r = 0
or r ≥ 1. Then so are HA,P and HB,P for any su-path P , and accessibility together with
(5.1) implies that if 
x0 ∈ Diff r (M), then 
(y) ∈ Diff r (M) for all y ∈ X.

Now for r ≥ 1 we show that the function 
 : X → Diff r (M) is bounded. The
holonomies HA and HB are uniformly bounded in Diff r (M) over all x ∈ X and y ∈
Ws

loc(x) by the continuity property (H4), and we set

KH = sup{|HD,s
x,y |Cr : x ∈ X, y ∈ Ws

loc(x), D = A, B}.

For any x ∈ X and y ∈ Ws
loc(x) we have 
y = H

A,s/u
x,y ◦ 
x ◦ H

B,s/u
y,x . For r ≥ 1, we use

Lemma 2.1 twice to obtain the estimate

‖
y‖Cr = ‖HA
x,y ◦ 
x ◦ HB

y,x‖Cr ≤ M2
r ‖HA

x,y‖Cr (1 + ‖
x‖Cr )r (1 + ‖HB
y,x‖Cr )r

≤ M2
r KH · (1 + ‖
x‖Cr )r (1 + KH )r = K ′ · (1 + ‖
x‖Cr )r .

Since f is accessible, there exist constants L and K such that, for any x, y ∈ X, there
exists an su-path from x to y with at most L subpaths of length at most K , each lying in a
single leaf of Ws or Wu [W13, Lemma 4.5]. For any y ∈ X, we consider such a path from
x0 to y and, starting with 
x0 , apply the above estimate a bounded number of times. Thus
we obtain

‖
y‖Cr ≤ K ′′ = K ′′(KH , ‖
x0‖Cr , K , L, r) for all y ∈ X.

Now we establish continuity of 
. For r = 0 or r ≥ 1, we let � = r� be the integer
part of r , and consider the fiber bundle N over X with fiber Diff �(M). For any x ∈ X,
y ∈ Ws(x), and y′ ∈ Wu(x) we define maps hs

x,y : Nx → Ny and hu
x,y′ : Nx → Ny′ by

hs
x,y(g) = HA,s

x,y ◦ g ◦ HB,s
y,x and hu

x,y′(g) = H
A,u
x,y′ ◦ g ◦ H

B,u
y′,x .

Since 
 intertwines HA and HB we have 
(y) = hs
x,y(
x) and 
(y′) = hs

x,y′(
x), that

is, 
 is invariant under hs and hu. It is well known that, for any � ∈ N ∪ {0}, Diff �(M)

is a topological group and so the map (g, h) 
→ g ◦ h from Diff �(M) × Diff �(M) to
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Diff �(M) is continuous. Also, by property (H4) of the holonomies, the maps (x, y) 
→
H

A/B,s/u
x,y into Diff �(M) are continuous on the set of pairs (x, y) where y ∈ Ws

loc(x), and
it follows that the maps (x, y, g) 
→ h

s/u
x,y (g) into Diff �(M) are continuous. Therefore, by

its invariance, 
 a bi-continuous section of N in the sense of the definition below.

Definition 5.1. [ASV13, Definition 2.12] A measurable section � : X → N of a contin-
uous fiber bundle N is s-continuous if the map (x, y, �(x)) 
→ �(y) is continuous on
the set of pairs of points (x, y) in the same local stable leaf. The u-continuity is defined
similarly using unstable leaves. Finally, � is bi-continuous if it is both s-continuous and
u-continuous.

We apply the theorem below to conclude that 
 : X → Diff �(M) is continuous,
completing the proof for the case of an integer r = �.

THEOREM 5.2. [ASV13, Theorem E] Let X → X be a C1 partially hyperbolic accessible
diffeomorphism and N be a continuous fiber bundle. Then every bi-continuous section
� : X → N is continuous on X.

The argument above does not apply with a non-integer r in place of its integer part
� since the composition of Cr maps does not depend continuously on the terms in Cr

distance in general; see [dlLO98, Example 6.4].
Finally, suppose that r is not an integer. As we showed above, 
 : X → Diff r (M) is

bounded and 
 : X → Diff �(M) is continuous. We take p such that � < p < r . Since the
embedding of Diff r (M) into Diff p(M) is compact, it follows as at the end of the proof
of Theorem 1.2 that 
 : X → Diff p(M) is continuous.

5.2. Proof of Theorem 1.6. Part (a) of Theorem 1.6 follows from Propositions 5.3
and 5.4 below, and Proposition 1.10(e). In Proposition 5.3 we prove that a measurable
conjugacy intertwines the holonomies of A and B on a set of full measure. Then in
Proposition 5.4 we show that it coincides on a set of full measure with a continuous
conjugacy which intertwines the holonomies on X. Finally, we apply Proposition 1.10(e)
to obtain the regularity of the conjugacy.

PROPOSITION 5.3. Let (X, f ) be either a partially hyperbolic diffeomorphism or a
hyperbolic system, and let μ be an ergodic f -invariant measure. Let A and B be
Diff 0(M)-valued cocycles over (X, f ). Suppose that the set {Bn

x : x ∈ X, n ∈ Z} has
compact closure in Diff 0(M) and that, for any x ∈ X and y ∈ Ws(x),

HA,s
x,y = lim

n→+∞(An
y)

−1 ◦ An
x and HB,s

x,y = lim
n→+∞(An

y)
−1 ◦ An

x exist in Diff 0(M).

Let 
 : X → Diff 0(M) be a μ-measurable conjugacy between A and B. Then 


intertwines the stable holonomies HA,s and HB,s of A and B on a set of full measure.
A similar statement holds for the unstable holonomies.

We note that continuity of the map (x, y) 
→ H
A,s
x,y is not assumed in this proposition.
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Proof. We will give a proof for the stable holonomies. We will show that, for all x and
y ∈ Ws(x) in a set of full measure,


−1
y ◦ HA,s

x,y ◦ 
x = HB,s
x,y . (5.2)

Since the map 
 is μ-measurable and the space Diff 0(M) is separable, by Lusin’s
theorem there exists a compact set S ⊂ X with μ(S) > 1/2 such that 
 : X → Diff 0(M)

is uniformly continuous on S.
Let Y be the set of points in X for which the frequency of visiting the set S equals

μ(S) > 1/2. By Birkhoff’s ergodic theorem, μ(Y ) = 1. Let x and y ∈ Ws(x) be in Y .
Then there exists a sequence {ni} such that f ni x and f ni y are in S for all i. We denote xn =
f nx and yn = f ny. Since dX(xni

, yni
) → 0 as i → ∞ and 
 is uniformly continuous

on S,

dC0(
xni
, 
yni

) → 0 as i → ∞.

For d0 as in (2.1) it follows that

d0(

−1
yni

◦ 
xni
, Id) → 0 as i → ∞. (5.3)

Now we establish (5.2). Since A
ni
x = 
xni

◦ B
ni
x ◦ 
−1

x , we have


−1
y ◦ (Ani

y )−1 ◦ Ani
x ◦ 
x = (Bni

y )−1 ◦ 
−1
yni

◦ 
xni
◦ Bni

x . (5.4)

We show that the left-hand side converges to 
−1
y ◦ H

A,s
x,y ◦ 
x and the right-hand side

converges to H
B,s
x,y in d0.

For a homeomorphism g of M and δ > 0 we define

ωg(δ) = sup{dM
(
g∗(t), g∗(t ′)

)
: ∗ = 1, −1, t , t ′ ∈ M and d(t , t ′) ≤ δ}.

Since g is uniformly continuous on M, ωg(δ) → 0 as δ → 0.
Since {Bn

x : x ∈ X, n ∈ Z} has compact closure in Diff 0(M), the family {Bn
x} is

uniformly equicontinuous. It follows that

ωB(δ) = sup{ωBn
x
(δ) : x ∈ X, n ∈ Z} → 0 as δ → 0.

We observe that if g, hn, k ∈ Diff 0(M) and hn → h in Diff 0(M), then

d0(g ◦ hn ◦ k, g ◦ h ◦ k) = d0(g ◦ hn, g ◦ h) ≤ ωg(d0(hn, h)) → 0.

Since (An
y)

−1 ◦ An
x → H

A,s
x,y in Diff 0(M), it follows that

d0
(

−1

y ◦ (An
y)

−1 ◦ An
x ◦ 
x , 
−1

y ◦ HA,s
x,y ◦ 
x

) → 0 as n → ∞.

Denoting gni
= (B

ni
y )−1, hni

= 
(yni
)−1 ◦ 
(xni

), and kni
= B

ni
x , we estimate

d0(gni
◦ hni

◦ kni
, gni

◦ Id ◦ kni
) = d0(gni

◦ hni
, gni

◦ Id) ≤ ωB (d0(hni
, Id)).

Since dC0(hni
, Id) → 0 by (5.3), we obtain

d0
(
(Bni

y )−1 ◦ 
−1
yni

◦ 
xni
◦ Bni

x , (Bni
y )−1 ◦ Bni

x

) → 0.
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Finally, as d0((B
n
y)

−1 ◦ Bn
x , H

B,s
x,y ) → 0,

d0((B
ni
y )−1 ◦ 
−1

yni
◦ 
xni

◦ Bni
x , HB,s

x,y ) → 0.

Therefore, (5.4) together with the above estimates implies that


−1
y ◦ HA,s

x,y ◦ 
x = HB,s
x,y or equivalently, HA,s

x,y = 
y ◦ HB,s
x,y ◦ 
−1

x ,

and we conclude that 
 intertwines the stable holonomies of A and B on the set Y .

PROPOSITION 5.4. Let f : X → X be an accessible center bunched C2 partially hyper-
bolic diffeomorphism preserving a volume μ. Let A and B be Diff q(M)-valued cocycles
over (X, f ) with holonomies in Diff 0(M).

Let 
 : X → Diff 0(M) be a μ-measurable conjugacy between A and B which
intertwines their holonomies on a set Y ⊆ X of full measure. Then 
 coincides on a set
of full measure with a continuous conjugacy 
̃ : X → Diff 0(M) which intertwines the
holonomies of A and B on X.

Proof. For every x ∈ Y , y ∈ Ws(x) ∩ Y and y′ ∈ Wu(x) ∩ Y , we have


y = HA,s
x,y ◦ 
x ◦ (HB,s

x,y )−1 = HA,s
x,y ◦ 
x ◦ HB,s

y,x and 
y′ = H
A,u
x,y′ ◦ 
x ◦ H

B,u
y′,x .
(5.5)

Now we apply Theorem 4.7. We consider the fiber bundle N over X with fiber
Diff 0(M). Since the space Diff 0(M) is separable, the fiber bundle is refinable. As in
the proof of Proposition 1.10, for any x ∈ X, y ∈ Ws(x), and y′ ∈ Wu(x) we consider the
maps hs

x,y : Nx → Ny and hu
x,y′ : Nx → Ny′ given by

hs
x,y(g) = HA,s

x,y ◦ g ◦ HB,s
y,x and hu

x,y′(g) = H
A,u
x,y′ ◦ g ◦ H

B,u
y′,x .

The family {hs
x,y} is a stable holonomy in the sense of Definition 4.5. Indeed, by property

(H1) of HA,s and HB,s we have hs
x,x = Id, and for any y, z ∈ Ws(x),

(hs
y,z ◦ hs

x,y)(g) = HA,s
y,z ◦ HA,s

x,y ◦ g ◦ HB,s
y,x ◦ HB,s

z,y = HA,s
x,z ◦ g ◦ HB,s

z,x = hs
x,z(g).

Since the map (g, h) 
→ g ◦ h from Diff 0(M) × Diff 0(M) to Diff 0(M) is continuous,
and H

A,s
x,y and H

A,s
x,y depend continuously on (x, y) with y ∈ Ws

loc(x), it follows that the
map (x, y, g) 
→ hs

x,y(g) is continuous. Also, by property (H5) the maps H
A,s
x,y and H

B,s
x,y

are Hölder with a uniform constant K and exponent γ . Then, for any g, g′ ∈ Diff 0(M),
we have

d0(H
A,s
x,y ◦ g ◦ HB,s

y,x , HA,s
x,y ◦ g′ ◦ HB,s

y,x ) = d0(H
A,s
x,y ◦ g, HA,s

x,y ◦ g′) ≤ K d0(g, g′)γ .

A similar estimate holds for the inverses, and we obtain

dC0(h
s
x,y(g), hs

x,y(g)) ≤ K dC0(g, g′)γ .

Thus the homeomorphisms hs
x,y are also Hölder with uniform constant and exponent.

Similarly, we see that {hu
x,y′ } is an unstable holonomy.
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Since (5.5) can be restated as 
y = hs
x,y(
x) and 
y′ = hu

x,y′(
x), the conjugacy 
 is
a bi-essentially invariant section of N as in Definition 4.6. Then Theorem 4.7 yields that

 coincides on a set of full measure with a continuous conjugacy 
̃ : X → Diff 0(M)

that is invariant under hs and hu. The latter means that is 
̃ intertwines the holonomies of
A and B on X.

For r = 0, the two propositions above yield part (a) of the theorem. To complete the
proof for r ≥ 1, we apply the last part of Proposition 1.10 to the continuous conjugacy

̃ : X → Diff 0(M) which intertwines the holonomies. This completes the proof of (a).

We now turn to (b). We assume that r > 1 and the holonomies of A and B satisfy
the Hölder condition (1.3). We write 
 for 
̃ to simplify the notation. We give a proof
of Hölder continuity of 
 along Ws ; the argument for Wu is similar, using the unstable
holonomies. The stable holonomies of A and B are uniformly bounded in Diff r (M) over
all x ∈ X and y ∈ Ws

loc(x) by (H4r ), and we showed already that 
 : X → Diff r (M) is
bounded. So we set

KH = sup{|HD,s
x,y |Cr : x ∈ X, y ∈ Ws

loc(x), D = A, B},
K
 = sup{|
x |Cr : x ∈ X}.

For any x ∈ X and y ∈ Ws
loc(x), we use Lemma 2.1 to estimate

‖HA,s
x,y ◦ 
x‖Cr ≤ Mr ‖HA,s

x,y ‖Cr (1 + ‖
x‖Cr )r ≤ MrKH (1 + K
)r =:K1,

‖
−1
x ◦ (HA,s

x,y )−1‖Cr ≤ Mr ‖
−1
x ‖Cr (1 + ‖(HA,s

x,y )−1‖Cr )r ≤ MrK
(1 + KH )r =:K2.

If r is an integer, we take r − 1 ≤ p′ < r , if r is not an integer, we take r� ≤ p′ < r , and
we set ρ = r − p′. In the estimates below, we use Lemma 2.2 with q = r , r = p′, and
either g = Id or g̃ = Id:

d
Cp′ (h1 ◦ g̃, h2 ◦ g̃) ≤ M(2p′ ‖g̃−1‖Cr + (1 + ‖g̃‖

Cp′ )p
′
) · d

Cp′ (h1, h2)
ρ ,

d
Cp′ (g ◦ h1, g ◦ h2) ≤ M(2p′ ‖g‖Cr + (1 + ‖g−1‖

Cp′ )p
′
) · d

Cp′ (h1, h2)
ρ .

Since 
 intertwines the holonomies, 
y = H
A,s
x,y ◦ 
x ◦ H

B,s
y,x , and we estimate

d
Cp′ (
x , 
y) = d

Cp′ (
x , HA,s
x,y ◦ 
x ◦ HB,s

y,x )

≤ d
Cp′ (Id ◦ 
x , HA,s

x,y ◦ 
x) + d
Cp′ ((HA,s

x,y ◦ 
x) ◦ Id, (HA,s
x,y ◦ 
x) ◦ HB,s

y,x )

≤ M · (2p′ ‖
−1
x ‖Cr + (1 + ‖
x‖Cp′ )p

′
) · (d

Cp′ (Id, HA,s
x,y ))ρ

+ M · (2p′ ‖HA,s
x,y ◦ 
x‖Cr + (1 + ‖(HA,s

x,y ◦ 
x)
−1‖

Cp′ )p
′
) · (d

Cp′ (Id, HB,s
y,x ))ρ

≤ K3 · (dCr (Id, HA,s
y,x ))ρ + K4 · (dCr (Id, HB,s

y,x ))ρ ≤ K5 · dX(x, y)β
′ρ .

In each of the two applications of Lemma 2.2 above, the assumptions of the lemma
are satisfied. Indeed, since h1 = Id and h2 = H

A/B,s
x,y we have |h1|Cr , |h2|Cr ≤ KH ,

and by property (1.3) we have d
Cp′ (h1, h2) ≤ δ0|h1|−1

Cp′ for all sufficiently close x and
y ∈ Ws

loc(x). Also, the expression in (2.4) is uniformly bounded below by some c′′ > 0,
and so the second assumption also holds provided that dX(x, y) is small enough.
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We conclude that, for any sufficiently close x ∈ X and y ∈ Ws
loc(x),

d
Cp′ (
x , 
y) ≤ K5 · dX(x, y)β

′ρ . (5.6)

The same estimate holds for any sufficiently close x ∈ X and y ∈ Wu
loc(x). This concludes

the proof of Theorem 1.6.

Proof of Corollary 1.8. We have already established Hölder continuity of 
 along Ws

and Wu. Let x ∈ X, and let z be sufficiently close to x so that the intersection Ws
loc(x) ∩

Wu
loc(z) consists of a single point, which we denote by y. Then, by (5.6),

d
Cp′ (
x , 
y) ≤ K5 · dX(x, y)β

′ρ and d
Cp′ (
y , 
z) ≤ K5 · dX(y, z)β

′ρ ,

and it follows that d
Cp′ (
x , 
z) ≤ K6 · dX(x, z)β

′ρ .

6. Proofs of Proposition 1.9, Theorem 1.11 and Corollary 1.12
6.1. Proof of Proposition 1.9. Both cocycles have stable holonomies in Diff 0(M) by
Proposition 3.1.

In the proof we use only Hölder continuity of 
 along Ws ; specifically, that there exists
a constant K1 such that

dC0(
x , 
y) ≤ K1 dX(x, y)β for all x ∈ X and y ∈ Ws
loc(x).

By the invariance property (H2) of holonomies, it suffices to prove the intertwining for
y ∈ Ws

loc(x). We fix x ∈ X and y ∈ Ws
loc(x). As in (3.3), we obtain that, for all n ∈ N,

d0(

−1
yn

◦ 
xn , Id) ≤ K1 dX(x, y)β · λnβ .

Since An
x = 
f xn ◦ Bn

x ◦ 
−1
x , we have


−1
y ◦ (An

y)
−1 ◦ An

x ◦ 
x = (Bn
y)

−1 ◦ 
−1
yn

◦ 
xn ◦ Bn
x . (6.1)

Since 
y is a homeomorphism of a compact manifold, 
−1
y is uniformly continuous

on M. Since (An
y)

−1 ◦ An
x → H

A,s
x,y uniformly on M, it follows that

d0(

−1
y ◦ (An

y)
−1 ◦ An

x ◦ 
x , 
−1
y ◦ HA,s

x,y ◦ 
x)

= d0(

−1
y ◦ ((An

y)
−1 ◦ An

x), 
−1
y ◦ HA,s

x,y ) → 0 as n → ∞.

Also,

d0((B
n
y)

−1 ◦ 
−1
yn

◦ 
xn ◦ Bn
x , (Bn

y)
−1 ◦ Bn

x)

= d0((B
n
y)

−1 ◦ (
−1
yn

◦ 
xn), (Bn
y)

−1 ◦ Id) ≤ Kσn · d0((

−1
yn

◦ 
xn), Id)

≤ Kσn · K1 dX(x, y)β · λnβ = KK1 dX(x, y)β · (σλβ)n → 0 as n → ∞.

Since d0((B
n
y)

−1 ◦ Bn
x , H

B,s
x,y ) → 0, it follows that

d0((B
n
y)

−1 ◦ 
−1
yn

◦ 
xn ◦ Bn
x , HB,s

x,y ) → 0.
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Thus the left-hand side of (6.1) converges to 
−1
y ◦ H

A,s
x,y ◦ 
x and the right-hand side

converges to H
B,s
x,y in C0(M), and we conclude that 
 intertwines the stable holonomies

of A and B.

6.2. Proof of Theorem 1.11. We will prove (b), and then (a) follows.
We write x in place of x0. For every y ∈ X, we define


y = HA,P
x,y ◦ 
x ◦ (HB,P

x,y )−1 where P = Px,y is an su-path from x to y. (6.2)

The value 
y does not depend on the choice of a path from x to y, and hence is
well defined. Indeed, let (Px,y)

−1 = {y = xk , xk−1, . . . , x1, x0 = x}, let P̃x,y be another
su-path Px,y from x to y, and let 
̃y be the corresponding value. Then (Px,y)

−1P̃x,y is an
su-cycle, and, using (b1), we obtain


−1
y ◦ 
̃y = HB,P

x,y ◦ 
−1
x ◦ (HA,P

x,y )−1 ◦ HA,P̃
x,y ◦ 
x ◦ (HB,P̃

x,y )−1

= HB,P
x,y ◦ 
−1

x ◦ HA,P −1P̃
x ◦ 
x ◦ (HB,P̃

x,y )−1

= HB,P
x,y ◦ HB,P −1P̃

x ◦ (HB,P̃
x,y )−1 = Id.

Let z ∈ Ws/u(y). Then


z = H
A,s/u
y,z ◦ HA,P

x,y ◦ 
x ◦ (HB,P
x,y )−1 ◦ (H

B,s/u
y,z )−1 = H

A,s/u
y,z ◦ 
y ◦ (H

B,s/u
y,z )−1,

and so 
 intertwines the holonomies. Then it follows by Proposition 1.10(e) that 
 : X →
Diff r (M) is bounded and 
 : X → Diff p(M) is continuous for p = r if r is an integer,
and for any p < r otherwise.

It remains to show that 
 is a conjugacy, that is, it satisfies

Ay = 
fy ◦ By ◦ 
−1
y for all y ∈ X.

We consider a point y ∈ M and an su-path P = Px,y from x to y. Then f (P ) is an su-path
from f x to fy. It follows from the definition of 
 that, for any z, w ∈ M and any su-path
Pz,w from z to w, we have 
w = HA,P

z,w ◦ 
z ◦ (HB,P
z,w )−1, and in particular for z = f x

and w = fy,


fy = HA,f (P )
f x,fy ◦ 
f x ◦ (HB,f (P )

f x,fy )−1. (6.3)

By properties (H2, H2′) of the holonomies, for any z ∈ X, w ∈ Ws/u(z),

H
A, s/u
f z,f w = Aw ◦ H

A, s/u
z,w ◦ (Az)

−1,

and it follows that

HA,f (P )
f x,fy = Ay ◦ HA,P

x,y ◦ (Ax)
−1 and, similarly, HB,f (P )

f x,fy = By ◦ HB,P
x,y ◦ (Bx)

−1.
(6.4)

Since the definition of 
f x in (b2) is consistent with (6.2), by (b2) we have

(Ax)
−1 ◦ 
f x ◦ Bx = 
x . (6.5)
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Combining (6.3), (6.4), and (6.5), we obtain


fy = Ay ◦ HA,P
x,y ◦ A−1

x ◦ 
f x ◦ Bx ◦ (HB,P
x,y )−1 ◦ B−1

y

= Ay ◦ HA,P
x,y ◦ 
x ◦ (HB,P

x,y )−1 ◦ B−1
y = Ay ◦ 
y ◦ B−1

y .

6.3. Proof of Corollary 1.12. Let B be a constant cocycle. Then its stable and unstable
holonomies are trivial, that is, H

B,s/u
x,y = Id, and hence HB,P = Id for every su-cycle P .

So in this case condition (b1) in Theorem 1.11 is (1.9), and condition (b2) can be
rewritten as

Bx0 = 
−1
x0

◦ (HA,P̃
x0,f x0

)−1 ◦ Ax0 ◦ 
x0 for some path P̃ = P̃x0,f x0 .

We choose any 
x0 ∈ Diff r (M), for example 
x0 = Id, and define a constant cocycle
B ≡ Bx0 . Then it follows by Theorem 1.11(b) that A is conjugate to B via a bounded
function 
 : X → Diff r (M) such that 
 : X → Diff p(M) is continuous. Also, 


intertwines the holonomies of A and B, which in the case of constant B means (1.10).
We note that in this construction a constant cocycle B is determined by the choice of


x0 and does not depend on P̃ by the assumption (1.9).
In the case when x0 is fixed and Ax0 = Id, we obtain B ≡ Bx0 = Id.

Acknowledgement. This work was supported in part by NSF grant DMS-1764216.

REFERENCES

[AKL18] A. Avila, A. Kocsard and X. Liu. Livšic theorem for diffeomorphism cocycles. Geom. Funct. Anal.
28 (2018), 943–964.

[ASV13] A. Avila, J. Santamaria and M. Viana. Holonomy invariance: rough regularity and applications to
Lyapunov exponents. Asterisque 358 (2013), 13–74.

[BaK15] L. Backes and A. Kocsard. Cohomology of dominated diffeomorphism-valued cocycles over hyper-
bolic systems. Ergod. Th. & Dynam. Sys. 36 (2015), 1703–1722.

[BW10] K. Burns and A. Wilkinson. On the ergodicity of partially hyperbolic systems. Ann. of Math. 171
(2010), 451–489.

[dlL92] R. de la Llave. Smooth conjugacy and SRB measures for uniformly and nonuniformly hyperbolic
systems. Comm. Math. Phys. 150 (1992), 289–320.

[dlLO98] R. de la Llave and R. Obaya. Regularity of the composition operator in spaces of Hölder functions.
Discrete Contin. Dyn. Syst. 5(1) (1999), 157–184.

[dlLW10] R. de la Llave and A. Windsor. Livšic theorem for non-commutative groups including groups
of diffeomorphisms, and invariant geometric structures. Ergod. Th. & Dynam. Sys. 30(4) (2010),
1055–1100.

[dlLW11] R. de la Llave and A. Windsor. Smooth dependence on parameters of solutions to cohomology
equations over Anosov systems with applications to cohomology equations on diffeomorphism
groups. Discrete Contin. Dyn. Syst. 29(3) (2011), 1141–1154.

[DX20] D. Damjanovic and D. Xu. Diffeomorphism group valued cocycles over higher rank abelian Anosov
actions. Ergod. Th. & Dynam. Sys. (2020), 40, 117-141.

[KaS16] B. Kalinin and V. Sadovskaya. Holonomies and cohomology for cocyces over partially hyperbolic
diffeomorphisms. Discrete Contin. Dyn. Syst. 36(1) (2016), 245–259.

[KP16] A. Kocsard and R. Potrie. Livšic theorem for low-dimensional diffeomorphism cocycles. Comment.
Math. Helv. 91 (2016), 39–64.

[KtH] A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems (Encyclopedia
of Mathematics and its Applications, 54). Cambridge University Press, New York, 1995.

[KtN07] A. Katok and V. Nitica. Rigidity of higher rank abelian cocycles with values in diffeomorphism
groups. Geom. Dedicata 124 (2007), 109–131.

https://doi.org/10.1017/etds.2020.131 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.131


286 V. Sadovskaya

[La] S. Lang. Fundamentals of Differential Geometry. Springer, New York, NY, 1999.
[Liv71] A. N. Livšic. Homology properties of Y-systems. Mat. Zametki 10 (1971), 758–763.
[Liv72] A. N. Livšic. Cohomology of dynamical systems. Math. USSR Izv. 6 (1972), 1278–1301.
[NT95] V. Nitica and A. Török. Cohomology of dynamical systems and rigidity of partially hyperbolic actions

of higher-rank lattices. Duke Math. J. 79(3) (1995), 751–810.
[NT96] V. Nitica and A. Török. Regularity results for the solutions of the Livsic cohomology equation with

values in diffeomorphism groups. Ergod. Th. & Dynam. Sys. 16(2) (1996), 325–333.
[NT98] V. Nitica and A. Török. Regularity of the transfer map for cohomologous cocycles. Ergod. Th. &

Dynam. Sys. 18(5) (1998), 1187–1209.
[PWa01] M. Pollicott and C. P. Walkden. Livšic theorems for connected Lie groups. Trans. Amer. Math. Soc.

353(7) (2001), 2879–2895.
[S19] V. Sadovskaya. Boundedness and invariant metrics for diffeomorphism cocycles over hyperbolic

systems. Geom. Dedicata 202(1) (2019), 401–417.
[W13] A. Wilkinson. The cohomological equation for partially hyperbolic diffeomorphisms. Astérisque 358

(2013), 75–165.

https://doi.org/10.1017/etds.2020.131 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.131

	1 Introduction and statement of the results
	1.1 Basic definitions
	1.2 Hölder continuous cocycles with bounded set of values are isometric
	1.3 Existence and regularity of holonomies
	1.4 Continuity of a measurable conjugacy between two cocycles
	1.5 Existence and properties of a conjugacy intertwining holonomies

	2 Distances on Diffr(M) and estimates
	2.1 Distances on the space of diffeomorphisms Diffr(M)
	2.2 Estimates of norms and distances

	3 Existence and properties of the holonomies
	4 Proof of Theorem 1.2
	5 Proofs of Proposition 1.10, Theorem 1.6 and Corollary 1.8
	5.1 Proof of Proposition 1.10
	5.2 Proof of Theorem 1.6

	6 Proofs of Proposition 1.9, Theorem 1.11 and Corollary 1.12
	6.1 Proof of Proposition 1.9
	6.2 Proof of Theorem 1.11
	6.3 Proof of Corollary 1.12

	Acknowledgements
	References

