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The converging flow of viscoplastic fluid in a
wedge or cone
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Converging flows of viscoplastic fluids, driven steadily through wedges and axisymmetric
cones, are studied analytically and numerically. When the yield stress is relatively large, the
bulk of the fluid flows plastically apart from within thin layers where the fluid is strongly
sheared in order to achieve no slip at the boundary. Conversely, when the yield stress is
relatively small, the motion is viscously dominated with weak corrections to the velocity
and stress fields due to viscoplastic effects. For both regimes, viscoplasticity induces a
weak angular velocity, directed away from the boundaries, and purely radial flow is not
possible. The structure of the flow is calculated using asymptotic methods, confirmed by
finite element numerical simulations. Flows of both Bingham and Herschel–Bulkley fluids
are analysed, and both planar and axisymmetric geometries are considered. Although these
cases differ in their details, they share the same qualitative structure. In particular, the
viscoplastic boundary layers that emerge when the yield stress is relatively large, ensure
not only that no slip is enforced, but also, through an intermediate matching layer, that the
shear rates remain bounded.

Key words: boundary layer structure, non-Newtonian flows, low-Reynolds-number flows

1. Introduction

The steady flow of a viscous fluid in a planar wedge is a fundamental problem in fluid
mechanics (Drazin & Riley 2006). First documented by Jeffery (1915) and Hamel (1917),
the flow is a rare example of a general solution to the Navier–Stokes flow at all Reynolds
numbers. ‘Jeffery–Hamel flow’ has been studied extensively (see, for e.g. Dean 1934;
Rosenhead 1940; Fraenkel 1962; Banks, Drazin & Zaturska 1988). For convex wedges,
with half-angle α � 90◦, converging and diverging solutions exist at vanishing Reynolds
numbers for all wedges, while at larger Reynolds numbers the flow forms thin boundary
layers at the walls. These layers are stable for converging flow but unstable for diverging
flow, resulting, above a critical Reynolds number, in separation, and the formation of a
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central jet and regions of reversed flow at the walls. In essence this occurs because the
weak viscous stresses are unable to balance the adverse pressure gradient of the diverging
flow.

Steady converging flows of plastic materials also have a long history. Nadai (1924)
derived a solution for the converging flow of a perfectly rigid plastic in a wedge,
with a constant friction imposed on the walls (solution presented in English by Hill
1950), and Shield (1955) solved the corresponding problem in an axisymmetric conical
geometry. Notably, both of these flow solutions exhibit slip and divergent shear rates
at the boundaries. Motivated by industrial applications such as wire drawing, polymer
processing, extrusion of pastes and the discharge of granular materials from hoppers and
silos, more recent studies have examined the converging flows of other non-Newtonian
fluids. For example, the slow converging flow of incompressible power-law fluids has been
studied by Durban (1986), Brewster et al. (1995) and Nagler (2017), while the viscoelastic
problem has been studied by Hull & Pearson (1984). The work by Brewster et al. (1995)
is of particular interest, as they consider a power-law fluid of small shear exponent, for
which they construct similarity solutions under the assumption of purely radial flow, and
demonstrate the need for a complex boundary layer structure in order to enforce no slip at
the walls.

Viscoplastic fluids are a particular class of non-Newtonian fluid which act as a rigid
plastic or flow as a viscous fluid, depending on whether the stress is less than or exceeds a
critical yield stress, respectively. This behaviour is common for slurries and suspensions,
and the viscoplastic model has wide ranging applications in geophysics and industry
(Ancey 2007; Balmforth, Frigaard & Ovarlez 2014; Frigaard, Paso & de Souza Mendes
2017). The non-Newtonian behaviour is characterised by the dimensionless Bingham
number, Bi, which measures the magnitude of the yield stress to the viscous stresses
developed by the flow. (The precise definition of Bi for the flow analysed in this study
is given in (2.13).)

For the slow converging flow of a viscoplastic fluid, Cristescu (1975) studied the stress
distribution produced by a given kinematically feasible radial velocity profile in a cone,
without attempting to solve the full system of partial differential equations required to
explicitly determine the coupled velocity and stress fields. Motivated by strip drawing
in the regime of low yield stress or fast drawing speed, Sandru & Camenshi (1979)
analysed the converging flow of a viscoplastic material when the Bingham number was
relatively small. They imposed ‘friction’ boundary conditions in the form of an imposed
ratio between shear and normal stresses at the boundaries. No-slip boundary conditions
can be treated as the limiting case of this approach, in which the deviatoric normal stress
vanishes and the shear stress is maximised. Although this case was not the focus of Sandru
& Camenshi (1979) and they stop short of explicit evaluation of the velocity fields, we
demonstrate that their perturbation solution may be used to calculate the velocity fields
and, in particular, emphasise that the solution implies purely radial flow is not possible.
Durban (1984, 1985, 1986) calculated flow profiles and stress fields for both a planar
wedge and an axisymmetric conical die, under constant friction boundary conditions, as
opposed to no-slip boundary conditions. These results are restricted by the assumption
that the wall friction is low compared to the yield stress, as relevant to well lubricated,
metal-forming processes at high temperatures, and the flow profiles are assumed to be
purely radial and approximately uniform. Later, Alexandrov, Lyamina & Mishuris (2007)
studied viscoplastic flow in a wedge under maximum friction boundary conditions, their
definition of which reduces to the condition that the deviatoric stress consists only of shear
stresses at the wall. Under this boundary condition they find that the radial velocity must be
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constant at the boundary, which is inconsistent with a slipping regime in which the radial
velocity increases towards the vertex of the wedge. They further consider constitutive laws
with a saturation stress (where the stress remains bounded as strain rates diverge) and find
that the classical assumptions of a radially independent stress state and purely radial flow
are inconsistent when shear stresses become comparable to the shear yield stress. They
identify the cause of these difficulties as the divergent strain rates that occur at the wall
in the perfectly plastic solution. However, they do not attempt to derive velocity or stress
fields for either the standard viscoplastic model, or for one with a saturation stress. Finally,
Ara et al. (2019) recently performed a numerical study of wedge flow of a Bingham fluid
including heat transfer, in the presence of a magnetic field. Again, this study assumed a
purely radial flow to derive ordinary differential equations for similarity solutions. These
solutions are found to be dependent on radius through the authors’ definition of Bingham
number, and so the conclusions of this work rely on an implicit assumption that this radial
dependence is sufficiently weak to be neglected in the expression of conservation of mass.

In this paper, we present a comprehensive analysis of converging flow of viscoplastic
fluid through a wedge or cone, that satisfies no-slip boundary conditions, in both the
plastically (Bi � 1) and viscously (Bi � 1) dominated regimes. We initially carry out
a full analysis for a Bingham fluid in a planar wedge, before extending the theory to
a Herschel–Bulkley fluid in a wedge and a Bingham fluid in an axisymmetric conical
geometry, both of which share the same analytical framework to the flow of a Bingham
fluid through a wedge, but are algebraically more involved. Most importantly, in all cases
we find that the viscoplasticity introduces a weak angular flow towards the centre of
the wedge or cone, explaining the challenges faced by previous attempts to find purely
radial solutions. Furthermore, in the plastically dominated regime, boundary layers are
found at the wall, allowing the solution to satisfy no slip. The angular extent of these
boundary layers is found to decrease with Bingham number as Bi−1/2 (or Bi−1/(N+1) for a
Herschel–Bulkley fluid of flow index N) and depends also on the radial distance from the
apparent apex of the wedge or cone, r. Direct numerical simulations for a Bingham fluid
in a planar wedge are carried out using the finite element method, verifying the analytical
results in both regimes.

In the plastic regime, the converging flow field away from the boundaries is given to
leading order by the solutions derived by Nadai (1924) and Shield (1955), with viscous
effects becoming significant within relatively thin boundary layers in which the shear
rates are relatively large and the shear stresses exceed the yield stress. The velocity
field in this regime may be determined using viscoplastic boundary layer techniques,
originally developed by Oldroyd (1947). Oldroyd explored a distinguished limit in which
viscous shear stresses and plastic extensional stresses are both significant in the streamwise
momentum balance, which occurs for dimensionless boundary layer widths of order
Bi−1/3. Viscoplastic boundary layers were re-examined by Piau (2002), who argued for a
different distinguished scaling from Oldroyd, in which viscous shear stresses dominate the
momentum balance, and boundary layer widths instead scale like Bi−1/2. Most recently,
Balmforth et al. (2017) developed a consistent boundary layer theory for viscoplastic
flows, clarifying the conditions under which Oldroyd’s and Piau’s scalings are appropriate.
Specifically, they determined that where the boundary layer is adjacent to a rigid wall,
the boundary layer structure is consistent with Piau’s arguments (although the exact
scaling can vary depending on the far field pressure gradient), whereas when bounded
only by unyielded or plastically deforming fluid, the appropriate scaling is Oldroyd’s. In
the problems studied by Balmforth et al. (2017), the boundary layer solutions are only
explicitly asymptotically matched to rigid plugs. However, in the problem considered in
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this work, the velocity is varying at the outer edge of the boundary layer due to the
converging geometry, and thus our asymptotic construction is rather different. It will
be shown that the solution does share some similarities with other viscoplastic flows
which exhibit regions of nearly plastic deformation, such as flow in an eccentric annulus
(Walton & Bittleston 1991), flow around a cylinder (Tokpavi, Magnin & Jay 2008) or
thin-layer gravitational flow (Balmforth & Craster 1999). In the weakly yielded regions,
or ‘pseudo-plugs’, present in these flows, the second invariant of the deviatoric stress does
not exceed the yield stress at leading order, but does so at higher orders. These regions
are typically delineated from fully yielded material by ‘fake yield surfaces’. In accord
with the previous results for viscoplastic boundary layers, we show that the width of
the layer scales like Bi−1/2, as expected for flow bounded by rigid walls, but that it is
matched, via an intermediate asymptotic layer encompassing a fake yield surface, to a
weakly yielded, pseudo-rigid plastic solution in the bulk of the wedge. The existence of
these two asymptotic layers is a consequence of the need to both impose no slip and to
regularise the divergent shear rates found at the wall in the rigid plastic solution of Nadai
(1924).

We first define the problem and outline the solution for the converging wedge flow of a
Bingham fluid (§ 2). We then construct the asymptotic solution for the plastic regime and
compare the results to direct numerical simulations (§ 3). The asymptotic solution for the
viscous regime is derived and compared to direct simulations in § 4. We focus initially
on the Bingham fluid and planar geometry, since this case most clearly demonstrates
the asymptotic structure with minimal algebraic complications. We then generalise the
problem to a Herschel–Bulkley fluid (§ 5), and to an axisymmetric conical geometry
(§ 6), which both follow the same asymptotic structure as the solutions in §§ 3,4, but are
algebraically more involved due to rheology (§ 5) and geometry (§ 6). We summarise and
conclude our study in § 7. There are also four appendices in which we provide some of the
algebraic details required for the derivation of the flow solutions.

2. Problem definition: Bingham fluid in a planar wedge

We analyse steady slow incompressible flow of a viscoplastic fluid through a planar wedge
of half-angle α (see figure 1). We restrict our focus to α � π/2, for which the geometry
represents a converging flow in a wedge, as opposed to a sink flow external to a wedge
when α > π/2. A volume flux per unit width, Q (taken to be positive for flow towards
the vertex), is imposed and we assume that the wedge is sufficiently long that end effects
may be ignored. The flow field is predominantly in the radial direction and is assumed
symmetric about the centre-line of the wedge. Plane polar coordinates, (r, θ), are defined
relative to the apparent vertex of the wedge. The key dependent variables are the velocities
in the radial and angular directions, denoted by u and v respectively.

We initially assume the constitutive law for a Bingham fluid, before generalising to the
Herschel–Bulkley model in § 5. Thus, the constitutive law is given by⎧⎪⎨⎪⎩

(
τrr

τrθ

)
=
(
μ+ τc

γ̇

)(
γ̇rr

γ̇rθ

)
if τ > τc,

γ̇ = 0 otherwise,

(2.1)

where μ is the Bingham plastic viscosity and τc is the yield stress. The variables
(τrr, τrθ ) and (γ̇rr, γ̇rθ ) are the components of the deviatoric stress and strain-rate tensors,
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2α

r
u

Q
θ
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Figure 1. A schematic of the flow geometry.

respectively, τ and γ̇ are the corresponding second invariants given by

γ̇ 2 = γ̇ 2
rr + γ̇ 2

rθ and τ 2 = τ 2
rr + τ 2

rθ , (2.2a,b)

and the strain-rate tensor is defined by

γ̇ = (∇u)+ (∇u)T , (2.3)

where u is the velocity vector and T is the transpose. Due to the flow convergence we
expect that γ̇ > 0, and hence that the fluid is yielding everywhere and rigid plugs do not
form in the flow. As such, we need only consider the τ > τc case of the constitutive law
(2.1).

We have the following dimensional quantities in our problem: density, ρ, viscosity, μ,
yield-stress, τc, volume flux per unit width, Q, and typical radial distance from the vertex,
R. We scale velocities by Q/R, strain rates by Q/R2, stresses and pressures by μQ/R2

and, unless stated otherwise, all variables will be assumed dimensionless. On the further
assumption that the flow is sufficiently slow to ignore inertial effects, the non-dimensional
governing equations in polar coordinates are given by

1
r
∂ (ru)
∂r

+ 1
r
∂v

∂θ
= 0, (2.4)

∂p
∂r

= ∂τrr

∂r
+ 1

r
∂τrθ

∂θ
+ 2

r
τrr, (2.5)

1
r
∂p
∂θ

= ∂τrθ

∂r
− 1

r
∂τrr

∂θ
+ 2

r
τrθ , (2.6)

which express incompressibility (2.4) and the balance of momentum in the radial (2.5) and
angular (2.6) directions. The deviatoric stress and strain-rate tensors are given by(

τrr
τrθ

)
=
(

1 + Bi
γ̇

)(
γ̇rr
γ̇rθ

)
, (2.7)
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γ̇rr = 2
∂u
∂r
, γ̇rθ = 1

r
∂u
∂θ

+ ∂v

∂r
− v

r
, (2.8a,b)

γ̇ =
√(

1
r
∂u
∂θ

+ ∂v

∂r
− v

r

)2

+ 4
(
∂u
∂r

)2

. (2.9)

The boundary conditions are

(u, v) = (0, 0) at θ = ±α, (2.10)

v = ∂u
∂θ

= 0 at θ = 0, (2.11)

which express no slip at the edges of the wedge (2.10) and symmetry about the mid-line
(2.11). There is, additionally, an integral expression for the volume flux per unit width
given by ∫ α

−α
ru dθ = −1. (2.12)

The residual dimensionless parameter is given by

Bi = R2τc

μQ
, (2.13)

which defines a Bingham number, giving the ratio of plastic to viscous stresses. Note that
this Bingham number depends on the scale of the radial distance from the vertex, due to
the geometry imposing no other length scale. For given rheological parameters and volume
flux, the parameters define a critical dimensional radial distance, rc = (μQ/τc)

−1/2, below
which viscous forces dominate, and beyond which plastic forces dominate the flow. We
will concern ourselves with the Bi � 1 (plastically dominated) and Bi � 1 (viscously
dominated) regimes, which apply sufficiently far from and sufficiently close to the vertex,
respectively. We note that we could have chosen to scale radial distances by rc, in which
case all dimensional parameters are removed from the governing equation. However, our
exposition is clearer and easier to compare with previous studies when based upon the
dimensionless variables and governing equations given above. We note that, due to the
quadratic dependence of Bi on R, we anticipate that our asymptotic expansions will be
functions of r2Bi. The absence of inertial terms in (2.4)–(2.6) requires that the Reynolds
number, Re = ρQ/μ, is sufficiently small. In practice this requirement varies depending
on the regime of interest. For the Bi � 1 regime it will be sufficient that Re = O(1), while
for the Bi � 1 regime we will require Re � Bi.

2.1. An outline of the solution
Before performing a detailed analysis of the problem, we outline the key results. In this
discussion we assume that the wedge extends from a large dimensional radius, r � rc, to
a small radius r � rc. Thus, in the far field of the wedge, and away from the walls, the
leading-order flow is given by Nadai’s solution for converging plastic flow (Nadai 1924;
Hill 1950),

u = − A
r (c − cos 2ψ)

, v = 0,
dψ
dθ

= c sec 2ψ − 1. (2.14a–c)

Here, A and c are constants determined by the flux and boundary conditions, respectively,
which are given explicitly later in (3.14) and (3.15). The function ψ measures the angle
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0
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Figure 2. The radial velocity field, u, as a function of polar angle, θ , for plastic (solid line) and viscous
(dashed line) converging flow in a wedge, with α = π/4 and r = 1 (see (2.14a–c) and (2.15a–c)).

between the directions of the principle stresses and the coordinate axes, and is a function
of the polar angle, such that τrθ = τrr tan 2ψ . Viscous shear-stress-dominated flow will be
shown to be confined to a thin boundary layer of angular thickness O((r2Bi)−1/2), allowing
the solution to satisfy no slip. The variation of the angular extent of the boundary layer
with r is such that the boundary layer is of a constant Cartesian thickness along the no-slip
boundary. The first-order corrections to the plastic flow (2.14a–c) will be shown to also be
O((r2Bi)−1/2) and are driven by the flow within the boundary layer. A thin intermediate
layer is also required between the bulk of the wedge and the boundary layer, for asymptotic
matching of the respective solutions in these regions. One interpretation of this boundary
layer structure is that the plastically dominated bulk solution, (2.14a–c), suffers from two
different inconsistencies at the wall, namely diverging shear rates and slip, which require
addressing at different scales. The intermediate layer plays the role of regularising the
divergent shear rates, while the boundary layer enforces the no-slip boundary condition.

In contrast, at the outflow of the wedge, the shear rate is much higher due to radial
convergence, and viscous forces dominate the flow. The leading-order flow is the classical
Stokes solution,

u = − cos(2θ)− cos(2α)
r (sin(2α)− 2α cos(2α))

, v = 0, p = − 2 cos 2θ
r2 (sin 2α − 2α cos 2α)

+ const.,

(2.15a–c)

which defines a purely converging flow for all α � π/2. Here, the first-order corrections
due to plasticity are O(r2Bi). Comparison of the radial velocity profiles in the plastic and
viscous limits (figure 2), shows that the viscous profile has enhanced flow at the centre
of the wedge compared to the plastic flow. A consequence of this is that we expect an
angular velocity to be induced towards the centre of the wedge, away from the walls, to
satisfy conservation of mass as the fluid transitions from the plastic profile at the inflow to
the viscous profile at the outflow. This is indeed borne out and quantified in the analytical
solution constructed below.

3. Plastic regime (Bi � 1)

In the regime of large Bingham number, Bi � 1, or equivalently at large distances from
the apparent apex of the wedge, the constitutive equation (2.7) has three main regimes for
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different sizes of the strain rate, γ̇ : plastic stresses dominate the momentum balance when
the strain rate is O(1); viscous stresses dominate in a thin boundary layer where the strain
rate is high; and both become significant for an intermediate magnitude of the strain rate.

3.1. The bulk solution
In the bulk of the wedge, away from the boundaries, we expect that γ̇ = O(1). In this case
the constitutive equation is dominated by the yield stress and we find that the deviatoric
stresses are determined up to O(1) by the plastic flow equation

τij = Bi
γ̇ij

γ̇
, (3.1)

which implies that, at leading order, the magnitude of the deviatoric stress is everywhere
equal to the yield stress, and that the deviatoric stress aligns with the rate of strain. As
for the flow in an eccentric annulus (Walton & Bittleston 1991) and gravitationally driven
shallow layer flow (Balmforth & Craster 1999), while the stress does not exceed the yield
stress at leading order, the material is nonetheless undergoing deformation, and so must be
yielded. This region is therefore analogous to ‘pseudo-plugs’ found in other flow scenarios
(Walton & Bittleston 1991; Balmforth & Craster 1999).

Following the approach of Nadai (1924) in the bulk of the flow we introduce a variable,
ψ , such that (

τrr
τrθ

)
= Bi

(
cos 2ψ
sin 2ψ

)
. (3.2)

We must have ψ(r, 0) = 0 by symmetry, and in the analysis that follows will focus on
the region 0 � θ � α, with symmetry allowing the automatic construction of the flow in
−α � θ � 0. In the solution of Nadai (1924), (2.14a–c), the velocity does not vanish on
the wall. Hence, to satisfy the no-slip boundary condition, we expect the shear rate, ∂u/∂θ ,
to become large in a small region near the walls. This leads to a different regime where
the viscous stresses are no longer negligible in the balance of momentum. We define the
angle, θY , at which this change of dynamical balance occurs by

θY = α − εΦ(r), (3.3)

where ε is a small parameter depending on Bi in a way that is yet to be determined, and
we have introduced a potential dependence on r through the function Φ. The notation θY
alludes to the fact that this is a fake yield surface, delineating weakly yielded fluid from
highly sheared, fully yielded fluid adjacent to the boundary.

The governing equation (3.2) can be rearranged to obtain

tan (2ψ) = τrθ

τrr
= γ̇rθ

γ̇rr
. (3.4)

At the wall, γ̇rr vanishes, and in the thin boundary layer, γ̇rθ is large. Hence, both ratios
on the right-hand side of (3.4) are large in the boundary layer, and we require ψ → π/4
as θ → θY in order for the bulk solution to match to the boundary layer. This dependence
of ψ on r through the boundary condition at θ = ±θY(r), leads to apparent difficulties
in the asymptotic investigation of the boundary layer due to divergent strain rates which
obfuscate the straightforward expansion of the flow variables. To avoid this difficulty, we
use strained coordinates, introducing a coordinate transform that transforms the fake yield

915 A69-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.112


The converging flow of viscoplastic fluid

surfaces, θ = ±θY(r), toΘ = ±1. Specifically we make the transformation of independent
variables

(r, θ) = (r, θY(r)Θ) , (3.5)

noting that this gives partial derivatives:

∂

∂r
→ ∂

∂r
+ ∂Θ

∂r
∂

∂Θ
= ∂

∂r
+ εΦ ′Θ
α − εΦ

∂

∂Θ
,

∂

∂θ
→ ∂Θ

∂θ

∂

∂Θ
= 1
α − εΦ

∂

∂Θ
.

(3.6a,b)

In the plastically dominated region we seek a solution that is, to leading order, radial. The
boundary layer may drive an azimuthal flow of order ε, so we search for a solution of the
form

u = u0 + εu1 + . . . , v = εv1 + . . . , ψ = ψ0 + εψ1 + . . . , p = p0 + εp1 + . . . .

(3.7a–d)

We have three governing equations. The curl of the momentum balance gives(
1

(α − εΦ)2
∂2

∂Θ2 −
(

r
∂

∂r
+ εrΦ ′Θ
α − εΦ

∂

∂Θ

)2

− 2
(

r
∂

∂r
+ εrΦ ′Θ
α − εΦ

∂

∂Θ

))
sin 2ψ

+ 2
α − εΦ

∂

∂Θ

(
r
∂

∂r
+ εrΦ ′Θ
α − εΦ

∂

∂Θ
+ 1

)
cos 2ψ = 0; (3.8)

conservation of mass gives(
∂

∂r
+ εΦ ′Θ
α − εΦ

∂

∂Θ

)
(ru)+ 1

α − εΦ

∂v

∂Θ
= 0; (3.9)

and, provided we remain above O(Bi−1) in (3.7a–d), at which point viscous terms re-enter
the constitutive equation, the rigid plastic approximation holds and the orientation of the
stress tensor, parameterised through ψ (3.2), is given by

2 tan 2ψ
(

r
∂u
∂r

+ εrΦ ′Θ
α − εΦ

∂u
∂Θ

)
= 1
α − εΦ

∂u
∂Θ

+ r
∂v

∂r
+ εrΦ ′Θ
α − εΦ

∂v

∂Θ
− v. (3.10)

3.2. Leading-order bulk flow
At O(1) the solution of (3.8)–(3.10) corresponds to Nadai’s (1924) solution up to the slight
alteration of the factors of α due to the scaling to unit angle. Specifically, we have

αΘ = −ψ0 + c√
c2 − 1

arctan

(√
c + 1
c − 1

tanψ0

)
, (3.11)

u0 = − A
r (c − cos (2ψ0))

, (3.12)

p0 = 2Bi c ln(r)+ Bi c ln(c − cos 2ψ0)+ const. (3.13)

The constant, c, is determined by the boundary condition ψ0(1) = π/4, as required to
match to a shear-stress-dominated boundary layer (see discussion after (3.4)). This gives
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J.J. Taylor-West and A.J. Hogg

the implicit equation

α + π

4
= c√

c2 − 1
arctan

(√
c + 1
c − 1

)
. (3.14)

Finally, A is determined by the volume-flux condition. To leading order,

A = 2c(c2 − 1)
4α + π + 2c

. (3.15)

3.3. The intermediate layer
Asymptotic analysis of this leading-order solution (see Appendix A) verifies that the shear
rate diverges as we approach the fake yield surface, θ = θY , thus we will require an
intermediate layer aroundΘ = 1, to regularise the diverging terms. We proceed following
Walton & Bittleston (1991) and Balmforth & Craster (1999), to derive a governing equation
that reduces to the appropriate dynamical balances as we move out of the intermediate
layer into either the bulk or boundary layer regions. We define this intermediate layer by the
further coordinate transformation δζ = θY − θ = (α − εΦ)(1 −Θ), where ζ is our new
angular coordinate and δ is another ordering parameter. We re-label velocity components(

u
v

)
=
(

U
εV

)
, (3.16)

where U and V are assumed to be O(1). It is assumed, and later verified, that δ � ε � 1,
so that the intermediate layer is much narrower than both the bulk region and the boundary
layer. The ε scaling of the azimuthal velocity is inherited from the bulk solution (3.7a–d).

Note that,

δζ = α − εΦ(r)− θ, (3.17)

and so, as before, we have altered partial derivatives

∂

∂r
→ ∂

∂r
− εΦ ′

δ

∂

∂ζ
,

∂

∂θ
→ −1

δ

∂

∂ζ
. (3.18a,b)

Expansion of the leading-order plastic solution for small δ (see Appendix A), gives

u0 = − A
rc

− 2A
rc

√
c

√
δζ + . . . , (3.19)

thus we define

U = U0(r)+ δ1/2U1(r, ζ )+ . . . , with U0(r) = − A
cr
, (3.20)

and the term U1(r, ζ ) capturing the weak variation of U with ζ over the width of the
intermediate layer. In addition to the assumption that δ � ε � 1, we will now also
work under the assumption that ε2 � δ which ensures that the additional terms from the
coordinate transformation do not enter the leading-order balance, and is also required for
the second term in (3.19) to be greater than contributions to the velocity from the order-ε
correction terms in the bulk solution.
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The converging flow of viscoplastic fluid

Under this assumption, verified below, expanding the shear stress gives

τrθ = −1
r
δ−1/2∂ζU1 + Bi − 2r2δBi

(
∂rU0

∂ζU1

)2

+ . . . , (3.21)

where we now use short-hand notation for partial derivatives for notational clarity. The
second term on the right-hand side of (3.21) is constant and so does not contribute to the
momentum balance, hence we have both viscous and plastic terms when δ = Bi−2/3. The
leading-order radial and angular expressions of momentum balance are now given by

Bi−1∂rp = 1
r2 ∂ζ ∂ζU1 + 2r∂ζ

[(
∂rU0

∂ζU1

)2
]
, (3.22)

Bi−1/3∂ζp = 2r∂ζ

[
∂rU0

∂ζU1

]
, (3.23)

which, along with the fact that p is O(Bi) from the bulk solution, imply p = Bi P(r) =
2cBi ln r to leading order. Thus, the radial pressure gradient is unchanged to leading order
by the intermediate layer.

The asymptotic behaviour of the shear stress in the bulk solution is given by

τrθ = Bi sin 2ψ0 = Bi − 2cBiδζ + . . . = Bi − 2cBi1/3ζ . . ., (3.24)

(see Appendix A). Then, integrating (3.22) once with respect to ζ and using (3.24) and
(3.21) at O(Bi1/3) to set the constant of integration, we establish a cubic equation in ∂ζU1,

(∂ζU1)
3 − r2ζ∂rP(∂ζU1)

2 + 2r3(∂rU0)
2 = 0, (3.25)

in the intermediate layer. Substituting for U0(r) and P(r), we find the form

(∂ζU1)
3 − 2crζ(∂ζU1)

2 + 2A2

c2r
= 0. (3.26)

For the angular component of the velocity, from the incompressibility equation we have

∂

∂r
(rU)− εrΦ ′

δ

∂U
∂ζ

− ε

δ

∂V
∂ζ

= 0, (3.27)

which, on substitution of (3.20), leads to

V = V0(r)− δ1/2rΦ ′U1(r, ζ )+ . . . . (3.28)

It remains to find V0 and Φ by solving in the boundary layer (§ 3.4).
We deduce some matching information for the boundary layer by considering the

behaviour of the cubic equation for ∂ζU1, (3.26). As ζ → −∞, in (3.26), the diverging
positive second term can only balance with the first term, and so ∂ζU1 → −∞ and we
have

∂ζU1 ∼ 2crζ. (3.29)

Hence, as we move into the boundary layer, we integrate (3.29) to find the velocity profile
satisfies

U = U0(r)+ crBi−1/3ζ 2 + Bi−1/3W(r)+ . . . , (3.30)

where W(r) is an arbitrary function of integration. Immediately, we identify the new
distinguished scaling as Bi−1/3ζ 2 = O(1), or ζ = O(Bi1/6) which, when related back in
terms of θ , gives θ − θY = O(Bi−1/2). Thus we have derived the width of the boundary
layer as ε = Bi−1/2, and can verify that ε2 = Bi−1 � δ � ε, as was assumed in deriving
the leading order stress balance in the intermediate layer above.
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J.J. Taylor-West and A.J. Hogg

3.4. Boundary layer solution

The boundary layer solution is constructed by introducing the scaled coordinate, εφ̃ =
α − θ . From mass conservation we find the natural scalings(

u
v

)
=
(

Ũ
εṼ

)
, (3.31)

where Ũ and Ṽ are assumed O(1). Then, expanding the shear stress gives

τrθ = − 1
εr
∂Ũ

∂φ̃
+ Bi + O(ε2Bi), (3.32)

where the sign of the Bi term on the right-hand side arises due to ∂Ũ/∂φ̃ < 0 (since
U varies from 0, at the wall, to some negative value in the bulk of the flow). Thus,
viscous stresses balance the pressure gradient since ε3Bi = Bi−1/2 � 1 and so the plastic
shear-stress terms are omitted in the radial momentum balance. We find that, as in the
intermediate layer, the pressure is constant across the extent of the boundary layer to
leading order, and is thus set by the pressure in the bulk and intermediate regions. The
radial momentum equation then becomes

∂P
∂r

≡ 2c
r

= 1
r2
∂2Ũ

∂φ̃2
, (3.33)

which integrates to give

Ũ = cr(φ̃2 − 2Φ(r)φ̃). (3.34)

The constants of integration have been chosen so that ∂Ũ/∂φ̃ = 0 at φ̃ = Φ, and Ũ = 0
at φ̃ = 0.

As φ̃ → Φ we may write

Ũ = −crΦ2 + cr(φ̃ −Φ)2, (3.35)

which is consistent with the ζ → −∞ limit, (3.30), and, from (3.20), determines Φ,

Φ(r) =
√

A
cr
. (3.36)

Thus we have found that the angular width of the boundary layer, εΦ, does indeed
depend on (r2Bi)−1/2, as anticipated. The Cartesian width of this boundary layer is
εrΦ = Bi−1/2

√
A/c. It is therefore a constant, independent of the radial distance from

the apex of the wedge. We can also now calculate the additional shear stress at the wall
due to the viscoplastic boundary layer. From (3.32) we have

τrθ |θ=α = Bi − 1
εr
∂Ũ

∂φ̃

∣∣∣∣∣
φ̃=0

+ . . . = Bi +
√

Bi
2
√

A
r

+ . . . , (3.37)

demonstrating that the additional shear stress at the wall is O(Bi1/2) and is proportional
to 1/r. Thus, the additional shear force over the extent of the upper wall, from r = r1 to
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The converging flow of viscoplastic fluid

r = r2, assuming the plastic regime applies throughout this domain, is given by

2
√

Bi
√

A ln
(

r2

r1

)
. (3.38)

For the polar velocity, using incompressibility, we have

∂Ṽ

∂φ̃
= −1

ε

∂Ṽ
∂θ

= −∂v
∂θ

= ∂

∂r
(rŨ) = 2crφ̃2 − 2

√
Aφ̃. (3.39)

Integrating and using Ṽ = 0 at φ̃ = 0, yields

Ṽ = cr
3
(2φ̃3 − 3Φφ̃2). (3.40)

In particular, by matching Ṽ to V0 (see (3.28)), we find the negative angular flow,

V0(r) = −crΦ3

3
= − A

√
A

3c2r2 . (3.41)

This velocity away from the boundary is transmitted through the intermediate layer to the
bulk region. To determine the profile of this weak angular flow in the body of the wedge
requires exploring higher orders in the bulk solution. This is done in § 3.5.

It is interesting to consider the limit α → 0 with rα = 1, for which A/c2 → 1. In this
limit: the leading-order bulk solution reduces to a uniform plug flow; the intermediate
layer vanishes; the leading-order solution in the uniform width, O(Bi−1/2), boundary layer
becomes a parabolic profile; and the outflow from the boundary layer, εV0, vanishes. Thus
the Bingham–Poiseuille flow in a channel is recovered, as it must be, in this limit.

3.5. Higher orders in the bulk
At O(ε), the governing system of equations (3.8)–(3.10) becomes(

1
α2

∂2

∂Θ2 −
(

r
∂

∂r

)2

− 2r
∂

∂r

)
(ψ1 cos 2ψ0)− 2

α

∂

∂Θ

(
r
∂

∂r
+ 1

)
(ψ1 sin 2ψ0)

= −
(
Φ

α3
∂2

∂Θ2 + ΦΘ

2α
∂

∂Θ

)
sin 2ψ0 + ΦΘ

α2
∂2

∂Θ2 cos 2ψ0, (3.42)

∂ (ru1)

∂r
+ 1
α

∂v1

∂Θ
= ΦΘ

α

∂u0

∂Θ
, (3.43)

2r tan 2ψ0
∂u1

∂r
− 1
α

∂u1

∂Θ
− r

∂v1

∂r
+ v1 − 4ψ1u0 sec2 2ψ0

= 2
ΦΘ

α
tan 2ψ0

∂u0

∂Θ
+ Φ

α2
∂u0

∂Θ
, (3.44)

where the identities, r(dΦ/dr) = −Φ and r(∂u0/∂r) = −u0, have been used. The
right-hand sides of (3.42)–(3.44) determine the r dependence of u1, v1 and ψ1, and so
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we define

u1 = û1(Θ)

r2 , v1 = v̂1(Θ)

r2 , and ψ1 = ψ̂1(Θ)

r
. (3.45a–c)

Making these substitutions, along with Φ = √
A/cr, results in the coupled ordinary

differential equations (ODEs)

1
α2 (ψ̂1 cos 2ψ0)

′′ + ψ̂1 cos 2ψ0

=
√

A
αc

(
Θ

α
(cos 2ψ0)

′′ − 1
α2 (sin 2ψ0)

′′ − Θ

2
(sin 2ψ0)

′
)
, (3.46)

−û1 + 1
α
v̂′

1 =
√

AΘ
αc

û0
′, (3.47)

−4û1 tan 2ψ0 − 1
α

û′
1 + 3v̂1 − 4ψ̂1û0 sec2 2ψ0 =

√
A
αc

(
2Θ tan 2ψ0 + 1

α

)
û′

0. (3.48)

There are two boundary conditions for v̂1(Θ)

v̂1(0) = 0, v̂1(1) = −A
√

A
3c2 , (3.49a,b)

which respectively represent the symmetry of the flow at the mid-line and matching to the
angular outflow from the boundary layer. Additionally, the symmetry conditions demand
that

ψ̂1(0) = 0. (3.50)

The final boundary condition arises from matching the deviatoric stresses between the
intermediate layer and the bulk solution. Specifically, in the intermediate layer, using the
transformed partial derivatives, (3.18a,b), the asymptotic form of the radial velocity, (3.20),
and the identity rΦ ′ = −Φ, we have (in the notation of the intermediate layer)

τrr = −2rBi δ1/2

∂ζU1

(
dU0

dr
− ε

δ1/2Φ
′∂ζU1

)
+ . . . = 2U0

∂ζU1
Bi2/3 − 2ΦBi1/2 + . . . . (3.51)

By considering the ζ → ∞ limit of the cubic (3.26), we find that ∂ζU1 → −A/(r
√

c3ζ ),
and so

τrr = 2
√

cζBi2/3 − 2ΦBi1/2 + . . . . (3.52)

Meanwhile, in the bulk solution, we have

τrr = Bi cos 2ψ0 − 2εBiψ1 sin 2ψ0 + . . . = 2Bi
√
αc (1 −Θ)− 2Bi1/2ψ1 + . . . ,

(3.53)

where we have used the expansion of cos 2ψ0 and sin 2ψ0 about Θ = 1, given in
Appendix A. Finally, using the substitution δζ = θY(1 −Θ) = α(1 −Θ)+ O(εδ), we see
that the leading-order terms match, and that matching at O(Bi1/2) requires

ψ1(r,Θ = 1) = Φ(r) =
√

A
cr

=⇒ ψ̂1 (1) =
√

A
c
. (3.54)

Furthermore, we may determine the behaviour of all the dependent variables in the regime
|1 −Θ| � 1 (see Appendix B, setting N = 1 for the Bingham model).
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The converging flow of viscoplastic fluid
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Figure 3. The first-order corrections to the velocities, u and v, and the stress orientation function, ψ , in
the plastic regime, as functions of the scaled angular coordinate Θ , for α = π/6 (solid), π/4 (dashed), π/3
(dash-dotted) and π/2 (dotted).

The boundary-value problem (3.46)–(3.48) was solved using a shooting method. First
we use the local form of the dependent variables (B6)–(B8) to step a small distance, d,
away from the singular point before integrating to Θ = 0 where the boundary conditions
(3.49a,b) and (3.50) determine the unknown coefficients, E and F, in (B6)–(B8). The
dependence of the solutions on d was investigated and it was found that profiles were
essentially independent of d for d < 10−5. Numerical solutions are plotted for a range
of values of α in figure 3. We note that the radial velocity is enhanced by the effects
of the boundary layer, and that an angular velocity away from the boundary is induced,
which reaches a maximum at some interior location. Also, the magnitude of the shear
stress is promoted throughout the domain. The magnitude of these corrections decreases
systematically with increasing wedge half-angle.

Physically, as we deviate from a perfectly rigid plastic, the radial flow is reduced by
no slip at the wall, over an increasingly thick boundary layer. Thus, for the same volume
flux, the radial flow must be enhanced in the centre of the wedge, and conservation of
mass requires an angular flow from the wall, where radial flow is small, towards the
centre of the wedge, where the flow is enhanced. The dependence on half-angle arises via
the decreasing boundary layer strength with increasing half-angle. This occurs through
a competition between the radial pressure gradient at the edge of the boundary layer
(which decreases with increasing α, supporting a lower angular gradient of the shear stress
potentially widening the boundary layer) and the magnitude of the non-vanishing velocity
at the boundary in Nadai’s (1924) plastic solution (2.14a–c) (which decreases with α, thus
requiring a thinner boundary layer to enforce no slip for the same radial pressure gradient).
The balance between these effects is reflected in the

√
A/c factor in the boundary layer

width, εΦ. This term turns out to be a decreasing function of α, and so the boundary layer
and the induced velocity perturbations are weaker for larger half-angles (at the same radial
position, r). The stress behaviour is also non-trivial since the enhanced radial flow has the
potential to increase both the normal radial stress, and the shear stress, but cannot increase
both, since the magnitude of the deviatoric stress is everywhere equal to the yield stress at
this order. However, as we have enhanced shear stress at the walls due to the viscoplastic
shear layer, it is natural to expect the shear stress to be enhanced across the domain, as is
observed.
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3.6. Composite solutions
To produce leading-order radial and angular velocity profiles, it is useful to define a
composite solution that is valid across the whole domain. We define such a solution, using
the limiting behaviours of the plastic and boundary layer solutions in the vicinity of θY , as

ucomp(r, θ) =

⎧⎪⎨⎪⎩
u0 + U + A

rc
+ 2A

√
θY − θ

rc
√

c
for θ < θY ,

Ũ + U + A
rc

− rcBi (θ − θY)
2 for θ � θY ,

(3.55)

vcomp(r, θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε

(
v1 + V + A

√
A

3r2c2 + 2A
√

A
r2c2√c

√
θY − θ

)
for θ < θY ,

ε

(
Ṽ + V + A

√
A

3r2c2 −
√

ABi (θ − θY)
2

)
for θ � θY ,

(3.56)

where θY(r) is the location of the fake yield surface defined by (3.3) and (3.36). These
profiles (for fixed r) are continuous at θ = θY , since the velocities here are equal to those
for the intermediate layer solution at ζ = 0, on both branches of the piece-wise definition.

3.7. Numerical simulations
Numerical simulations of the complete governing partial differential equations (2.4)–(2.6),
were carried out using the finite element method as implemented by FEniCS (Logg,
Mardal & Wells 2012; Alnæs et al. 2015). The domains were meshed with 60 000
triangular elements, with a higher concentration at the wall and near the outflow, where
higher strain rates are expected. The fluid is yielded everywhere, so we do not expect the
occurrence of plug regions and the associated singular Jacobian matrix of the discretised
equations, when applying the Newton method. Nonetheless, the nonlinearity in the
equations causes problems when trying to use Newton iterations to converge to the solution
from an arbitrary initial state. We found that using an augmented-Lagrangian method, as
described by Saramito (2016), resulted in slow convergence but could be used to produce
an effective initial guess for the Newton method, allowing a subsequent fast convergence
to a Newton residual of less than 10−8. For the following results Bi has been set at 1,
but the domains have a radial range of r ∈ [0.01, 500], allowing the effective Bingham
number, r2Bi, to vary from 10−4 to 250 000, within a single simulation. The low value
of this parameter at the outflow means the purely viscous radial solution (2.15a–c) is a
good approximation to the velocity at the outflow, and is therefore imposed as a Dirichlet
boundary condition here, while the large value at the inflow means the leading-order
asymptotic viscoplastic solution is an appropriate boundary condition here.

Firstly, we confirm the predicted behaviour of the boundary layer thickness in the
plastic regime. For a given radius, the boundary layer thickness was determined from the
numerical radial flow profile by the angle at which

∂u
∂θ

=
(

2Bi
A2

c2r

)1/3

, (3.57)

which is the shear rate predicted at the centre of the matching region by setting ζ = 0
in the equation (3.26). Figure 4 shows the measured boundary layer thickness alongside
the predicted value, εΦ(r), with Φ given by (3.36), at a number of radial positions for
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Figure 4. (a) The width of the viscoplastic boundary layer determined analytically (dashed) and numerically
(symbols), at a range of radial positions and wedge angles. (b) Profiles of radial velocity determined numerically
for α = π/4. The quantity r(α − θ) defines a small Cartesian distance from the wall at θ = α. The theoretical
position of the fake yield surface is shown by a dotted line.

three different wedge angles, confirming the analytical result. Also shown are example
velocity profiles from the numerical solution for α = π/4, in a small region near the upper
boundary θ = α. We note that the boundary layer is of constant width, in a Cartesian sense,
due to the 1/r dependence of Φ, and that this is borne out by the numerical results.

Figure 5 provides comparisons between the numerical and composite asymptotic flow
profiles for a choice of wedge angle (α = π/4) and radius (r = 100), which is sufficiently
distant from the inflow and outflow boundaries to exhibit the fully developed profile. The
numerical simulations accurately reproduce the predicted velocity profiles in both the bulk
and boundary layer regions. In particular, the predicted weak negative angular flow is
confirmed in these simulations.

Finally, we note the small discrepancy in panel (b) of figure 5 and explore whether this
can be explained by the absence of higher-order terms in the asymptotic expansions. This
is confirmed by figure 6, which shows the difference between the leading-order composite
solutions and the numerical solutions, measured by the L2-norm at fixed r

�u(r) =
√∫ α

0

[
unum(r, θ)− ucomp(r, θ)

]2 dθ, (3.58)

�v(r) =
√∫ α

0

[
vnum(r, θ)− vcomp(r, θ)

]2 dθ. (3.59)

For the velocity in the radial direction, the composite solution neglects terms of O(Bi−1/2),
which results in �u proportional to Bi−1/2r−2 = r−2 for fixed Bi. For the velocity in
the angular direction we must consider the order of terms neglected above O(Bi−1/2).
From (3.30), we expect an O(Bi−1/3) correction to the radial flow in the boundary layer.
This in turn would drive a correction of O(εBi−1/3) = Bi−5/6 in the velocity in the
angular direction at the top of the boundary layer. Hence, without calculating higher
orders explicitly, we expect the second-order correction to the velocity to be O(Bi−5/6)

or, including radial dependence, O(r−8/3Bi−5/6), since the expansion parameter is r2Bi
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(a) (b)

(c) (d )

Figure 5. The asymptotic (dashed line) and numerical (circles) radial and angular velocities as function of
angle, θ , for α = π/4, Bi = 1 and r = 100. The numerical data points shown are only a small sub-sample of
the full numerical solutions, which are of a much higher resolution. (a,b) Plot the radial and angular velocities
respectively, across the domain. (c,d) Are close-ups of the boundary layers for (a,b) respectively. The position
of the fake yield surface, θY , is depicted by a red dotted line in all panels (and is almost indistinguishable from
the boundary, θ = π/4, in the upper two panels).

and the leading-order flow has r−1 dependence. Hence, we expect �v to scale like r−8/3.
Figure 6 confirms this relationship for the three wedge angles studied, providing strong
evidence for the validity of our asymptotic structure. The deviation from the predicted
trends at r ≈ 500 is due to the leading-order profiles being imposed here as boundary
conditions, and so the difference is at the level of the implementation precision.

Figure 7 shows a density plot of log strain-rate and radial velocity profiles from the
numerical solution for the wedge of half-angle α = π/3. These demonstrate how the
plastically dominated regime, with a thin boundary layer structure, is valid for large values
of r, but transitions to a different regime, without a boundary layer, towards the apparent
apex of the wedge. For sufficiently small values of r the viscous stresses are dominant and
a new asymptotic solution can be derived. This is detailed in the next section.

4. The viscous regime

In the regime of small Bingham number, Bi � 1, or, equivalently, at small distances from
the apex of the wedge, the viscoplastic problem is a regular perturbation of the viscous
Stokes problem, and so we do not require a boundary layer structure. This regime has been
studied previously by Sandru & Camenshi (1979), so we initially outline this solution
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Figure 6. The difference between the leading-order asymptotic and numerical solutions for the velocity fields,
evaluated as �u and �v, as a function of radial position, for α = π/6, π/4 and π/3. The slope markers show
the predicted slopes of −2 (top) and −8/3 (bottom).
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Figure 7. (a) A density plot of log strain rate from the α = π/3 numerical simulation. (b) The scaled radial
velocity, ru, as a function of angle, θ , for α = π/3 and r = 1 (dotted), 4 (dashed) and 20 (solid). The θ axis is
reversed so that the no-slip boundary is located at the left of the figure.

(with notation adjusted for consistency) before exploring it in greater detail by carrying
out numerical integration not evaluated by Sandru & Camenshi (1979), and comparing to
the results of direct numerical simulations in § 4.1.

In this regime the leading-order flow is given by the viscous solution (2.15a–c), which
produces an O(Bi) term in the stress. Hence the solution takes the form

u = u0 + Bi u1 + . . . , v = Bi v1 + . . . , p = p0 + Bi p1 + . . . , (4.1a–c)
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with u0 and p0 given by (2.15a–c). By conservation of mass and for homogeneity in r at
O(Bi) in the expression of conservation of momentum, we define

u1 = rf ′(θ) and v1 = −2rf (θ), (4.2a,b)

where f (θ) is to be determined and ′ denotes differentiation with respect to θ . Note that
this r dependence of u1 and v1 was anticipated, due to the expansion parameter, in fact,
being r2Bi and the leading-order velocity depending upon r−1. By eliminating pressure
from the conservation of momentum equations, we find that f (θ) satisfies the differential
equation

f ′′′(θ)+ 4 f ′(θ)+ H(θ) = C, (4.3)

where C is a constant of integration and

H(θ) = d
dθ

(
sin 2θ√

sin2 2θ + (cos 2α − cos 2θ)2

)
+ 2 (cos 2θ − cos 2α)√

sin2 2θ + (cos 2α − cos 2θ)2
.

(4.4)
The governing equation (4.3) is subject to four boundary conditions

f (0) = f ′′(0) = 0, f (α) = f ′(α) = 0, (4.5a,b)

which represent symmetry at θ = 0 and no slip at θ = α, which are sufficient to evaluate
f (θ) and C. Having determined C, the pressure perturbation is given by

p1 = C ln(r)+ 1 + 2 cos2 2α − 3 cos 2α cos 2θ√
sin2 2θ + (cos 2θ − cos 2α)2

+ const. (4.6)

We integrate (4.3) numerically by first finding a particular solution from an initial value
problem with initial conditions given at θ = 0, then determining C and the coefficients
of the complementary solution by the boundary conditions at α. Specifically, we find a
solution of the form

f (θ) = fp(θ)+ C
4
θ + D sin 2θ, (4.7)

where fp is the unique solution to the initial value problem

f ′′′
p (θ)+ 4f ′

p(θ)+ H(θ) = 0, (4.8)

subject to fp(0) = f ′
p(0) = f ′′

p (0) = 0. Then C and D are determined by the boundary
conditions at θ = α

C = 4(2fp(α) cos 2α − f ′
p(α) sin 2α)

sin 2α − 2α cos 2α
and D = αf ′

p(α)− fp(α)

sin 2α − 2α cos 2α
. (4.9a,b)

Velocity profiles for the first-order corrections to the leading-order viscous flow are
given in figure 8. Note, again, the negative angular velocity, as anticipated. Also, the radial
velocity is reduced at the centre of the wedge and enhanced towards the walls, as required
to flatten the radial velocity profile as r increases. In this regime the magnitude of the
corrections increases with increasing half-angle. This can be explained by considering the
magnitude of the deviatoric stress in the leading-order solution,

τ ≡
√
τ 2

rr + τ 2
rθ = 2

√
1 + cos2 2α − 2 cos 2θ cos 2α

r2 (sin 2α − 2α cos 2α)
, (4.10)

which can be shown to decrease with increasing α. Thus, the fluid is less strongly stressed
by the leading-order flow for larger wedge half-angles, and so the plasticity has a larger
impact on the flow.
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Figure 8. The first-order corrections to the velocities, u and v, in the viscous regime, as functions of the
scaled angle, θ/α, for a wedge of half-angle α = π/6 (solid), π/4 (dashed), π/3 (dash-dotted) and π/2

(dotted).

The additional shear stress at the wall due to the viscoplasticity in this regime is given
by

Bi τ (1)rθ

∣∣∣
θ=α

= Bi + Bi
(

1
r
∂u1

∂θ
+ ∂v1

∂r
− v1

r

)∣∣∣∣
θ=α

= Bi( f ′′(α)+ 1), (4.11)

where f ′′(α) is determined numerically. This correction to the shear stress at the wall
is plotted as a function of α in figure 9(a). An interesting feature of this profile is the
minimum attained for an angle of α ≈ 32◦. The behaviour of the constant C is also of
particular interest, as the first-order correction to the radial pressure gradient is given from
(4.6) by Bi C/r. The behaviour of C = r∂p1/∂r as a function of α is given in figure 9b),
showing that C varies from 2.55 (approximately) at α = π/2 and diverges as α → 0. In
particular, we find that the perturbation to the shear stress at the wall, τ (1)rθ ∼ 3/2, and
C ∼ 3/(2α) for α � 1 as required for consistency with the plane Poiseuille solution in the
limit α → 0 with rα = 1 fixed (see Appendix D).

4.1. Numerical simulations
For numerical simulations in the viscous regime, a radial extent of r ∈ [0.1, 10] and a
range of small values for Bi were used. Again the simulations were run in FEniCS, on a
mesh of 60 000 elements. Here, we imposed the purely viscous radial solution (2.15a–c) as
Dirichlet boundary conditions at both inflow and outflow, and examined the flow profiles
at r = 1, which was found to be sufficiently far from these boundaries not to be affected
by the approximations made in the boundary conditions. Due to the low values of the
Bingham number, all simulations were solved directly by Newton iteration from the purely
radial Stokes solution (2.15a–c) converging to residuals of less than 10−8.

Figure 10 shows example velocity profiles for α = π/4, and with Bi = 0.01,
demonstrating good agreement between asymptotic theory and numerical computation. As
with the plastic regime, we measured the difference between the asymptotic profiles and
the numerical solutions for α = π/6, π/4 and π/3, this time at fixed r = 1 and variable Bi.
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Figure 9. Features of the perturbation solution for the planar converging flow of a viscoplastic in the low
Bingham number regime: (a) the additional wall shear stress, τ (1)rθ |θ=α , and (b) the scaled additional radial
pressure gradient, r∂p1/∂r = C, as functions of wedge half-angle, α.
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Figure 10. The asymptotic (dashed line) and numerical (circles) radial and angular velocities as functions
of angle, θ , for Bi = 0.01 and r = 1. (a,b) Show the radial and angular profiles, respectively, for a wedge of
half-angle α = π/4.

With the absence of a boundary layer structure, there is no need for composite solutions,
and so we measure the differences, �u and �v, between the first-order asymptotic
expressions and the numerical solutions. Both differences were found to scale like Bi 2,
as expected having neglected second-order terms in the expansions.

5. Herschel–Bulkley flow

In this section we extend our examination of converging flows to Herschel–Bulkley fluids.
Importantly, the key features of the boundary layer structure determined for Bingham
fluids when Bi � 1 (§ 3) carry over to Herschel–Bulkley fluids and here we generalise
our analysis to these materials. The Herschel–Bulkley viscoplastic model is defined by the
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dimensional constitutive law

τ =
(

Kγ̇ N−1 + τc

γ̇

)
γ̇ , (5.1)

where K is the consistency, N the flow index, and τc the yield stress. This model extends
the Bingham model, which is reproduced for N = 1 and K = μ, by allowing for shear
thickening (N > 1) and shear thinning (N < 1). For this model we have the critical
distance

rc =
(

KQN

τc

)1/2N

, (5.2)

above which the flow is dominated by plastic stresses. For a typical radial distance, R,
we scale velocities by Q/R, strain rates by Q/R2 and stresses and pressures by KQN/R2N

resulting in the non-dimensional constitutive equation

(
τrr
τrθ

)
=
(
γ̇ N−1 + Bi

γ̇

)⎛⎜⎝ 2
∂u
∂r

1
r
∂u
∂θ

+ ∂v

∂r
− v

r

⎞⎟⎠ , (5.3)

where the Bingham number is now given by

Bi = τcR2N

KQN . (5.4)

The critical radial length scale is equivalent to asserting that the asymptotic analysis will
break down for r = O(Bi−1/2N) in non-dimensional variables.

In the Bi � 1 regime (or equivalently at large distances from the apex of the wedge), the
bulk solution is unchanged at leading order since the viscous stresses are neglected here,
and hence is given by (3.11)–(3.13). In the intermediate layer, using the same notation as
for the Bingham case, albeit with a different small parameter, δ, the radial velocity takes
the form

U = U0(r)+ δ1/2U1(r, ζ ), (5.5)

and the shear stress is given by

τrθ = − 1
rN δ

−N/2 ∣∣∂ζU1
∣∣N−1

∂ζU1 + Bi − 2r2δBi
(
∂rU0

∂ζU1

)2

+ . . . . (5.6)

Hence, a balance of viscous and plastic stresses is achieved in an intermediate layer of
width δ, provided

δ−N/2 = δBi =⇒ δ = Bi−2/(N+2), (5.7)

and we find that U1 satisfies the equation

|∂ζU1|N+1∂ζU1 − 2crNζ |∂ζU1|2 + 2rN−2 A2

c2 = 0, (5.8)

where A and c are defined as previously for the bulk solution and given by (3.14) and (3.15).
In the limit ζ → −∞, ∂ζU1 → −∞ and leading-order terms of (5.8) then determine

∂ζU1 = −r (−2cζ )1/N , (5.9)

915 A69-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.112


J.J. Taylor-West and A.J. Hogg

which, integrated, reveals that the transition into the boundary layer occurs when

δ1/2ζ (N+1)/N = O(1), (5.10)

or, equivalently, when

|θ − θY | = O(δ((N+2)/2(N+1))) = O(Bi−1/(N+1)). (5.11)

Thus, the viscoplastic boundary layer is of thickness ε = Bi−1/(N+1) (cf. Piau & Debiane
2004) and, after scaling, we have the boundary layer equation (using the same notation as
in the Bingham problem)

∂P
∂r

≡ 2c
r

= 1
rN+1

∂

∂φ̃
(|∂φ̃Ũ|N−1∂φ̃Ũ), (5.12)

which integrates to

Ũ = N
N + 1

(2c)1/N r[(Φ − φ̃)(N+1)/N −Φ(N+1)/N], (5.13)

and matching to leading order at φ̃ = Φ implies that

Φ(r) = Φ̂r−2N/(N+1), (5.14)

where

Φ̂ = 1
c

(
(N + 1)A

N21/N

)N/(N+1)

. (5.15)

The additional shear stress due to the viscoplastic boundary layer is given, to leading
order, by(

1
rN

∣∣∣∣∂u
∂θ

∣∣∣∣N−1
∂u
∂θ

)∣∣∣∣∣
θ=α

= −
(

1
εNrN

∣∣∣∂φ̃Ũ
∣∣∣N−1

∂φ̃Ũ
)∣∣∣∣
φ̃=0

= 2BiN/(N+1)cΦ = BiN/(N+1)
(

2 (N + 1)A
Nr2

)N/(N+1)

. (5.16)

Using incompressibility, we find the polar velocity at the top of the boundary layer

v(r,Θ = 1) = εṼ(r, φ̃ = Φ) = −εr−(3N+1)/(N+1) 2N3

(2N + 1)(N + 1)2
Φ̂(2N+1)/N(2c)1/N .

(5.17)

We note that the radial dependence of both the boundary layer width and the first-order
corrections to the velocity field are consistent with expansions in r2NBi, as anticipated.
Unlike for a Bingham fluid, the Cartesian thickness of the boundary layer, rεΦ(r) =
εΦ̂r(1−N)/(1+N), is dependent on r – growing with r for a shear-thinning fluid and
decreasing for a shear-thickening fluid. This can be understood by considering the
magnitude of the strain rate in the bulk, which decreases with r, resulting in a higher
viscosity for a shear-thinning fluid, and effectively reducing the local Bingham number
(the ratio of plastic and viscous stresses) relative to the global Bingham number, Bi. Since
the boundary layer thickness increases with decreasing Bingham number, we find a larger
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Figure 11. First-order corrections to the velocity and stress fields in the bulk as functions of the rescaled angle,
Θ , for a Herschel–Bulkley fluid with flow index N (shown in legend). A solid line depicts the results for the
Bingham model, N = 1. All solutions are for α = π/4.

boundary layer thickness at larger distances from the apex for a shear-thinning fluid (and
the reverse for a shear-thickening fluid).

Provided ε � Bi−1, as is the case for N > 0, the first-order correction to the bulk
solution is found at an order before viscous stresses need to be considered. Hence, we
can proceed to solve for these corrections as in § 3.5. The dependent variables in the bulk
are given by the following series expansions:

ψ = ψ0(Θ)+ εr−2N/(N+1)ψ̂1(Θ)+ . . . , (5.18)

u = û0(Θ)

r
+ εr−(3N+1)/(N+1)û1(Θ)+ . . . , (5.19)

v = εr−(3N+1)/(N+1)v̂1(Θ)+ . . . , (5.20)

and following through the analysis with the new expression for Φ gives a similar set
of ODEs to those for the Bingham case, (3.46)–(3.48). These equations, along with
the asymptotic behaviour at Θ = 1, are detailed in Appendix B. They are numerically
integrated using a shooting technique as in § 3.5.

Example profiles of the first-order corrections, for α = π/4 and different values of N,
are given in figure 11. The general dependence of these profiles on N can be explained
as follows. For a shear-thinning (thickening) fluid, the high shear at the walls results in a
lower (higher) effective viscosity, allowing the pressure gradient to support higher (lower)
shear rates and a thinner (thicker) boundary layer, resulting in a smaller (larger) adjustment
to the leading-order plastic velocities and stresses in the bulk of the wedge. The velocity in
the radial direction depends on N in a non-trivial way. For a small flow index, for which the
constitutive law is almost plastic, the profile is largely independent ofΘ , corresponding to
a reasonably plastic-like velocity profile. As the index increases the profile becomes more
strongly sheared and, above some value of the flow index, the magnitude of the radial flow
enhancement also reduces.

6. Bingham fluid in a cone

In this section we examine converging flow of a Bingham fluid through an axisymmetric
cone. The results obtained for the two-dimensional flow through a wedge are generalised
to this three-dimensional setting. Importantly, we find that viscoplasticity induces angular

915 A69-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.112


J.J. Taylor-West and A.J. Hogg

velocity away from the boundaries towards the axis of the cone and enhances boundary
shear stress, and, when the material is only weakly yielded in the bulk, viscoplastic
boundary layers develop. The conical geometry, however, introduces some algebraic
complexity to the governing equations and asymptotic solution.

In the axisymmetric conical geometry we employ spherical coordinates, (r, θ, φ), where
r is the distance from the apparent vertex of the cone, θ ∈ [0,π] is now the polar angle
measured from the axis of symmetry of the cone, and φ ∈ [0, 2π) is the azimuthal angle
measured from an arbitrary choice of axis perpendicular to the axis of symmetry. The rigid
walls are located at θ = α, the half-angle of the cone, and we assume independence of φ
and no flow in the φ direction. Thus, we define the velocity components as u = (u, v, 0).

This problem is characterised by the following dimensional parameters (and for clarity
of exposition we focus only on the Bingham rheology): density, ρ, viscosity, μ, yield
stress, τc, typical radial distance from the apex, R, and the volume flux, Q. (We note that,
for flow in a cone, the volume flux, Q, is dimensionally distinct from the volume flux
per unit width in a wedge, Q). The flow variables are rendered dimensionless as follows:
velocities are scaled by Q/R2, strain rates by Q/R3 and stresses and pressures by μQ/R3.
The resulting non-dimensional equations are

1
r2
∂

∂r
(r2u)+ 1

r sin θ
∂

∂θ
(v sin θ) = 0, (6.1)

∂p
∂r

= ∂τrr

∂r
+ 1

r
∂τrθ

∂θ
+ 3

r
τrr + cot θ

r
τrθ , (6.2)

1
r
∂p
∂θ

= ∂τrθ

∂r
+ 1

r
∂τθθ

∂θ
+ 3

r
τrθ + cot θ

r
(τθθ − τφφ), (6.3)

τ =
(

1 + Bi
γ̇

)
γ̇ , (6.4)

γ̇rr = 2
∂u
∂r
, γ̇rθ = 1

r
∂u
∂θ

+ ∂v

∂r
− v

r
, γ̇θθ = 2

r
∂v

∂θ
+ 2u

r
, γ̇φφ = 2v cot θ

r
+ 2u

r
,

(6.5a–d)

γ̇ =
√

1
2
(γ̇ 2

rr + γ̇ 2
θθ + γ̇ 2

φφ + 2γ̇ 2
rθ ), (6.6)

representing incompressibility (6.1), conservation of momentum in the radial and polar
directions (6.2) and (6.3), the Bingham constitutive law (6.4) and the definition of the
non-zero components and second invariant of the strain-rate tensor (6.5a–d) and (6.6).
The Bingham number for this problem is given by

Bi = R3τc

μQ . (6.7)

Again, due to this dependence of the Bingham number on R, we anticipate the expansions
to proceed as functions of r3Bi. Now we have the critical length scale, rc = (μQ/τc)

1/3.
The plastically dominated regime, Bi � 1, corresponds to the dimensional distance from
the apex of the cone being significantly larger than rc, and the viscously dominated regime,
Bi � 1, occurs for radial distances much smaller than rc. The Reynolds number is given
by Re = ρQ/(μR), and again for the following it will be sufficient that Re = O(1) and
Re � Bi, to neglect inertial terms in the Bi � 1 and Bi � 1 regimes, respectively. We
note that, unlike the planar problem, the Reynolds number also has radial dependence and
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The converging flow of viscoplastic fluid

so, for given material parameters and volume flux, it will not be possible to neglect inertial
terms for arbitrarily small distances from the apex of the cone.

The equations (6.1)–(6.3) are to be solved subject to boundary conditions

u = v = 0 at θ = α, v = ∂u
∂θ

= 0 at θ = 0, (6.8a,b)

corresponding to no slip and axisymmetry, respectively. We additionally have the integral
expression for the volume flux,

2π

∫ α

0
r2u sin θ dθ = −1. (6.9)

The corresponding problem for a rigid plastic was solved by Shield (1955),
assuming purely radial flow and a radially independent deviatoric stress state. The
solution corresponds closely to Nadai’s solution for a planar wedge, and to make the
correspondence clearer we adjust Shield’s notation slightly by parameterising the non-zero
components of the deviatoric stress via

τrr = 2√
3

Bi cos 2ψ, τθθ = τφφ = − 1√
3

Bi cos 2ψ, τrθ = Bi sin 2ψ, ψ = ψ(θ),

(6.10a–d)

which ensures that the deviatoric stress tensor is trace free and everywhere has constant
second invariant, Bi. The equality of τθθ and τφφ is a consequence of the purely radial
flow.

The solution is then given by

u = −A
r2 exp

(
−2

√
3
∫ θ

0
tan 2ψ dθ

)
,

∂p
∂r

= 2cBi
r
, (6.11a,b)

ψ ′(θ) = c sec 2ψ −
√

3 − 1
2 cot θ tan 2ψ, (6.12)

where c is determined by the boundary conditions

ψ(0) = 0, ψ(α) = π

4
, (6.13a,b)

and A is determined by the flux condition (6.9).
The viscous problem of purely radial converging flow in a cone was first solved by

Harrison (1919), and later explored in great detail by Ackerberg (1965), who found that
the inclusion of inertial terms resulted in non-radial solutions occurring at the outflow of
the cone. For vanishing Reynolds number, as considered by Harrison (1919), the problem
is more straightforward, with a purely radial solution given by

u = 3
2πr2

cos2 α − cos2 θ

(1 − cosα)2 (1 + 2 cosα)
, p = 1

πr3
1 − 3 cos2 θ

(1 − cosα)2 (1 + 2 cosα)
+ const.

(6.14a,b)

As with the planar wedge, the viscous velocity profile (6.14a,b) exhibits enhanced velocity
in the centre of the wedge, compared to the perfectly plastic velocity profile (6.11a,b). As
the fluid flows from large to small distances from the apex, the strain rate increases due
to the converging nature of the flow, and the material evolves from plastically dominated
to viscously dominated behaviour. Thus, superimposed upon the radial dependence of the
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J.J. Taylor-West and A.J. Hogg

flow due to the converging geometry, we expect an additional acceleration at the centre
of the cone, and velocity reduction at the outer surface of the cone. Conservation of mass
then requires a flow of the fluid in the negative polar direction, towards the centre of the
cone and away from the walls, and the quantification of this velocity field is a significant
outcome of this analysis.

6.1. The plastic regime
The plastic solution (6.11a,b) and (6.12) does not satisfy no slip on the boundary of the
cone, and the strain rate becomes unbounded here. So, for a viscoplastic fluid in the plastic
regime, Bi � 1 (or equivalently, sufficiently far from the apex), we construct a viscoplastic
boundary layer and intermediate layer, as for the wedge solution. Since the boundary layer
and intermediate region are relatively thin, the curvature in the φ direction is negligible
and the equations and solutions are identical to the planar geometry in these regions.
In particular, we have the same boundary layer thickness, ε = Bi−1/2, and intermediate
region thickness, δ = Bi−2/3. On the other hand, the r dependent terms, Φ, U0 and V0,
which are determined from matching with the bulk solution, differ.

In the bulk, we use the same strained coordinate approach, defining

θ = (α − εΦ)Θ, (6.15)

and velocity expansions

u = u0 + εu1 + . . . , v = εv1 + . . . . (6.16a,b)

However, we need to introduce a different parameterisation of the deviatoric stress, which
allows for a weak flow in the polar direction, and hence a non-zero normal stress difference,
τθθ − τφφ . One such parameterisation is

τrr

Bi
= 2√

3
cos 2ψ cos 2χ,

τθθ

Bi
= − 1√

3
cos 2ψ cos 2χ + cos 2ψ sin 2χ, (6.17a,b)

τφφ

Bi
= − 1√

3
cos 2ψ cos 2χ − cos 2ψ sin 2χ,

τrθ

Bi
= sin 2ψ, (6.18a,b)

which reduces to the previous parameterisation (6.10a–d) for χ = 0 and gives all possible
symmetric, trace-free stress states satisfying τ ≡ √

τijτij/2 = Bi, and τrφ = τθφ = 0. We
define asymptotic series for ψ and χ by

ψ = ψ0(r)+ εψ1(r, θ)+ . . . , χ = εχ1(r, θ)+ . . . , (6.19a,b)

so that, at O(1), χ = 0 and the stress decomposition is precisely that given in (6.10a–d),
for the purely radial solution.

With the coordinate transform (6.15), the full governing equations (6.1)–(6.6) can be
reduced to

1
r

Lr(r2u)+ LΘv + v cot(αΘ − εΦΘ) = 0, (6.20)

(LΘLr + 3LΘ)τrr + (L2
Θ − L2

r − 3Lr)τrθ − LrLΘτθθ + LΘ(cot(αΘ − εΦΘ)τrθ )

− Lr(cot(αΘ − εΦΘ)(τθθ − τφφ)) = 0, (6.21)

2τrθLru = τrr(LΘu + Lrv − v), (6.22)

2τθθLru = τrr(2LΘv + 2u). (6.23)
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The converging flow of viscoplastic fluid

Here, (6.20) is conservation of mass, (6.21) is the curl of the momentum balances
and (6.22) and (6.23) are a statement of the proportionality between corresponding
components of the deviatoric stress and strain-rate tensors. The linear operators, Lr and
LΘ , are given by

Lr = r
∂

∂r
+ εrΦ ′Θ

α

∂

∂Θ
, LΘ = 1

α − εΦ

∂

∂Θ
=
(

1
α

+ εΦ

α2 + . . .

)
∂

∂Θ
. (6.24a,b)

Expansion of the governing equations at O(1) gives the equivalent of Shield’s solution

u0 := û0

r2 = −A
r2 exp

(
−2

√
3
∫ Θ

0
α tan 2ψ0 dΘ

)
,

∂p0

∂r
= 2cBi

r
, (6.25a,b)

ψ ′
0(Θ) = α(c sec 2ψ0 −

√
3 − 1

2 cotαΘ tan 2ψ0), (6.26)

where c is determined by the boundary conditions

ψ0(0) = 0, ψ0(1) = π

4
, (6.27a,b)

and A is determined by the flux condition

2πα

∫ 1

0
û0(Θ) sinαΘ dΘ = 1. (6.28)

We define Û0 = û0(Θ = 1) since, unlike for the planar solution, this does not have a
closed-form expression in terms of A and c . We note that this solution (6.25a,b)–(6.28)
exhibits a non-vanishing radial velocity and a divergent shear rate as Θ → 1, just as for
the flow through a planar wedge. We therefore must introduce both the intermediate and
boundary layers in order to enforce the boundary conditions. However, this matching is
identical to §§ 3.3 and 3.4 and we deduce that

Φ(r) ≡ Φ̂

r3/2 =
√

− Û0

cr3 , V0(r) = −crΦ3

3
= −cΦ̂3

3
r−7/2. (6.29a,b)

Thus, the boundary layer width scales like (r3Bi)−1/2 and the first-order corrections to the
velocities scale like r−2(r3Bi)−1/2, as expected given the true expansion parameter r3Bi.
We may now use these expressions to calculate the effect of the boundary layer in the bulk,
and, in particular, the induced angular velocity. To do so we define

u1 = r−7/2û1(Θ), v1 = r−7/2v̂1(Θ), ψ1 = r−3/2ψ̂1(Θ), χ1 = r−3/2χ̂1(Θ),
(6.30a–d)
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and expand the governing equations (6.20)–(6.23) at order ε to obtain four ODEs for û1,
v̂1, ψ̂1 and χ̂1:

−3
2

û1 + 1
α
v̂′

1 + v̂1 cotαΘ = 3Φ̂Θ
2α

û′
0, (6.31)

2
α2 (ψ̂1 cos 2ψ0)

′′ + 3
α
(χ̂1 cos 2ψ0)

′ −
√

3
α
(ψ̂1 sin 2ψ0)

′ + 2
α
(ψ̂1 cotαΘ cos 2ψ0)

′

+
(

9
2
ψ̂1 + 6χ̂1 cotαΘ

)
cos 2ψ0 = Φ̂

α2

(
3
√

3Θ
2

(cos 2ψ0)
′′ −

√
3(cos 2ψ0)

′

− 2
α
(sin 2ψ0)

′′ − 9αΘ
4
(sin 2ψ0)

′ − ((cotαΘ + αΘcosec2αΘ) sin 2ψ0)
′
)
, (6.32)

−7
√

3û1 tan 2ψ0 − 2
α

û′
1 + 9v̂1 − 8

√
3ψ̂1û0 + 4

α
ψ̂1û′

0 tan 2ψ0

= Φ̂

α2 (3
√

3αΘ tan 2ψ0 + 2)û′
0, (6.33)

3û1 − 4
α
v̂′

1 − 8
√

3χ̂1û0 = −3Φ̂Θ
α

û′
0, (6.34)

with boundary conditions

ψ̂1 = v̂1 = 0 at Θ = 0, v̂1 = −cΦ̂3

3
at Θ = 1, (6.35a,b)

from symmetry atΘ = 0 and matching to the boundary layer solution atΘ = 1. As in the
planar case, matching of τrr to the intermediate layer requires

ψ̂1 = 3
√

3Φ̂
4

at Θ = 1. (6.36)

Similarly, analysis of the normal stress difference, τθθ − τφφ , in the intermediate layer
gives

τθθ − τφφ ≡
(

1 + Bi
γ̇

)(
2
r
∂v

∂θ
− 2v

r
cot θ

)

=

⎛⎜⎜⎝− Bi
1

r
√
δ

∂U1

∂ζ

+ . . .

⎞⎟⎟⎠(2εrΦ ′

r
√
δ

∂U1

∂ζ
+ . . .

)
= 3Bi1/2Φ + . . . , (6.37)

using (3.20), (3.28) and the identity rΦ ′ = −3Φ/2. While in the bulk solution

τθθ − τφφ ≡ 2Bi cos 2ψ sin 2χ = 4Bi1/2χ1
√

2α (2c − cotα) (1 −Θ)+ . . . , (6.38)

as Θ → 1, using the behaviour of ψ0 in the neighbourhood of Θ = 1 (see
Appendix C). Thus, χ̂1 diverges like (1 −Θ)−1/2 as Θ → 1, which is consistent with the
leading-order behaviour of χ̂1 from the differential equations (6.31)–(6.34) close toΘ = 1.
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The converging flow of viscoplastic fluid
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Figure 12. The first-order corrections to the velocities, u and v, and the stress orientation functions, ψ and χ ,
for viscoplastic flow in a cone in the plastic regime, as functions of the scaled polar coordinateΘ , for α = π/6
(solid), π/4 (dashed), π/3 (dash-dotted) and π/2 (dotted).

Although the divergence of χ̂1 may seem problematic for the asymptotic order of our
expansions, we expect the plastic regime to break down within the intermediate layer,
for which 1 −Θ = O(δ). Here, we have χ = O(εδ−1/2) � 1, since δ � ε2, and so χ
remains small throughout the region of validity of the plastic equations. The reason for
this divergence of the normal stress difference is that the gradient of the polar velocity,
∂v/∂θ , becomes large in the boundary layer, while the polar velocity itself remains small,
thus τθθ becomes significantly larger than τφφ .

The boundary-value problem given by (6.31)–(6.36) was again solved by a shooting
method. In this situation we have potential singularities at both ends of the domain, due to
the cotαΘ terms, so asymptotic analysis was required to step a small distance away from
Θ = 0 and Θ = 1 (see (C4)–(C8) in Appendix C) before numerically shooting towards
the centre of the domain, and fixing unknown coefficients by enforcing continuity at some
central point. Again, the solutions were found to be essentially identical for sufficiently
small choices of the step sizes, and the method converges effectively for any sufficiently
central choice of matching point. The profiles given in figure 12 were produced with a
step size of d = 10−8 away from the singularities at both ends of the domain, and with
matching point at Θ = 0.5.

From the solutions to the boundary-value problem, we find that the velocity profiles are
qualitatively similar to those for the planar wedge (figure 3), with a negative polar velocity
out from the boundary layer towards the centre of the cone and an enhancement of the
velocity in the radial direction, both of which are increased for decreasing half-angle, due
to the boundary layer thickness, Φ̂, increasing for decreasing α. The shear stress is again
enhanced throughout the domain, due to the greater shear stress at the wall, and we find
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that the normal stress difference becomes significant at the edge of the boundary layer,
Θ = 1, via the divergence of χ̂1, as discussed above.

6.2. The viscous regime
The viscous regime, Bi � 1, can be tackled by expanding the governing equations around
the leading-order Stokes solution. We define the asymptotic series

u = u0 + Bi u1 + . . . , v = Bi v1 + . . . , p = p0 + Bip1 + . . . , (6.39a–c)

where u0 and p0 are given by (6.14a,b). For homogeneity in r in the perturbation to the
stress tensor, and using conservation of mass, we can write

u1 ≡ rû1(θ) = r
sin θ

g′(θ), v1 ≡ rv̂1(θ) = − 3
sin θ

g(θ), (6.40a,b)

where g is a function to be determined, and ′ represents differentiation with respect to
θ . From the expression of conservation of momentum in the angular direction at O(Bi),
we find that the angular pressure gradient is independent of r, and so the radial pressure
gradient is independent of θ , giving

r
∂p1

∂r
= H(θ)+ 1

sin θ
g′′′ − cos θ

sin2 θ
g′′ + 1 + 6 sin2 θ

sin3 θ
g′ = C, (6.41)

where C is an arbitrary constant, to be determined, and H(θ) is given by

H(θ) = d
dθ

(
sin 2θ√

sin2 2θ + 3 (cos 2θ − cos 2α)2

)
+ 2 cos2 θ + 6 cos 2θ − 6 cos 2α√

sin2 2θ + 3 (cos 2θ − cos 2α)2
.

(6.42)

Thus we have the third-order ODE,

g′′′ − cot θg′′ + (6 + cosec2θ)g′ = (C − H(θ)) sin θ. (6.43)

For û1(0) to remain finite, we need g(0) = 0. For symmetry we require g to be an even
function of θ , which ensures u1 is even and v1 is odd. Finally, we have the no-slip boundary
condition at the wall, which gives

g(α) = g′(α) = 0. (6.44)

To solve the ODE numerically we shoot from θ = d � 1, to avoid the potential
singularity at θ = 0, with initial conditions

g(d) = λd2, g′(d) = 2λd, g′′(d) = 2λ, (6.45a–c)

and determine λ and C by enforcing the two boundary conditions at θ = α, (6.44). The
solutions are found to be essentially independent of d for d < 10−5. Profiles of û1 and v̂1
are given in figure 13, demonstrating the anticipated negative polar velocity away from
the boundary and towards the centre of the cone. As in the planar case, the first-order
corrections are larger for larger α, due to the magnitude of the deviatoric stress in the
leading-order viscous solution being smaller at larger half-angles, resulting in a less
yielded fluid and more significant plasticity effects.
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Figure 13. The first-order corrections to the velocities, u and v, for viscoplastic flow in a cone in the viscous
regime, as functions of the scaled polar coordinate θ/α, for α = π/6 (solid), π/4 (dashed), π/3 (dash-dotted)
and π/2 (dotted).
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Figure 14. Features of the perturbation solution for the conical converging flow of a viscoplastic in the low
Bingham number regime: (a) the additional wall shear stress, τ (1)rθ |θ=α , and (b) the scaled additional radial
pressure gradient, r∂p1/∂r = C, as functions of cone half-angle, α.

The additional shear stress at the wall is given by

Bi τ (1)rθ

∣∣∣
θ=α

= Bi + Bi
(

1
r
∂u1

∂θ
+ ∂v1

∂r
− v1

r
+ 1

)∣∣∣∣
θ=α

= Bi
(

g′′(α)
sinα

+ 1
)
, (6.46)

which is plotted as a function of α in figure 14a), demonstrating a similar behaviour to
that for the planar wedge, with a minimum attained for a slightly smaller half-angle of
α ≈ 27◦. The constant C is also of interest since the first-order correction to the radial
pressure gradient is given by Bi C/r, thus the behaviour of C = r∂p1/∂r with α is given in
figure 14b), showing that C varies from 4.20 (approximately) at α = π/2 and diverges
as α → 0. In particular, we find that the perturbation to the shear stress at the wall,
τ
(1)
rθ ∼ 4/3, and C ∼ 8/(3α) for α � 1 as required for consistency with the pipe Poiseuille

solution in the limit α → 0 with rα = 1 fixed (see Appendix D).
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7. Discussion and conclusions

Asymptotic solutions have been found for the converging flow of a viscoplastic fluid
through a planar wedge and conical geometry, in the plastically and viscously dominated
regimes, and verified for the case of a Bingham fluid in a wedge using direct finite
element simulations. A key feature in both regimes is that no purely radial solution
is possible. Instead, a weak angular flow is induced away from the boundaries and
towards the centre of the domains. This result can be explained as a consequence of
mass conservation as the fluid flows from a plastically dominated to viscously dominated
velocity profile, experiencing enhanced flow velocity at the centre of the domain and
reduced velocity near the walls as a consequence of no-slip conditions.

In the plastically dominated regime (Bi � 1) for a Bingham fluid, thin viscoplastic
boundary layers of width ε = Bi−1/2 are required at the walls, allowing the flow to satisfy
no slip. The angular extent of these boundary layers also depends on the radial distance
from the apparent apex, r, scaling as εr−1 in a wedge and εr−3/2 in a cone. Additionally,
an intermediate asymptotic layer is required to regularise divergent strain rates close to
the wall. The weak angular flow, induced by the boundary layer, is also O(ε) and both
the boundary layer and angular flow are weaker for larger half-angles. The shear stress is
enhanced compared to the rigid plastic solution, exceeding the yield stress by O(εBi) at
the walls.

For a Herschel–Bulkley fluid of flow index N, the same features are observed in
the plastically dominated regime, with the distinguished scaling given instead by ε =
Bi−1/(N+1) and the radial dependence of the boundary layer width given by εr−2N/(N+1)

for flow in a wedge. We choose not to explore in detail, in this paper, the problem of a
Herschel–Bulkley fluid in an axisymmetric conical geometry in the plastically dominated
regime (Bi � 1). However, we can deduce by simple scaling arguments, analogous to
those in §§ 5, 6, that the boundary layer width scales as (r3NBi)−1/(N+1), where N is the
flow index. Notably, the boundary layer is of constant Cartesian thickness for the flow
of a Bingham material through a wedge and for a Herschel–Bulkley fluid of flow index
N = 1/2 through a cone, but not for the other situations.

In the viscously dominated regime (Bi � 1), the weak angular flow is O(Bi) and, in
contrast to the plastically dominated regime, is stronger for larger half-angles. This is due
to the leading-order viscous flow shearing the fluid less strongly for larger half-angles,
resulting in less strongly yielded fluid and a more significant effect of the yield stress. The
shear stress at the wall is again enhanced compared to the purely viscous solution, with
the excess shear stress being O(Bi).

The direct finite element simulations, carried out in FEniCS (Alnæs et al. 2015)
using a combination of augmented-Lagrangian and Newton methods, strongly supported
the validity of the asymptotic solutions derived in the case of a Bingham fluid in a
planar wedge. Boundary layer widths and velocity profiles were found to be in excellent
agreement with the theoretical results. The challenges posed by the converging geometry
and nonlinear constitutive equation leave room for a more expansive and accurate
numerical study. In particular, we were unable to reproduce accurately the predictions
for both the plastic and viscous regimes in the same simulations due to the vastly disparate
scales involved in the different regimes.

This study has tackled the simplest and most generic scenario for converging flows
of viscoplastic materials, demonstrating the emergence of viscoplastic boundary layers
when the viscous stresses are weak, and the development of an angular flow. It would
be interesting to analyse the motion in related problems, such as those driven by a
body force (e.g. gravity) or situations in which there is wall slip or significant inertia.
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There have been several experimental investigations of extrusions and flows through dies
and contractions (for e.g. Wildman et al. 1999; Jay, Magnin & Piau 2002; Rabideau et al.
2010; Luu, Philippe & Chambon 2015), but the authors are unaware of any experimental
observations that may be used to validate the predictions of this theory. In particular
it would be interesting to detect and quantify experimentally the emergent angular flow
predicted by our analysis.
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Appendix A

Expansion of the equation for ψ0, (3.11), for 1 −Θ � 1 gives

ψ0 = π

4
−
√
αc (1 −Θ)+ 2

3
α (1 −Θ)+ . . . . (A1)

Substituting this into the definitions of the scaled radial velocity, û0, (3.12), and the
components of deviatoric stress, τrr and τrθ , (3.2), gives

û0 = −A
c

− 2A
c

√
α

c
(1 −Θ)− 8Aα

3c2 (1 −Θ)+ . . . , (A2)

τrr ≡ Bi cos 2ψ0 = 2Bi
√
αc (1 −Θ)− 4

3 Biα (1 −Θ)+ . . . , (A3)

τrθ ≡ Bi sin 2ψ0 = Bi − 2Biαc (1 −Θ)+ . . . . (A4)

Appendix B

For a Herschel–Bulkley fluid with flow index N, the generalisation of equations
(3.46)–(3.48) is given by

1
α2 (ψ̂1 cos 2ψ0)

′′ + 4
(N + 1)2

ψ̂1 cos 2ψ0 − 2(1 − N)
α(1 + N)

(ψ̂1 sin 2ψ0)
′

= Φ̂

α2

(
2N

N + 1
Θ (cos 2ψ0)

′′ − 1 − N
N + 1

(cos 2ψ0)
′ − 1

α
(sin 2ψ0)

′′

− N
N + 1

αΘ (sin 2ψ0)
′
)
, (B1)

− 2N
N + 1

û1 + 1
α
v̂′

1 = 2N
N + 1

Φ̂Θ

α
û′

0, (B2)

−6N + 2
N + 1

û1 tan 2ψ0 − 1
α

û′
1 + 4N + 2

N + 1
v̂1 − 4ψ̂1û0 sec2 2ψ0

= Φ̂

α

(
4N

N + 1
Θ tan 2ψ0 + 1

α

)
û′

0, (B3)
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with boundary conditions

v̂1(0) = ψ̂0(0) = 0, v̂1(1) = − 2N3

(2N + 1) (N + 1)2
Φ̂2+1/N (2c)1/N , (B4a,b)

where Φ̂ is given by (5.15) and c and A are given by (3.14) and (3.15). When N = 1 we
have Φ̂ = √

A/c and the equations reduce to (3.46)–(3.48), as required.
The boundary condition for ψ̂1 at Θ = 1 can be deduced by matching the deviatoric

normal stress, τrr, between the bulk and intermediate layer, as detailed for the Bingham
case in § 3.5. This gives

ψ̂1(1) = 2N
N + 1

Φ̂. (B5)

Using (A1) and (A2), we analyse the limiting behaviour of the equations (B1)–(B3) for
|1 −Θ| � 1, which yields the following local forms of all three dependent variables:

ψ̂1 = 2N
N + 1

Φ̂ + E
√
α

c
(1 −Θ)+ . . . , (B6)

û1 = F +
(

6N + 2
N + 1

F + 2A
c2

(
cΦ̂
α

− E

))√
α

c
(1 −Θ)+ . . . (B7)

v̂1 = − 2N3Φ̂2+1/N

(2N + 1) (N + 1)2
(2c)1/N − 4N

N + 1
AΦ̂

c

√
α

c
(1 −Θ)+ . . . , (B8)

where E and F are arbitrary constants.

Appendix C

Expansion of the differential equation for ψ0, (6.26), at Θ = 1 gives the asymptotic series

ψ0 = π

4
−
√
α

2
(2c − cotα) (1 −Θ)+ 2

√
3

3
α (1 −Θ)+ . . . . (C1)

Matching the leading-order radial velocity to the intermediate and boundary layers gives

û0 (Θ = 1) = −cΦ̂2, (C2)

and expansion of the leading-order solution, (6.25a,b), gives

û0 = −cΦ̂2

(
1 + 2

√
6√

2c − cotα

√
α (1 −Θ)+ 16α

2c − cotα
(1 −Θ)+ . . .

)
. (C3)
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Then, analysis of the first-order equations, (6.31)–(6.34), and application of boundary
conditions, (6.35a,b) and (6.36), reveals that solutions have the local form

ψ̂1 = 3
√

3
4
Φ̂ + E√

1 −Θ + . . . , (C4)

û1 = F +
(

7
√

6α

2
√

2c − cotα
F + cΦ̂2

( √
6Φ̂√

α (2c − cotα)
− 2

√
3E

(2c − cotα)3/2

))√
1 −Θ

+ . . . , (C5)

v̂1 = −cΦ̂3

3

(
1 + 9

√
6√

2c − cotα

√
α (1 −Θ)+ . . .

)
, (C6)

where E and F are undetermined constants. We note that χ̂1 is in fact determined
algebraically by (6.34), so we require no boundary conditions for χ̂1. To leading order
at Θ = 1 we have

χ̂1 = 3
√

2Φ̂
8
√
α (2c − cotα) (1 −Θ)

+ . . . , (C7)

as required for matching of the normal stress difference between the intermediate layer
and bulk solution, (6.37) and (6.38).

For Θ � 1 we have the leading-order local forms

ψ̂0 = α(c − √
3)

2
Θ + . . . , û0 = −A + . . . , ψ̂1 = ẼΘ + . . . , û1 = F̃ + . . . ,

(C8a–d)

where Ẽ and F̃ are undetermined constants.

Appendix D

For small Bingham number, Bi � 1, we consider the plane Poiseuille flow of a Bingham
fluid in a channel of height 2 and volume flux per unit width −1, driven by pressure
gradient dp/dx = G. From the volume-flux condition we can write

−1
2

=
∫ 1

0
u dy = upyc +

∫ 1

yc

u dy = −
∫ 1

yc

y
du
dy

dy = −
∫ 1

yc

y (Gy − Bi) dy

= −G
3

+ 1
2

Bi + . . . , (D1)

where up is the velocity of the plug which occupies the region −yc < y < yc. In the
above we have used integration by parts, made the substitution du/dy = Gy − Bi, using
the integral of the streamwise conservation of momentum equation in the yielded region,
and finally used the fact that yc = O(Bi) in neglecting terms in the final expression.
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Thus we find
G = 3

2 + 3
2 Bi + . . . , (D2)

and, by a global force balance, the shear stress at the wall is given by

τxy = G = 3
2 + 3

2 Bi + . . . . (D3)

Similarly, for the pipe Poiseuille flow of a Bingham fluid along the axis of a cylinder of
unit radius, with volume flux −1 driven by a pressure gradient dp/dz = G, we can write

−1 = 2π

∫ 1

0
ru dr = πr2

c up + 2π

∫ 1

rc

ru dr = −π

∫ 1

rc

r2
(

1
2

Gr − Bi
)

dr

= −π

8
G + π

3
Bi + . . . , (D4)

and so

G = 8
π

+ 8
3

Bi + . . . , (D5)

and, by a global force balance, the shear stress at the wall is given by

τrz = 1
2

G = 4
π

+ 4
3

Bi + . . . . (D6)
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