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The effect of a uniform electric field on the motion of a drop in an unbounded plane
Poiseuille flow is studied analytically. The drop and suspending media are considered
to be Newtonian and leaky dielectric. We solve for the two-way coupled electric
and flow fields analytically by using a double asymptotic expansion for small charge
convection and small shape deformation. We obtain two important mechanisms of
cross-stream migration of the drop: (i) shape deformation and (ii) charge convection.
The second one is a new source of cross-stream migration of the drop in plane
Poiseuille flow which is due to an asymmetric charge distribution on the drop surface.
Our study reveals that charge convection can cause a spherical non-deformable drop
to migrate in the cross-stream direction. The combined effect of charge convection
and shape deformation significantly alters the drop velocity, drop trajectory and steady
state transverse position of the drop. We predict that, depending on the orientation of
the applied uniform electric field and the relevant drop/medium electrohydrodynamic
parameters, the drop may migrate either towards the centreline of the flow or away
from it. We obtain that the final steady state transverse position of the drop is
independent of its initial transverse position in the flow field. Most interestingly, we
show that the drop can settle in an off-centreline steady state transverse position.
Two-dimensional numerical simulations are also performed to study the drop motion
in the combined presence of plane Poiseuille flow and a tilted electric field. The drop
trajectory and steady state transverse position of the drop obtained from numerical
simulations are in qualitative agreement with the analytical results.

Key words: drops, drops and bubbles

1. Introduction
Drops play a central role in interdisciplinary microfluidic and nanofluidic research

(Teh et al. 2008; Casadevall i Solvas & deMello 2011; Seemann et al. 2012). They
form a convenient means for rapid analytic detection and screening of chemicals
(Zheng, Tice & Ismagilov 2004; Zhu & Fang 2013), protein crystallization (Zhu et al.
2014), medium for cell/particle encapsulation (Bhagat et al. 2010), reagent mixing
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(Bringer et al. 2004), and biological assays (Guo et al. 2012). Precise control and
manipulation of drops is of the utmost importance for realizing optimal functionalities
in these concerned applications. Towards this, the effective manipulation of drops by
various means such as thermocapillary (Baroud et al. 2007; Basu & Gianchandani
2008), acoustic streaming (Franke et al. 2009; Ding et al. 2013), electric field (Ahn
et al. 2006; Link et al. 2006) and magnetic field (Pamme 2012) are of great practical
importance. The above processes typically involve low Reynolds numbers based on
the drop size and velocity. The cross-stream migration of a non-deforming spherical
drop with a clean fluid–fluid interface, solely due to such a creeping flow field, is not
possible, since the governing equations and boundary conditions are linear in nature
(Leal 2007; Hanna & Vlahovska 2010). This linearity satisfies symmetry under flow
reversal (Leal 2007; Hanna & Vlahovska 2010; Mukherjee & Sarkar 2013). The
various mechanisms which lead to cross-stream migration of a drop include (i) drop
deformation in shear flow near a solid wall (Chaffey, Brenner & Mason 1965; Karnis
& Mason 1967; Chan & Leal 1979), (ii) drop deformation in the presence of flow
curvature (Haber & Hetsroni 1971; Wohl & Rubinow 1974; Chan & Leal 1979; Wang
& Dimitrakopoulos 2011; Mandal, Bandopadhyay & Chakraborty 2015; Stan et al.
2011), (iii) fluid inertia (Mortazavi & Tryggvason 2000; Magnaudet 2003; Khalili
& Mortazavi 2012; Chen et al. 2014) (iv) flow-induced surfactant redistribution on
the drop surface (Hanna & Vlahovska 2010; Pak, Feng & Stone 2014), (v) interface
viscoelasticity (Schwalbe et al. 2011), (vi) fluid viscoelasticity (Chan & Leal 1979;
Mukherjee & Sarkar 2013, 2014) etc. The underpinning nonlinearity in either the
boundary conditions or the governing equations is the common tie between the
aforementioned mechanisms which breaks the reversibility of the flow and causes
cross-stream migration of drops. Previous studies have revealed several interesting
aspects of drop dynamics in the presence of flow curvature, which is the focus of
the present work. Chan & Leal (1979) have shown the pivotal role of flow curvature
towards dictating the cross-stream migration of a deformable drop. They have shown
that, depending on the viscosity of the drop and suspending medium, the drop may
migrate either towards the centre of the Poiseuille flow or away from it. In two recent
studies, Hanna & Vlahovska (2010) and Pak et al. (2014) have shown the non-trivial
effect of surfactants at the drop surface which leads to cross-stream migration of a
spherical drop towards the centre of the imposed Poiseuille flow.

The ease of integration and flexibility of operation renders an external electric
field as a convenient means for drop manipulation in modern microfluidic devices.
Studies on the response of drops towards an externally applied electric field have
been carried out since the seminal work of Taylor (1966). Taylor (1966) introduced
the leaky dielectric model, which considers small electrical conductivity of the liquids.
Consideration of small electrical conductivity leads to the accumulation of charges
at the drop interface. Taylor (1966) assumed that the interfacial charge distribution
is solely governed by the Ohmic conduction. Since then, neglecting the convection
of charges at the drop interface, several researchers have employed this model and
studied the deformation of neutrally buoyant drops in the presence of uniform or
non-uniform electric fields, and unbounded or bounded domains in an otherwise
quiescent medium (Torza, Cox & Mason 1971; Im & Kang 2003; Vizika & Saville
2006; Lac & Homsy 2007; Supeene, Koch & Bhattacharjee 2008; Thaokar 2012;
Deshmukh & Thaokar 2013; Lanauze, Walker & Khair 2013; Mandal, Chaudhury
& Chakraborty 2014; Mandal, Bandopadhyay & Chakraborty 2016a). Most of these
studies considered one-way coupled electrohydrodynamics – the applied electric
field affects the flow field via the generation of Maxwell stress at the fluid–fluid
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interface, while the electric field remains unaffected by the flow field. The electric
field and flow field are coupled by the surface charge convection (i.e. interfacial
convection of charges due to fluid flow). The effect of surface charge convection
on the deformation of a drop in the presence of a uniform electric field in an
otherwise quiescent medium is analysed by several studies (Feng 1999; Lanauze,
Walker & Khair 2015; Das & Saintillan 2016). Another way in which the electric
field and flow field are coupled is through shape deformation of the drop. Shape
deformation can take place due to electrical and/or hydrodynamic stress at the drop
interface. Very recently, Mandal, Bandopadhyay & Chakraborty (2016b) have studied
the combined effect of charge convection and shape deformation on the motion of a
drop in a non-uniform electric field (Mandal et al. 2016b). However, there appears
to be scant literature which considers the two-way coupled effect of an electric field
and an externally imposed background flow field in the combined presence of charge
convection and shape deformation towards dictating the motion and deformation of
drops (Ha & Yang 2000b; Xu & Homsy 2006; Vlahovska 2011; Bandopadhyay
et al. 2016; Yariv & Almog 2016). The presence of a background flow field has
been shown to markedly alter the charge distribution on the drop surface, which
further alters the drop motion and deformation. Xu & Homsy (2006) considered the
sedimentation of a non-neutrally buoyant drop in the presence of an axial uniform
electric field. They concluded that the effect of charge convection has a profound
impact on the settling velocity of the drop. Bandopadhyay et al. (2016) extended
this study to include the effect of a tilted electric field on the sedimentation of the
drop, and found lateral migration of the drop due to charge convection and shape
deformation. Very recently, Yariv & Almog (2016) have obtained the effect of surface
charge convection on drop sedimentation considering weak applied electric field. The
effect of background linear flow in the presence of a uniform electric field on the
deformation and orientation of drops has been studied both experimentally (Ha &
Yang 2000b) and theoretically (Fernández 2008, 2009; Mahlmann & Papageorgiou
2009; Vlahovska 2011). Ha & Yang (2000b) have performed experiments on the
effect of a uniform electric field on the rheological behaviour of a suspension of
drops in shear flow and obtained that, depending on the relative strength of electric
field and shear flow, the apparent viscosity of the suspension may increase or decrease.
In a recent study, Vlahovska (2011) has performed a perturbation analysis to study
the drop deformation, orientation characteristics and shear rheology of highly viscous
drops in a uniform electric field in the presence of background linear flows. This
study shows the pivotal role of shape deformation and charge convection on the
rotation rate of the drop, effective shear viscosity and normal stress difference.

In many practical scenarios, suspended drops are transported by the application of
a pressure gradient using syringe pumps. In such situations, it is quite expected that
the drops encounter flow curvature. Despite the importance of flow curvature, there is
no study present in the literature to the best of our knowledge which considers the
effect of an external electric field on the drop motion in the presence of flow curvature.
Motivated by this consideration, here we analyse the non-trivial implication of the
curvature of the background plane Poiseuille flow field in the presence of a uniform
electric field on a neutrally buoyant, Newtonian, leaky dielectric drop suspended in
another immiscible Newtonian, leaky dielectric medium. Our results emphasize that
the combined effect of uniform electric field and plane Poiseuille flow on the drop
velocity is not a mere linear combination of drop velocities obtained in electric field
and plane Poiseuille flow separately. This is due to the coupling between the electric
potential and flow fields – the background flow field alters the distribution of charges
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due to fluid flow at the drop surface, whereas the applied electric field alters the
fluid flow via the generation of Maxwell stress at the drop interface. Considering the
electric Reynolds number ReE (given by the ratio of the charge-relaxation time scale
to the convective time scale) and capillary number Ca (which signifies the relative
strength of viscous stress as compared with surface tension or capillary stress) as
the perturbation parameters, we arrive at analytical expressions for the drop velocity.
Our major finding in the present study is that application of a uniform electric field
not only alters the axial velocity of the drop but also dramatically affects the nature
of the cross-stream migration of the drop. We identify two important mechanisms of
cross-stream migration velocity: (i) shape deformation and (ii) charge convection. The
presence of a tilted electric field makes the drop shape asymmetric with respect to
the flow centreline, which leads to shape-deformation-induced cross-stream motion of
the drop. Charge-convection-induced cross-stream migration is due to the asymmetric
charge distribution on the drop surface. This component of cross-stream migration
is present also for a non-deformable spherical drop. The combined effect of charge
convection and shape deformation leads to cross-stream motion of a drop towards or
away from the centreline of the imposed flow. In sharp contrast to the case of plane
Poiseuille flow without any electric field, the presence of a tilted electric field leads
to settling of the drop not only at the centreline but also below/above the centreline,
depending on the orientation of the applied uniform electric field, the magnitude of
the pertinent electrohydrodynamic property ratios of the drop and medium, and the
associated non-dimensional numbers. Most surprisingly, the combined effect of a tilted
uniform electric field and plane Poiseuille flow may lead to motion of a drop away
from the centreline of the flow even if the drop is initially placed at the centreline of
the flow. To validate these non-intuitive analytical results, we perform two-dimensional
numerical simulations. The numerically obtained drop trajectory compares qualitatively
with the analytical solution.

2. Problem formulation
We consider the motion of a drop of radius a in an unbounded domain in

the presence of an imposed plane Poiseuille velocity field (V∞) and a uniform
electric field (E∞). Plane Poiseuille flow is expressed in terms of a Cartesian
coordinate system considering the drop centroid as origin in the following form:
V∞ = Vc(k0 + k1x+ k2x2)ez, where k0 = 4(xd/H)(1− xd/H), k1 = (4/H)(1− 2xd/H)
and k2 = −4/H2. This choice of imposed velocity field represents a pressure-driven
flow between two parallel plates (infinite in the y and z directions) which are distance
H apart in the transverse direction (x-direction). Here xd is the transverse position
of the drop centroid measured from the bottom wall. The imposed electric field
is of the form E∞ = Ec(Exex + Ezez) with E2

x + E2
z = 1. Here Vc and Ec are the

characteristic velocity and characteristic electric field, respectively. The imposed
velocity acts in the z-direction (termed as axial direction), whereas the direction of
the applied electric field can be altered by specifying the components of the imposed
electric field along the axial (Ez) and transverse (Ex) directions. The drop liquid
is considered to be Newtonian with a viscosity µi, density ρi, and leaky dielectric
with an electrical conductivity σi and permittivity εi. The suspending fluid is also
considered as Newtonian and leaky dielectric, with the hydrodynamic and electrical
properties represented by the same symbols, except using the subscript ‘e’. The drop
interface is clean and the surface tension γ is constant. The spherical coordinate
system (r, θ, φ) is attached at the centroid of the drop and moves with the drop at a
velocity Ud which is yet to be determined (refer to figure 1). Here, we assume that
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Imposed electric field

Imposed velocity field

FIGURE 1. (Colour online) Schematic of a typical drop trajectory (dashed path) in an
imposed plane Poiseuille flow field V∞ in the presence of an imposed uniform electric
field E∞. A spherical coordinate system (r, θ, φ) is considered which is attached to the
drop centroid. The velocity field is imposed in the axial direction (z-direction), whereas
the imposed electric field is tilted at an angle θt (termed as tilt angle) with respect to the
axial direction. Initially, the drop is placed at a transverse position xd,0 and eventually the
drop settles to some other transverse position xd,∞, at steady state. Transverse positions
are measured from the bottom wall.

the Reynolds number based on drop radius (i.e. Re= ρeVca/µe) is very small so that
the fluid inertia is completely negligible (Chan & Leal 1979; Pak et al. 2014). We
consider the drop as neutrally buoyant (i.e. ρi = ρe) so that gravity has no effect on
the motion of the drop.

We non-dimensionalize length by the radius of the spherical drop a while the
velocity scale is taken as Vc. The characteristic viscous stresses and electrical stresses
are taken as τH

c =µeVc/a and τ E
c = εeE2

c , respectively. Here we consider the properties
of the external liquid as the characteristic quantities which yield the following
property ratios (Bandopadhyay et al. 2016): viscosity ratio λ = µi/µe, conductivity
ratio R = σi/σe and permittivity ratio S = εi/εe. Using this non-dimensional scheme
we obtain the following important non-dimensional numbers: capillary number
Ca = µeVc/γ , electric Reynolds number ReE = εeVc/aσe and Mason number
M = aεeE2

c/µeVc. The capillary number signifies the relative strength of the viscous
stress in deforming the drop as compared with the force due to surface tension which
resists the shape deformation. The electric Reynolds number signifies the relative
importance of the charge-relaxation time scale as compared with the charge-convection
time scale, whereas the Mason number signifies the relative importance of the
electrical stress as compared with the viscous stress. Henceforth, all quantities will
be represented non-dimensionally.

2.1. Governing equations and boundary conditions
The drop and the suspending medium are considered as weakly conducting liquids
under the paradigm of the leaky dielectric model (Taylor 1966; Melcher & Taylor
1969; Saville 1997). The leaky dielectric model assumes the bulk liquids as charge-
free, and the mismatch between the conductivity and permittivity of the two liquids
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manifests in terms of the interfacial charge at the drop surface only. Hence, the electric
potentials inside and outside the drop (ψi,e) satisfy the Laplace equation

∇2ψi = 0,
∇2ψe = 0.

}
(2.1)

The electric potentials inside and outside the drop satisfy the following boundary
conditions (Bandopadhyay et al. 2016):

(e1) the electric potential inside the drop ψi is bounded at the origin of the spherical
coordinate system;

(e2) the electric potential outside the drop ψe approaches the specified potential at
infinity, ψ∞, which is given in terms of the electric field as: ∇ψ∞ =−E∞;

(e3) the electric potential is continuous at the surface of the drop: at r= rs, ψi=ψe;

(e4) the charges present at the drop surface satisfy the following conservation
equation: at r = rs, n · (R∇ψi −∇ψe) = −ReE∇s · (qsVs), where qs is the
surface charge given as qs = n · (S∇ψi − ∇ψe)|r=rs , Vs is the fluid velocity at
the drop surface and ∇s = [∇− n(n · ∇)] represents the surface divergence
operator. One thing to note here is that the drop surface rs is given by
rs = 1 + f (θ, φ), where f (θ, φ) represents the deviation of the drop shape
from sphericity. The outward unit normal vector n is related to the drop
shape through n=∇(r− rs)/|∇(r− rs)|. It is important to note that the fourth
boundary condition (e4) is valid under the quasi-steady-state approximation in
which the surface charges adjust to the background spatially varying flow field
instantaneously.

Under the quasi-steady-state approximation, the velocity and pressure fields inside
and outside the drop (ui,e, pi,e) satisfy the Stokes equation and the condition of
incompressibility of the form

∇pi = λ∇2ui, ∇ · ui = 0,
∇pe =∇2ue, ∇ · ue = 0,

}
(2.2)

where (ui, pi) and (ue, pe) represent the velocity and the pressure fields inside and
outside the drop, respectively.

The flow fields inside and outside the drop satisfy the following boundary conditions
(Bandopadhyay et al. 2016):

( f 1) the velocity (ui) and pressure (pi) inside the drop are bounded at the origin of
the spherical coordinate system;

( f 2) the velocity outside the drop, ue, approaches the specified imposed plane
Poiseuille flow velocity at infinity, which in a reference frame attached to the
drop centroid (moving at a velocity of Ud) is given by: ue|r→∞ =V∞ −Ud;

( f 3) the velocity is continuous at the drop surface, and at steady state the normal
component of the velocity at the drop surface is zero: at r = rs, ui = ue and
ui · n= ue · n= 0;

( f 4) the tangential component of the total stress (hydrodynamic and electrical
Maxwell stresses) is continuous at the drop surface: at r= rs, n · τi · (I − nn)=
n · τe · (I − nn);

( f 5) the normal component of the total stress is balanced by the capillary stress at
the drop surface: at r= rs, n · τe · n− n · τi · n= (1/Ca)(∇ · n),
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where τi,e is the total stress tensor with contributions from hydrodynamic and electrical
effects, and I − nn represents the surface projection operator. The total stress tensor
is given by τi,e = τH

i,e + Mτ E
i,e, where τH

i,e is the viscous stress tensor and τ E
i,e is the

electrical Maxwell stress tensor of the following form

τH
i = [−piI + λ{∇ui + (∇ui)

T}], τH
e = [−peI + {∇ue + (∇ue)

T}],
τ E

i = S
[
Ei(Ei)

T − 1
2 |Ei|2I

]
, τ E

e =
[
Ee(Ee)

T − 1
2 |Ee|2I

]
.

}
(2.3)

2.2. Expansion in perturbation of ReE and Ca
One important thing to note here is that the analytical solution of the present
electrohydrodynamic problem is not straightforward, due to the nonlinearity associated
with the charge convection (see boundary condition e4) at the drop surface even in
the limit of a non-deforming spherical drop (Feng 1999; Vlahovska 2011). Another
nonlinearity which is commonly present in problems having a fluid–fluid interface is
associated with the unknown shape of the interface (Leal 2007; Mandal, Ghosh &
Chakraborty 2016). In the present problem the drop shape is not known a priori, but
the drop shape should be known beforehand to implement the boundary conditions at
the drop interface. Towards further analytical development, we first identify different
physical systems depending on the relative magnitude of the dimensionless numbers
(ReE, Ca and M). System with ReE, Ca� 1, M ∼ 1: physical systems of this kind
can be solved analytically by considering the electric Reynolds number ReE and the
capillary number Ca as the perturbation parameters (Xu & Homsy 2006). A typical
example of this kind of droplet-based microfluidic system is one in which a silicone
oil (with ρi= 970 kg m−3, εi= 2.65ε0, σi= 0.8× 10−12 S m−1, µi= 0.34 Pa s, where
ε0 is permittivity of free space) drop of radius a= 4 mm is suspended in castor oil
(with ρe = 960 kg m−3, εe = 4.7ε0, σe = 4× 10−11 S m−1, µe = 0.78 Pa s) (Mhatre &
Thaokar 2013). In the presence of a uniform electric field of strength Ec= 105 V m−1,
background Poiseuille flow of centreline velocity Vc = 1 mm s−1 and surface tension
γ = 4× 10−3 N m−1, we obtain the dimensionless numbers as ReE = 0.26, Ca= 0.2
and M = 2.1. System with M � 1, ReE ∼ 1: this kind of system for the case of
settling of drop in uniform electric field has been solved analytically considering M
as the perturbation parameter by Yariv & Almog (2016) and is valid even for Ca∼ 1.
System with Ca � 1, ReE, M ∼ 1: this kind of system can be solved analytically
considering Ca as the perturbation parameter. Very recently, Das & Saintillan (2016)
have obtained drop deformation in this limit semi-analytically. Here we focus on the
solution of the physical systems of the first kind by employing a double asymptotic
expansion considering 1� ReE, Ca� Re2

E, ReECa, Ca2 and M ∼ 1. Thus we seek a
regular domain perturbation solution for the electric potential, velocity, pressure and
stress fields of the following form

ψi,e =ψ (0)
i,e + ReEψ

(ReE)
i,e +Caψ (Ca)

i,e + · · ·,
ui,e = u(0)i,e + ReEu(ReE)

i,e +Cau(Ca)
i,e + · · ·,

pi = 1
Ca

p(1/Ca)
i + p(0)i + ReEp(ReE)

i +Cap(Ca)
i + · · ·,

pe = p(0)e + ReEp(ReE)
e +Cap(Ca)

e + · · ·,
τi = 1

Ca
τ
(1/Ca)
i + τ

(0)
i + ReEτ

(ReE)
i +Caτ

(Ca)
i + · · ·,

τe = τ (0)e + ReEτ (ReE)
e +Caτ (Ca)

e + · · ·,


(2.4)
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where p(1/Ca)
i and τ

(1/Ca)
i are required to balance the pressure jump across the drop in

the absence of any flow field (Chan & Leal 1979).
The unknown drop velocity Ud is also expanded in the following form

Ud =U(0)
d + ReEU(ReE)

d +CaU(Ca)
d + · · ·, (2.5)

where U(0)
d is the leading-order drop velocity representing the drop velocity in the

absence of charge convection and shape deformation, U(ReE)
d denotes the first correction

to drop velocity due to charge convection when the shape deformation is absent, and
U(Ca)

d denotes the first correction to drop velocity due to shape deformation when the
charge convection is absent. At this order of approximation, the linear combination
of these two effects gives the simultaneous effect of charge convection and shape
deformation (refer to appendix A of Mandal et al. (2016b) for detail justification).

The unknown drop shape is also expanded in the following perturbation form
(Bandopadhyay et al. 2016)

rs = 1+ f (θ, φ)= 1+Ca f (Ca) +Ca ReE f (Ca ReE) +Ca2f (Ca2) + · · ·, (2.6)

where f (Ca), f (Ca ReE) and f (Ca2) are the corrections in drop shape from sphericity. The
outward unit normal (n) and curvature of the drop interface (∇ · n) can be expressed
in terms of the drop shape (Bandopadhyay et al. 2016).

The leading-order electric potentials inside and outside the drop (ψ
(0)
i,e ) satisfy the

Laplace equation of the form

∇2ψ
(0)
i = 0,

∇2ψ (0)
e = 0.

}
(2.7)

The boundary conditions (e1–e4) at the leading order transform to the following:

ψ (0)
e |r→∞→ψ∞,

ψ
(0)
i bounded for r< 1,

ψ (0)
e |r=1 =ψ (0)

i |r=1,

er · (R∇ψ (0)
i −∇ψ (0)

e )|r=1 = 0,

 (2.8)

where the generic notation ξ |r=1 is used to denote that the quantity ξ is evaluated at
r= 1.

The leading-order inner and outer flow fields (u(0)i,e , p(0)i,e ) satisfy the Stokes equation
and the condition of incompressibility of the form

∇p(0)i = λ∇2u(0)i , ∇ · u(0)i = 0,
∇p(0)e =∇2u(0)e , ∇ · u(0)e = 0.

}
(2.9)

The boundary conditions (f 1–f 4) at the leading order are

u(0)e |r→∞→ (V(0)
∞ −U(0)

d ),

u(0)i is bounded for r< 1,

u(0)e |r=1 = u(0)i |r=1,

u(0)e |r=1 · er = u(0)i |r=1 · er = 0,

er · (τ (0)e − τ
(0)
i )|r=1 · (I − erer)= 0,

er · (τ (0)e − τ
(0)
i )|r=1 · er =−(2f (Ca) +∇2f (Ca)).


(2.10)
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At O(ReE), which brings the first effect of charge convection, the electric potentials
inside and outside the drop (ψ (ReE)

i,e ) satisfy the Laplace equation of the form

∇2ψ
(ReE)
i = 0,

∇2ψ (ReE)
e = 0.

}
(2.11)

Quite naturally, the boundary conditions for electric potential at this order are not the
same as that of the leading order. At O(ReE) the effect of charge convection plays
a big role in determining the electric potential distribution. The boundary conditions
(e1–e4) take the following form

ψ (ReE)
e |r→∞→ 0,

ψ
(ReE)
i bounded for r< 1,

ψ
(ReE)
i |r=1 =ψ (ReE)

e |r=1,

er · (R∇ψ (ReE)
i −∇ψ (ReE)

e )|r=1 =−{∇s · (q(0)s V(0)
s )}|r=1,

 (2.12)

where the surface charge distribution of the leading order is given by q(0)s =
er · (S∇ψ (0)

i −∇ψ (0)
e )|r=1, and the velocity at the drop surface V(0)

s = u(0)i |r=1.
At O(ReE), the velocity and pressure fields inside and outside the drop (u(ReE)

i,e , p(ReE)
i,e )

satisfy the Stokes equation and the condition of incompressibility of the form

∇p(ReE)
i = λ∇2u(ReE)

i , ∇ · u(ReE)
i = 0,

∇p(ReE)
e =∇2u(ReE)

e , ∇ · u(ReE)
e = 0,

}
(2.13)

which are subject to the following boundary conditions

u(ReE)
e |r→∞→ (−U(ReE)

d ),

u(ReE)
i is bounded for r< 1,

u(ReE)
e |r=1 = u(ReE)

i |r=1,

u(ReE)
e |r=1 · er = u(ReE)

i |r=1 · er = 0,

er · (τ (ReE)
e − τ

(ReE)
i )|r=1 · (I − erer)= 0,

er · (τ (ReE)
e − τ

(ReE)
i )|r=1 · er =−(2f (Ca ReE) +∇2f (Ca ReE)).


(2.14)

At O(Ca), which brings the effect of shape deformation, the electric potentials inside
and outside the drop (ψ (Ca)

i,e ) satisfy the Laplace equation of the form

∇2ψ
(Ca)
i = 0,

∇2ψ (Ca)
e = 0,

}
(2.15)

which are subject to the following boundary conditions

ψ (Ca)
e |r→∞→ 0,

ψ
(Ca)
i bounded for r< 1,

[ψe|r=1+Ca f (Ca)](Ca) = [ψi|r=1+Ca f (Ca)](Ca),

[n · (R∇ψi −∇ψe)|r=1+Ca f (Ca)](Ca) = 0,

 (2.16)
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where the generic representation [ξ |r=1+Ca f (Ca)](Ca) is used to denote the O(Ca)
contribution of any quantity ξ of the following form (Brenner 1964)

[ξ |r=1+Ca f (Ca)](Ca) =
(
ξ (Ca)|r=1 + f (Ca) ∂ξ

(0)

∂r

∣∣∣∣
r=1

)
, (2.17)

where we have evaluated the quantity ξ at the deformed drop interface r= 1+Ca f (Ca)

by using Taylor series expansion around the spherical drop interface (r= 1).
The O(Ca) velocity and pressure fields inside and outside the drop (u(Ca)

i,e , p(Ca)
i,e )

satisfy the Stokes equation and the condition of incompressibility of the following
form

∇p(Ca)
i = λ∇2u(Ca)

i , ∇ · u(Ca)
i = 0,

∇p(Ca)
e =∇2u(Ca)

e , ∇ · u(Ca)
e = 0,

}
(2.18)

which are subject to the following boundary conditions

u(Ca)
e |r→∞→ (−U(Ca)

d ),

u(Ca)
i is bounded for r< 1,

[ue|r=1+Ca f (Ca)](Ca) = [ui|r=1+Ca f (Ca)](Ca),

[ue|r=1+Ca f (Ca) · n](Ca) = [ui|r=1+Ca f (Ca) · n](Ca) = 0,

[n · (τe − τi)|r=1+Ca f (Ca) · (I − nn)](Ca) = 0,

[n · (τe − τi)|r=1+Ca f (Ca) · n](Ca) = 2f (Ca)(f (Ca) +∇2f (Ca))− (2f (Ca2) +∇2f (Ca2)).


(2.19)

3. Asymptotic solution for small charge convection and small shape deformation
3.1. Description of electric potential, velocity and pressure fields

Here we present the solution methodology to obtain the electric potential, velocity and
pressure fields at different orders of perturbation. As the electric potentials inside and
outside the drop satisfy the Laplace equation, we can represent the electric potentials
as (Vlahovska 2011)

ψ
( j)
i =

∞∑
n=0

rn
n∑

m=0

[a( j)
n,m cos(mφ)+ â( j)

n,m sin(mφ)]Pn,m,

ψ ( j)
e =ψ ( j)

∞ +
∞∑

n=0

r−n−1
n∑

m=0

[b( j)
−n−1,m cos(mφ)+ b̂( j)

−n−1,m sin(mφ)]Pn,m,

 (3.1)

where Pn,m are the associated Legendre polynomials with argument cos θ , degree n
and order m. In (3.1) we have used the superscript j to represent different orders of
perturbation, which takes the following three forms j= 0, ReE,Ca. One thing to note
here is that as the electric potential inside the drop in bounded, the electric potential
inside the drop (ψ

( j)
i ) is represented by the growing spherical solid harmonics. On

the other hand the electric potential outside the drop should match with the applied
external electric potential at infinity, that is why the electric potential outside the
drop (ψ ( j)

e ) is represented by the unperturbed potential ψ ( j)
∞ and decaying spherical

solid harmonics. The unperturbed potential which is applied externally exists only at
the leading order (i.e. j = 0) of the form ψ (0)

∞ = −r(ExP1,1 cos φ + EzP1,0). Now our
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task is to determine the unknown coefficients (a( j)
n,m, â( j)

n,m, b( j)
−n−1,m and b̂( j)

−n−1,m) which
are present in the expressions of the electric potentials (3.1) by invoking appropriate
boundary conditions, with proper use of the orthogonality property of the associated
Legendre polynomials.

The velocity and pressure fields inside and outside the drop satisfy the Stokes
equation and the condition of incompressibility at each order of perturbation. In
spherical coordinates, the general solution of Stokes equation which satisfies the
continuity equation is given by Lamb’s general solution in terms of solid spherical
harmonics (Lamb 1975). The velocity and pressure fields inside and outside the drop
are given by (Hetsroni & Haber 1970; Happel & Brenner 1981)

u( j)
i =

∞∑
n=1

[
∇× (rχ ( j)

n )+∇Φ( j)
n +

n+ 3
2(n+ 1)(2n+ 3)λ

r2∇p( j)
n −

n
(n+ 1)(2n+ 3)λ

rp( j)
n

]
,

(3.2)

p( j)
i =

∞∑
n=1

p( j)
n , (3.3)

u( j)
e = V( j)

∞ −U( j)
d + v( j)

e =V( j)
∞ −U( j)

d +
∞∑

n=1

[
∇× (rχ ( j)

−n−1)+∇Φ( j)
−n−1

− n− 2
2n(2n− 1)

r2∇p( j)
−n−1 +

n+ 1
n(2n− 1)

rp( j)
−n−1

]
, (3.4)

p( j)
e =

∞∑
n=1

p( j)
−n−1. (3.5)

The flow field inside the drop is represented in terms of growing solid spherical
harmonics p( j)

n , Φ
( j)
n and χ ( j)

n of the form (Bandopadhyay et al. 2016)

p( j)
n = λrn

n∑
m=0

[A( j)
n,m cos(mφ)+ Â( j)

n,m sin(mφ)]Pn,m,

Φ( j)
n = rn

n∑
m=0

[B( j)
n,m cos(mφ)+ B̂( j)

n,m sin(mφ)]Pn,m,

χ ( j)
n = rn

n∑
m=0

[C( j)
n,m cos(mφ)+ Ĉ( j)

n,m sin(mφ)]Pn,m,


(3.6)

whereas the flow field outside the drop is represented by the unperturbed velocity field
(V( j)
∞ −U( j)

d ) and the decaying field v( j)
e , which consists of the decaying solid spherical

harmonics p( j)
−n−1, Φ( j)

−n−1 and χ ( j)
−n−1 of the form (Bandopadhyay et al. 2016)

p( j)
−n−1 = r−n−1

n∑
m=0

[A( j)
−n−1,m cos(mφ)+ Â( j)

−n−1,m sin(mφ)]Pn,m,

Φ
( j)
−n−1 = r−n−1

n∑
m=0

[B( j)
−n−1,m cos(mφ)+ B̂( j)

−n−1,m sin(mφ)]Pn,m,

χ
( j)
−n−1 = r−n−1

n∑
m=0

[C( j)
−n−1,m cos(mφ)+ Ĉ( j)

−n−1,m sin(mφ)]Pn,m.


(3.7)
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Effect of uniform electric field on the cross-stream migration of a drop 737

In (3.2) and (3.4), r represents the dimensionless position vector and r= |r| represents
the magnitude of r. Now our task is to determine the unknown coefficients present in
the velocity and pressure fields A( j)

n,m, B( j)
n,m, C( j)

n,m, A( j)
−n−1,m, B( j)

−n−1,m, C( j)
−n−1,m, Â( j)

n,m, B̂( j)
n,m,

Ĉ( j)
n,m, Â( j)

−n−1,m, B̂( j)
−n−1,m and C( j)

−n−1,m by invoking proper boundary conditions at each
order of perturbation. Our aim is to determine the drop velocity at each order of
perturbation, with proper use of the orthogonality property of the surface harmonics.
Towards this we use the velocity boundary conditions (except the condition of normal
stress balance) to obtain the unknown coefficients present in the solid spherical
harmonics (3.6) and (3.7). Then we apply the force-free condition to obtain the drop
velocity U( j)

d . The shape of the drop can be determined by using the normal stress
balance condition. This method has been previously used by several authors (Hetsroni
& Haber 1970; Bandopadhyay et al. 2016) to obtain the drop velocity and shape.

3.2. Leading-order solution

The electric potential distribution at the leading order is obtained by substituting the
electric potentials given in (3.1) in the boundary conditions (2.8). The leading-order
electric potentials inside and outside the drop (ψ

(0)
i,e ) are obtained as (Bandopadhyay

et al. 2016)

ψ
(0)
i =−

(
3Ez

2+ R

)
rP1,0 −

(
3Ex cos φ

2+ R

)
rP1,1,

ψ (0)
e =−r(ExP1,1 cos φ + EzP1,0)+

(
Ez(R− 1)
(2+ R)

)
1
r2

P1,0 +
(

Ex(R− 1) cos φ
2+ R

)
1
r2

P1,1.


(3.8)

Consequently, the leading-order surface charge distribution is obtained as q(0)s =
((3(R− S))/(R+ 2))[EzP1,0 + ExP1,1 cos φ].

Proceeding further, the velocity and pressure fields inside and outside the drop
in terms of spherical solid harmonics are substituted in (2.10) (first five boundary
conditions) to obtain the leading-order flow field in the following form

u(0)i =

∇× (rχ
(0)
1 + rχ (0)2 )+∇(Φ(0)

1 +Φ(0)
2 +Φ(0)

3 )

+ r2

λ

(
1
5
∇p(0)1 +

5
42
∇p(0)2 +

1
12
∇p(0)3

)
− r
λ

(
1
10

p(0)1 +
2
21

p(0)2 +
1
12

p(0)3

),
(3.9)

p(0)i = p(0)1 + p(0)2 + p(0)3 , (3.10)

u(0)e =
∇× (rχ (0)−3 )+∇(Φ(0)

−2 +Φ(0)
−3 +Φ(0)

−4)+ r2
(

1
2∇p(0)−2 − 1

30∇p(0)−4

)
+ r
(

2p(0)−2 + 1
2 p(0)−3 + 4

15 p(0)−4

)
, (3.11)

p(0)e = p(0)−2 + p(0)−3 + p(0)−4, (3.12)

where complete expressions of the growing and decaying spherical solid harmonics
are given in appendix A.
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The drop velocity is determined from the force-free condition. The total force acting
on the drop is given by (Im & Kang 2003; Bandopadhyay et al. 2016)

F=FH +MFE =
∫

A
(τH

e · er) dA+M
∫

A
(τ E

e · er) dA

= −4π∇(r3p−2)+M
∫

A
(τ E

e · er) dA, (3.13)

where the integration is performed on the drop surface (i.e. dA= r2
s sin θ dθ dφ). Now,

using the perturbation expansion (2.4), at the leading order of approximation we obtain

F(0) =FH(0) +MFE(0) =−4π∇(r3p(0)−2)+M
∫

A
(τ E(0)

e · er) dA. (3.14)

At the leading order of approximation, the net electrical force on the drop (FE(0))
is identically zero, as the drop is electrically neutral and the applied electric field is
uniform at far field. Therefore, the force-free condition at leading order is given by

∇(r3p(0)−2)= 0, (3.15)

where p(0)−2 = r−2[A(0)−2,0P1,0 + (A(0)−2,1 cos φ + Â(0)−2,1 sin φ)P1,1]. After substitution of the
expressions for A(0)−2,0, A(0)−2,1 and Â(0)−2,1, the drop velocity at the leading order, U(0)

d =
U(0)

dx ex +U(0)
dy ey +U(0)

dz ez, is obtained as

U(0)
dx =U(0)

dy = 0,

U(0)
dz = k0 +

(
λ

3λ+ 2

)
k2.

 (3.16)

To determine the deformed drop shape, we express f (Ca) in terms of linear combina-
tions of surface harmonics of the form (Hetsroni & Haber 1970)

f (Ca) =
∞∑

n=1

n∑
m=0

[L(Ca)
n,m cos(mφ)+ L̂(Ca)

n,m sin(mφ)]Pn,m. (3.17)

The unknown coefficients L(Ca)
n,m and L̂(Ca)

n,m are obtained by using the normal stress
balance boundary condition (the last boundary condition of (2.10)) in the following
form

L(Ca)
2,0 =−

3
8

(
M(E2

x − 2E2
z )

(R+ 2)2

)
ΩT, L(Ca)

2,1 =
3
4

(
MEzEx

(R+ 2)2

)
ΩT + 1

24

(
19λ+ 16
λ+ 1

)
k1,

L(Ca)
2,2 =

3
16

(
ME2

x

(R+ 2)2

)
ΩT, L(Ca)

3,0 =−
1

40

(
11λ+ 10
λ+ 1

)
k2,

L(Ca)
3,2 =

1
240

(
11λ+ 10
λ+ 1

)
k2,


(3.18)

where ΩT =R2+1−2S+ (3/5)(((R− S)(3λ+ 2))/(λ+ 1)) is the Taylor discriminating
function (Saville 1997). ΩT signifies the fact that the drop will be stretched parallel
to the applied electric field (i.e. prolate shape) if ΩT > 0 and the reverse happens
(the drop will be stretched normal to the applied electric field (i.e. oblate shape))
for ΩT < 0 when the drop is acted upon by a uniform electric field in an otherwise
quiescent medium.
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3.3. O(ReE) solution: effect of surface charge convection
After obtaining the electric and flow fields at the leading order, we now obtain
the solution to (2.11) and (2.13) using the boundary conditions (2.12) and (2.14),
respectively. At O(ReE), the electric field is induced due to charge convection, as
there is no applied electric field at this order. The effect of charge convection
is apparent from the given boundary condition (Bandopadhyay et al. 2016): er ·
(R∇ψ (ReE)

i −∇ψ (ReE)
e ) = −∇s · (q(0)s V(0)

s ) applied at r = 1. The leading-order charge
distribution and surface velocity are responsible for the alteration in the O(ReE) charge
conservation equation at the drop surface. To obtain the non-zero surface harmonics
present in the O(ReE) electric potential, we first evaluate the term ∇s · (q(0)s V(0)

s ) at
r= 1 in the following form (Kim & Karrila 1991)

∇s · (q(0)s V(0)
s )= 2(q(0)s V(0)

s · er)+ 1
sin θ

∂

∂θ
(q(0)s V(0)

s · eθ)+
1

sin θ
∂

∂φ
(q(0)s V(0)

s · eφ). (3.19)

Now, we substitute the expressions of the surface velocity field (V(0)
s ) and the surface

charge distribution (q(0)s ) in (3.19). We represent the right-hand side of (3.19) in
terms of various surface harmonics by using the orthogonality of the spherical
surface harmonics as

−2(q(0)s V(0)
s · er)− 1

sin θ
∂

∂θ
(q(0)s V(0)

s · eθ)−
1

sin θ
∂

∂φ
(q(0)s V(0)

s · eφ)

=
∞∑

n=0

n∑
m=0

[Zn,m cos(mφ)+ Ẑn,m sin(mφ)]Pn,m. (3.20)

The non-zero Zn,m and Ẑn,m terms are obtained by invoking the orthogonality of
associated Legendre polynomial and complete expressions are given in appendix B.
These non-zero surface harmonics suggest that the electric potential at O(ReE) should
be of the form

ψ
(ReE)
i =

4∑
n=1

rn
n∑

m=0

a(ReE)
n,m cos(mφ)Pn,m,

ψ (ReE)
e =

4∑
n=1

r−n−1
n∑

m=0

b(ReE)
−n−1,m cos(mφ)Pn,m.

 (3.21)

Now, invoking this form of the electric potential in the boundary conditions (2.12)
we obtain the unknown coefficients present in the O(ReE) electric potential which
are given in appendix C. The charge distribution at the drop interface at O(ReE) is
obtained as

q(ReE)
s =

(
S
∂ψ

(ReE)
i

∂r
− ∂ψ

(ReE)
e

∂r

)∣∣∣∣∣
r=1

=
4∑

n=1

n∑
m=0

{
n(1+ S)+ 1
n(1+ R)+ 1

}
Zn,m cos(mφ)Pn,m.

(3.22)
At O(ReE), the velocity and pressure fields are generated solely by the Maxwell
stresses present at the drop surface due to the O(ReE) electric field (Bandopadhyay
et al. 2016). The O(ReE) velocity and pressure fields can be expressed in terms
of spherical solid harmonics as outlined in (3.2)–(3.5). Non-zero spherical solid
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harmonics exist up to n = 5 and can be obtained by using the boundary conditions
given in (2.14). Complete expressions for the O(ReE) flow field are too lengthy to be
presented here. However, we have included the method for obtaining the O(ReE) solid
harmonics and also the general expression for these in the supplementary material
available at https://doi.org/10.1017/jfm.2016.677.

The drop velocity can be obtained by using the force-free condition at O(ReE) as

F(ReE) =−4π∇(r3p(ReE)
−2 )= 0, (3.23)

where p(ReE)
−2 = r−2[A(ReE)

−2,0 P1,0 + (A(ReE)
−2,1 cos φ + Â(ReE)

−2,1 sin φ)P1,1]. The coefficients A(ReE)
−2,0 ,

A(ReE)
−2,1 and Â(ReE)

−2,1 are mentioned in appendix D. The O(ReE) drop velocity is obtained
as

U(ReE)
dx = 6

35
MExEz(R− S)(3R− S+ 3)(2λ2 + 63λ+ 45)k2

(3λ+ 2)2(λ+ 1)(λ+ 4)(R+ 2)2(3+ 2R)
,

U(ReE)
dz = 6

35
M(R− S)(3R− S+ 3){(36λ2 + 119λ+ 75)E2

x + (8λ2 + 42λ+ 40)E2
z }k2

(3λ+ 2)2(λ+ 1)(λ+ 4)(R+ 2)2(3+ 2R)
.


(3.24)

3.4. O(Ca) solution: effect of shape deformation
At O(Ca), the electric field is induced due to shape deformation of the drop, as there
is no applied electric field at this order. We obtain the O(Ca) electric potential inside
and outside the drop as

ψ
(Ca)
i =

2∑
n=1

rn
n∑

m=0

a(Ca)
n,m cos(mφ)Pn,m,

ψ (Ca)
e =

4∑
n=1

r−n−1
n∑

m=0

b(Ca)
−n−1,m cos(mφ)Pn,m,

 (3.25)

where complete expressions of the unknown coefficients are given in appendix E. The
charge distribution at the drop interface at O(Ca) can be obtained as

q(Ca)
s =


S

{
∂ψ

(Ca)
i

∂r
+ f

∂2ψ
(0)
i

∂r2
− ∂f
∂θ

∂ψ
(0)
i

∂θ
− 1

sin2 θ

∂f
∂φ

∂ψ
(0)
i

∂φ

}∣∣∣∣∣
r=1

−
{
∂ψ (Ca)

e

∂r
+ f

∂2ψ (0)
e

∂r2
− ∂f
∂θ

∂ψ (0)
e

∂θ
− 1

sin2 θ

∂f
∂φ

∂ψ (0)
e

∂φ

}∣∣∣∣
r=1

 , (3.26)

where the complete expression can be easily obtained by substituting the expressions
for ψ (0)

i,e and ψ
(Ca)
i,e . At O(Ca), the velocity and pressure fields are generated due to

shape deformation and also due to the Maxwell stresses present at the drop surface
due to the O(Ca) electric field (Bandopadhyay et al. 2016). The O(Ca) velocity and
pressure fields can be expressed in terms of spherical solid harmonics as outlined in
(3.2)–(3.5). Non-zero spherical solid harmonics exist up to n= 6 and can be obtained
by using the boundary conditions given in (2.19). Here also we do not provide
complete expressions for the solid harmonics at O(Ca) due to the excessive length
of the algebraic expressions. However, we have provided the method to obtain these
solid harmonics and also the general expression in the supplementary material.
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Effect of uniform electric field on the cross-stream migration of a drop 741

The drop velocity can be obtained by using the force-free condition at O(Ca) as

F(Ca) =−4π∇(r3p(Ca)
−2 )= 0, (3.27)

which yields the drop velocity as

U(Ca)
dz =

k2{L(Ca)
2,0 f1 + L(Ca)

2,2 f2} +M{L(Ca)
3,0 (E2

x f3 + E2
z f4)+ L(Ca)

3,2 E2
x f5}

35(3λ+ 2)(3λ2 + 5λ+ 2)(λ+ 4)(2R3 + 11R2 + 20R+ 12)
,

U(Ca)
dx =

k2L(Ca)
2,1 f6 + L(Ca)

3,0 {MExEzf7 + k1f8} + L(Ca)
3,2 {MExEzf9 + k1f10}

35(3λ+ 2)(3λ2 + 5λ+ 2)(λ+ 4)(2R3 + 11R2 + 20R+ 12)
,

 (3.28)

where f1 − f10 are functions of R, S and λ. The complete expressions for f1 − f10 are
given in appendix F.

3.5. Drop trajectory
Finally we obtain the combined effect of charge convection and shape deformation on
the velocity of the drop by combining these two effects linearly as

Ud = (U(0)
dz + ReEU(ReE)

dz +CaU(Ca)
dz )ez + (ReEU(ReE)

dx +CaU(Ca)
dx )ex. (3.29)

It is clear from the above equation that the drop has velocity components in both
the axial direction (z-direction) as well as the transverse or cross-stream direction
(x-direction) in the presence of a background plane Poiseuille flow and a uniform
electric field. During the transverse motion, the drop encounters a spatially varying
background flow which leads to a continuous variation of the flow field and electric
potential inside and outside the drop (and subsequently the electric charge distribution
at the drop surface). Due to this continuous adjustment of velocity and surface charges
with the background flow, a drop which is migrating in the cross-stream direction will
not be in a steady motion until it reaches the centreline of the flow. Towards making
an analytical treatment, we have made a quasi-steady-state approximation in which
the time required for the velocity and surface charge distributions to establish is much
smaller than the time scale of drop motion. Now, we look into the criteria under which
velocity and surface charges are established very quickly as compared with the time
scale of drop motion. The velocity field is established in a time scale tv = ρea2/µe
(which is the viscous time scale), while the surface charge distribution is established
in a time scale te = εe/σe (which is the charge-relaxation time scale). On the other
hand, the time scale of drop motion is td,x=a/VcUdx (with Udx∼ReEM or Udx∼Ca M)
for transverse motion and td,z= a/VcUdz (with Udz∼ 1) for axial motion. The criterion
for the velocity field to establish instantaneously with respect to the spatially varying
flow field can be obtained in the following form: (i) tv � td,x ⇒ Re ReEM � 1 (or
Re Ca M � 1) and (ii) tv � td,z ⇒ Re� 1. Among Re ReEM � 1 (or Re Ca M � 1)
and Re� 1, the second one is the more stringent criterion owing to the fact that the
transverse motion of the drop is responsible for the time-varying characteristics that
are expected. As we have assumed the flow field is governed by the Stokes equation
(which is due to Re � 1), the criterion of the quasi-steady-state approximation for
velocity field is satisfied. Following a similar method, the criterion for the surface
charge distribution to adjust instantaneously with the spatially varying flow field can
be obtained in the following form: (i) te� td,x⇒ Re2

EM� 1 (or ReECa M� 1) and
(ii) te� td,z⇒ReE� 1. Among Re2

EM� 1 (or ReECa M� 1) and ReE� 1, the second
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one is the more stringent criterion. In the present analysis we have considered ReE�1,
which satisfies the quasi-steady-state criterion. We have the analysis in the regime
of low ReE (or equivalently the regime of quasi-steady-state). Both the conditions
above indicate that, under the assumptions of the present work, the velocity field and
charge distribution occur at a time scale which is much faster than the characteristic
system time scale. This renders the quasi-steady-state assumption valid. A similar
quasi-steady-state approximation is also followed by Pak et al. (2014) in their study of
motion of a surfactant-laden drop in Poiseuille flow. So, under this quasi-steady-state
approximation, here we determine the quasi-steady-state drop trajectory. Towards this,
we first substitute k0 = 4(xd/H)(1− xd/H), k1 = (4/H)(1− 2xd/H) and k2 = −4/H2.
Here xd is the non-dimensional transverse position of the drop centroid (measured
from the bottom wall), which may change with time, and H is the channel height.
So, this representation of the plane Poiseuille flow considers xd =H/2 as the channel
centreline. To obtain the quasi-steady-state drop trajectory, we solve the following
differential equations

dxd(t)
dt
= ReEU(ReE)

dx +Ca U(Ca)
dx ,

dzd(t)
dt
=U(0)

dz + ReEU(ReE)
dz +Ca U(Ca)

dz ,

 (3.30)

where zd is the axial position of the drop centroid. U(0)
dz , U(Ca)

dx and U(Ca)
dz are functions

of xd that can be easily obtained by substituting k0, k1 and k2 in the expressions for
the drop velocity. The cross-stream motion of the drop is of prime importance to us.
Towards this we integrate equation (3.30) and obtain

xd(t)= xd,∞ + [xd,0 − xd,∞] exp
(
− t

tm

)
, (3.31)

where xd,∞ is the steady state transverse position of the drop (obtained as t→∞) and
xd,0 is the initial transverse position of the drop. An important quantity to note here
is tm, which is the characteristic cross-stream migration time scale that quantifies the
time required by the drop to reach steady state velocity. The expressions for xd,∞ and
tm are obtained as

xd,∞ =
[

H
2
+MExEz

(
f12 + ReE

Ca
f11

)
H2

]
, (3.32)

tm = H4

Ca
f13, (3.33)

where f11 and f12 are known functions of R, S and λ, while f13 is a sole function of
λ. The complete expressions for f11, f12, f13 are given in appendix G. It is important to
note that (3.31), which represents the temporal evolution of transverse position of the
drop, is only valid for Ca> 0. For the special case of Ca= 0, the temporal evolution
of the transverse position of the drop is obtained as

xd(t)= xd,0 + ReEU(ReE)
dx t. (3.34)

So, with increasing time, the transverse position of the drop (xd) increases linearly.
There is no steady state transverse position (as t → ∞ gives xd → ∞). In a
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practical situation the transverse position of the drop will increase, and after some
finite time it will encounter the bounding wall. The presence of a bounding wall
induces a hydrodynamic lift force on the drop perpendicular to the flow direction
(Uijttewaal, Nijhof & Heethaar 1993; Uijttewaal & Nijhof 1995; Stan et al. 2011).
This hydrodynamic lift force retards the drop motion towards the wall. So, the
drop will eventually settle to some finite xd,∞ (i.e. 0 < xd,∞ < H) instead of the
ever-increasing transverse position. As the present study assumes background flow
to be unbounded (which means the drop is far away from the bounding walls), the
present study is not able to predict xd,∞ in the limit of Ca= 0. So, at this point, one
very important thing to note regarding the validity of (3.31) and (3.34) is that these
equations are applicable to find the temporal evolution of the transverse position of
the drop only when the drop is far away from the bounding walls.

4. Results and discussion
4.1. Validation

Before investigating the combined effect of uniform electric field and plane Poiseuille
flow on the motion of the drop, we validate our analytical results with previously
reported analytical results for two limiting cases. First, we consider the case of motion
and deformation of a neutrally buoyant leaky dielectric drop in the presence of a
uniform electric field in an otherwise quiescent medium (no imposed background
flow). In this situation the drop remains stationary, but the drop deforms to an
oblate/prolate shape in the following form

rs = 1+Ca M
{

3
4

1
(R+ 2)2

[
R2 + 1− 2S+ 3

5
(R− S)(3λ+ 2)

(λ+ 1)

]
P2,0

}
, (4.1)

where we have substituted E∞= ez and k0= k1= k2= 0 in (3.18). This result has been
previously obtained by Taylor (1966) and subsequently validated experimentally and
numerically by others (Ha & Yang 2000a; Feng & Scott 2006; Vizika & Saville 2006;
Lac & Homsy 2007). Second, we consider the case of the motion and deformation of
a drop in plane Poiseuille flow (no externally applied electric field). In this case the
drop moves in the flow direction, and if the drop is placed at an off-centreline location
then the drop also experiences a cross-stream migration, as previously obtained by
Chan & Leal (1979) and also obtained as a limiting case from our analytical results
in the following form

Ud =
[

k0 +
(
λ

3λ+ 2

)
k1

]
ez

+Ca
[(
−k1k2

210

)
(198λ5 − 1242λ4 − 7327λ3 − 6292λ2 + 1843λ+ 2320)

(3λ+ 2)2(4+ λ)(λ+ 1)2

]
ex

(4.2)

by substituting Ex = Ey = 0 (or equivalently M = 0) in (3.29). The presence of
background plane Poiseuille flow leads to deformation of the drop, which is obtained
as

rs = 1+Ca


{

1
24

(
19λ+ 16
λ+ 1

)
k1

}
cos φP2,1 −

{
1
40

(
11λ+ 10
λ+ 1

)
k2

}
P3,0

+
{

1
240

(
11λ+ 10
λ+ 1

)
k2

}
cos(2φ)P3,2

 , (4.3)

which has been previously obtained by Chan & Leal (1979).
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4.2. Combined effect of plane Poiseuille flow and uniform electric field on the drop
motion

The combined effect is not a mere linear combination of two distinct effects (plane
Poiseuille flow and uniform electric field) because the electric potential and flow
field are nonlinearly coupled by the charge convection and shape deformation
in the following two ways: (i) the presence of background plane Poiseuille flow
alters the charge distribution at the drop surface, which alters the electric potential,
electric stresses, and subsequently modifies the flow field and hydrodynamic force,
(ii) coupling through the shape deformation due to plane Poiseuille flow and uniform
electric field. Shape deformation alters the electric potential, electrical stresses,
flow field, and ultimately the hydrodynamic force on the drop. The mathematical
expressions for the combined effect of plane Poiseuille flow and uniform electric
field on the drop velocity in the axial as well as transverse directions can be obtained
by substituting different terms in (3.29). In an effort to disentangle the effects of the
plane Poiseuille flow and the electric field on the axial and transverse (or cross-stream)
velocities of the drop, we rearrange the drop velocity as

Udz = U(0)
dz + ReEU(ReE)

dz +Ca U(Ca)
dz

= k0 +
(
λ

3λ+ 2

)
k1︸ ︷︷ ︸

∆1

+ ReEk2MΓ2︸ ︷︷ ︸
∆2

+Ca k2MΓ1︸ ︷︷ ︸
∆3

, (4.4)

Udx = ReEU(ReE)
dx +Ca U(Ca)

dx

= ReEk2MExEzΓ3︸ ︷︷ ︸
∆4

+Ca k1k2Γ4︸ ︷︷ ︸
∆5

+Ca k2MExEzΓ5︸ ︷︷ ︸
∆6

, (4.5)

where Γ1 and Γ2 are known functions of R, S, λ, Ex and Ez, while Γ3, Γ4 and Γ5
are known functions of R, S and λ. Expressions for Γ1–Γ5 can be easily obtained by
comparing (4.4) and (4.5) with (3.24) and (3.28), respectively. The term ∆1 represents
the axial velocity of the drop in plane Poiseuille flow in the absence of shape
deformation and charge convection. The terms ∆2 and ∆3 represent the alteration in
drop velocity in the axial direction due to charge convection and shape deformation,
respectively. A closer look into the expressions for ∆2 and ∆3 reveals that these
two terms are non-zero if k2M 6= 0. Hence, an externally applied uniform electric
field affects the axial velocity of the drop only in the presence of flow curvature
(i.e. k2 6= 0). The term ∆4 present in (4.5) signifies the effect of charge convection on
the cross-stream migration velocity, while ∆5 and ∆6 represent the effect of shape
deformation on the cross-stream migration velocity. ∆5 arises owing to the shape
deformation, which is solely due to the plane Poiseuille flow. A closer look into the
expression for ∆4 and ∆6 reveals that these terms are non-zero if k2MExEz 6= 0. Hence,
the electric field affects the cross-stream migration of the drop in the presence of flow
curvature (i.e. k2 6= 0) if and only if the electric field is tilted (i.e. ExEz 6= 0). This
means if the applied electric field (E∞) is acting along the axial direction (E∞ = ez)
or acting along the transverse direction (E∞ = ex), there is no effect of electric field
on the cross-stream migration velocity of the drop. So, the necessary condition for
the applied electric field to make any change on the cross-stream migration velocity
of the drop is that it has to be a tilted electric field with respect to the imposed flow
direction. The tilt angle, defined as θt = tan−1(Ex/Ez), should satisfy the following
criterion: 0 < θt < π/2 or π/2 < θt < π to affect the cross-stream migration of the
drop. It must be noted that the presence of an electric field always affects the axial
velocity of the drop (Udz), irrespective of its direction of application.
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4.2.1. Drop velocity
It is evident from (4.4) and (4.5) that there are two important effects which alter

the drop velocity: charge convection (the strength of which is represented by ReE) and
shape deformation (the strength of which is represented by Ca). In addition to these
two dimensionless numbers, there are the following important electrohydrodynamic
parameters which affect the drop motion: the relative strength of the components
of applied electric field (Ex, Ez), the Mason number (M), the viscosity ratio (λ)
and the electrical property ratios (R, S). The effect of these parameters on the
cross-stream migration velocity (Udx) and steady state transverse position of the drop
(xd,∞) are of prime importance. Before presenting the effect of charge convection
and shape deformation on the drop velocity and drop trajectory, we investigate the
physical reasons behind the charge-convection-induced and shape-deformation-induced
cross-stream migration of a drop.

In the present study, in the presence of a tilted electric field and background plane
Poiseuille flow, we have obtained not only alteration in the axial drop velocity but also
a non-intuitive cross-stream migration of the drop due to charge-convection effects,
which is denoted by U(ReE)

dx . The effect of charge convection on the cross-stream
migration velocity can be well understood if we systematically investigate the charge
distribution at the drop surface and alteration of the same due to fluid flow. Towards
this we consider three representative cases: Case I with axial electric field E∞ = ez

(or θt = 0), Case II with transverse electric field E∞ = ex (or θt = π/2) and Case III
with tilted electric field E∞= (ex + ez)/

√
2 (or θt =π/4). Next we show the effect of

fluid flow on the surface charge distribution. We show the contour plot of the surface
charge density, qs. To represent the explicit variation of surface charge density with
θ and φ, we also plot the variation of qs(θ) for φ = π/4, 3π/4 and the variation of
qs(φ) for θ =π/4, 3π/4. The choice of two φ values while showing the variation of
qs(θ) is made so that two φ values are symmetrically located with respect to the axial
plane (φ =π/2). Likewise, the choice of two θ values while showing the variation
of qs(φ) is made so that two θ values are symmetrically located with respect to the
transverse plane (θ =π/2).

Case I (axial electric field). In figure 2(a–c) we show the charge distribution on
the drop surface in the presence of an axial electric field (E∞ = ez or θt = 0) while
the background flow is considered as plane Poiseuille flow. The parameters used
to calculate the charge distribution are given in the figure caption. In the absence
of charge convection (i.e. ReE = 0), the contour plot of the surface charge density,
q(0)s , is depicted in figure 2(a). Figure 2(a) shows that the surface charge distribution
is symmetric about the axial plane and antisymmetric about the transverse plane.
Explicit variation of the surface charge density with θ is depicted in figure 3(a),
which shows that when ReE = 0 the variation of qs(θ) is antisymmetric about the
θ = π/2 plane. Figure 3(a) also depicts that the variation of qs(θ) is independent of
φ, which signifies the symmetry of surface charge density about the axial plane. The
charge distribution coupled with a tangential electric field creates a tangential electric
force (FE

θ ) which is the jump of tangential electric stress across the drop interface
and can be obtained as FE

θ = qs(E · eθ). The distribution of the tangential electric force
(FE

θ ) with θ is represented in figure 3(b), which shows that FE
θ is also antisymmetric

about the transverse plane. Hence, the flow field generated due to this antisymmetric
electric force (FE

θ ) in the presence of E∞ = ez is also antisymmetric, which finally
leads to zero electrohydrodynamic force on the drop. This is the physical picture
in the absence of charge convection (i.e. ReE = 0). An interesting thing happens
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FIGURE 2. (Colour online) This representation depicts the charge distribution at the
drop surface. Charge distribution in (a–c) axial (Case I), (d–f ) transverse (Case II) and
(g–i) tilted (Case III) electric fields, respectively. (a,d,g) q(0)s , (b,e,h) q(0)s + ReEq(ReE)

s at
xd = 5 (centreline), and (c, f,i) q(0)s + ReEq(ReE)

s at xd = 4 (off-centreline), respectively. The
parameters employed are R= 0.5, S= 2, M= 2, λ= 0.2, ReE = 0.2 and H= 10. Colourbar
represents the magnitude of the dimensionless surface charge density.

when we consider the charge-convection effect. The surface charge convection in the
presence of plane Poiseuille flow markedly alters the charge distribution on the drop
surface, as shown in figure 2(b,c). Figure 2(b) depicts the contours of the surface
charge density, q(0)s +ReEq(ReE)

s , when the drop is at the centreline (xd = 5, considering
H = 10) of the imposed flow. Comparison between ReE = 0 and ReE = 0.2 curves of
figure 3(a) reveals that there is a significant reduction in charge density near θ = 0
and π for ReE = 0.2. This reduction in charge density is due to the velocity field at
the drop interface. The tangential velocity field in the absence of charge convection
is shown as an inset of figure 3(a). This leading-order tangential velocity at the drop
surface is a linear combination of tangential velocities in a uniform electric field and
plane Poiseuille flow. Combination of the uniform electric field and plane Poiseuille
makes V (0)

s,θ asymmetric about the transverse plane. The tangential velocity (V (0)
s,θ ) is

positive near θ = 0 and negative near θ = π. This velocity distribution drives the
charges away from θ = 0, π and creates an asymmetric charge distribution about the
transverse plane. The asymmetry of charge distribution about the transverse plane
is more clearly depicted in figure 3(c), in which we show the variation of charge
distribution with φ for θ =π/4 and 3π/4. Here, we plot the magnitude of the charge
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FIGURE 3. (Colour online) (a) Variation of qs(θ) for φ = π/4, 3π/4 considering xd = 5.
(b) Variation of FE

θ (θ) for φ = π/4, 3π/4 considering xd = 5. (c) Variation of qs(φ) for
θ =π/4, 3π/4 considering xd = 5. (d) Variation of FE

θ (φ) for θ =π/4, 3π/4 considering
xd = 5. The parameters employed are R= 0.5, S= 2, M = 2, λ= 0.2 and H = 10.

density, |qs|, so that the variation for both θ is noticeable. In the absence of charge
convection (i.e. ReE = 0), qs(θ =π/4) = −qs(θ = 3π/4) for any φ, which signifies
the antisymmetric charge distribution about the transverse plane. But when ReE = 0.2,
the magnitude of charge density at θ =π/4 is very much different as compared with
the magnitude of charge density at θ = 3π/4. This asymmetric structure creates an
asymmetric distribution of the tangential electric force, as depicted in figure 3(d). An
asymmetric FE

θ creates asymmetric electrohydrodynamic flow, which finally yields a
net electrohydrodynamic force on the drop and an alteration in the drop velocity in
the axial direction. There is no electrohydrodynamic force in the transverse direction.
This is due to the fact that the charge distribution about the axial plane remains
symmetric even in the presence of charge convection. This is reflected by the φ

independence of qs(θ) and FE
θ (θ) in figure 3(a) and figure 3(b), respectively.

When the drop is at an off-centreline location (xd = 4), the contours of surface
charge density are depicted in figure 2(c). To investigate the asymmetry in the charge
distribution and associated electric force, we plot the variation of qs and FE

θ with θ

and φ in figure 4(a–d). Figure 4(a) depicts that the variations of charge distribution
with θ for φ =π/4 and φ = 3π/4 are different, which signifies asymmetry about the
axial plane. Similar asymmetry is also found in the variation of the electric force in
figure 4(b). Asymmetry about the axial plane arises for a drop with an off-centreline
position because in this situation the drop encounters a different velocity at different
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FIGURE 4. (Colour online) (a) Variation of qs(θ) for φ = π/4, 3π/4 considering xd = 4.
(b) Variation of FE

θ (θ) for φ = π/4, 3π/4 considering xd = 4. (c) Variation of qs(φ) for
θ =π/4, 3π/4 considering xd = 4. (d) Variation of FE

θ (φ) for θ =π/4, 3π/4 considering
xd = 4. The parameters employed are R= 0.5, S= 2, M = 2, λ= 0.2 and H = 10.

φ positions. On the other hand, figure 4(c) depicts that the variations of charge
distribution with φ for θ =π/4 and θ = 3π/4 are different, which signifies asymmetry
about the transverse plane. Similar asymmetry is found in the variation of electric
force in figure 4(d). The asymmetry in the charge distribution and electric force about
the transverse plane finally creates an asymmetric electrohydrodynamic flow across
the transverse plane, which yields a change in drop velocity in the axial direction.
Notably, the asymmetry in the charge distribution and electric force about the axial
plane also creates an asymmetric electrohydrodynamic flow around the drop interface.
But this electrohydrodynamic flow is such that the net electrohydrodynamic force
vanishes. However, asymmetry in the charge distribution and electric force creates a
non-zero electrical torque of the form

TE(ReE) =
∫

A
er × (τ E(ReE)

e · er) dA= ReE

[
24π

5
(R− S)(2+ 5λ)
(R+ 2)2(λ+ 1)

(xd

H

)(
1− 2xd

H

)]
ey.

(4.6)
An important thing to note here is that the direction of the electric torque is
determined by the R/S ratio and xd. This electric torque is exactly balanced by
the torque due to the hydrodynamic stresses, which causes the drop to be torque-free

TH(ReE) +MTE(ReE) = 0, (4.7)
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where the hydrodynamic torque acting on the drop is obtained from (Happel &
Brenner 1981) TH(ReE) =−8π∇(r3χ

(ReE)
−2 ).

Case II (transverse electric field). In the presence of a transverse electric field (E∞=
ex or θt = π/2), the charge distribution on the drop surface is shown in figure 2(d–
f ). Contrary to Case I, here we do not obtain a change in the drop velocity in the
direction of the applied external electric field. The effect of surface charge convection
leads to an asymmetric charge distribution across the transverse plane, which leads
to alteration in the drop velocity in the axial direction only. The charge distribution
across the axial plane remains antisymmetric for xd = 5 (refer to figure 2e). However,
for the case of xd = 4 (drop positioned at an off-centreline location), similar to Case I
the asymmetry in the charge distribution about the axial plane (refer to figure 2f ) leads
to the generation of an electric torque in the y-direction as

TE(ReE) = ReE

[
24π

5
(R− S)(8+ 5λ)
(R+ 2)2(λ+ 1)

(xd

H

)(
1− 2xd

H

)]
ey, (4.8)

which is further balanced by the hydrodynamic torque so as to satisfy the torque-free
condition.

Case III (tilted electric field). The charge distribution due to the application of a
tilted uniform electric field having both axial and transverse components is shown
in figure 2(g–i) by considering E∞ = (ex + ez)/

√
2 or θt = π/4. In this situation, the

charge distribution becomes asymmetric about both the axial as well as the transverse
planes even when the drop is at the centreline (xd = 5) (refer to figure 2h). This leads
to cross-stream migration of the drop in the x-direction along with alteration in the
axial velocity as well. In this case also the drop experiences an electrical torque of
the form

TE(ReE) = ReE

[
24π(R− S)
(R+ 2)2

(xd

H

)(
1− 2xd

H

)]
ey, (4.9)

which is further balanced by the hydrodynamic torque. So, the charge convection
leads to an alteration in axial drop velocity when the charge distribution about the
transverse place is asymmetric. The asymmetric charge distribution about the axial
plane always leads to generation of electric torque on the drop. But the asymmetric
charge distribution about the axial plane alters the cross-stream velocity of the drop
only when the applied electric field has both axial and transverse components. This
new mechanism of cross-stream migration of the drop in the presence of background
plane Poiseuille flow is very different from dielectrophoresis (in which a uncharged
particle moves in a non-uniform electric field) or electrophoresis (in which a charged
particle moves in an electric field) because here the drop has zero net charge and the
applied electric field is uniform.

An important thing to note from (4.5) is that the direction of the charge-convection-
induced cross-stream migration velocity of the drop (which means sign of U(ReE)

dx ) is
determined by the components of the applied electric field (Ex, Ez), or equivalently the
tilt angle (θt) and electrical property ratios (R, S), which is given by the term GReE =
ExEz(S− R)(3R− S+ 3). When GReE > 0, the drop migrates in the positive x-direction,
and the reverse happens (drop migrates in the negative x-direction) for GReE < 0. This
migration velocity is independent of the transverse location of the drop. To show the
effect of R and S on the charge-convection-induced cross-stream velocity of the drop,
we construct a regime diagram showing the sign of U(ReE)

dx (figure 5a for θt = π/4
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FIGURE 5. (Colour online) Sign of charge-convection-induced cross-stream migration
velocity of the drop (U(ReE)

dx ) on R–S plane for (a) θt =π/4 and (b) θt = 3π/4.

and figure 5b for θt = 3π/4) in the R–S plane. From figure 5 it is clear that the two
curves R=S and S=3R+3 indicate the lines of zero charge-convection-induced cross-
stream velocity (U(ReE)

dx = 0) even in the presence of a tilted electric field. So, the mere
presence of a tilted electric field is not a sufficient condition for charge-convection-
induced cross-stream motion of the drop in plane Poiseuille flow. However, R= S or
S=3R+3 do not necessarily imply that the shape-deformation-induced drop migration
in the cross-stream direction will be zero.

The effect of shape deformation in terms of Ca has been previously shown in
several studies (Chan & Leal 1979; Mortazavi & Tryggvason 2000; Griggs, Zinchenko
& Davis 2007; Wang & Dimitrakopoulos 2011; Chaudhury, Mandal & Chakraborty
2016) for the case of plane Poiseuille flow, but without any consideration of an
electric field. In plane Poiseuille flow, if the drop is placed at an off-centre position,
the drop shape becomes asymmetric with respect to the channel centreline, which
leads to cross-stream migration of a deformable drop (Chan & Leal 1979; Leal 1980).
Chan & Leal (1979) have studied the cross-stream migration of a deformable drop in
plane Poiseuille flow analytically and found the dependence of U(Ca)

dx on λ as: the drop
migrates towards the centreline for λ < 0.5 or λ > 10, and the drop migrates away
from the centreline for 0.5< λ< 10. Here, the presence of an electric field leads to an
additional deformation of the drop into an oblate/prolate shape which modulates the
drop motion in the axial as well as the cross-stream directions. This alteration of drop
velocity in the presence of shape deformation is due to two different reasons: first,
the extra deformation caused by the electric field alters the shape (or equivalently the
cross-sectional area in the axial and transverse directions) of the drop. This altered
cross-sectional area can increase/decrease the hydrodynamic drag force acting on the
drop. Second, the extra deformation alters the surface charge distribution. The surface
charge distribution coupled with a tangential electric field leads to generation of a
tangential electric force which can further drive electrohydrodynamic flow around the
drop interface. An asymmetric distribution of surface charge and associated tangential
electric force induce an asymmetric electrohydrodynamic flow which further yields
an electrohydrodynamic force on the drop. So, similar to the charge convection,
shape deformation also induces asymmetry in charge distribution and electric force
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FIGURE 6. (Colour online) Variation of shape-deformation-induced cross-stream migration
velocity of drop (U(Ca)

dx ) with viscosity ratio (λ). Other parameters have the following
values Ca= 0.1, M = 0.1, θt =π/4, H = 10 and xd,0 = 4.

depending on the direction of the electric field. Towards this, the most important thing
to note here is that when the electric field is applied in the axial direction (E∞ = ez) or
transverse direction (E∞ = ex), the shape-deformation-induced cross-stream migration
due to the electric field is zero, which means the electric field does not affect U(Ca)

dx .
This is due to the fact that when E∞= ez or E∞= ex the drop becomes symmetrically
stretched/compressed in the axial/transverse direction depending on the sign of the
Taylor discriminating function ΩT . The electric field contributes to the cross-stream
migration in terms of shape deformation only when the electric field is tilted, because
only then does the drop shape become asymmetric relative to the channel centreline.
Figure 6 depicts that dependence of the shape-deformation-induced cross-stream
migration velocity of the drop (U(Ca)

dx ) on λ is markedly altered due to the presence
of the electric field. The electric field not only alters the magnitude of U(Ca)

dx but also
the direction of drop migration, as is evident from figure 6 for the electrical property
ratios (R, S)= (0.5, 5).

Now, we show the combined effect of charge convection and shape deformation on
the drop velocity. To explore the dependence of electrical property ratios, in figure 7
we plot the variation of Udx/Udx,E∞=0 in the R–S plane for the parameters specified in
the figure caption. The colourbar represents the magnitude of Udx/Udx,E∞=0, where we
have normalized Udx by the cross-stream migration velocity of the drop in the absence
of the electric field (represented by Udx,E∞=0). Figure 7(a) depicts that application
of a uniform electric field dramatically alters the cross-stream velocity of the drop.
Depending on the electrical property ratios (R, S), the cross-stream velocity of the
drop can be much greater/less than the case of no electric field. An electric field not
only changes the magnitude of the cross-stream migration velocity of the drop, but
also can change the direction of migration, as depicted by figure 7(b) (represented by
a negative value of Udx/Udx,E∞=0). However, the net effect due to the electric field
will be decided by the magnitude of the governing parameters (ReE, Ca, M, λ, R, S
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FIGURE 7. (Colour online) Combined effect of charge convection and shape deformation
on the normalized cross-stream migration velocity of the drop (Udx/Udx,E∞=0) on the R–S
plane for (a) λ=15 and (b) λ=0.25. Other parameters have the following values Ca=0.2,
ReE = 0.1, M = 0.1, θt =π/8, H = 10 and xd,0 = 4.

and θt). An interesting thing to note from figure 7 is that there are R, S values for
which Udx/Udx,E∞=0= 1, which represents a zero net effect of the applied electric field
on Udx. Another interesting thing to note from figure 7(b) is that there is also a line
of Udx = 0 (line of zero cross-stream migration), which means the charge-convection
and shape-deformation effects are individually zero at those property values or the
combined effects of charge convection and shape deformation cancel each other.

An important limiting situation can be obtained by considering R = S, which
represents a charge-free interface. This situation is similar to the case of a perfect
dielectric drop suspended in another perfect dielectric medium. In this case the
charge-convection-induced cross-stream migration velocity vanishes (this is also
evident from the R = S line shown in figure 5), but the shape-deformation-induced
component of the cross-stream migration velocity remains non-zero, as a perfect
dielectric drop always deforms to a prolate shape in the presence of a uniform
electric field. This prolate deformation causes an asymmetry in shape when the
electric field is tilted with respect to the flow direction, leading to cross-stream
migration of a perfect dielectric drop.

So far, we have considered the cross-stream migration velocity, but the axial velocity
is also of great importance in the context of the trajectory of the drop. Equation (4.4)
shows that both charge convection and shape deformation alter the axial drop velocity.
The charge-convection-induced alteration in the axial velocity of the drop is due to
the presence of an asymmetric charge distribution about the transverse plane, while
the deformed shape of the drop leads to a change in the cross-sectional area and
charge distribution of the drop, which also leads to change in axial velocity of drop.
In figure 8 we show the combined effect of charge convection and shape deformation
on Udz. Here we have normalized Udz by the imposed flow velocity at the centre of the
drop, which is represented by |V∞|. In the absence of any externally applied electric
field, the drop always lags behind the flow, as the axial velocity of the drop is less
than the velocity of the imposed flow at the centre of the drop, as obtained by Chan
& Leal (1979) and also shown in figure 8 (solid blue line). With increasing viscosity
ratio, the drop becomes much more viscous as compared to the suspending medium,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

67
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.677


Effect of uniform electric field on the cross-stream migration of a drop 753

10−2 100 102 10−2 100 102
0.980

0.985

0.990

0.995

1.000

1.005
Chan & Leal (1979)

0.980

0.985

0.990

0.995

1.000

1.005

1.010(a) (b)

FIGURE 8. (Colour online) Combined effect of charge convection and shape deformation
on the normalized axial velocity of the drop (Udz/|V∞|) with viscosity ratio (λ) for
(a) (R, S)= (5, 0.5) and (b) (R, S)= (0.5, 5). Other parameters have the following values
Ca= 0.2, ReE = 0.2, M = 1, θt =π/8, H = 10 and xd = 4 (which gives |V∞| = 0.96).

and moves much more slowly. Figure 8(a) shows that application of an electric field
has the ability to move the drop much faster (for θt = 0) or slower (for θt = π/4,
π/2) as compared to the case of no electric field. Another interesting fact to note
here is that the presence of an electric field can also lead to faster/slower motion
of the drop as compared to the flow velocity at the centre of the drop (represented
by Udz/|V∞| > 1). Not only does the tilt angle alter Udz significantly, but also the
electrical property ratios (R, S) have a profound effect, as evident from figure 8(b).
So, depending on the tilt angle (θt), electrohydrodynamic property ratios (R, S, λ) and
dimensionless numbers (Ca, ReE,M), the axial velocity of the drop can increase or
decrease due to the presence of an electric field.

4.2.2. Drop trajectory
Now we investigate the effects of charge convection and shape deformation in terms

of different relevant electrohydrodynamic parameters on the quasi-steady-state drop
trajectory (represented by (3.31)) and cross-stream migration time scale (represented
by (3.33)). First, we plot drop trajectory in plane Poiseuille flow disregarding the
effect of the electric field in figure 9(a), which has previously obtained by Chan
& Leal (1979). For λ = 0.5, if the drop is placed at some off-centreline location
(xd,0 = 4 or 6), the drop migrates towards the centreline of the flow and the final
steady state transverse position of the drop will be the centreline xd =H/2= 5. If the
drop is initially placed at the centreline (xd,0 = 5), then the drop will move only in
the axial direction. Distinctively different drop trajectories are obtained when a tilted
uniform electric field is applied in the presence of plane Poiseuille flow, as shown in
figure 9(b,c). In figure 9(b) we show the independent effects of charge convection and
shape deformation on the drop trajectory when the drop is placed at an off-centreline
position (xd,0 = 4). In the absence of shape deformation (Ca= 0), the drop migrates
away from the channel centreline solely due to charge convection (ReE = 0.1) because
GReE < 0 (which leads to transverse motion of the drop in the negative x-direction)
for θt =π/4 and the electrical properties under consideration (R= 5, S= 0.5). In this
case we have shown the drop trajectory only for short times, because for longer times
the drop moves close to the lower wall, where the effect of the wall in terms of
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FIGURE 9. (Colour online) (a) Drop trajectory in plane Poiseuille flow in the absence of
an electric field for different initial transverse position of the drop. Other parameters are
used as Ca = 0.1, λ = 0.5, and H = 10. (b) Drop trajectory in plane Poiseuille flow in
the presence of an electric field considering the effect of shape deformation and charge
convection separately. Other parameters are used as M = 0.1, θt = π/4, R = 5, S = 0.5,
λ= 0.5, H = 10 and xd,0 = 4. (c) Drop trajectory in plane Poiseuille flow in the presence
of an electric field for xd,0 = 4, 5, 6. Other parameters are taken as Ca= 0.1, ReE = 0.1,
M = 0.1, θt =π/4, R= 5, S= 0.5, λ= 0.5 and H = 10.

the hydrodynamic lift force will be significant, which we have not considered in the
present analysis. On the other hand, in the absence of charge convection (ReE = 0), the
drop migrates towards the centreline solely due to shape deformation (Ca= 0.1), but
surprisingly the drop does not attain a steady state transverse position at the centreline.
This is attributed to the altered shape of the drop, which is very much different in the
presence of an electric field. The combined effect of charge convection (ReE = 0.1)
and shape deformation (Ca= 0.1) on the drop trajectory will add linearly at this order
of approximation, and the drop initially moves towards the centreline, but the final
steady state transverse position of the drop is distinctly different from the centreline.
The drop settles below the centreline, as shown in figure 9(b). When the electric field
is absent, the drop will always settle to the centreline of the flow irrespective of the
initial drop position (xd,0) for λ = 0.5 (as evident from figure 9a). In the presence
of the electric field, the drop settles to a fixed transverse position irrespective of the
initial transverse position of the drop (xd,0) for fixed electrohydrodynamic parameters
(as evident form figure 9c, which considers xd,0=4,5,6). But the difference lies in the
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FIGURE 10. (Colour online) Drop trajectory for different values of the Mason number
(M). Different parameters are considered as Ca= 0.1, ReE = 0.1, θt =π/4, R= 5, S= 0.5,
λ= 0.5, H = 10 and xd,0 = 4.

fact that the presence of the electric field may yield the steady state transverse position
of the drop at xd,∞ 6= H/2. Even when the drop is initially placed at the centreline
xd,0 = H/2 = 5, the drop migrates away from the centreline to a different transverse
position at steady state, as shown in figure 9(c). This apparently surprising behaviour
is due to the fact that, in the presence of a tilted electric field, the charge distribution
and drop shape are both asymmetric with respect to the channel centreline, which is
otherwise not possible in the absence of the electric field.

Figure 10 depicts the effect of the Mason number (M) on the drop trajectory for the
electrohydrodynamic parameters specified in the figure caption. The Mason number
physically represents the relative strength of the electrical stress as compared with
the hydrodynamic stress. As compared to the case of no electric field (represented
by E∞= 0), the drop migrates to different steady state transverse positions for M> 0.
For smaller values of M(=0.05, 0.1), the drop migrates towards the centreline, but
finally settles below the centreline. However, for larger values of M(=0.2), the drop
migrates further away from the centreline. Therefore, the increase in Mason number
leads to settling of the drop further away from the centreline, which is attributed to the
increase in asymmetry in charge distribution and shape deformation. However, there
is no noticeable change in the time required for the drop to settle at the steady state
transverse position. This is due to the fact that the cross-stream migration time scale
(tm) depends only on the viscosity ratio and capillary number (as evident from (3.33)).

The effect of the relative strength of the components of the electric field (Ex and
Ez) are represented by the tilt angle (θt). In figure 11 we show the drop trajectory
for different θt for the electrohydrodynamic parameters specified in the figure caption.
When θt= 0, π/2, π, there is no effect of electric field in terms of alteration in cross-
stream migration velocity, as evident from (4.5) and also depicted in figure 11. But in
the regime 0< θt <π/2 and π/2< θt <π, the application of a uniform electric field
dramatically alters the drop trajectory. For the electrohydrodynamic properties under
consideration, the drop initially starts to move towards the centreline, but settles below
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FIGURE 11. (Colour online) Drop trajectory for different tilt angles (θt). Different
parameters used are Ca= 0.1, ReE = 0.1, M = 0.1, R= 5, S = 0.5, λ= 0.5, H = 10 and
xd,0 = 4.

(for 0< θt < π/2 as depicted in figure 11a) or above (for π/2< θt < π as depicted
in figure 11b) the centreline. The effect of tilt angle is most significant near θt=π/4,
3π/4, as shown in figure 11(a,b), and the effect of tilt angle reduces for all other
values of tilt angle (θt).

4.2.3. Steady state transverse position of the drop
Figure 12 shows the steady state transverse position of the drop (xd,∞) on the

R–S plane for the parameters mentioned in the figure caption. The colourbar in
figure 12 represents the value of the steady state transverse position of the drop
(xd,∞). Figure 12(a) depicts that, for the combination of small R and large S, xd,∞< 5
(where we have considered the channel height H = 10), which represents that the
drop settles below the centreline. The drop settles above the centreline (xd,∞ > 5) for
large R and small S. However, this dependence on (R, S) becomes reversed when
θt = 5π/8 in figure 12(b), in which small R and large S lead to settling of the drop
above the centreline. An interesting thing to note from figure 12 is that there is a
line of xd,∞= 5 which signifies the state of settling of the drop at the centreline. This
is associated with the line of zero cross-stream migration velocity (Udx = 0) of the
drop previously shown in figure 7(b).

The pivotal effect of the tilt angle (θt) and Mason number (M) on the steady state
transverse position of the drop are shown in figure 13 for the parameters specified in
the figure caption. We recall (3.32) in the following form

xd,∞ = H
2
[1+M sin(2θt)Γ ], (4.10)

where Γ is a known function of R, S, λ,H,Ca and ReE that can be easily obtained by
comparing (4.10) and (3.32). It is evident from (4.10) that the necessary conditions for
xd,∞ 6=H/2 are the following: M 6= 0 (which means the presence of an electric field)
and sin(2θt) 6= 0 (which means a tilted electric field). The sign of the term sin(2θt)Γ
is of great importance because this decides whether the drop will settle below or
above the centreline. Figure 13(a) depicts that, for a particular non-zero magnitude of
M, the variation of the steady state transverse position of the drop (xd,∞) is sinusoidal
with the tilt angle (θt). The drop settles to the centreline xd,∞= 5 (considering H= 10)
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FIGURE 12. (Colour online) Variation of the steady state transverse position of the drop
(xd,∞), on the R–S plane for (a) θt = π/8 and (b) θt = 5π/8. Other parameters have the
following values: Ca= 0.1, ReE = 0.1, M = 0.1, λ= 1, and H = 10.
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FIGURE 13. (Colour online) Variation of the steady state transverse position of the drop
(xd,∞) with the tilt angle (θt) for different values of Mason number (M). Electrical
property ratios are taken as (R, S) = (5, 0.5) and (R, S) = (0.5, 1.25) to plot (a) and (b)
respectively. Other parameters employed are Ca= 0.1, ReE = 0.1, H = 10 and λ= 0.25.

when θt = 0, π/2, π; whereas, for any other values of the tilt angle, the drop settles
either above or below the centreline for the parameters under consideration. For
figure 13(a), Γ > 0, which gives sin(2θt)Γ > 0 for 0 < θt < π/2 and sin(2θt)Γ < 0
for π/2< θt < π. So, for given physical properties we can alter xd,∞ by changing θt.
One interesting thing to note from figure 13(a) is that there is an optimum value of
tilt angle (θt = π/4, 3π/4) for which |xd,∞ −H/2| is maximum and the drop settles
far away from the centreline. The reason behind the existence of such an optimum θt

is that the asymmetry created in the charge distribution and shape deformation due
to the presence of the electric field are maximum for θt = π/4, 3π/4. Next, we plot
figure 13(b) for Γ < 0 using the properties mentioned in the figure caption. Here
we obtain sin(2θt)Γ < 0 for 0 < θt < π/2 and sin(2θt)Γ > 0 for π/2 < θt < π. The
effect of Mason number on the steady state transverse position of the drop is also
depicted in figure 13. With increasing M, the drop moves further away from the
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centreline. This is attributed to the fact that the increase in M results in an increase
of the relative magnitude of the electrical stress as compared to viscous stresses,
which brings about the change in flow field, and finally the drag force on the drop.
Accordingly, M only controls the strength of alteration in drop motion due to an
electric field, whereas the tilt angle θt has the ability to affect the direction in which
the drop settles with respect to the centreline.

4.3. Comparison of the analytical solution against numerical simulations
4.3.1. Numerical method and simulation set-up

Two-phase electrohydrodynamic simulations are performed using the open-source
scientific package GERRIS (http://gfs.sf.net) developed by Popinet (2003, 2009), which
employs the volume-of-fluid (VOF) method in a finite-volume framework. The choice
of GERRIS is made because the ELECTROHYDRO module (López-Herrera, Popinet
& Herrada 2011) of GERRIS solves the incompressible Navier–Stokes equation
coupled with an electric potential and electric charge density very accurately (Ferrera
et al. 2013; Cimpeanu, Papageorgiou & Petropoulos 2014; Datta, Das & Das 2015;
López-Herrera et al. 2015). Another important factor is that GERRIS is equipped
with dynamic adaptive mesh refinement, which allows one to use a greater number
of computational cells near the desired regions dynamically (Popinet 2003). This is
very advantageous in the present simulations because we have to use a very long
channel to simulate the drop motion towards steady state. The electric potential (ψ)
satisfies the Poisson equation and the electric charge density (qv) satisfies the charge
conservation equation of the following form (López-Herrera et al. 2011)

∇ · (ε∇ψ)=−qv,

ReE

[
∂qv
∂t
+∇ · (qvu)

]
=∇ · (σ∇ψ).

 (4.11)

The right-hand side of the charge transport equation ∇ · (σ∇ψ) is the Ohmic
current, which is the equivalent of the electromigration term in electrokinetic
theory (Saville 1997). This is obtained by noting that the conservation of the
volumetric charge density may be written as (Saville 1997) ∂qv/∂t + u · ∇qv =
∇ · [∑k ω

ke2zknk∇ψ +ωkkBT∇qv], k= 1, 2, . . . , N, where ωk represents the mobility
of the kth species, nk is the ionic concentration of the kth species, e is the charge
of a proton, kB is the Boltzmann constant and T is the absolute temperature. In
the limit where the charge diffusion is negligible, the description may be reduced
simply as (4.11). It is important to note here that GERRIS solves for the charge
density (qv) in the bulk fluid. However, as the charge-relaxation time scale is very
small as compared to the convective time scale (represented by small value of
ReE), the charges which are present at the bulk fluid will be accumulated at the
fluid–fluid interface very quickly (López-Herrera et al. 2011; Ferrera et al. 2013).
So, we can expect that (4.11) will effectively represent the bulk fluid as charge-free,
and the charge conservation equation in the bulk will be the same as the charge
conservation equation at the interface (represented in boundary condition e4). Fluid
flow is governed by the continuity equation and the Navier–Stokes equation of the
form (López-Herrera et al. 2011)

∇ · u= 0,

Re
(
∂u
∂t
+ u · ∇u

)
=−∇p+∇ · [µ{∇u+ (∇u)T}] +MFe + 1

Ca
Fs,

 (4.12)
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H

L

FIGURE 14. (Colour online) Schematic representation of the simulation set-up. 2D
rectangular domian of length L and height H is considered which is bounded by the inlet
left boundary (SL), the outlet right boundary (SR), and the top and bottom walls (ST, SB).
The drop is initially placed at some transverse position xd,0. The steady state transverse
position (xd,∞), is obtained from the simulation data.

where Re = ρeVca/µe is the Reynolds number. The electric force density (Fe) and
surface tension force (Fs) are implemented in GERRIS as volume forces by López-
Herrera et al. (2011). The electric force density is related to the electric field (E)
and the charge density (qv) as Fe = qvE− (1/2)|E|2∇ε. The surface tension force is
related to the radius of curvature of the interface (κ) as Fs = κδsn, where δs is the
Dirac delta function and n is the unit normal vector on the drop interface. GERRIS
implements the volume-of-fluid (VOF) method to capture the fluid–fluid interface. The
volume fraction (c) satisfies an advection equation of the form

∂c
∂t
+∇ · (cu)= 0. (4.13)

The drop phase is represented by c=1, whereas the suspending medium is represented
by c = 0. Variation of all the electrohydrodynamic properties across the drop
interface is expressed in terms of the following weighted arithmetic interpolation
(López-Herrera et al. 2011): µ= cλ+ (1− c), ε= cS+ (1− c) and σ = cR+ (1− c).

To simulate the electrohydrodynamic motion of the drop, we consider a two-
dimensional (2D) rectangular domain of dimensionless length L and dimensionless
height H (refer to figure 14). We consider H = 4 and L = 180 to simulate the drop
dynamics. The choice of a relatively small domain height of H = 4 is based on
the fact that a larger channel height requires a very large length of channel to get
steady state drop velocity. This large computational domain is associated with a large
computational time. As the electric potential varies in both the axial and transverse
directions, the periodic boundary condition is not applicable in the present set-up.
We need to use a full length domain to simulate the drop dynamics until the steady
state is reached. To reduce the excessively large length of the computational domain
and reduce the computational time, we have taken H = 4. The whole computational
domain is composed of 45 square boxes of size H= 4. All the boxes are decomposed
using square surface elements with cell size in the bulk fluid as H/8. In the present
study, we have used a gradient-based adaptive mesh refinement (Popinet 2003) in
which the computational cells are divided with quadtree discretization where the
gradient in volume fraction is present. The cell size near the drop interface is H/256,
which is equivalent to 64 grid points over the drop radius. Recent studies have
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FIGURE 15. (Colour online) (a) Numerically obtained drop trajectories in plane Poiseuille
flow in the absence of an electric field for different initial transverse positions of the drop.
(b) Analytically obtained drop trajectories in plane Poiseuille flow in the absence of an
electric field for different initial transverse positions of the drop. Other parameters have
the following values: Ca= 0.2, λ= 0.1 and H= 4. For the numerical simulations, we have
considered Re= 0.1.

employed a similar grid size to simulate drop electrohydrodynamics using GERRIS
(López-Herrera et al. 2011; Ferrera et al. 2013; Chen et al. 2015) and found excellent
agreement with existing results. We apply the following boundary conditions for the
electric potential and the velocity field in the respective domain boundaries:

ψ |SL = EzL+ ExH
(

1− x
H

)
, ψ |SR = ExH

(
1− x

H

)
,

ψ |SB = ExH + Ez(L− z), ψ |ST = ExH + Ez(L− z),

u|SL = u|SR =
4x
H

(
1− x

H

)
, u|ST = u|SB = 0.

 (4.14)

The initial velocity field throughout the domain is considered as plane Poiseuille flow.
The drop is placed initially at an axial location zd,0= 3H/2 so that drop is not affected
by the inlet boundary (SL). The initial transverse position of the drop (xd,0) is taken
very close to the channel centreline to minimize the wall effects. While showing the
drop trajectories, the axial location at any time t, zd(t), is expressed as zd(t) − zd,0.
We have validated the numerical code in the following two cases: (i) drop trajectory
in Poiseuille flow and (ii) drop deformation in a uniform electric field. We have also
performed grid independence study considering the combined effect of a tilted electric
field and Poiseuille flow. Details regarding model validation and grid independence are
presented in appendix H.

4.3.2. Drop trajectory
Now, we show the drop trajectory, zd(t) − xd(t), obtained from 2D numerical

computations and compare that with the analytical solution. Figure 15(a) depicts the
drop trajectory in Poiseuille flow in the absence of an electric field for the parameters
mentioned in the figure caption. Chan & Leal (1979) have shown analytically that for
λ= 0.1 the drop settles to the centreline. The present analytical solution in the limit
of E∞ = 0 yields the same result as that of Chan & Leal (1979), which is depicted
in figure 15(b). The present numerical computations show that the drop settles to
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FIGURE 16. (Colour online) (a) Numerically obtained drop trajectory in plane Poiseuille
flow in the presence of a tilted electric field (θt = 5π/16) for R= 0.75. (b) Analytically
obtained drop trajectory in plane Poiseuille flow in the presence of a tilted electric field
(θt = 5π/16) for R = 0.75. (c) Numerically obtained drop trajectory in plane Poiseuille
flow in the presence of a tilted electric field (θt =π/4) for R = 1.25. (d) Analytically
obtained drop trajectory in plane Poiseuille flow in the presence of a tilted electric field
(θt =π/4) for R = 1.25. Other parameters have the following values: S = 1, Ca = 0.2,
ReE = 0.2, λ= 0.1 and H = 4. Numerical simulations we performed for Re= 0.1.

the centreline for different initial transverse positions (xd,0). Though the steady state
transverse position from numerical and analytical solutions show the exact same result
(i.e. xd,∞ = H/2 = 2), the numerically obtained axial length traversed by the drop
differs significantly from the analytical solution. This difference is attributed to the
presence of the bounding walls and the associated hydrodynamic lift force acting on
the drop (Chan & Leal 1979; Uijttewaal et al. 1993; Uijttewaal & Nijhof 1995). As
we have performed our numerical simulation considering the channel height H = 4,
the wall effects are not negligible.

The effect of a tilted electric field is shown in figure 16 for the parameters
mentioned in the figure caption. Figures 16(a) and 16(b) are obtained for R = 0.75
and θt= 5π/16, while figures 16(c) and 16(d) are obtained for R= 1.25 and θt=π/4.
Figures 16(a) and 16(c) are obtained from numerical simulations, while figures 16(b)
and 16(d) are obtained from analytical solutions. Two important things to note
from figure 16(a) are as follows: first, in the presence of a tilted electric field,
the charge convection and shape deformation lead to settling of the drop below
the centreline. Second, the off-centreline steady state transverse position (xd,∞) is
independent of the initial transverse position (xd,0). For all xd,0 values we obtain
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FIGURE 17. (Colour online) (a) Numerically obtained drop trajectory in plane Poiseuille
flow in the presence of a tilted electric field for different tilt angles. (b) Analytically
obtained drop trajectory in plane Poiseuille flow in the presence of a tilted electric field
for different tilt angles. Different parameters are taken as Ca= 0.2, ReE = 0.2, R= 1.25,
S= 1, λ= 0.1 and H = 4. Numerical simulations were performed for Re= 0.1.

nearly equal values of xd,∞. This is true even when the drop is initially placed
at the centreline (i.e. xd,0 = H/2 = 2). Figure 16(b) depicts the drop trajectory for
the same parameters obtained from the analytical solution. Comparison between the
analytical and numerical solutions reveals that both methods qualitatively represent
similar results. Similar qualitative agreement between the numerical and analytical
solutions is also depicted in figures 16(c) and 16(d), in which the drop settles above
the centreline.

To investigate the effect of tilt angle on the drop trajectory and steady state
transverse position of the drop, we plot the drop trajectory for the following four
different values of θt = π/4, 5π/16, 3π/8 and 7π/16, while the other parameters
are mentioned in the figure caption. Figure 17(a) depicts the numerically obtained
drop trajectories. Numerical simulations show that the drop settles away from
the flow centreline for θt = π/4. With increasing tilt angle, the drop still settles
in an off-centreline transverse position, but the drop settles much closer to the
centreline. This is due to the fact that the asymmetry in charge distribution and shape
deformation are larger for θt = π/4. Analytical solutions depicted in figure 17(b)
compare qualitatively well with the numerical simulations.

Possible reasons for the lack of an exact match between the analytical and
numerical solutions are the presence of bounding walls and a 2D domain. Bounding
walls in the presence of drop deformation lead to a hydrodynamic lift force on the
drop towards the centreline (Chan & Leal 1979; Uijttewaal et al. 1993; Uijttewaal
& Nijhof 1995), which facilitates faster migration of the drop. That is why the
numerically obtained drop trajectories show relatively faster settling of the drop to
the steady state transverse position as compared to the analytically obtained drop
trajectories. This effect is present even in the absence of an electric field (refer to
figure 15a). Another way in which bounding wall affects the drop motion is the
non-uniformity and asymmetry in an electric field due to the positioning of drop at
an off-centreline location (Halim & Esmaeeli 2013; Esmaeeli 2016). In the present
study, we have restricted ourselves to a 2D domain to reduce computational cost. A
three-dimensional (3D) numerical simulation, which is expected to compare better
with the analytical solution, is considered as a future study.
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5. Conclusions
5.1. Summary of the findings

In this paper, we have studied the electrohydrodynamic motion of a Newtonian, leaky
dielectric drop in a plane Poiseuille flow in the presence of a uniform electric field.
Considering the combined effect of surface charge convection at the drop surface and
shape deformation, we obtain O(ReE) and O(Ca) corrections to the drop velocity by
performing a double asymptotic expansion in terms of the electric Reynolds number
(ReE) and capillary number (Ca) as the perturbation parameters. The important
conclusions that can be drawn from the present study are the following.

(i) Application of a uniform electric field modulates the mechanism of cross-stream
migration dramatically via charge convection and shape deformation. However,
the presence of an electric field is not a sufficient condition for the alteration
in cross-stream migration velocity of the drop. We obtain that the electric
field affects the cross-stream migration of the drop if the applied electric field is
tilted with respect to the imposed flow direction, which necessitates the following
condition to be satisfied by the tilt angle: 0< θt <π/2 or π/2< θt <π.

(ii) We find a new source of cross-stream migration of the drop in plane Poiseuille
flow. In the presence of a tilted electric field, the charge distribution at the
drop surface becomes asymmetric due to charge convection, which finally
yields a cross-stream migration velocity of the drop (U(ReE)

dx ). This component
of cross-stream migration is present even for a non-deformable spherical drop.
We obtain the direction of cross-stream migration of the drop due to charge
convection as: depending on the sign of the term GReE =ExEz(S− R)(3R− S+ 3),
the drop can migrate in the positive x-direction (U(ReE)

dx > 0) for GReE > 0 and the
reverse happens (U(ReE)

dx < 0) for GReE < 0.
(iii) When the electric field is absent, the shape of a drop in a plane Poiseuille flow

becomes asymmetric with respect to the channel centreline if the drop is placed at
some off-centreline location, thereby leading to migration of the drop towards or
away from the channel centreline depending on the viscosity ratio (λ), as shown
by Chan & Leal (1979). In the presence of the electric field, the drop deforms
also due to generation of Maxwell stresses at the drop interface. If the applied
electric field is tilted, then it alters the asymmetry in drop shape, which further
modifies the drop velocity in both the axial and cross-stream directions.

(iv) Depending on the magnitude of the controlling parameters, combined effects of
charge convection and shape deformation not only increase/decrease the drop
velocity but also lead to cross-stream motion of the drop in the reverse direction
as compared to the case of no electric field.

(v) At steady state, the drop can settle either at the centreline or below/above
the centreline, depending on the tilt angle (θt), Mason numbers (M), capillary
number (Ca), electric Reynolds number (ReE) and the electrohydrodynamic
property ratios (R, S, λ). Interestingly, the steady state transverse position of the
drop is independent of the initial transverse position of the drop. Hence, a drop
initially placed at the centre of the plane Poiseuille flow can migrate away from
the centreline due to charge convection and shape deformation.

(vi) Direct comparison of analytical solution with the 2D numerical simulation shows
qualitative agreement in predicting the drop trajectory. Numerical simulation
shows faster motion of the drop as compared with the analytically obtained
drop velocity. The lack in quantitative agreement might be due to the 2D

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

67
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.677


764 S. Mandal, A. Bandopadhyay and S. Chakraborty

simulation domain and the presence of bounding walls. Bounding walls induce
a hydrodynamic lift force on the deformed drop towards the centreline, which
leads to faster cross-stream motion of the drop in the numerical simulations.

5.2. Remarks
The above analytical and numerical studies facilitate us to acquire an idea about the
various controlling parameters which affect the drop velocity, drop trajectory and
steady state transverse position of the drop in the presence of a uniform electric field
and background plane Poiseuille flow field. Using these, we may achieve fine-tuned
control over the motion and final steady transverse position of drops in droplet-based
microfluidic devices. The cross-stream migration of drops, which is governed by
the direction of the applied electric field and the electrical properties, may also be
employed for sorting of drops. Though the validity of the present analytical model
relies on the fact that Ca and ReE should be much smaller than unity, we believe
that this perturbation analysis brings out the important physical mechanisms that are
directly involved in cross-stream migration of the drop. In the present study, we
have focused only on the effect of curvature on the drop migration characteristics by
neglecting the effects of bounding walls. Both electric and flow fields are expected
to be affected by the presence of bounding walls, which in turn may alter the drop
migration velocity. We believe that a study of wall effects on the flow field and
electric field distribution and its consequence on the drop velocity can be targeted as
potential future work. While the present 2D numerical simulations include the wall
effects and compare only qualitatively with the analytical model, a full 3D numerical
simulation could be of great value towards simulating the drop electrohydrodynamics
in practical microfluidic platforms; this is being pursued by the authors.
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Appendix A. Expression for the solid harmonics present in the velocity and
pressure fields at leading order

The velocity and pressure fields (3.9) and (3.10) inside the drop consist of the
following growing solid harmonics

χ
(0)
1 = rĈ(0)

1,1 sin φP1,1, χ
(0)
2 = r2Ĉ(0)

2,2 sin(2φ)P2,2,

Φ
(0)
1 = rB(0)1,0P1,0, Φ

(0)
2 = r2[B(0)2,0P2,0 + B(0)2,1 cos φP2,1 + B(0)2,2 cos(2φ)P2,2],

Φ
(0)
3 = r3[B(0)3,0P3,0 + B(0)3,2 cos(2φ)P3,2], p(0)1 = λrA(0)1,0P1,0,

p(0)2 = λr2[A(0)2,0P2,0 + A(0)2,1 cos φP2,1 + A(0)2,2 cos(2φ)P2,2],
p(0)3 = λr3[A(0)3,0P3,0 + A(0)3,2 cos(2φ)P3,2],


(A 1)
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where the unknown coefficients are obtained as

A(0)1,0 =
10k2

2+ 3λ
, A(0)2,0 =−

63
10
(E2

x − 2E2
z )Λ, A(0)2,1 =

7k1

2(1+ λ) +
63
5

ExEzΛ,

A(0)2,2 =
63
20

E2
xΛ, A(0)3,0 =−

3k2

1+ λ , A(0)3,2 =
k2

2(1+ λ) , B(0)1,0 =−
A(0)1,0

10
,

B(0)2,0 =−
A(0)2,0

14
, B(0)2,1 =−

A(0)2,1

14
, B(0)2,2 =−

A(0)2,2

14
B(0)3,0 =−

A(0)3,0

18
, B(0)3,2 =−

A(0)3,2

18
,

Ĉ(0)
1,1 =−

k1

2
, Ĉ(0)

2,2 =−
5k2

18(4+ λ) ,


(A 2)

where Λ= (M(R− S))/((λ+ 1)(R+ 2)2). The velocity and pressure fields (3.11) and
(3.12) outside the drop consist of the following growing solid harmonics

χ
(0)
−3 =

1
r3

Ĉ(0)
−3,2 sin(2φ)P2,2, Φ

(0)
−2 =

1
r2

B(0)−2,0P1,0,

Φ
(0)
−3 =

1
r3
[B(0)−3,0P2,0 + B(0)−3,1 cos φP2,1 + B(0)−3,2 cos(2φ)P2,2],

Φ
(0)
−4 =

1
r4
[B(0)−4,0P3,0 + B(0)−4,2 cos(2φ)P3,2],

p(0)−2 =
1
r2
[A(0)−2,0P1,0 + A(0)−2,1 cos φP1,1 + Â(0)−2,1 sin φP1,1],

p(0)−3 =
1
r3
[A(0)−3,0P2,0 + A(0)−3,1 cos φP2,1 + A(0)−3,2 cos(2φ)P2,2],

p(0)−4 =
1
r4
[A(0)−4,0P3,0 + A(0)−4,2 cos(2φ)P3,2],



(A 3)

where the unknown coefficients are obtained as

A(0)−2,0 =
(2+ 3λ)(U(0)

dz − k0)− λk2

2(1+ λ) , A(0)−2,1 =
(2+ 3λ)U(0)

dx

2(1+ λ) , Â(0)−2,1 =
(2+ 3λ)U(0)

dy

2(1+ λ) ,

A(0)−3,0 =−
9
5
(E2

x − 2E2
z )Λ, A(0)−3,1 =−

(2+ 5λ)k1

3(1+ λ) +
18
5

ExEzΛ, A(0)−3,2 =
9
10

E2
xΛ

A(0)−4,0 =
(2+ 7λ)k2

4(1+ λ) , A(0)−4,2 =−
(2+ 7λ)k2

24(1+ λ) , B(0)−2,0 =
(1− λ)k2

5(2+ 3λ)
, B(0)−3,0 =

A(0)−3,0

6
,

B(0)−3,1 =−
λk1

6(1+ λ) +
3
5

ExEzΛ, B(0)−3,2 =
3
20

E2
xΛ, B(0)−4,0 =

λk2

8(1+ λ) ,

B(0)−4,2 =−
λk2

48(1+ λ) , Ĉ(0)
−3,2 =−

(1− λ)k2

18(4+ λ) .


(A 4)
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Appendix B. Expressions for Zn,m present in (3.20)

The non-zero Zn,m terms present in (3.20) are obtained as

Z1,0 = 3
50

(R− S)
(R+ 2)3(λ+ 1)

[{Ez(R+ 2)2(25λ+ 40)}k1 + 36M(R− S)Ez(E2
x + E2

z )],

Z1,1 =− 3
50

(R− S)
(R+ 2)3(λ+ 1)

[{Ez(R+ 2)2(25λ+ 40)}k1 − 36M(R− S)Ex(E2
x + E2

z )],

Z2,0 = 6
7

Ezk2(R− S)(4λ+ 5)
(3λ+ 2)(λ+ 1)(R+ 2)

, Z2,1 = 2
7

Ex(R− S)k2(36λ2 + 119λ+ 75)
(3λ+ 2)(λ+ 1)(4+ λ)(R+ 2)

,

Z2,2 =−5
7

Ezk2(R− S)(1+ 2λ)
(4+ λ)(λ+ 1)(R+ 2)

, Z3,3 = 9
25

M(R− S)2E3
x

(R+ 2)3(λ+ 1)
,

Z3,0 =−12
25
(R− S)[5Ex(R+ 2)2k1 + 9M(R− S)(3E2

x − 2E2
z )Ez]

(λ+ 1)(R+ 2)3
,

Z3,1 = 2
25
(R− S)[20Ez(R+ 2)2k1 + 27M(R− S)Ex(−E2

x + 4E2
z )]

(λ+ 1)(R+ 2)3
,

Z3,2 = 2
25
(R− S)[5Ex(R+ 2)2k1 + 27M(R− S)E2

x Ez]
(λ+ 1)(R+ 2)3

, Z4,0 =−15
7

k2(R− S)Ez

(λ+ 1)(R+ 2)
,

Z4,1 =−45
56

(R− S)k2Ex

(λ+ 1)(R+ 2)
, Z4,2 = 5

28
(R− S)k2Ez

(λ+ 1)(R+ 2)
, Z4,3 = 5

112
(R− S)k2Ex

(λ+ 1)(R+ 2)
.


(B 1)

Appendix C. Expressions for the unknown coefficients of the O(ReE) electric
potential

The unknown coefficients present in the O(ReE) electric potential (3.21) are obtained
in terms of Zn,m in the following form

a(1)1,0 =
Z1,0

2+ R
, a(1)1,1 =

Z1,1

2+ R
, a(1)2,0 =

Z2,0

3+ 2R
, a(1)2,1 =

Z2,1

3+ 2R
, a(1)2,2 =

Z2,2

3+ 2R
,

a(1)3,0 =
Z3,0

4+ 3R
, a(1)3,1 =

Z3,1

4+ 3R
, a(1)3,2 =

Z3,2

4+ 3R
, a(1)3,3 =

Z3,3

4+ 3R
, a(1)4,0 =

Z4,0

5+ 4R
,

a(1)4,1 =
Z4,1

5+ 4R
, a(1)4,2 =

Z4,2

5+ 4R
, a(1)4,3 =

Z4,3

5+ 4R
, b(1)−2,0 = a(1)1,0, b(1)−2,1 = a(1)1,1,

b(1)−3,0 = a(1)2,0, b(1)−3,1 = a(1)2,1, b(1)−3,2 = a(1)2,2, b(1)−4,0 = a(1)3,0, b(1)−4,1 = a(1)3,1, b(1)−4,2 = a(1)3,2,

b(1)−4,3 = a(1)3,3, b(1)−5,0 = a(1)4,0, b(1)−5,1 = a(1)4,1, b(1)−5,2 = a(1)4,2, b(1)−5,3 = a(1)4,3.


(C 1)

Appendix D. Expressions for the coefficients present in p(ReE)
−2

At O(ReE), p(ReE)
−2 = r−2[A(ReE)

−2,0 P1,0 + (A(ReE)
−2,1 cos φ + Â(ReE)

−2,1 sin φ)P1,1], where the
unknown coefficients are obtained as
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A(ReE)
−2,0 = −

3M(3R− S+ 3)(R− S)k2

35(λ+ 1)2(3λ+ 2)(4+ λ)(2+ R)2(3+ 2R)

[
(36λ2 + 119λ+ 75)E2

x

+ (8λ2 + 42λ+ 40)E2
z

]
+
(

3λ+ 2
2λ+ 2

)
U(ReE)

dz ,

A(ReE)
−2,1 =−

3MExEz(3R− S+ 3)(R− S)(2λ2 + 63λ+ 45)k2

35(λ+ 1)2(3λ+ 2)(4+ λ)(2+ R)2(3+ 2R)
+
(

3λ+ 2
2λ+ 2

)
U(ReE)

dx ,

Â(ReE)
−2,1 =

(
3λ+ 2
2λ+ 2

)
U(ReE)

dy .


(D 1)

Appendix E. Expressions for the unknown coefficients of the O(Ca) electric
potential

The unknown coefficients present in the O(Ca) electric potential (3.25) are obtained
as

a(Ca)
1,0 =−

9
5
(3L(Ca)

2,1 Ex + 2L(Ca)
2,0 Ez)(R− 1)

(2+ R)2
,

a(Ca)
1,1 =

9
5
(L(Ca)

2,0 Ex − 3L(Ca)
2,1 Ez − 6L(Ca)

2,2 Ex)(R− 1)
(2+ R)2

, a(Ca)
2,0 =−

45
7

L(Ca)
3,0 Ez(R− 1)

(2R2 + 7R+ 6)
,

a(Ca)
2,1 =

15
7
(L(Ca)

3,0 − 10L(Ca)
3,2 )Ex(R− 1)

(2R2 + 7R+ 6)
, a(Ca)

2,2 =−
75
7
(R− 1)L(Ca)

3,2 Ez

(2R2 + 7R+ 6)
,

b(Ca)
−2,0 =

3
5
(2EzL

(Ca)
2,0 + 3L(Ca)

2,1 Ex)(R− 1)2

(R+ 2)2
,

b(Ca)
−2,1 =−

3
5
(ExL

(Ca)
2,0 − 3L(Ca)

2,1 Ez − 6L(Ca)
2,2 Ex)(R− 1)2

(R+ 2)2
, b(Ca)

−3,0 =
18
7

L(Ca)
3,0 Ez(R− 1)2

2R2 + 7R+ 6
,

b(Ca)
−3,1 =−

6
7
(L(Ca)

3,0 − 10L(Ca)
3,2 )Ex(R− 1)2

(2R2 + 7R+ 6)
, b(Ca)

−3,2 =
30
7

L(Ca)
3,2 Ez(R− 1)2

(2R2 + 7R+ 6)
,

b(Ca)
−4,0 =−

9
5
(−L(Ca)

2,0 Ez + L(Ca)
2,1 Ex)(R− 1)

(R+ 2)
,

b(Ca)
−4,1 =

3
5
(L(Ca)

2,0 Ex + 2L(Ca)
2,1 Ez − L(Ca)

2,2 Ex)(R− 1)
(R+ 2)

,

b(Ca)
−4,2 =

3
10
(L(Ca)

2,1 Ex + 2L(Ca)
2,2 Ez)(R− 1)

(R+ 2)
, b(Ca)

−4,3 =
3
10

L(Ca)
2,2 Ex(R− 1)
(R+ 2)

,

b(Ca)
−5,0 =

12
7

L(Ca)
3,0 Ez(R− 1)

R+ 2
, b(Ca)

−5,1 =
3
7

Ex(L
(Ca)
3,0 − 3L(Ca)

3,2 )(R− 1)
(R+ 2)

,

b(Ca)
−5,2 =

6
7

EzL
(Ca)
3,2 (R− 1)
(R+ 2)

, b(Ca)
−5,3 =

3
14

ExL
(Ca)
3,2 (R− 1)
R+ 2

.


(E 1)
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Appendix F. Expressions for the functions f1 − f10 present in the O(Ca) drop
velocity

The functions f1 − f10 present in (3.28) are obtained as

f1 =


(−210R3 − 1155R2 − 1260− 2100R)λ4

+ (−6215R2 − 11 300R− 6780− 1130R3)λ3

+ (−1480R3 − 14 800R− 8880− 8140R2)λ2

+ (−15 200R− 9120− 8360R2 − 1520R3)λ

+ (−960R3 − 9600R− 5760− 5280R2)

 , (F 1a)

f2 =


(1260R3 + 7560+ 12 600R+ 6930R2)λ4

+ (58 200R+ 34 920+ 32 010R2 + 5820R3)λ3

+ (10 160R3 + 101 600R+ 55 880R2 + 60 960)λ2

+ (46 080+ 76 800R+ 42 240R2 + 7680R3)λ

+ (11 440R2 + 2080R3 + 20 800R+ 12 480)

 , (F 1b)

f3 =


(216S− 216R+ 81R2 − 81SR)λ3

+ (252S− 1107SR+ 1107R2 − 252R)λ2

+ (3618R2 − 2952S− 3618SR+ 2952R)λ
+ (2016R− 1944SR− 2016S+ 1944R2)

 , (F 1c)

f4 =


(432R− 162R2 − 432S+ 162SR)λ3

+ (−2214R2 + 504R− 504S+ 2214SR)λ2

+ (−7236R2 + 5904S+ 7236SR− 5904R)λ
+ (−4032R− 3888R2 + 3888SR+ 4032S)

 , (F 1d)

f5 =


(2160R− 810R2 − 2160S+ 810SR)λ3

+ (−11 070R2 − 2520S+ 11 070SR+ 2520R)λ2

+ (29 520S− 29 520R+ 36 180SR− 36 180R2)λ

+ (20 160S− 20 160R− 19 440R2 + 19 440SR)

 , (F 2a)

f6 =


(960R3 + 5280R2 + 9600R+ 5760)λ3

+ (16 060R2 + 17 520+ 2920R3 + 29 200R)λ2

+ (14 400R+ 1440R3 + 8640+ 7920R2)λ

+ (−5200R− 3120− 2860R2 − 520R3)

 , (F 2b)

f7 =


(−432R− 162RS+ 162R2 + 432S)λ3

+ (2214R2 − 2214RS− 504R+ 504S)λ2

+ (−7236RS− 5904S+ 5904R+ 7236R2)λ

+ (4032R+ 3888R2 − 3888RS− 4032S)

 , (F 2c)

f8 =


(90R3 + 495R2 + 540+ 900R)λ4

+ (390R3 + 2340+ 3900R+ 2145R2)λ3

+ (340R3 + 1870R2 + 3400R+ 2040)λ2

+ (10 400R+ 5720R2 + 6240+ 1040R3)λ

+ (6400R+ 640R3 + 3520R2 + 3840)

 , (F 2d)
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f9 =


(4320R+ 1620RS− 1620R2 − 4320S)λ3

+ (−22 140R2 + 22 140RS+ 5040R− 5040S)λ2

+ (72 360RS+ 59 040S− 59 040R− 72 360R2)λ

+ (−40 320R− 38 880R2 + 38 880RS+ 40 320S)

 , (F 2e)

f10 =


(−900R3 − 4950R2 − 5400− 9000R)λ4

+ (−3900R3 − 23 400− 39 000R− 21450R2)λ3

+ (−3400R3 − 18 700R2 − 34 000R− 20 400)λ2

+ (−104 000R− 57 200R2 − 62 400− 10 400R3)λ

+ (−64 000R− 6400R3 − 35 200R2 − 38 400)

 . (F 2f )

Appendix G. Expressions for the functions f11 − f13 present in the steady state
transverse position of the drop

The functions f11 − f13 present in (3.32) and (3.33) are obtained as

f11 =
(
−9

2

)

(2S2 − 6S+ 6R+ 6R2 − 8RS)λ3

+ (65S2 − 260RS+ 195R− 195S+ 195R2)λ2

+ (−324S+ 108S2 − 432RS+ 324R2 + 324R)λ
+ (135R+ 135R2 + 45S2 − 135S− 180RS)


(3+ 2R)(R+ 2)2(198λ5 − 1242λ4 − 7327λ3 − 6292λ2 + 1843λ+ 2320)

,

(G 1)

f12 =


(−10 800R3 − 44 712R+ 39 258RS− 16 200+ 66 312S− 33 858R2)λ4

+ (−65 475− 11 1591R2 − 161 649R− 43 650R3 + 133 416RS+ 248 949S)λ3

+ (−40 419R2 + 190 116S− 73 575+ 64 944RS− 49 050R3 − 92 016R)λ2

+ (−85 518RS− 15 525− 10 350R3 + 90 693R2 − 58 977S+ 79 677R)λ
+ (8775+ 56 700R− 68 400S+ 5850R3 + 54 675R2 − 57 600RS)


20(3+ 2R)(R+ 2)2(198λ5 − 1242λ4 − 7327λ3 − 6292λ2 + 1843λ+ 2320)

,

f13 =
[

105(3λ2 + 5λ+ 2)(λ+ 4)(2+ 3λ)(λ+ 1)
16(−7327λ3 − 1242λ4 + 2320− 6292λ2 + 1843λ+ 198λ5)

]
.


(G 2)

Appendix H. Model validation and grid independence study

First, we validate the numerical code of GERRIS for the particular case of drop
motion in Poiseuille flow. We compare the temporal evolution of the transverse
position of the drop in figure 18(a) with the numerical results obtained by Mortazavi
& Tryggvason (2000). Mortazavi & Tryggvason (2000) have employed a front
tracking/finite difference method to simulate drop dynamics in a 2D rectangular
domain of length L=3H. We use same domain size with periodic boundary conditions
along the flow direction. Mortazavi & Tryggvason (2000) have taken the Reynolds
number based on channel height (ReH = ρeVcH/µe) as unity. To compare the results,
we renormalize xd(t) by the channel height (H). Figure 18(a) shows that the GERRIS
code compares very well with the results of Mortazavi & Tryggvason (2000) for
the parameters mentioned in the figure caption. The present numerical solutions are
obtained considering a cell size of H/8 in the bulk fluid and a cell size of H/256

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

67
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.677


770 S. Mandal, A. Bandopadhyay and S. Chakraborty

0 2 4 6 8 10 12

1.00

0.51

0.52

0.53

0.54

0.55

t

(c)

(a)

(a)

(b)

(b)

FIGURE 18. (Colour online) (a) Temporal evolution of the transverse position of the
drop. The transverse position is normalized by channel height H for comparison. Markers
represent numerical results of Mortazavi & Tryggvason (2000), while the lines represent
the present numerical simulations. (b) Structure of the adaptive mesh at time t= 10.

0 2 4 6 8 10

0.005

0.010

0.015

0.020
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0.030

t

Halim & Esmaeeli (2013),
Present computation,

Present computation,
Halim & Esmaeeli (2013),

FIGURE 19. (Colour online) Temporal evolution of the Taylor deformation parameter for
R= 0.75 and R= 1. Other parameters have the following values: Ca= 0.25, ReE = 0.01,
S = 0.5, λ= 1, Re= 1, L = H = 5, and ρr = 0.5 (where ρr is the density ratio). Present
numerical solutions are obtained considering a cell size of H/8 in the bulk fluid and a
cell size of H/256 near the drop interface.

near the drop interface. In figure 18(b) we show the structure of the gradient-based
adaptive mesh near the drop.

Second, we validate the numerical code of GERRIS for the particular case of
drop deformation in a uniform electric field. We compare the temporal evolution
of the Taylor deformation parameter in figure 19 with existing numerical results
(Halim & Esmaeeli 2013). The Taylor deformation parameter is defined as D =
(L‖ − L⊥)/(L‖ + L⊥), where L‖ and L⊥ are the length of drop in the parallel and
perpendicular directions of the applied electric field. Halim & Esmaeeli (2013)
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have employed a front tracking/finite difference method to simulate drop electro-
deformation in a 2D rectangular domain of size L=H = 5. Figure 19 shows that the
GERRIS code compares very well with the results of Halim & Esmaeeli (2013) for
the parameters mentioned in the figure caption. However, we obtain a slightly larger
deformation, which is due to the consideration of charge convection in the present
model. Halim & Esmaeeli (2013) have neglected the charge convection. Feng (1999)
has established that charge convection leads to larger deformation of a prolate drop
(D> 0).

We employ two different grid sizes to investigate the effect of grid resolution in
the combined presence of a tilted electric field and Poiseuille flow for ReE = Ca =
0.2, Re = 0.1, R = 1.25, S = 1, λ = 0.1 and H = 4. For both the grids, the cell
size in the bulk fluid is taken as H/8, while the cell size near the drop interface is
taken as H/128 and H/256 for the two different grids. The drop is released from
xd,0 = 1.9 for both the grids. The final steady state transverse position is obtained
as xd,∞ = 1.939 for H/128 and xd,∞ = 1.941 for H/256. Previously, López-Herrera
et al. (2011) have shown that calculations of the electric potential and electric forces
are accurately obtained for 51.2 computational cells over the drop radius. So, grid
resolution of H/256 near the drop which gives 64 computational cells over the drop
radius is sufficient to capture the electrohydrodynamics.
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