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TRANSFINITE RECURSION IN HIGHER REVERSE MATHEMATICS

NOAH SCHWEBER

Abstract. In this paper we investigate the reverse mathematics of higher-order analogues of the theory
ATR0 within the framework of higher order reverse mathematics developed by Kohlenbach [11]. We define
a theory RCA30, a close higher-type analogue of the classical base theory RCA0 which is essentially a
conservative subtheory of Kohlenbach’s base theory RCA�0 . Working over RCA

3
0, we study higher-type

analogues of statements classically equivalent to ATR0, including open and clopen determinacy, and
examine the extent to whichATR0 remains robust at higher types. Our main result is the separation of open
and clopen determinacy for reals, using a variant of Steel’s tagged tree forcing; in the presentation of this
result, we develop a new, more flexible framework for Steel-type forcing.

§1. Introduction. The question
“What role do incomputable sets play in mathematics?”

has been a central theme in modern logic for almost as long as modern logic has
existed. Six years beforeAlanTuring formalized the notion of computability, van der
Waerden [26] showed that the splitting set of a field is not uniformly computable from
the field; put another way, van der Waerden demonstrated the necessity of certain
incomputable sets for Galois theory. Other results, especially Turing’s solution to
the Entscheidungsproblem and the solution by Davis, Matiyasevitch, Putnam, and
Robinson of Hilbert’s Tenth Problem, established the incomputability of particular
sets of natural numbers of interest. In 1975, Friedman [2] initiated the axiomatic
study of this question, dubbed “Reverse Mathematics.”
Reverse mathematics requires the choice of both a common language in which
to express all analyzed theorems, and a base theory in that language over which all
equivalences and nonimplications are to be proved. The natural choice of language
is that of second-order arithmetic, since it is in this language that computability-
theoretic principles are most naturally expressed. The base theory is taken to be
RCA0, a precise definition of which is contained in [22]; as a base theory, RCA0 is
justified by the fact that it captures exactly “computable” mathematics, in the sense
that the �-models of RCA0 are precisely the Turing ideals. One notable feature of
reverse mathematics is the existence of the “Big Five,” five subtheories of second-
order arithmetic — RCA0, WKL0, ACA0, ATR0, and Π11-CA0 — each of which is
“robust,” in the sense that the same theory results when small changes aremade to its
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exact statement (or to the precise coding mechanisms used), and which correspond
to the exact strength, over RCA0, of the vast majority of theorems studied by reverse
mathematics.
However, there is a significant amount of classical mathematics, including parts

of measure theory and most of general topology, which resists any natural cod-
ing into the language of second-order arithmetic. This was already recognized by
Friedman in [1]. Somewhat later, VictorHarnik [7] developed a higher-order version
of RCA0 in order to study the axiomatic strength of various results from stability
theory. At the time, however, the higher-order program failed to drawmathematical
attention comparable to that of second-order reverse mathematics.
Recently, however, there has been a return to this subject. The framework of finite

types — in which objects of arbitrary finite order, such as sets of reals, are treated
directly—has begun to emerge as a natural setting for a higher reversemathematics,
following Ulrich Kohlenbach’s paper on the subject [11].1 Kohlenbach expands
the language of second-order arithmetic to all finite types, and extends the system
RCA0 to include a version of primitive recursion for arbitrary finite-type functionals.
The resulting system, RCA�0 , is a proof-theoretically natural conservative extension
of RCA0. (From the point of view of computability theory, however, the choice
of base theory may not be so clear; see the discussion at the end of this paper.)
Work on reverse mathematics in finite types has so far proceeded along one or the

other of two general avenues: the analysis of classical theorems about objects not
naturally codeable within second-order arithmetic, such as ultrafilters or general
topological spaces ([8], [12], [25]), or the analysis of higher-type “uniformizations”
of classical theorems of second-order arithmetic ([11], [24]). The present paper
instead looks at the higher-type analogues of theorems studied by classical reverse
mathematics, focusing in particular on what old patterns hold or fail and what new
patterns emerge.2

One natural question along these lines is the following: to what extent do the
robust subsystems of second-order arithmetic have robust analogues at higher types?
It is this question which the present paper addresses, focusing on the system ATR0.
In the classical case, much of the robustness of ATR0 comes from the fact that
being a well-ordering is Π11-complete. For instance, this is what drives the method of
“pseudohierarchies” by which ill-founded linear orders which appear well-founded,
such as those constructed in [6], are used to prove a large number of equivalences
at the level of ATR0; see [22]. Moving up a type, however, changes the situation
completely: since we can code an infinite sequence of reals by a single real, the
class of well-orderings of subsets of R is again Π11, instead of being Π

2
1 complete.

This causes the entire method of pseudohierarchies to break down, and raises doubt
that the higher-type analogues of various theorems classically equivalent to ATR0
are still equivalent.
We begin by presenting in Section 2 a base theory, RCA30, which is essentially

equivalent to, yet simpler to use than, RCA�0 . We then study the complexity over

1Although it is by no means the only one — see [21] for an approach via α-recursion theory instead,
and also [4] for a closely-relatedα-recursive structure theory. Shore also suggests other approacheswhich
could be interesting, such as via E-recursion or the computation theory of Blum-Shub-Smale.
2This is also the approach taken in [21], there with respect to α-recursion rather than finite types.
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RCA30 of several higher-type analogues of several principles classically equivalent
to ATR0: comparability of well-orderings, clopen determinacy, open determinacy,
Σ11 separation, and definition by recursion along a well-founded tree. In Section
2, we prove some basic implications and nonimplications. At the bottom of this
hierarchy lies the principle asserting the comparability of well-orderings of sets of
reals, which we show is remarkably weak at higher types relative to the other prin-
ciples; above clopen determinacy, a higher-type version of the separation principle
Σ11-Sep. We also examine the role of the axiom of choice in higher determinacy
principles.
The main result of this paper, to which Section 3 is devoted, concerns the two
determinacy principles. In classical reverse mathematics, clopen determinacy fails
in HYP, the model consisting of the hyperarithmetic sets, despite hyperarithmetic
clopen games having hyperarithmetic winning strategies, since the method of pseu-
dohierarchies allows us to construct games which are “hyperarithmetically clopen”
but are undetermined in HYP. This method, as noted above, is no longer valid at
higher types, while the complexities of winning strategies for clopen games on reals
can still be bounded by a transfinite iteration of an appropriate jump-like operator.
This suggests that at higher types, open determinacy becomes strictly stronger than
clopen determinacy; using an uncountable version of Steel’s tagged tree forcing, we
show that this is indeed the case.

1.1. Background and Conventions. We refer the reader to [13] for the relevant
background in set theory; for descriptive set theory, [18] and [9] are the standard
sources. For background on reverse mathematics, see [22]. Finally, for background
in finite types, as well as the various computability-theoretic concerns which arise
in higher-type settings, see [14].
There are several notational conventions we adopt for simplicity. Throughout, we
use R to refer to the Baire space, the set of functions from � to �; this is because,
during the main result, ordinals will be used as tags, and for this reason a symbol
other than “��” is preferable. If � is a nonempty finite string, we write �− for the
immediate �-predecessor of �, and if f is an infinite string we write f− for the
string n �→ f(n + 1).
When writing formulas in many-sorted logic, we use the convention that the first
time a variable occurs it is decorated with the appropriate sort symbol; for example,

∃x1∀y0(xy = 2)

is the statement “There is a function fromnaturals to naturalswhich is identically 2.”
(See Section 2.1 for a discussion of types.) If ϕ is a sentence, then �ϕ� is the truth
value of ϕ: 1 if ϕ holds, and 0 if ϕ does not. We will denote the constant function
n �→ i by i .
If Σ,Π: A<� → A, we write Σ ⊗ Π for the element of A� built by alternately
applying Σ and Π:

Σ⊗Π = 〈Σ(〈〉),Π(〈Σ(〈〉)〉),Σ(〈Σ(〈〉),Π(〈Σ(〈〉)〉)〉), . . . 〉.

Wewrite (Σ⊗Π)k for the length-k initial segment of Σ⊗Π.Agame is said to be awin
for player X if that player has a winning strategy. A quasistrategy for a game played
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on a set A (so, viewed as a subtree of A<�) is a multi-valued map from A<� to A;
a quasistrategy is said to be winning if each element of A� which is compatible with
the quasistrategy is a win for the corresponding player.
Finally, our main theorem 3.6 rely heavily on the method of set-theoretic forcing.

For completeness, we present here a brief summary of this method; for details and
proofs, see chapter VII of [13].
Given a model V of ZFC and a poset P ∈ V , a filter is a subset F of P which

is closed upwards, and such that any two elements of F have a common lower bound
in F ; a setD ⊆ P is dense if every element of P has a lower bound inD. The P-names
are defined inductively to be the sets {(pi , �i ) : i ∈ I } of pairs with first coordinate
an element of the partial order P, and second coordinate a P-name. If G is a filter
meeting every dense subset of P which is in V — that is, G is P-generic over V —
and � is a P-name, we let �[G ] = {�[G ] : ∃p ∈ G((p, �) ∈ �)} (this is of course
a recursive definition). Crucially, the definition of �[G ] is made inside V , although
G will itself will never be in V .
We then define the generic extension of V by G to be

V [G ] = {�[G ] : � is a P-name in V }.

If V [G ] |= ϕ whenever p ∈ G , we write p � ϕ; the relation � is the forcing
relation given by P. The essential properties of set-theoretic forcing are that the
generic extension V [G ] is a model of ZFC; that the forcing relation is definable in
the ground model; and that any statement true in the generic extension is forced by
some condition in the generic filter. These are Theorems VII.4.2, VII.3.6(1), and
VII.3.6(2) of [13], respectively.
Additionally, the forcing used in the proof of 3.6 will be countably closed:

Definition 1.1. P is countably closed if any chain of countably many conditions
· · · ≤ p2 ≤ p1 ≤ p0 has a common strengthening p ≤ p0, p1, p2, . . . .

Countable closure yields a strong restriction on how a forcing notion can alter
the set-theoretic universe, which will be crucial in 3.6:

Fact 1.2. If P is countably closed and X ∈ V , then forcing with P adds no new
countable subsets of X . In particular, forcing with a countably closed P adds no new
reals.

§2. Reverse mathematics beyond type 1. We begin this section by developing
a framework for reverse mathematics in higher types; we then define the various
higher-type versions of ATR0 we will consider in this paper, and prove some basic
separations and equivalences.

2.1. The base theory. We begin by making precise the notion of a finite type.3

3The one oddity of working with types is that the natural formalization is via many-sorted first-order
logic, as opposed to ordinary first-order logic. In many-sorted logic, each element of the model and
each variable symbol is labelled by one of a fixed collection of sorts; similarly, function, constant, and
relation symbols in the signature must be appropriately labelled with sorts. When there are infinitely
many sorts— as is the case with Kohlenbach’sRCA�0 , but not ourRCA

3
0 — the resulting logic is subtlely

different from single-sorted first-order logic; however, these differences shall not be relevant here. For a
careful introduction to many-sorted logic, see Chapter VI of [15].
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Definition 2.1. The finite types are defined as follows:

• 0 is a finite type;
• if �, � are finite types, then so is � → �; and
• only something required to be a finite type by the above rules is a finite type.
We denote the set of all finite types by FT .
The intended interpretation of finite types is as a hierarchy of functionals, with
type 0 representing the “atomic” objects—here, natural numbers, ormore generally
elements of some first-order model of an appropriate theory of arithmetic — and
type � → � representing the set of maps from the set of objects of type � to the set
of objects of type �.
Within the finite types is the special subclass ST of standard finite types, defined
inductively as follows: 0 is a standard type, and if � is a standard type, then so is
� → 0. The standard types are for simplicity identified with natural numbers: 0→ 0
is denoted by “1,” (0→ 0)→ 0 by “2,” etc.
The appeal of the finite-type framework to reverse mathematics is extremely
compelling: the use of finite types lets us talk directly about objects that previously
required extensive coding to treat in reverse mathematics, or could not be treated
at all. For example, a topological space with cardinality ≤ �i (where �0 = ℵ0
and �i+1 = 2�i ) can be directly represented as a pair of functionals (F i ,Gi+1)
corresponding to the characteristic functions of the underlying set and the collection
of open subsets. Usually, this representation is even natural. In [11], Kohlenbach
developed a base theory for reversemathematics in all the finite types at once,RCA�0 .
However, working with all finite types at once is cumbersome. First, morally
speaking, all finite-type functionals are equivalent to functionals of finite standard
type via appropriate pairing functions; second, arbitrarily high types are rarely
directly relevant. For that reason, we will use a base theory RCA30, defined below,
which only treats functionals of types 0, 1, and 2. In a subsequent paper, we will
show that our theory is essentially equivalent to Kohlenbach’s; specifically, RCA�0 is
a conservative extension of RCA30.
Definition 2.2. L3 is the many-sorted first order language, consisting of the
following:

• Sorts s0, s1, s2, with corresponding equality predicates =0,=1,=2.Wewill iden-
tify sort si with type i ; recall that the objects of type 0, 1, and 2 are intended to
be natural numbers, reals, and maps from reals to naturals, respectively.

• On the sort s0, the usual signature of arithmetic: two binary functions
+,× : s0 × s0 → s0,

a binary relation
< ⊆ s0 × s0,

and two constants
0, 1 ∈ s0.

• Application operators ·0, ·1 with
·0 : s1 × s0 → s0, ·1 : s2 × s1 → s0.

These operators will generally be omitted; e.g., Fx or F (x) instead of F ·1 x or
·1(F, x).
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• A binary operation
∗ : s2 × s1 → s1

and a binary operation
� : s0 × s1 → s1.

The additional operations ∗ and � allow coding which in Kohlenbach’s setting
is handled through functionals of nonstandard type. Axioms which completely
determine ∗ and � are given in Definition 2.3, below.We will abuse notation slightly
and use � to denote both the concatenation of strings, and the specific L3-symbol,
as no confusion will arise. Throughout this paper, “L3-term” will mean “L3-term
with parameters.”
Finally, the syntactic classes Σ0i and Π

0
i are defined for L

3 as follows:

• A formula ϕ is in Σ00 if and only if it has only bounded quantifiers over type
0 objects and no occurrences of =1 or =2. (Note that arbitrary parameters,
however, are allowed.)

• A formula ϕ is in Π0i+1 if
ϕ ≡ ∀x0�(x),

where � ∈ Σ0i .
• A formula ϕ is in Σ0i+1 if

ϕ ≡ ∃x0�(x),
where � ∈ Π0i .
The higher syntactic classes Σ1i , Σ

2
j , etc. are defined in the analogous way, with

lower-type quantifiers being “for free” as usual.

The base theory for third-order reverse mathematics which we will use in this
paper, RCA30, is then defined as follows:

Definition 2.3. RCA30 is the L
3-theory consisting of the following axioms:

(1) Σ01-induction and the ordered semiring axioms, P
−, for the type 0 objects.

(2) Extensionality axioms for the type 1 and 2 objects:

∀F 1, G1(∀x0(Fx = Gx) ⇐⇒ F =1 G) and

∀F 2, G2(∀x1(Fx = Gx) ⇐⇒ F =2 G).

(3) The Δ01 comprehension
4 schemes for type 1 and 2 objects:

{∀x0∃!y0ϕ(x, y) =⇒ ∃f1∀x0(ϕ(x,f(x))) : ϕ ∈ Σ01}

and
{∀x1∃!y0ϕ(x, y) =⇒ ∃F 2∀x1(ϕ(x, F (x))) : ϕ ∈ Σ01}.

4There are several equivalent formulations of these, including as choice principles; we choose the fol-
lowing presentation, since it seems the most natural. Since we work with functionals which take values
in � instead of with sets (= functionals with values in {0, 1}), these schemes do look more compli-
cated than the usual Δ01-comprehension scheme in RCA0; however, the intuition behind them — that if
exactly one of an effective collection of existential sentences holds, then we can effectively find which one
holds — is the same, and it is straightforward to show that our schemes are equivalent to their “dual”
versions in terms of Π01 formulas. For this reason, we slightly abuse terminology and call these schemes
“Δ01-comprehension.”
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(The notation “∃!” is shorthand for “there exists exactly one.”) Recall that
Σ01 formulas may have arbitrary parameters.

(4) Finally, the following axioms defining � and ∗:
∀k0, r1, n0[(k�r)(n + 1) = r(n) ∧ (k�r)(0) = k],

and
∀F 2, r1, k0[(F ∗ r)(k) = F (k�r)].

Before continuing further, it isworth explaining thedefinitionsof� and∗. Thefirst
axiom just says that � is the usual concatenation operation, appending a natural
number to the beginning of a string of natural numbers. The second describes
a way to turn type-2 functionals into type-(1→ 1) functionals, and is slightly more
complicated. In order to vew a functional F as a map from reals to reals, we first
replace an input real r by the infinite sequence of reals (0�r, 1�r, . . . ), and then
apply F to each of the reals in this sequence in turn; this yields a sequence of natural
numbers — that is, a real — (F (0�r), F (1�r), . . . ). This real is F ∗ r.
This particular definition of ∗ is merely a technical device, and could be replaced
with any of a number of similar constructions; the important point is that we have
a way of interpreting a single real r as a sequence of reals, and that by applying
a type-2 functional to each real in that sequence we can view the functional as a map
from R to R instead of a map from R to �.

Convention 2.4. Throughout this paper, ifM |=RCA30 wewill writeM0,M1,M2
for the type-0, -1, and -2 parts ofM , respectively.

Note that if (M0,M1,M2; ∗0,�0), (M0,M1,M2; ∗1,�1) |=RCA30, then in fact
(M0,M1,M2; ∗0,�0) = (M0,M1,M2; ∗1,�1);

that is, models of RCA30 are determined by their 0-, 1-, and 2-type objects, and it
is enough to specify these types to specify the full model. Despite this, the symbols
� and ∗ are necessary for RCA30 in order for the comprehension schemes to have
full force (given that we avoid objects of nonstandard type). As evidence of this, the
following two facts are easy to prove, yet crucially rely on comprehension over Δ01
formulas involving � and ∗:
Fact 2.5. RCA30 proves each of the following statements:
(1) For each type-2 functional F , there is a real r such that

∀s1, n0[∀k0(s(k) = n) =⇒ r(n) = F (s)].

(2) For each type-2 functional F , there is a type-2 functionalG such that

G(〈a0, a1, a2, . . . , an, . . . 〉) = F (〈a0, a2, a4, . . . , a2n, . . . 〉)
Proof. For (1), first note that the type-2 comprehension scheme gives us a
functional I such that ∀r1[I (r) = r(1)], and hence

∀r1, k0[∀i0(I ∗ (k�r)(i) = k)].
Now our desired real r can be defined by

r(k) = F (I ∗ (k�0)),
which exists by the type-1 comprehension scheme.
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For (2), let H be the type-2 functional defined by the quantifier-free formula
H (r) = r(2r(0) + 1); then the desired G is defined by the quantifier-free formula

G(r) = k ⇐⇒ F (H ∗ r) = k,

and so again is guaranteed to exist by the type-1 comprehension scheme. �
It can be shown that neither (1) nor (2) is provable if we restrict the Δ01 compre-

hension schemes to formulas not involving ∗ and �. Essentially, ∗ and � are the
price we pay for a base theory which closely resembles RCA0 and has reasonable
models.
To drive this last point home, we end this section by presenting some natural

models of RCA30:

Example 2.6. Let I be a Turing ideal; that is, I is closed under the join ⊕ and is
closed downwards under Turing reducibility. Then the smallest �-model of RCA30
containing precisely the reals in I is

SI = (�,I, {r �→ ϕr⊕se (0) : s ∈ I and ϕr⊕se (0) ↓ for every r ∈ I}).
We will call such a pair (e, s) a Turing code for the map r �→ ϕr⊕se (0).
Proof. Any�-model of RCA30 whose real part is I must be at least as large as SI ,

so it is enough to show that SI |=RCA30. Axioms (1), (2), and (4) are immediate;
it only remains to show that the comprehension schema are satisfied.
We focus on the type-2 case; the type-1 case is identical. Intuitively, we should

be able to compute the value of any functional defined according to the Δ01-
comprehension scheme effectively from the real parameters and Turing codes for
the type-2 parameters involved, since the value of the functional is determined by
an effective collection of Σ01 sentences. The only possible difficulty could arise from
the new symbols, � and ∗. To ensure that these pose no problems, we first observe
that we can — uniformly in a Turing code for a functional F and a natural number
c ∈ � — find a Turing code for the map r �→ F (c�r). The case of ∗ is slightly
more interesting, but still poses no problems. By a straightforward induction on n,
if F1, · · · , Fn ∈ SI , then there is some e ∈ � and s ∈ I such that, for every r ∈ I
and i ∈ �, we have

Φr⊕se (i) = F1 ∗ (F2 ∗ (· · · ∗ (Fn ∗ r)))(i).
It now follows by a tedious but straightforward induction on formula complexity
that we can effectively compute the values of any type-2 functional defined in a
Δ01 fashion from parameters in SI , uniformly in the real parameters and in Turing
codes for the type-2 parameters. But this yields a Turing code for the functional so
defined, which is therefore already in SI . �
Corollary 2.7. The structure C = (�,R, {f : R → � : f is continuous}) —

when interpreted as an L3-structure in the natural way — is the smallest model of
RCA30 containing all the reals.

Example 2.8. Recall that the class of Borel sets is the smallest class of subsets of
R containing the open sets which is closed under complementation and countable
unions. Note that if a set is Borel, then this is witnessed by a well-founded tree
whose terminal nodes are open intervals with rational endpoints, and whose other

https://doi.org/10.1017/jsl.2015.2 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.2


948 NOAH SCHWEBER

nodes correspond either to complementation or countable union; we will call the
smallest rank of such a witnessing tree the Borel rank of the set. Then:

• a map f : R → � is Borel measurable if f−1(i) is Borel for every i ∈ �, and
• amapf : R → R isBorel measurable iff−1(X ) is Borel for every BorelX ⊆ R.

We letB be the three-sorted structure (�,R, {F :R → � :F is Borel measurable}).
Since B contains all the reals, each of the symbols in the language of RCA30 has
a natural interpretation in B; in particular, B is closed under the operations � and ∗.
Then B |=RCA30.
We will use this model in a separation result later (2.23).

Proof. Since the first- and second-order parts of B are � and R, B is clearly
closed under � and ∗, and satisfies parts (1), (2), and (4) of the axioms of RCA30, as
well as the Δ01-comprehension scheme for type-1 objects. So it only remains to show
that B satisfies the comprehension scheme for type-2 functionals.
There are multiple ways to show that B satisfies the Δ01-comprehension scheme
for type-2 functionals. First, we observe that if X ⊆ R is Borel and k ∈ �, then
Xk = {r : k�r ∈ X} is also Borel; this is proved by a straightforward induction on
the Borel rank of X , which we omit.
Now suppose Y : R → � is Δ01 relative to some type-1 parameters r0, · · · , rm
and some type-2 parameters F0, · · · , Fn. That is, there is a Σ00-formula 	(x0, y1, z0)
with only the displayed variables, which does not involve equality between type-1 or
type-2 terms, with some type-1 parameters r0, · · · , rm and some type-2 parameters
F0, · · · , Fn, such that

Y (r) = k ⇐⇒ ∃x0	(x, r, k);
we will show that Y is Borel-measurable, and hence in B.
To see this, fix i ∈ � and consider the set of reals X = Y−1(i); we must show
that X is Borel. Note that since

X =
⋃
j∈�

{s : 	(j, s, i)},

so it is enough to show that the sets Xj = {s : 	(j, s, i)} are each Borel. So fix
j ∈ �. The setXj is a Boolean combination of sets of the formXj,α = {s : α(j, r, i)}
for α atomic; so it is enough to show that each such set is Borel. So fix such an
atomic α. Since 	 cannot involve any instances of equality of type-1 or -2 objects,
α must have the form t0 = t1, for terms t0, t1 of type 0. It is easy to see that Xj,α is
Borel if for each k ∈ {0, 1} and c ∈ �, {s : tk(s) = c} is Borel.
We will now be finished if we can show that, if c ∈ � and t is a term with one free
type-1 variable y1, real parameters r0, · · · , rm, and type-2 parameters F0, · · · , Fn,
then {s : t(s) = c} is Borel. This is proved by induction on the complexity of the
term. We omit most of the induction, since it is straightforward, and prove the only
difficult part:

Claim. if F0, · · · , Fn areBorel, then themap r �→ F0∗(F1∗(· · ·∗(Fn∗r))) is Borel.
Proof of claim. It suffices to show that if F is Borel-measurable and X ⊆ R

is Borel, then the set PX = {r : F ∗ r ∈ X} is also Borel; that is, r �→ F ∗ r is
Borel-measurable. This is proved by induction on the Borel rank of X . If X is open,
then if r ∈ PX there is some finite initial segment � of F ∗ r such that if s is any
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real extending �, we have r ∈ X . So PX contains the set C� = {s : � ≺ F ∗ s}.
But that set is the intersection of finitely many sets of the form {s : F (c�s) = i},
which areBorel sinceF is Borel-measurable; soC� is Borel.Moreover, every element
of PX is contained in some C� , of which there are only countably many; so PX is
Borel.
Since taking preimages commutes with unions and complementation, the rest of

the induction is immediate. �
The remaining induction is uneventful. �

2.2. Higher-type analogues of ATR0. In what follows, we treat higher-type deter-
minacy principles, and towards that end some definitions are necessary. We study
games of length � on R — that is, players I and II alternate playing real num-
bers, building an �-sequence of reals. We identify both clopen games and open
games with their underlying game trees, which are subtrees of R<� : thus, we iden-
tify clopen games with well-founded trees — players alternate playing reals, moving
further along the tree, and the first player to be unable to play and stay on the tree
loses — and we identify open games with trees — players alternate playing reals,
and player I (Open) wins if and only if the play ever leaves the tree. There are several
reasonable ways to encode game trees⊆ R<� as type-2 functionals and finite strings
of reals as individual reals, and the specific choice of coding is unimportant.We will
assume such a coding method in the background, so that we may for instance apply
a type-2 functional to a node on a subtree of R<� ; there will be no subtleties in this
regard.
When discussing plays, however, things become more complicated. If Σ,Π are

strategies, then the kth stage in the play Σ ⊗ Π, (Σ ⊗ Π)k — or rather, a real
coding (Σ ⊗Π)k — is defined as follows. There is a functional F , whose existence
is guaranteed by the comprehension scheme, such that F ∗ (k�r) is the kth “row”
of r; specifically, F is defined by

s �→ s(2 + 〈s(0), s(1)〉).

We say that a real r codes (Σ⊗Π)k if
• F ∗ (0�r) = 0,
• ∀0 < 2j + 1 ≤ k[F ∗ ((2j + 1)�r) = Σ ∗ (F ∗ ((2j)�r))], and
• ∀0 < 2j + 2 ≤ k[F ∗ ((2j + 2)�r) = Π ∗ (F ∗ ((2j + 1)�r))];

similarly, we say that r codes the whole play Σ ⊗ Π if r codes (Σ ⊗ Π)k for all k.
This definition lets us refer to the play Σ⊗Π inside the language of RCA30; and we
use, e.g., “(Σ⊗Π)k �∈ T” as shorthand for “there is a real r coding (Σ ⊗Π)k , and
r �∈ T .”
There is a subtlety here, which arises due to a particular weakness in the base

theory RCA30. (The end of this paper addresses the foundational aspects of this;
for now, we simply treat it as it affects us.) RCA30 is too weak to guarantee the
existence of a real coding the whole play Σ ⊗Π. This is a consequence of Hunter’s
proof5 ([8], Theorem 2.5) that the theory

5Originally formulated for Kohlenbach’s theory RCA�0 , but immediately adaptable to RCA
3
0.
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RCA30+E1 := RCA30+“∃J 2∀x1(J ∗ x = x′)”
is conservative over ACA0: if Σ and Π are each the operator J described above, then
“Σ ⊗ Π exists” implies “0(�) exists,” so that sentence cannot be a consequence of
RCA30+E1, let alone RCA30 itself.
This can be salvaged in general by altering the base theory; and in fact, since this
same subtlety arises in other ways, this is a reasonable course of action — see the
end of Section 4 of this paper. In our case, however, all potential difficulties are
handled by the strength of the principles we consider. For example, in the definition
of clopen and open determinacy, we use a strong definition of “winning strategy:”
e.g., a strategy Σ for Open in an open game is winning if for every strategy Π for
Closed, there is a real coding some stage (Σ⊗Π)k of the game by which Σ has won.
This builds into the statements of the theorems we examine all the strength we need
to perform the intuitively natural calculations involving stages of games.
The end result is that, although we cannot meaningfully talk about the play of
a game Σ ⊗ Π directly within RCA30, the principles we study in this paper happen
to have enough power to allow us to do so. As an example of this, it is easy to see
that each of the principles introduced in Definition 2.9 below imply that at most
one player has a winning strategy in an open or clopen game; however, this is not
provable in the base theory RCA30 alone.

Consider the following four theorems, all equivalent to ATR0 over RCA0:
• Comparability of well-orderings: IfX,Y are well-orders with domain⊆ N, then
there is an embedding from one into the other.

• Clopen determinacy: Every well-founded subtree of �<� , viewed as a clopen
game, is determined.

• Open determinacy: Every subtree of �<� , viewed as an open game, is
determined.

• Σ11 separation: If ϕ(A) is a Σ11 sentence (possibly with parameters) with a single
free set variable, and X = (Xi)i∈� is an array of sets such that

∀k ∈ �∃j ∈ 2(¬ϕ(X〈k,j〉)),

then there is some set Y such that

∀k ∈ �(¬ϕ(X〈k,Y (k)〉)).

These each have reasonable higher-type analogues, each of which is a theorem
of ZFC:

Definition 2.9. Over RCA30, we define the following principles:

• The comparability of well-orderings of reals, CWOR: IfX,Y are well-orderings
with domain ⊆ R, then there is an embedding from one into the other.

• Clopen determinacy for reals, ΔR1 -Det: for every tree T ⊆ R<� which is well-
founded, viewed as a clopen game, either there is a winning strategy for player I:

∃Σ: R<� → R,∀Π: R<� → R[∃k ∈ �((Σ⊗Π)2k+1 ∈ T ∧ (Σ⊗Π)2k+2 �∈ T )];
or there is a winning strategy for player II:

∃Π: R<� → R,∀Σ: R<� → R[∃k ∈ �((Σ⊗Π)2k ∈ T ∧ (Σ⊗Π)2k+1 �∈ T )].
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• Open determinacy for reals, ΣR1 -Det: for every tree T ⊆ R<� , viewed as an
open game, either there is a winning strategy for player I (Open):

∃Σ: R<� → R,∀Π: R<� → R[∃k ∈ �((Σ⊗Π)k �∈ T )];
or there is a winning strategy for player II (Closed):

∃Π: R<� → R,∀Σ: R<� → R[∀k ∈ �((Σ⊗Π)k ∈ T )].
• The Σ21-separation principle, Σ21-SepR: If ϕ(f2) is a Σ21-formula with a single
type-2 free variable, and X = (X
)
∈R, Y = (Y
)
∈R are real-indexed
collections of type-2 functionals6 such that

¬∃x1(ϕ(Xx) ∧ ϕ(Yx)),
then there is some type-2 object F such that

∀x1[ϕ(Xx) =⇒ F (x) = 1 and ϕ(Yx) =⇒ F (x) = 0].

(Note that, strictly speaking, Σ21-Sep
R is an infinite scheme, as opposed to a single

sentence.) It is these principleswhichwe choose to study in this paper. The remainder
of this section is devoted to the simpler parts of their analysis; the separation of
clopen and open determinacy for reals is the subject of the following section.

Note that the determinacy principles above are not provable in ZF alone, whereas
CWOR and Σ21-Sep

R are, so in order to analyze these principles properly we need
some version of the axiom of choice:

Definition 2.10. Let 〈·, ·〉 be an appropriate pairing function onR. The selection
principle for R, SF(R), is the assertion that for every R-indexed set of nonempty
sets of reals has a selection functional; that is, for every type-2 functional F —
interpreted as the R-indexed set of reals

{{s ∈ R : F (〈r, s〉) = 1} : r ∈ R}
— there is a type-2 functional G satisfying

∀r1(F (〈r,G ∗ r〉) = 1).
Now we turn to the implications. Clearly ΣR1 -Det implies Δ

R
1 -Det. A more

interesting implication is the following:

Fact 2.11. Over RCA30, we have

Σ21-Sep
R + SF(R) =⇒ ΔR1 -Det.

Proof. This is somewhat involved. We begin with three technical results, which
are of independent interest:

Fact 2.12 (Comprehension). RCA0+Σ21-Sep
R implies Δ21-comprehension for

type-2 functionals for each n: given n ∈ � and any Σ21 formula ϕ with one type-1
variable which is equivalent to a Π21 formula, there is a functional F such that

F (r) = 1 ⇐⇒ ϕ(r), F (r) = 0 ⇐⇒ ¬ϕ(r)

6A real-indexed set of type-2 functionals (Zs )s∈R is coded by the type-2 functional

Ẑ : r �→ ZP0∗r(P1 ∗ r),
where P0, P1 correspond to the left and right projections of a reasonable pairing function R2 ∼= R.
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Proof. Apply Σ21-Sep
R to the pair (ϕ,¬ϕ). �

Fact 2.13 (Iteration). RCA30+Σ
2
1-Sep

R proves that given a functional F and a real
r, we can form the iteration sequence (r, F ∗ r, F ∗ (F ∗ r), · · · ). Formally, for every
type-2 functional F there is a type-2 functionalG such that — for every r — we have

G ∗ (n�r) = F ∗ (F ∗ (· · · ∗ (F ∗ r)))

(where the right hand side contains n applications of “F ∗”).
In particular, note that this implies that given any strategies Σ0 and Σ1, the real
coding their entire play Σ0 ⊗ Σ1 exists.
Proof. Fix a real r. Let �(x1, y0, z1) be the formula asserting that x is a real
whose first y rows are of the form z, F ∗ z, F ∗ (F ∗ z), · · · Then let ϕ(w1) be the
formula

∃s(�(s, w(1), w−−), s(w(0) = 0))

and let 	 be the formula

∀s(�(s, w(1), w−−) =⇒ s(w(0) = 1)).

Clearly ϕ and 	 are Σ21 and ϕ ∧ 	 is inconsistent, so we may apply Σ21-SepR. This
yields the desired G . �
Proposition 2.14 (Paths from subtrees). RCA30+Σ

2
1-Sep

R+SF(R) proves that
a tree T ⊆ R<� is well-founded if and only if it has no nonempty subtrees with
no terminal nodes.

Proof. Clearly a witness to T being ill-founded yields a subtree with no terminal
nodes. In the other direction, supposeT is well-founded but has a nonempty subtree
S with no terminal nodes. By SF(R) and 2.12, there is a functional F such that if �
is a predecessor of an element of S, then F (�) ∈ S is an extension of �. Fix �0 ∈ S
and let �i+1 = F (�i) for i > 0; by 2.13, the sequence (�0, �1, · · · ) exists. �
We now return to the proof of 2.11. Let T ⊆ R<� be a well-founded tree, viewed
as a clopen game; we will show that T is determined.

Definition 2.15. For � ∈ T , let T [�] = {� : � � � ∈ T}. A U -tree for � is a
functional F : T [�]→ {Safe,Unsafe} satisfying the following properties:
(1) ev(�) = Unsafe;
(2) ev(�) = Safe ⇐⇒ there is some immediate extension � of � such that � ∈ T
and ev(�) = Unsafe.

An S-tree for � is a pair (�, F ) such that � ∈ T is an immediate extension of � and
F is aU -tree for �. We let ϕU (�) and ϕS(�) be the sentences, “There is aU -tree for
�” and “There is an S-tree for �,” respectively; note that both ϕU and ϕS are Σ21.

Intuitively, the existence of a U -tree for � indicates that � is unsafe, that is, the
game G� is a win for player II. Similarly, the existence of an S-tree for � provides
one bit of information towards a winning strategy for player I in G� .

Lemma 2.16. No � ∈ T satisfies ϕU (�) ∧ ϕS(�).
Proof. Otherwise, let T0 and T1 be U - and S-trees for �; then the set of nodes �
on which T0(�) �= T1(�) forms a nonempty subtree of T with no terminal nodes,
contradicting the wellfoundedness of T via 2.14. �
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By 2.16 we can apply Σ21-Sep
Rto get a functional ev : T → {Safe,Unsafe} such

that

• ϕU (�) =⇒ ev(�) = Unsafe,
• ϕS(�) =⇒ ev(�) = Safe.

It is now enough to show that either ev is a U -tree for 〈〉, or there is some
length-1 string 〈a〉 ∈ T such that the restriction ev〈a〉 to T [〈a〉] is a U -tree for 〈a〉.
To see that this is sufficient, suppose ev is aU -tree for 〈〉 (the other case is identical).
Then by SF(R)there is a strategy for player II such that, if |�| is odd and ev(�) =
Safe, then ev(��Σ(�)) is on T and is markedUnsafe by ev; this strategy can clearly
never lose, so by 2.13 Σ is a winning strategy.

Definition 2.17. Say that a node � of T is bad if one of the following conditions
holds:

(1) ev(�) = Safe but for every immediate extension � of � we have ev(�) = Safe,
or

(2) ev(�) = Unsafe but there is some immediate extension � of � such that
ev(�) = Unsafe.

Lemma 2.18. If � is bad, then there is some proper extension of � which is bad.

Proof. Suppose � is bad but no proper extension of � is bad.
If � is bad via case (1), then the map

ev′ : T [�]→ {Safe,Unsafe} : � �→
{
ev(�) if � �= �
Unsafe if � = �

is aU -tree for� whose existence follows from2.12; but this contradicts the definition
of ev.
If � is bad via case (2), then we can similarly construct an S-tree for �, again

contradicting the definition of ev. �
Corollary 2.19. There are no bad nodes of T .

Proof. Suppose otherwise. The set of bad nodes exists by 2.12; by 2.18 and 2.14,
this contradicts the well-foundedness of T . �
But now we are done: since T has no bad nodes, either ev is a U -tree for 〈〉,

or — letting � be some length-1 node of T which satisfies ev(�) = Unsafe— ev�
is a U -tree for �, and as observed above either possibility allows us to produce a
winning strategy for T . �
Note that at the close of the proof, we conclude that in fact for every � ∈ T we

have ϕU (�) ⇐⇒ ¬ϕS(�); yet since the proof of this fact itself goes through Σ21-
SepR, the slightly weaker theory SF(R)+Δ21-comprehension for type-2 functionals
does not seem to imply ΔR1 -Det.
To compliment 2.11, we show that the assumption of SF(R) cannot be removed:

Fact 2.20. Over RCA30, Δ
R
1 -Det implies SF(R).

Proof. Let F be an instance of SF(R), viewed as an R-indexed family of sets of
reals {Fr}r∈R. Consider the game in which player I plays a real r, and player II wins
if and only if they immediately play a real s ∈ Fr. A winning strategy cannot exist
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for player I, and any winning strategy for player II immediately yields a selection
functional for F . �
2.11 and 2.20 together raise the question of the role that variants of the axiom
of choice might play in higher-order versions of ATR0. This will be treated in more
detail in a forthcoming paper; for now, we introduce one final principle, which
is close to the classical statement of ATR0 itself and which captures exactly the
choiceless part of ΔR1 -Det:

Definition 2.21. For a tree T ⊆ R<� and a node � ∈ T we let T� = {� : ��� ∈
T}, and if F : T → � we let F� : � �→ F (���). Σ11 rank-recursion on R, denoted
“RR1(R),” is then the scheme asserting that for any tree T ⊆ R<� which does not
contain a nonempty subtreewith no terminal nodes (recall that,absent choice, this is
a strengthening of well-foundedness) and every Σ11 formula Σ

1
1-formula ϕ(Y

2, Z2)
with only the displayed free variables, there is a type-2 functional F with range
⊆ {0, 1} such that, for � ∈ T ,

F (�) = 1 ⇐⇒ ϕ(F�, T�).

Theorem 2.22. Over RCA30, we have RR1(R)+SF(R)⇐⇒ ΔR1 -Det.
Proof. ΔR1 -Det =⇒ RR1(R)+SF(R): we have already observed (2.20) that ΔR1 -

Detimplies SF(R). To show that ΔR1 -Detimplies RR1(R), given a well-foundedT and
an appropriate formula ϕ, consider the following well-founded game. First, player I
chooses some � ∈ T ; then, player II responds by playing either “Safe” or “Unsafe.”
The game then continues by playing the clopen game T� , with player II going
first if she chose “Safe” and player II going second if she chose “Unsafe.” Clearly
only player II can have a winning strategy, and any winning strategy computes the
desired h by setting h(�) = 0 if the winning strategy for II tells II to play “Unsafe”
if I plays �.
In the other direction, given a clopen game G , use RR1(R) with the formula

ϕ(Y 2, Z2) ≡ ∃a1(a ∈ Z and Y (a) = 0)

(recall that Y is meant to stand for F� andZ for T�). The resulting function h then
computes a winning quasistrategy for G : if h(�) = 0, then � is a loss for whoever’s
turn it is, and one player or the other can win by ensuring that their opponent
always plays from nodes marked 0 by h. SF(R) then lets us pass from this winning
quasistrategy to a genuine winning strategy for G . �
We end this section by presenting a straightforward separation result — the first
instance of divergence from the standard reverse-mathematical picture. Given the
low complexity of wellfoundedness at higher types, it is reasonable to expect that
CWOR is quite weak relative to the higher-type determinacy principles. This is, in
fact, true:

Lemma 2.23. Over RCA30, CWOR does not imply ΔR1 -Det.

Proof. Wewill show that in fact the model B generated by the Borel sets, defined
in 2.8, satisfies CWOR but not ΔR1 -Det. Showing that B |=CWOR is straightforward:
any uncountable Borel set of reals contains a perfect subset, and there is no Borel
well-ordering of R. These facts follow from Borel determinacy ([9], Theorem 20.5),
and together imply that all Borel well-orderings are countable. It then follows
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that any two Borel well-orderings are comparable by a boldface Σ02 embedding,
so B |= CWOR.
To show that B |= ¬ΔR1 -Det, fix some analytic (that is, boldface Σ11) set X ⊆ R

which is not Borel. Let T ⊆ �<� be a tree such that
X = {a ∈ R : ∃b ∈ R((〈a(i), b(i)〉)i∈� ∈ [T ])};

such a tree is guaranteed to exists since X is Σ11, and since B contains all reals we
have that T ∈ B. Now consider the game G which proceeds as follows:

• Player I plays a real a.
• Player II guesses whether a ∈ X or not.
• If player II guesses “yes,” then player II must also play a real b; player I then
plays a natural number k; the game is now over, and player I wins if and only
if (〈a(i), b(i)〉)i<k �∈ T .

• If player I guesses “no,” then player I plays a real b, player II plays a natural
number k; the game is now over, and this time player II wins if and only if
(〈a(i), b(i)〉)i<k �∈ T .

Informally, player I is challenging player II to correctly compute X , and the tree T
is used to evaluate whether II’s guess was correct. This is a clopen game, and viewed
as a subtree of R<� it is clearly Borel, so G ∈ B.
However, this game is undetermined in B. To see this, note that since B contains

every real, a strategy in B is winning in B if and only if it is actually winning, since
otherwise any play defeating it would be coded by a real and hence exist in B. So
if B satisfies ΔR1 -Det, then B must contain an actual winning strategy for G; but X
is Borel relative to any winning strategy for G (since such a strategy Σ must be a
strategy for player II, and must have the property that Σ(〈a〉) = 1 ⇐⇒ a ∈ X ).
Since B consists precisely of the Borel functionals, if G were determined in B then
X would have to be Borel, which is a contradiction. �
Note that Borel instances of ΔR1 -Det can be constructed whose winning strategies

are much more complex than Σ11; so CWOR is in fact far weaker than ΔR1 -Det.

§3. Separating clopen and open determinacy. In this section we construct amodel
M of RCA30+Δ

R
1 -Det+¬ΣR1 -Det, using a variation of Steel’s tagged tree forcing; see

[23], and also [16] and [19]. Throughout this section, we work over a transitive
ground model V of ZFC+CH.

Remark 3.1. Recently, SherwoodHachtman [5] has developed an alternate proof
of this result; using methods from inner model theory, he shows that the smallest
initial segment of Goedel’s constructible universe L which is a model of RCA30+Δ

R
1 -

Det does not satisfy ΣR1 -Det. More precisely, he shows that if � is the least ordinal
such that (�,R, �R)L� |=RCA30+ΔR1 -Det, then (�,R, �R)L� |= ¬ΣR1 -Det.
The general picture of classical Steel forcing is as follows. Conditions are well-

founded trees, with additional information representing rank, ordered by extension
(with certain restrictions). The full generic object is an infinite, ill-founded tree,
whose nodes are labelled with their ranks in the tree, together with a collection of
distinguished paths. The model built from this generic is gotten by looking at all
sets hyperarithmetic relative to the tree and finitely many of the paths; in particular,
the ordinal labels are forgotten. This loss of information is crucial.
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In our case, our conditions will be countable, ill-founded trees with additional
information, ordered appropriately. The generic object will be, as in the classical
case, a tree whose nodes are labelled essentially with their rank. This tree can be
viewed as the game tree of an open game; this open game, which is classically a win
for player II (Closed), will exist but be undetermined in our model. The difficult
portion of the proof is ensuring that the model we build satisfies ΔR1 -Det. Rather
than use a higher-order notion of hyperarithmeticity (see below), we construct our
model out of those functionals which depend on the generic tree only in a limited
way; see Definition 3.4.
The idea behind the game we construct is as follows. Consider the clopen game
Gα , forα an ordinal, in which players I and II alternately build decreasing sequences
of ordinals less than α, and the first player whose sequence terminates loses. Clearly
player II wins this game, since all she has to do is consistently play slightly larger
ordinals than what player I plays.

Gα :
Player I α0 α1 < α0 · · ·
Player II 
0 
1 < 
0· · ·

Now there is a natural open game, Oα , associated to Gα . Oα has the same rules
as Gα , except that on player I’s turn, she can give up and start over, playing an
arbitrary ordinal below α. If she does this, then player II gets to play an arbitrary
ordinal below α as well. After a restart, play then continues as normal, until player
II loses or player I restarts again. Player I (Open) wins if player II’s sequence ever
reaches zero; player II (Closed) wins otherwise.

Oα :
Player I (Open) α0 α1 · · ·
Player II (Closed) 
0 
1· · ·

(∀i, αi+1 < αi =⇒ 
i+1 < 
i).

Essentially, Oα is gotten by “pasting together” �-many copies of Gα , one after
the other, and player II must win all of these clopen sub-games in order to win Oα .
This is still a win for player II, but in a more complicated fashion. In particular, if
player II happened to not be able to directly see the ordinals player I played, but
was only able to see the underlying game tree itself, she would need quite a lot of
transfinite recursion to be able to figure out whatmove to play next - seemingly more
than she would need to win Gα , since there is much more “noise” in the structure of
Oα . This is roughly the situation we create in the construction below.We will define
a forcing notion which adds a tree TG ⊆ R<� . This tree can be viewed as an open
game on R of length � in the usual manner. In the full generic extension, this game
will be identical to the gameO�V2 — that is, the game tree ofO�V2 will be isomorphic
to TG in the full generic extension— but the function which assigns to nodes of TG
their ordinal ranks will be extremely complicated.
There are several differences between our construction and Steel’s tagged tree
forcing, however. Most importantly, our forcing is countably closed. Countable
closure is an extremely powerful condition, which we use throughout this argument
but especially in Lemma 3.16; at the same time, countable closure also adds a layer
of complexity to the proof of the retagging lemma, an important combinatorial
property of Steel-type forcings, which usually follows from well-foundedness of
the trees underlying the forcing conditions. In our case, the proof of the retagging
lemma uses a much weaker “local well-foundedness” property. Additionally, there
is an important shift in how we define the desired substructure of the full generic
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extension. In classical Steel forcing, the desired substructure is defined by first
picking out specific elements of the generic extension — usually paths through
a certain tree — and then closing under hyperarithmetic reducibility; the proof
then continues by showing that every element of the resulting model depends only
on “bounded” information about the generic. In our case, we start at the end,
and simply consider the part of the generic extension depending on the generic in
a “bounded” way. This is both clearer andmore flexible a method than the standard
approach; also, higher-type analogue of the hyperarithmetic sets — the so-called
“hyperanalytic” sets — is more complicated to work with. See [17] for a definition
of this analogue, as well as an account of some early difficulties faced in its study.

3.1. Constructing the model. The forcing we use in this section is the following:

Definition 3.2. Let �∗
2 = �2 ∪ {∞}, ordered by taking the usual order on �2

and setting∞ > x for all x ∈ �∗
2 (including∞ >∞). P is the forcing consisting of

all partial maps p : ⊆ R<� → �∗
2 ×�∗

2 satisfying the following conditions, ordered
by reverse inclusion:

• dom(p) is a countable subtree of R<� with p(〈〉) ↓= (∞,∞) (the game starts
with player Open moving, and no meaningful tags);

• � ∈ dom(p) =⇒ [(|�| = 2k + 1 ∧ p(�−)1 = p(�)1) ∨ (|�| = 2k ∧ p(�−)0 =
p(�)0)] (player Open is playing p(�)0, Closed is playing p(�)1, and on a given
turn exactly one of these values changes);

• if p1(�) = 0, then no extension of � is in the domain of p (if Closed ever hits
0, she loses); and

• ��〈a, b〉 ∈ dom(p), |�| = 2k, ∞ �= p(�)0 > p(��〈a, b〉)0 =⇒ p(�)1 >
p(��〈a, b〉)1 (as long as player Open has not just played an ∞, or failed to
play less than her previous play, Closed’s next play has to be less than her
previous play).

Note that the way this last condition is phrased allows p(�)1 to be anything when
p(�)0 =∞, for |�| = 2k, since we have∞ >∞. Also, if |�| = 2k andp(�−)1 =∞,
then p(�)1 can be anything.
From this point on, we fix a filter G ⊆ P which is P-generic over V .

The main difference between our forcing P and Steel forcing is that P is countably
closed (recall 1.2).The immediate use of countable closure is that it lets us completely
control the type-1 objects in our model; later, we will use countable closure in
a more subtle way, to show that no well-orderings of reals of length ≥ �V2 are in
our model, even though such well-orderings will exist in the full generic extension
(Lemma 3.16).
As with Steel forcing, we have a retagging notion:

Definition 3.3. For p, q ∈ P and α ∈ �2, we say that q is an α-retagging of p,
and write p ≈α q, if

• dom(p) = dom(q);
• for � ∈ dom(p), i ∈ 2 we have

p(�)i < α =⇒ q(�)i = p(�)i
and

p(�)i ≥ α =⇒ q(�)i ≥ α.
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These retagging relations let us define the set of names which depend on the
generic in a “bounded” way:

Definition 3.4. Let � be a name for a type-2 functional, that is, a map R → �,
and suppose α ∈ �2. Then � is α-stable if for all a ∈ R, k ∈ �, we have

∀p, q ∈ P[p ≈α q, p � �(a) = k =⇒ q � �(a) = k.]

Finally, we can define our desired model:

Definition 3.5. Fix G P-generic over V . M is defined inductively to be the
L3-structure

M = (�,R, {�[G ] : ∃α < �2(� is α-stable)}).

The purpose of this section is to prove

Theorem 3.6. M |=RCA30+ΔR1 -Det+ ¬ΣR1 -Det.
We begin with two simple properties of the modelM .

Definition 3.7. TG is the underlying tree of G ; that is,

TG = {� ∈ R
<� : ∃p ∈ G(� ∈ dom(p))}.

Fact 3.8.

(1) P(��) ∩ V ⊂M2.
(2) TG ∈M2.
Proof. (1) follows from the fact that canonical names for sets inV do not depend
on the poset P, and are hence 0-stable. For (2), the only way to force � �∈ TG is to
have some p ∈ G , � ≺ � such that p(�)1 = 0, so it follows that the canonical name
for TG is 1-stable. �
We can now prove the first nontrivial fact aboutM : that it does not satisfy open
determinacy for reals. Specifically, we will show that TG , viewed as an open game,
is undetermined inM .
The first step is the following:

Lemma 3.9. V [G ] |= TG is a win for Closed.
Proof. By a straightforward density argument, if G is generic, then whenever

|�| = 2k + 1, p ∈ G , and p(�)1 = ∞, there is some q ∈ G and a ∈ R such that
q(��〈a〉)1 =∞. It follows that the strategy

Π(�) = the ≤W -least a such that ∃p ∈ G(p(��〈a〉)1 =∞)

is winning for Closed. �
The indeterminacy of TG inM then follows from a two-part argument: strategies
for Open can be defeated using 3.9 and the countable closure of P, and stable
strategies for Closed can be defeated by pulling the rug out from under her:

Lemma 3.10. M |= ¬ΣR1 -Det.
Proof. Consider the open game corresponding toTG (in which player I is Open).
Recall that TG is in M and TG is “really” a win for player Closed by 3.8 and 3.9,
respectively; we claim that this game is undetermined inM .
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Suppose Σ is a strategy for player Open in M . Consider the tree of game-states
“allowed” by Σ:

AΣ = {� ∈ TG : ∃Π(� ≺ Σ⊗Π)}.
Since TG is actually a win for Closed, the treeAΣ must be ill-founded. Letf ∈ V [G ]
be a path through TG . Then f ∈ V , since P is countably closed and f can be coded
by a single real. But then within V , we can construct a strategy Π which defeats Σ
by playing along f:

� ≺ f =⇒ Π(�) = f(|�|), � �≺ f =⇒ Π(�) = 0.

Since Π exists in V , Π ∈M2; so TG is not a win for Open inM .
Now suppose Π is a strategy for player Closed in M , and suppose (towards

a contradiction) that

p � � is a winning strategy in TG,
where � is an α-stable name for Π, α ∈ �2. We can find

• q ≤ p,
• a ∈ R− {c : 〈c〉 ∈ dom(p)},
• b ∈ R, and
• 
 > α

such that 〈a, b〉 ∈ dom(q), q(〈a〉) = (
,∞), and q � �(〈a〉) = b. Now since q ≤ p
and p forces that Π wins, we must have q(〈a, b〉) = (
, �) with � > 
 ; so � > α.
But then we can find a q̂ ≈α q such that q̂ ≤ p and q̂(〈a, b〉) = (
̂ , �̂) for some

̂ > �̂. But then q̂ forces that there is some finite play extending 〈a, b〉 which is
a win for Open; and since every possible finite play exists inM , this contradicts the
assumption that � was forced to be a name for a winning strategy. �
To analyzeM further, we require the analogue of Steel’s retagging lemma for our

forcing:

Lemma 3.11 (Retagging). Suppose α < �2 has uncountable cofinality, p ≈α q,
r ≤ q, and � < α. Then there is some r̂ ≤ p with r̂ ≈� r.
Proof. This is a straightforward combinatorial construction. It is worth noting,

however, that Steel’s retagging lemma is proved using the fact that conditions in Steel
forcing are (essentially) well-founded trees. Of course, are conditions are not well-
founded, so wemust be slightly more subtle: the heart of this proof is the realization
that conditions inP, thoughnotwell-founded, are “locallywell-founded” in a precise
sense. Intuitively, when deciding how to tag a given node of r′, we only need to look
at a well-founded piece of the domain of r; using the ranks of these well-founded
pieces as parameters gives us enough “room” for the natural construction to go
through.
Formally, we proceed as follows. Since α has uncountable cofinality, we can find

a �̃ such that � < �̃ < α and �̃ is larger than every r(�)i and p(�)i (i ∈ {0, 1}, �, � ∈
R<�) which is less than α.
For � ∈ dom(r)− dom(p), let
T� = {� : ��� ∈ dom(r) ∧ ∀� ≺ �(|���| odd =⇒ ∞ �= r(���−)0 > r(���)0)}
be the set of ways to extend � within dom(r) which according to r don’t involve
player Open restarting after �, and note that for each � ∈ dom(r) − dom(p) the
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tree T� is well-founded. Also, letN be the set of nodes of dom(r) that are new (that
is, not in dom(p)) but don’t follow any new restarts by player Open:

{� ∈ dom(r) − dom(p) : ∀� � �(� ∈ dom(r)− dom(p), |�| odd
=⇒ r(�−)0 > r(�)0 �=∞)}.

The idea is that we really only need to focus on nodes in N : nodes in dom(p)
have already had their tags determined, and nodes not in N ∪ dom(p) will have
no constraints on their tags coming from p at all, since they must follow a restart
by Open. In order to define the value of r̂ on some node � in N , though, we need
an upper bound on how large N is above � to keep from running out of ordinals
prematurely; this is provided by taking the rank of T� .
Formally, we build the retagged condition as follows. Recalling thatV |=ZFC, fix
in V a well-ordering of R<� , and via that ordering let rk(S) be the rank of S for
S ⊆ R<� a well-founded tree. Then we define r̂ as follows:

r̂(�) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

↑, if � �∈ dom(r),
p(�), if � ∈ dom(p),
r(�), if � �∈ (N ∪ dom(p)),
(min{�̃ + rk(T�), r(�)0}, r̂(�−)1), if � ∈ N and |�| is odd,
(r̂(�−)0,min{�̃ + rk(T�), r(�)1}), if � ∈ N and |�| is even.

It is readily checked that r̂ ∈ P— the assumption on �̃ being used here to show that
the coordinates of r̂ are decreasing when the corresponding coordinates of r drop
from ≥ α to < α — and that r̂ ≤ p and r̂ ≈� r (in fact, r̂ ≈�̃ r). �
As a straightforward application of the retagging lemma, we can now show that
M is a model of RCA30:

Lemma 3.12. M |= RCA30.

Proof. P−, the extensionality axioms, the axioms defining ∗ and �, and compre-
hension for reals are all trivially satisfied, the last of these sinceM contains precisely
the reals inV andV |= ZFC. Only the comprehension scheme for type-2 functionals
is nontrivial. We will prove that arithmetic comprehension for type-2 functionals
holds inM , since this proof is no harder than the proof for Δ01 comprehension.
Intuitively, we will show that functionals defined in an arithmetic way depend,
value-by-value, on only countably many bits of information. From this, and the
countable closure of our forcing, we will be able to find stable names for such
functionals.
Let ϕ(X 1, y0) be an arithmetic (that is, Σ0n for some n ∈ �; recall Definition 2.2)
formula such that for each a ∈ R there is precisely one k ∈ � with

M |= ϕ(a, k).
Since each natural number is definable, we can assume ϕ has no type-0 parameters.
Let (Fi)i<n be the type-2 parameters used in ϕ, let (sj)j<m be the type-1 parameters
used in ϕ, and let �i be an α-stable name for Fi ; since each Fi has a stable name, and
there are only finitely many Fi , we can find some large enough α < �2 so that such
names exist. Note that we can work directly with the sj , as opposed to just dealing
with their names, since our forcing adds no new reals.
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For a ∈ R, let Ca be any countable set of names for reals such that
• Ca contains a name for a and each sj ;
• whenever a name � is in Ca and k ∈ �, Ca contains a name � such that
� � = k��; and

• whenever � is in Ca and i < n, Ca contains a name �′ such that � �′ = �i ∗ �.
Although we have not been completely precise in defining the sets Ca , it is clear
that the definition above is effective in the sense that a suitable set of sets of names
{Ca : a ∈ R} exists in the ground model, V .
The key fact about the Ca is that, by construction, they determine the truth value

of the formula ϕ at a: that is, the truth value of ϕ(a, k) depends only on the values
of the Fi on the reals named by elements of Ca . Formally,

∀� ∈ Ca∃k ∈ R[(p � � = k) ∧ (q � � = k)]
=⇒ ∀l ∈ �[(p � ϕ(a, l)) ⇐⇒ (q � ϕ(a, l))].

Now let � be a name for the functional defined by ϕ. We will show that � is
(α + �1)-stable.
Let r ∈ R and p, q ∈ P such that p ≈α+�1 q and p � �(r) = k. Let

Dr = {t ∈ P : ∀� ∈ Cr∃s ∈ R(t � � = s)}

be the set of conditions which decide the value of each name in Cr . Since Cr is
countable, and P is countably closed, the set Dr is dense. Now suppose towards
contradiction that q �� �(r) = k. Then since Dr is dense, we can find some q′ ≤ q
such that

q′ ∈ Dr and q′ � �(r) = l
for some natural l �= k. By the retagging lemma, there is some p′ ≤ p such that
p′ ≈α q′; but since each of the �i are α-stable, we must have

∀i < n, t ∈ R, � ∈ Cr [(q′ � � = t) ⇐⇒ (p′ � � = t)].

But since the truth value of ϕ(r, k) depends only on the values of the Cr , this
contradicts the fact that p′ ≤ p and p � �(r) = k. �

3.2. Clopen determinacy in M . Showing that M satisfies clopen determinacy
for reals, however, requires a more delicate proof. Intuitively, given a stable name
for a clopen game, we ought to be able to inductively construct a stable name for
a winning (quasi)strategy in that game by just iterating the retagging lemma in the
right way. However, since the rank of a stable name is required to be < �2, we
cannot iterate the retagging lemma �2-many times, so we need all clopen games
inM to have rank < �2. This cannot be derived from the retagging lemma alone;
instead, we need to look at particular subposets of P:

Definition 3.13. For α < �2, Pα is the subposet of P defined by

Pα = {p ∈ P : ∀� ∈ dom(p), i ∈ 2(p(�)i < α ∨ p(�)i =∞)}.

Conditions inPα will turn out to satisfy a slightly stronger retagging propertywith
respect to≈α—the projecting lemma, below— than conditions in general, and this
will be used to prove that this forcing adds no stable well-orderings of reals longer
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than any in the ground model. Note that this is false for unstable well-orderings;
in particular, forcing with P collapses �2 in the full generic extension.

Definition 3.14. For p ∈ P, α < �2, we let the α-projection of p,

pα : dom(p)→ (α ∪ {∞})× (α ∪ {∞}),

be the map given by

∀� ∈ dom(p), i ∈ 2, pα(�)i =
{
p(�)i if p(�)i < α
∞ otherwise.

Lemma 3.15 (Projecting). For all p ∈ P, α < �2, we have:

(1) pα ∈ Pα ;
(2) pα ≈α p;
(3) p ≤ q =⇒ pα ≤ qα;
(4) |Pα|V = ℵ1; and
(5) Pα is countably closed.

Proof. For (1), note that since we set∞ >∞, the map

x �→
{
x if x < α
∞ otherwise

satisfies x < y ⇐⇒ �(x) < �(y). So as long as p is in P, the projection pα will
not contain any illegal instances of the second coordinate increasing (which is the
only possible obstacle to being a condition), and so will also be in P - and clearly if
pα ∈ P, then pα ∈ Pα .
(2) and (3) are immediate consequences of (1). Property (3) shows that we can
allow � = α in the retagging lemma above if p is assumed to be in Pα , and that we
can take r̂ to be in Pα as well in that case.
For (4), note that elements of Pα can be coded by countable subsets of R × �1;
the result then follows since V |= CH.
Finally, for (5), let (pi)i∈� be a sequence of conditions in Pα with pi+1 ≤ pi .
Then since P is countably closed, we have some q ∈ P with q ≤ pi for all i ∈ �; but
then qα ∈ Pα by (1), and since each pi ∈ Pα , we have pαi = pi and hence q

α ≤ pi
by (3). �
This lemma helps provide us with explicit upper bounds on the lengths of type-2
well-orderings in M , via the construction below. We can use this result to provide
a bound on the lengths of well-orderings inM , which in turn allows the induction
necessary for showing clopen determinacy to go through.

Lemma 3.16 (Bounding). Suppose � is a stable name for a well-ordering ofR (that
is, � � is a well-ordering of R). Then there is some ordinal � < �2 such that

� � � �.

That is, �2 is not collapsed in a stable way by forcing with P.

Proof. Suppose � is an α-stable name for a well-ordering of a set of reals. The
proof takes place around the subposet Pα . For a sequence of reals a = 〈a0, · · · , an〉
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and a condition p ∈ P, say that p is adequate for a, and write Ad (p, a), if p forces
that a is a descending sequence through �:

p � a0 >� · · · >� an.

Note that since � is α-stable, p is adequate for a if and only if pα is adequate for a,
by (2) of the previous lemma.
In order to bound the size of � in any generic extension, we create in the ground

model an approximation to the tree of descending sequences through �, as follows:

T� = {〈(pi , ai)〉i<n : pi ∈ Pα ∧ ∀i < j < n(pj ≤ pi ∧ Ad (pj, 〈a0, · · · , ai−1〉))}.

Elements of T� are potential descending sequences, together with witnesses to their
possibility. Now since � is a name for a well-ordering, we must have that T� is well-
founded.Otherwise, wewould have a sequence of condition/real pairs, 〈(pi , ai)〉i∈� ,
which build an infinite descending sequence through �, that is,

pi+1 ≤ pi , pi+2 � ai >� ai+1.

But then a common strengthening q ≤ pi , which exists by the countable closure
of Pα , would create an infinite descending chain in �; and this contradicts the
assumption that � � is well-founded.
Additionally, |T� | = ℵ1, since T� ⊆ (Pα×R)<� and |Pα| = ℵ1 by Lemma 3.15(4).

Fixing inV a bijection between�1 and T� we can take theKleene-Brouwer ordering
L� of T� . Since T� is well-founded, this is a well-ordering; below, we will show that
in fact

� � � L� .
Let

KG� = {〈a0, · · · , an〉 : a0 >�[G ] · · · >�[G ] an}
be the tree of descending sequences through �[G ] in V [G ], and fix a well-ordering
≤W of Pα in V . For a ∈ KG� , we define a condition in Pα by recursion as follows:

h(a) = the ≤W -least p ∈ Pα such that p ≤ h(b) for all b ≺ a and Ad (p, a).

(Note that by the previous lemma and the fact that � is α-stable, h is defined for all
a ∈ KG� .) An embedding from KG� into T� can then be defined:

e : KG� → T� : 〈ai 〉i<n �→ 〈(h(〈a0, · · · , ai〉), ai)〉i<n .

It follows that �[G ] � L� , as desired. �
Now we are finally ready to prove thatM satisfies clopen determinacy. For sim-

plicity, this proof is broken into three pieces. First, we show that the rank of a node
in a clopen game can be determined in an α-stable way, for appropriately large α.
Then we define a set which encodes the rank of nodes in a clopen game, as well as
which player these nodes are winning for, and show that this set is similarly well-
behaved. Finally, we use this to give stable names for winning strategies in clopen
games which themselves have stable names — and this will suffice to show that
ΔR1 -Det holds in M . Unfortunately, the first two steps in this proof is exceedingly
tedious, as we require more and more room to retag conditions, but the intuition is
that of a straightforward induction.
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Fix in V a well-ordering ≤W of R. Using this well-ordering, we can define the
rank rk(T ) of a well-founded tree T ⊂ R<� in the usual way; and for � ∈ T , we let
rkT (�) = rk({� : ��� ∈ T}). If � is a name for a well-founded tree, then rk(�) and
rk�(�) are the standard names for rk(�[G ]) and rk�[G ](�).

Lemma 3.17. Let � be a 
-stable name for a well-founded subtree of R<� , p ∈ P,
� < �2, and � ∈ R<� such that

p � rk�(�) = �,
and suppose q ≈
+�1(�2+2) p; then

q � rk�(�) = �.
Proof. By induction on �. For � = 0, suppose q is a counterexample to the claim;
then we can find r ≤ q and a ∈ R such that

r � ��〈a〉 ∈ �.
Now by the retagging lemma, we can find some r̂ ≤ p such that r̂ ≈
 r. Since � is

-stable, we have

r � ��〈a〉 ∈ �,
which contradicts the assumption on p.
Now suppose the lemma holds for all � < �, and let p � rk�(�) = �; then

p � ∀a ∈ R(��〈a〉 ∈ � =⇒ rk�(��〈a〉) < �).

Suppose towards a contradiction that

q ≈
+�1(�2+2) p and q �� rk�(�) = �;
then there is some r ≤ q, a ∈ R such that

r � ��〈a〉 ∈ � ∧ rk�(��〈a〉) ≥ �.
By the retagging lemma we get some r̂ ≤ p such that r̂ ≈
+�1(�2+1) r, and since � is

-stable we have r̂ � ��〈a〉 ∈ �. Since r̂ ≤ p, and p � rk�(�) = �, we must be able
to find some � < � and s ≤ r̂ such that s � rk�(��〈a〉) = �; using the retagging
lemma a second time, we can get some ŝ ≤ r such that ŝ ≈
+�1(�2+2) s . But then
by the induction hypothesis s � rk�(��〈a〉) = �, contradiction the assumption
on r. �

Definition 3.18. If T ⊂ R<� is a well-founded tree, thought of as a clopen
game, a node � on T is safe if the corresponding clopen game

T� = {� : ��� ∈ T}

is a win for player I. For � be a 
-stable name for a well-founded subtree of R<�

with rank < α for some α < �2 (see Lemma 3.16), let Δ� be a name for the set
which encodes rank and safety of nodes on �:

Δ� [G ] := {(�, �, i) : � ∈ �[G ] and rk�[G ](�) = � and i = �� is safe in �[G ]�}.

We will show that Δ� is well-behaved, in the sense of stability, and use this to give
a stable name for a winning strategy for �.
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Lemma 3.19. Let � be a 
-stable name for a well-founded subtree of R<� of
rank < α; and for simplicty, let κ = 
 + �1(α2 + 2). If p � (�, �, i) ∈ Δ� , and
q ≈κ+�1(�2+2) p, then q � (�, �, i) ∈ Δ� .
Proof. Suppose not. Let � be the least ordinal such that for some �, i there are

conditions p, q such that

• q ≈κ+�1(�2+2) p,
• p � (�, �, i) ∈ Δ� , and
• q �� (�, �, i) ∈ Δ� .
There are two cases. If � = 0, then we must have i = 0; since � is 
-stable, there

can be no condition below q which adds a child of � to � (since then we can use the
retagging lemma to force this below p, which already forces that � is terminal in �),
and so q � (�, 0, 0) ∈ Δ� .
So suppose � > 0. Since p � rk�(�) = �, by the previous lemma we have

q � rk�(�) = �; so q just disagrees on whether � is safe, which means we must be
able to find some r ≤ q such that

r � (�, �, 1 − i) ∈ Δ� .

By the retagging lemma we can find an r̂ ≤ p such that r̂ ≈κ+�1(�2+1) r.
Now the proof breaks into two subcases based onwhether i = 0or i = 1.We treat

the first case; the proofs are essentially identical.
We have r ≈κ+�1(�2+1) r̂ and r � (�, �, 1) ∈ Δ� . Since r thinks � is safe, r must

think there is some immediate successor of � which is unsafe. That is, we can find
s ≤ r, � < �, and a ∈ R such that s � (��〈a〉, �, 0) ∈ Δ� ; by retagging again we
can find

ŝ ≤ r̂, ŝ ≈κ+�1(�2+2) s,
which by our assumption on � means that

ŝ � ��〈a〉 ∈ � and is unsafe.

But ŝ ≤ r̂ ≤ p and p believes � is unsafe, which means p believes � has no safe
extensions - a contradiction. �

Finally, we are ready to show that � is determined inM :

Corollary 3.20. Let � be a 
-stable name for a well-founded subtree of R<� ,
viewed as a clopen game, with rk(�) < α < �2 for some limit ordinal α. Then there is
an (
 +�1(α4 + 5))-stable name for a (type-2 functional coding a) winning strategy
for �.

Proof. (Note that requiring α to be a limit is a benign hypothesis, as we can
always make α larger if necessary; this assumption is just made to simplify some
ordinal arithmetic below.) Recall that ≤W is a well-ordering of R in V . Let � be a
name for the type-2 functional which encodes the strategy picking out the≤W -least
winning move at any given stage:

�[G](n��) =

{
a(n) if a is the ≤W -least real such that ∃
 < α[(��〈a〉, 
, 0)∈ Δ� ],
0 if no such real s exists.
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For simplicity, we assume that �“no string containing a ‘0’ is on �,” so that there
is no ambiguity in this definition. Clearly � yields a winning strategy for whichever
player wins �.
All that remains to show is that � is stable. Let � = (
 + �1(α4 + 5)), fix � and
a, and let p ≈� q are conditions in P such that p � �(�) = a. We can find some
r ≤ q and some b such that q′ � �(�) = b; we’ll show that b = a, and so we must
have had q � �(�) = a already.
There are two cases:

Case 1. a = 0. Suppose towards a contradiction that b �= 0. Since a = 0,
we have p � ∀� < α,∀b ∈ R[(��〈b〉, �, 0) �∈ Δ� ]. Let s ≤ r and � < α be
such that s � (��〈b〉, �, 0) ∈ Δ� ; by the retagging lemma, there is p′ ≤ p with
p′ ≈
+�1(α4+4) s , which by Lemma 3.19 is impossible.
Case 2. a �= 0. By identical logic as in the previous case, we must have b �= 0;
suppose towards contradiction that b �= a. With two applications of the retagging
lemma, we can find ordinals �0, �1 < α and conditions p′ ≤ p, r′ ≤ r such that
• p′ ≈
+�1(α4+2) r′,
• p′ � (��〈a〉, �0, 0) ∈ Δ� , and
• r′ � (��〈b〉, �1, 0) ∈ Δ� .
By Lemma 3.19, we have r′ � (��〈a〉, �0, 0) ∈ Δ� and p′ � (��〈b〉, �1, 0) ∈ Δ�
as well. Also note that we have p′ � �(�) = a, r′ � �(�) = b, since p′ ≤ p and
r′ ≤ r ≤ q. Now since a �= b, either a <W b or b <W a, and so either way we have
a contradiction.

This completes the proof. �
Since M1 = R, M computes well-foundedness of subtrees of R<� correctly;
so by Lemma 3.16, it then follows that every clopen game in M has a winning
strategy in M . Together with Lemmas 3.10 and 3.12, this completes the proof of
Theorem 3.6.

§4. Conclusion. In this paper, we have sought to understand how the passage
to higher types affects mathematical constructions related to the system ATR0;
given both the sheer number of such constructions, and the relative youth of
higher-order reverse mathematics, this remains necessarily incomplete. We close by
mentioning three particular directions for further researchwe findmost immediately
compelling:

• Despite the analysis provided by this paper, there are still basic questions
remaining unaddressed. It is unclear what is the relationship between ΣR1 -Det
andΣ21-Sep

R.We suspect that these principles are incomparable, but separations
at this level are unclear: for example, it is open even whether ΣR1 -Det implies
the Π22-comprehension principle for type-2 functionals, although the answer is
almost certainly that it does not.
For that matter, in this paper we have focused entirely on the strengths of
third-order theorems relative to other third-order theorems; their strength rel-
ative to second-order principles has been completely unexplored. For instance,
it is entirely possible, albeit unlikely, that ΔR1 -Det and Σ

R
1 -Det have the same

second-order consequences.
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• One interesting aspect of the shift to higher types we have not touched on at
all is the extra structure available in higher-type versions of classical theorems.
Given a Π12 principle

ϕ ≡ ∀X 1∃Y 1�(X,Y ),
we can take its higher-type (so prima facie Π22) analogue

ϕ∗ ≡ ∀F 2∃G2�∗(F,G).
Now, individual reals are topologically uninteresting, but passing to a higher
type changes the situation considerably. Specifically, we can consider topologi-
cally restricted versions of ϕ∗: given a pointclass Γ, let

ϕ∗[Γ] ≡ ∀F 2 ∈ Γ∃G2�(F,G).
The relevant example is restricted forms of determinacy: the principles
ΔR1 -Det[Γ] (resp., Σ

R
1 -Det[Γ]) assert determinacy for clopen (resp., open) games

whose underlying trees when viewed as sets of reals are in Γ. In particular, the
system ΣR1 -Det[Open] is extremely weak, at least by the standards of higher-
type determinacy theorems: it is equivalent over RCA30 to the classical system
ATR0.
The techniques used in the proof of Theorem 3.6 are topologically badly
behaved. In particular, they tell us nothing about the restricted versions
ΔR1 -Det[Γ] and Σ

R
1 -Det[Γ]. With some work the argument of this paper might

extend to show that ΔR1 -Det[Γ] �� ΣR1 -Det[Γ] over RCA30, for reasonably large
pointclasses Γ, but not immediately; and certainly a detailed understand-
ing of which restricted forms of open determinacy for reals are implied by
which restricted forms of clopen determinacy will require substantially new
ideas. This finer structure seems to allow a rich connection between clas-
sical descriptive set theory and higher reverse mathematics, and is worth
investigating.

• Finally, there is a serious foundational question regarding the base theory for
higher-order reverse mathematics. The language of higher types is a natural
framework for reverse mathematics, as explained at the beginning of Sec-
tion 2.1; however, the specific base theory RCA�0 is not entirely justified from
a computability-theoretic point of view. While proof-theoretically natural, it
does not necessarily capture “computable higher-typemathematics.” The most
glaring example of this concerns theTuring jump operator. In the theoryRCA�0 ,
the existence of a functional corresponding to the jump operator

J1→1 : f �→ f′

is conservative overACA0 ([8], Theorem 2.5). However, intuitively we can com-
pute the �th jump (and much more) of a given real by iterating J; thus, given
a modelM of RCA�0 , there may be algorithms using only parameters fromM
and effective operations which compute reals not in M . From a computabil-
ity theoretic point of view, then, RCA�0 may be an unsatisfactorily weak base
theory.
Of course, this discussion hinges on what, precisely, “computability” means
for higher types. A convincing approach is given in [10], justified by arguments
by Kleene and others (see especially [3]) similar in spirit to Turing’s original
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informal argument. It is thus desirable — at least for higher-type reverse
mathematics motivated by computability theory, as opposed to proof the-
ory — to have a base theory corresponding to full Kleene recursion.7 We will
address these, and other, aspects of the base theory issue in a future paper.
However, the search for the “right” base theory is very fertile mathematical
ground, drawing on and responding to foundational ideas from proof theory,
generalized recursion theory, and even set theory, and deserves attention from
many corners and active debate.

§5. Acknowledgments. The author is grateful to Antonio Montalbán and Leo
Harrington for numerous helpful comments and conversations, and to the anony-
mous referees and Sherwood Hachtman for many useful comments on previous
drafts. This work will be part of the author’s Ph.D. thesis [20]. The author was
partially supported by Antonio Montalbán through NSF grant DMS-0901169.

REFERENCES

[1] Harvey Friedman, The analysis of mathematical texts, and their calibration in terms of intrinsic
strength I , published on author’s website, 1975.
[2] , Some systems of second order arithmetic and their use, Proceedings of the International

Congress of Mathematicians (Vancouver, B. C., 1974), vol. 1, pp. 235–242, Canadian Mathematical
Congress, Montreal, Quebec, 1975.
[3] R. O. Gandy, Computable functionals of finite type. I , Sets, Models and Recursion Theory Pro-

ceedings of the Summer School in Mathematical Logic and tenth Logic Colloquium (Leicester, 1965),
pp. 202–242, North-Holland, Amsterdam, 1967.
[4] Noam Greenberg and Julia F. Knight, Computable structure theory using admissible recursion

theory on �1. Effective Mathematics of the Uncountable, Cambridge University Press, New York, 2013.
[5] Sherwood Hachtman, Determinacy in third order arithmetic, submitted.
[6] Joseph Harrison, Recursive pseudo-well-orderings. Transactions of the American Mathematical

Society, vol. 131(1968), pp. 526–543.
[7] Victor Harnik, Set existence axioms for general (not necessarily countable) stability theory.

Annals of Pure and Applied Logic, vol. 34 (1987), no. 3, pp. 231–243. Stability in model theory (Trento,
1984).
[8] James Hunter, Higher-order reverse topology, ProQuest LLC, Ann Arbor, MI, 2008. Thesis

(Ph.D.)–The University of Wisconsin - Madison.
[9] Alexander S. Kechris,Classical descriptive set theory, vol. 156, Graduate Texts inMathematics,

Springer-Verlag, New York, 1995.
[10] S. C. Kleene, Recursive functionals and quantifiers of finite types. I. Transactions of the American

Mathematical Society, vol. 91 (1959), pp. 1–52.
[11] Ulrich Kohlenbach, Higher order reverse mathematics, Reverse mathematics 2001, vol. 21,

Lecture Notes in Logic, pp. 281–295, Association of Symbolic Logic, La Jolla, CA, 2005.
[12] Alexander P. Kreuzer, Non-principal ultrafilters, program extraction and higher-order reverse

mathematics. Journal of Mathematical Logic, vol. 12 (2012), no. 1, 1250002, p. 16.

7It should be noted that the separations 2.23 and 3.6 in this paper do not suffer from the choice of
base theory. This is because — by a straightforward, albeit tedious, induction — Kleene computability
from a type-2 object satisfies the following countable use condition: if F is a given type-2 object, and ϕFe
is a type-2 object computed from F , then for each real r there is a countable set of reals Cr such that

∀G2(G � Cr = F � Cr =⇒ ϕFe (r) = ϕ
G
e (r)).

The models in 2.23 and 3.6 then satisfy this stronger theory by essentially the same argument as in 3.12.

https://doi.org/10.1017/jsl.2015.2 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.2


TRANSFINITE RECURSION IN HIGHER REVERSEMATHEMATICS 969

[13] Kenneth Kunen, Set theory, vol. 102, Studies in Logic and the Foundations of Mathematics,
North-Holland, Amsterdam, 1983.
[14] John R. Longley, Notions of computability at higher types. I , Logic Colloquium 2000, Lecture

notes in Logic, vol. 19, pp. 32–142, Association of Symbolic Logic, Urbana, IL, 2005.
[15]Marı́a Manzano, Extensions of first order logic, Cambridge Tracts in Theoretical Computer

Science, vol. 19, Cambridge University Press, Cambridge, 1996.
[16] Antonio Montalbán, On the Π11-separation principle. MLQ Mathematical Logic Quarterly,

vol. 54 (2008), no. 6, pp. 563–578.
[17] Yiannis N.Moschovakis,Hyperanalytic predicates. Transactions of the AmericanMathematical

Society, vol. 129 (1967), pp. 249–282.
[18] ,Descriptive set theory, second edition,Mathematical Surveys andMonographs,vol. 155,

American Mathematical Society, Providence, RI, 2009.
[19] Itay Neeman, Necessary use of Σ11 induction in a reversal, this Journal, vol. 76 (2011), no. 2,

pp. 561–574.
[20] Noah Schweber, PhD thesis, University of California, Berkeley.
[21] Richard A. Shore, Reverse mathematics, countable and uncountable: a computational approach,

Effective Mathematics of the Uncountable, Cambridge University Press, New York, 2013.
[22] StephenG. Simpson,Subsystems of second order arithmetic, Perspectives inMathematical Logic,

Springer-Verlag, Berlin, 1999.
[23] John R. Steel, Forcing with tagged trees. Annals of Mathematical Logic, vol. 15 (1978), no. 1,

pp. 55–74.
[24] Nobuyuki Sakamoto and Takeshi Yamazaki, Uniform versions of some axioms of second order

arithmetic.Mathematical Logic Quarterly, vol. 50 (2004), no. 6, pp. 587–593.
[25] Henry Towsner, Ultrafilters in reverse mathematics, published in the ArXiv, 09 2011.
[26] Bartel L and van der Waerden, Eine Bemerkung über die Unzerlegbarkeit von Polynomen.

Mathematische Annalen, vol. 102 (1930), no. 1, pp. 738–739.

DEPARTMENT OFMATHEMATICS
UNIVERSITY OF CALIFORNIA, BERKELEY
BERKELEY, CALIFORNIA 94720, USA

E-mail: schweber@math.berkeley.edu

https://doi.org/10.1017/jsl.2015.2 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.2

