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In this study, we propose a non-linear continuous stochastic velocity process for
simulations of monatomic gas flows. The model equation is derived from a Fokker–
Planck approximation of the Boltzmann equation. By introducing a cubic non-linear
drift term, the model leads to the correct Prandtl number of 2/3 for monatomic gas,
which is crucial to study heat transport phenomena. Moreover, a highly accurate
scheme to evolve the computational particles in velocity- and physical space is
devised. An important property of this integration scheme is that it ensures energy
conservation and honours the tortuosity of particle trajectories. Especially in situations
with small to moderate Knudsen numbers, this allows to proceed with much larger
time steps than with direct simulation Monte Carlo (DSMC), i.e. the mean collision
time not necessarily has to be resolved, and thus leads to more efficient simulations.
Another computational advantage is that no direct collisions have to be calculated
in the proposed algorithm. For validation, different micro-channel flow test cases in
the near continuum and transitional regimes were considered. Detailed comparisons
with DSMC for Knudsen numbers between 0.07 and 2 reveal that the new solution
algorithm based on the Fokker–Planck approximation for the collision operator can
accurately predict molecular stresses and heat flux and thus also gas velocity and
temperature profiles. Moreover, for the Knudsen Paradox, it is shown that good
agreement with DSMC is achieved up to a Knudsen number of about 5.
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1. Introduction
It is widely known that the Navier–Stokes equations, in the original form, cannot

properly account for gas flows where the mean free path length λ of the molecules
is not insignificantly small compared to the characteristic length L of the problem.
In such situations, with Knudsen numbers Kn= λ/L larger than approximately
0.01, non-equilibrium effects become important and boundary conditions have to be
modified. There exist many different areas with relevant applications where Kn � 0.01,
e.g. micro-electro-mechanical systems (MEMS) or aerospace vehicles in a rarefied
atmosphere, and thus there is a significant interest in efficient and accurate simulation
models for this kind of flows. The Boltzmann equation can successfully describe the
dynamics of gas flows in non-continuum flow regimes. However, due to the complexity
of the collision operator and the high dimensionality of the equation (three spatial
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Fokker–Planck gas-kinetic model 575

plus three velocity dimensions plus time), its direct numerical solution is extremely
costly and for most applications infeasible. Therefore, various approximations of the
Boltzmann equation that are more computationally attractive have been introduced.
Most of all, DSMC is often used as a reference for other models (Bird 1994). In
DSMC, representative binary collisions are performed consistent with the collision
operator. However, even though simplifications are involved, DSMC still can become
computationally very expensive. Especially, if the Knudsen number is not very large,
one is forced to compute a huge number of collisions. Another problem is related
to the statistical noise, especially if the Mach number is very low. Nevertheless,
DSMC has proven, to be very accurate for rarefied gas flow simulations and thus
will be regarded as a benchmark reference in the following discussion of further
approximations. However, it is to be emphasized that modelling issues related to the
boundary condition or polyatomic molecules are still under development for DSMC.
On the other hand, continuum equations like the system of compressible gas dynamics
or moment equations can be viewed as models for Boltzmann equations, which are
computationally very efficient. The statistical description of the flow is represented by a
finite number of velocity moments, for which partial differential equations (in physical
space and time) have to be solved. For example, in the R13 moment equations, the
evolution of mass density, velocity, molecular stresses and heat fluxes for the gas
is solved (see Struchtrup 2005; Torrilhon & Struchtrup 2008). In this context, also
Euler or Navier–Stokes equations are moment-based models, which can be extended
by higher order approximations such as Burnett or super-Burnett equations. For
computational efficiency of these moment methods, see Zheng, Resse & Struchtrup
(2006). Although accurate results for certain flow scenarios up to moderate Kn can
be achieved in normal shock waves (see e.g. Agarwal, Yun & Balakrishnan 2001;
Torrilhon & Struchtrup 2004) or channel flows in the slip regime (see e.g. Beskok &
Karniadakis 1999), in all moment equations one has to deal with unclosed fluxes, i.e.
higher moments, that have to be modelled. Part of this closure problem arises due to
transport, as well as due to the correct treatment of the collision integral. Another
class of models is based on an approximation of the collision operator, e.g. the famous
BGK model (Bhatnagar, Gross & Krook 1954) which has been extensively studied
in various works (see e.g. Cercignani 1988; Sharipov & Seleznev 1998). Usually,
such model equations are derived from Boltzmann based on the assumption that
the molecular velocity distribution is not too far from equilibrium. Compared to
moment equations, these are equations in the higher dimensional physical-velocity
space (like the Boltzmann equation) and therefore more expensive to solve; however,
they are applicable in a wider range of Knudsen numbers. Extensions have been
made based on the BGK kinetic model which successfully provide correct Pr of 2/3
for monatomic molecules, e.g. ES-BGK (Holway 1966) or S-Model (Shakhov 1968)
to name a few. The Fokker–Planck description as a model equation for gas dynamics
has been discussed by various authors (see Lebowitz, Frisch & Helfand 1960; Pawula
1967; Cercignani 1988; Heinz 2004; Yano, Suzuki & Kuroda 2009; Jenny, Torrilhon
& Heinz 2010). While Pawula (1967) and Lebowitz et al. (1960) tried to approximate
the Boltzmann equation by a Fokker–Planck equation, their simple drift models result
in a wrong Prandtl number Pr for monatomic gas molecules. More recently, Heinz
(2004) introduced an acceleration model with an additional time scale, which can be
used to adjust the Prandtl number. However, the physical interpretation of such an
acceleration model is not clear. Yano et al. (2009) proposed a Fokker–Planck equation
with a source term to correct Pr . Later, Jenny et al. (2010) introduced a stochastic
solution algorithm based on the Fokker–Planck approximation for simulations of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

18
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.188


576 M. H. Gorji, M. Torrilhon and P. Jenny

rarefied gas flows. Very good agreement of molecular stresses and mean velocity in
comparison with DSMC, linearized Boltzmann and experiment has been achieved.
Heat fluxes and temperature, however, are in disagreement as expected due to wrong
Pr . An important advantage of this solution algorithm is its computational efficiency,
since it allows the employment of a time integration scheme which does not require
to resolve the collisions. In comparison with BGK-based models which describe
jump-type stochastic processes for evolution of the molecular velocity distribution,
the proposed solution algorithm, on the other hand, employs a diffusion-type process,
whereas much larger time steps and coarser spatial discretization become possible.
The current paper is an extension of the work by Jenny et al. (2010) with the objective
to fix the problem with the wrong Prandtl number. This was achieved by introducing
a drift term which is nonlinear with respect to the molecular velocity. Numerical
validation studies with Knudsen numbers up to 5 confirm that first, second and third
velocity moments are in excellent agreement with DSMC. Moreover, the efficient
particle integration scheme could be generalized for the non-linear particle evolution.
The paper is structured as follows. In § 2, the new Fokker–Planck equation with a
cubic (in velocity) drift coefficient is introduced. Section 3 deals with the numerical
algorithm to solve the corresponding Langevin equation; its detailed derivation is
shown in the Appendix. Numerical studies including homogeneous relaxation of the
molecular velocity distribution and various micro-channel gas flow test cases are
presented in § 4 and compared with DSMC. Finally, § 5 contains some concluding
remarks.

2. Fokker–Planck approximation of the kinetic theory
The non-continuum flow regimes are associated with situations where the

macroscopic properties of the flow are not only functions of themselves but depend
also on the microscopic details. On the other hand, for practical problems, it is
computationally impossible to treat each microscopic interaction. Therefore, the
kinetic theory based on statistical mechanics was introduced to study non-continuum
gas flows.

2.1. Basic equations

For a statistical description of gas flow, the molecular chaos assumption is adopted.
To better understand, let us consider the physical-velocity space with the coordinates
x and V , respectively. In the kinetic theory, the mechanical state of monatomic gas
is fully determined by the positions Xα(t) and velocities Mα(t) of all encompassed
molecules α, which is represented by the molecular density function F (x, V , t). The
evolution of F , for simple monatomic gas molecules, is governed by the Boltzmann
equation

∂F

∂t
+ Vi

∂F

∂xi

+ Gi

∂F

∂Vi

= − 1

ρ

∫
�3

∫ 4π

0

σ |V − V ′|F (V )F (V ′) dΩ dV ′

+
1

ρ

∫
�3

∫ 4π

0

σ |V − V ′|F (V c)F (V ′c) dΩ dV ′ (2.1)

where ρ(x, t) =
∫

�3 F (x, V , t) dV is the gas density and G an external force, which is
considered to be independent of the molecular velocities. Note that here, like in the
following, Einstein’s summation convention is used. The first right-hand-side (r.h.s.)
term describes the rate at which molecules with velocity V collide with others (only
binary collisions are considered), which depends on the relative particle velocity and
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the total collision cross section
∫ 4π

0
σ dΩ . The second rhs term on the other hand

describes at which rate molecules adopt velocity V due to collisions, where (V c, V ′c)
are the deterministic post-collision velocities as functions of the pre-collision state
(V , V ′) and the post-collision relative velocity angle Ω .

From now on, we refer to the rhs of (2.1) as the Boltzmann collision operator
SBoltz(F ).

Note that the mass density function F is related to the probability density function
(PDF) f as F (V , x, t) = ρ(x, t)f (V ; x, t). The high dimensionality of the space
in which F evolves together with the complexity of the collision operator makes
direct numerical solutions of the Boltzmann equation extremely expensive and thus
this approach is limited to few simple problems. Therefore, computationally more
attractive approximations of SBoltz are in high demand. Some of them are mentioned in
the Introduction and here only the Fokker–Planck approximation is further discussed.

2.2. Fokker–Planck approximation

It has been shown by others that a Fokker–Planck (FP) approximation of the
Boltzmann collision operator can be used up to quite large Knudsen numbers and
that it in terms of computational cost it is much more attractive than DSMC (Jenny
et al. 2010). Here, we generalize the simple linear model with the objective to fix
inconsistencies regarding the Prandtl number. Therefore, the generalized form

SFP = −∂(AiF )

∂Vi

+
D2

2

∂2F

∂Vj∂Vj

(2.2)

is considered with the drift and diffusion coefficients Ai(v
′, x, t) and D(x, t),

respectively. Those are functions of the peculiar velocity v′ = V − U , where the
mean (or gas) velocity is defined as U =

∫
�3 Vf dV . The goal is to construct the rhs

of (2.2) such that F relaxes towards a Maxwellian distribution like in other models
as e.g. BGK. To study related aspects and assumptions, first the relevant modelling
issues and then physical interpretations are discussed.

2.2.1. Modelling aspects

Some basic properties of SFP , which are a requirement for any physically acceptable
collision model, e.g. Galilean invariance, conservation of mass, momentum and energy
have already been shown by Jenny et al. (2010). Moreover, the H-theorem and
accordingly the second law of thermodynamics can be proved for the Fokker–Planck
equation with Ai being time-independent (see Shiino 1987). However, here as we are
considering a more general ansatz for Ai , hence the proof of the H-theorem becomes
more challenging. Nevertheless, studying the evolution of the Boltzmann H-function
and consequently the H-theorem using the generalized FP equation, i.e. (2.2) is beyond
the scope of this paper.

Here, we point out some additional features of the FP operator, which makes
it attractive as an approximation of the Boltzmann collision term. For example,
relaxation of higher order moments can be controlled by appropriate expressions
of Ai as polynomial functions of Vi . This leads to a set of macroscopic moment
equations, which are consistent with the Boltzmann equation in the Chapmann–
Enskog approximation with physically correct macroscopic coefficients like viscosity
µ and the Prandtl number Pr . We will apply this procedure with a cubic polynomial
ansatz for the drift coefficient. Moreover, we point out that as the FP approximation is
a model equation for the molecular velocity distribution function, therefore no closure
problem exists. At the same time, one can convert the FP model to an equivalent
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Langevin-type stochastic differential equation (SDE). In this context, many particles
have to be evolved in a manner similar to that in DSMC; however, since the
Langevin-type SDEs describe continuous velocity processes and no direct particle
collisions have to be considered, highly efficient numerical integration schemes can
be developed allowing for much larger time steps. It is important to mention that
the simulated particles do not represent real molecules; they have to be regarded as
computational particles employed to solve the corresponding FP equation.

2.2.2. Physical interpretation

The physical assumptions implied by the FP model are that the particle velocities
change due to a permanent stochastic force and not due to discrete collisions.
Particle interaction thus occurs due to coupling through the coefficients in the
evolution equations, which are functions of stochastic moments of the local ensemble.
Considering the extreme case of infinite Knudsen number, i.e. no inter-molecular
collisions occur, SFP as well as SBoltz become zero and thus the FP and DSMC
models become identical. In the other extreme case of extremely small Knudsen
numbers, the Navier–Stokes equations are recovered by both the FP model and
DSMC; the only concern here is consistency of the macroscopic coefficients. More
challenging to model is the intermediate Knudsen number range, which is important
for many relevant applications and here it is investigated to which extent the FP
model suggested in this paper is applicable.

2.2.3. Drift coefficients

Drift and diffusion coefficients Ai and D can be derived from known velocity
moment evolutions as described next. Here, relaxation of moments up to the heat
flux is derived from the Boltzmann equation assuming Maxwellian molecules. Note,
however, that higher moments could also be included leading to not only more
general, but also more complicated models. First, the velocity moments in the kinetic
framework are defined. Let

pij =

∫
�3

v′
iv

′
jF dV (2.3)

be the pressure tensor and

qi =
1

2

∫
�3

v′
iv

′
j v

′
jF dV (2.4)

the heat flux. For further derivations, the deviatoric part of a tensor pij will be
denoted as p〈ij〉 = (1/2)(pij +pji) − (1/3)pkkδij , where δij is the Kronecker tensor. It is
convenient to divide the pressure tensor into the sensible pressure p and the trace-free
part (stress tensor) πij = p〈ij〉, i.e. pij =pδij +πij . Thermodynamic temperature, sensible
energy and thermal speed are defined as T = mp/kρ, es = 3kT /2m and θ =

√
kT /m,

where k is the Boltzmann constant and m the molecular mass. The production terms
are defined as moments of the Boltzmann collision operator and there exist analytical
expressions (see Truesdell & Muncaster 1980; Struchtrup 2005). Therefore, the second-
and third-order production terms which correspond to the stress tensor πij and heat
flux qi rate of changes, are defined as

Pij =

∫
�3

v′
〈iv

′
j〉S

Boltz dV (2.5)
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and

Pi =
1

2

∫
�3

v′
iv

′
j v

′
jS

Boltz dV , (2.6)

respectively, and assuming Maxwellian molecules they become

Pij = −p

µ
πij (2.7)

and

Pi = −2

3

p

µ
qi, (2.8)

whereas µ is the macroscopic dynamic viscosity coefficient. Here, we should clarify
that the viscosity can be derived from the Boltzmann equation, but in the present FP
model we regard it as a given parameter. For homogeneous moment relaxation, one
obtains

∂πij

∂t
= −p

µ
πij (2.9)

and
∂qi

∂t
= −2

3

p

µ
qi, (2.10)

and hence the ratio between the relaxation rates of stress and heat flux becomes
Pr = 2/3, which is the Prandtl number. Following the same procedure for the SFP

operator, one obtains

Pij = −
∫

�3

(Aiv
′
j + Ajv

′
i + Dδij )F dV (2.11)

and

Pi = −
∫

�3

(Aiv
′
j v

′
j + 2Ajv

′
j v

′
i)F dV (2.12)

with the requirement that
∫

�3 (Aiv
′
j + Ajv

′
i + Dδij )F dV is trace-free. To further

proceed, we consider u′ as a realization from sample space v′ and therefore
Q(u′) =

∫
�3 Q(v′)f dv′ which will be employed for abbreviations. As a result, the

relaxation equations take the form

∂πij

∂t
= −ρAiu

′
j + Aju

′
i + Dδij (2.13)

and
∂qi

∂t
= −ρAiu

′
ju

′
j + 2Aju

′
ju

′
i (2.14)

and one remains with the challenge to find an appropriate formulation for the
coefficients Ai and D.

2.3. Cubic model

For the drift coefficient, we propose a polynomial function of the fluctuating velocity,
which offers enough degrees of freedom to honour consistent viscosity and Prandtl
numbers. The simplest form is quadratic, but this can cause the solution to run away
(see Risken 1989) and therefore the cubic model

Ai = c̃ij v
′
j + γi(v

′
j v

′
j − u′

ju
′
j ) + Λ(v′

iv
′
kv

′
k − u′

iu
′
ku

′
k) (2.15)

is introduced here, whereas the symmetric tensor c̃ij , the vector γi and the scalar Λ will
be determined later. By assuming Λ = 0, γi = 0 and c̃ij = −δij /τ , one obtains the simple
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linear Langevin equation leading to the wrong Prandtl number Pr = 3/2. Therefore,
here we propose a general form of these coefficients in order to fix Pr . There are two
criteria that have to be studied. First, the model should recover the linear FP model in
the limit of equilibrium distribution. It means the linear relaxation term has to appear
in the model. Second, the stability of the equation has to be checked. The quadratic
form will not be stable for any choice of macroscopic coefficients. Therefore, moving
to a cubic form is necessary for stability, but not sufficient. Indeed, the coefficient Λ

of the cubic term should be negative. To fulfill the mentioned criteria, we choose

Λ = − 1

αρ3
|det(πij )|, (2.16)

where det(πππij ) is the determinant of the stress tensor πππij and α = τ (u′
iu

′
i)

4 a scaling
factor with τ = 2µ/p the relaxation time. For the following derivations, it is helpful to
decompose the linear drift term into its equilibrium and perturbation components, i.e.
c̃ij = −δij /τ +cij . By comparing (2.11) with (2.7) and (2.12) with (2.8), the constitutive
relations

cilu
′
ju

′
l + cjlu

′
iu

′
l + 2Λu′

iu
′
ju

′
ku

′
k

γiu
′
lu

′
lu

′
j + γju

′
lu

′
lu

′
i + Dδij − 2

τ
u′

iu
′
j = −p

µ
u′

iu
′
j +

2esp

3µ
δij (2.17)

and

2cjlu
′
lu

′
iu

′
j + cilu

′
lu

′
ju

′
j

+2γj

(
u′

lu
′
l − u′

lu
′
l

)
u′

iu
′
j

+γi

(
u′

lu
′
l − u′

lu
′
l

)
u′

ju
′
j

+2Λ
(
u′

lu
′
ju

′
j − u′

lu
′
ju

′
j

)
u′

lu
′
i

+Λ
(
u′

iu
′
ju

′
j − u′

iu
′
ju

′
j

)
u′

lu
′
l

−3

τ
u′

iu
′
ju

′
j = −Pr p

µ
u′

iu
′
ju

′
j .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.18)

for the molecular stresses and the heat fluxes are obtained. Note that Pr = 2/3 for
monatomic gas. In order to close the system of equations, a diffusion has to be chosen.
In order to recover the linear model in the limit of equilibrium, we keep it like in the
simple Langevin equation, i.e.

D =

√
4es

3τ
. (2.19)

The final Fokker–Planck approximation of the Boltzmann equation for monatomic
gas reads

∂F

∂t
+ Vi

∂F

∂xi

+ Gi

∂F

∂Vi

+
∂

(
(c̃ij v

′
j + γi(v

′
j v

′
j − u′

ju
′
j ) + Λ(v′

iv
′
kv

′
k − u′

iu
′
ku

′
k))F

)
∂Vi

=
∂2

∂Vj∂Vj

(
2es

3τ
F

)
, (2.20)
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whereas the coefficients cij and γi have to be determined by solving the system
consisting of the linear equations

cilu
′
ju

′
l + cjlu

′
iu

′
l + γiu

′
lu

′
lu

′
j + γju

′
lu

′
lu

′
i + 2Λu′

iu
′
ju

′
ku

′
k = 0 (2.21)

and

2Λ
(
u′

lu
′
ju

′
j − u′

lu
′
ju

′
j

)
u′

lu
′
i + Λ

(
u′

iu
′
ju

′
j − u′

iu
′
ju

′
j

)
u′

lu
′
l

+2cjlu
′
lu

′
iu

′
j + cilu

′
lu

′
ju

′
j + 2γj

(
u′

lu
′
l − u′

lu
′
l

)
u′

iu
′
j

+γi

(
u′

lu
′
l − u′

lu
′
l

)
u′

ju
′
j =

5

3τ
u′

iu
′
ju

′
j . (2.22)

It can be seen that in the equilibrium, Λ vanishes as πππij = 0. Moreover, the r.h.s. of
(2.21) and (2.22) become zero and thus cij and γi . Therefore, the presented model
equation recovers the linear FP model in the limit of equilibrium.

2.4. Langevin equation

The high dimensionality of the FP operator makes its direct numerical solution rather
difficult. Indeed, instead of the FP model, equivalent nonlinear stochastic differential
equations (SDEs) of Langevin type are solved for individual particle realizations (here
the particles are statistical representatives of gas molecules). To see this connection,
let us consider an ensemble of such particles whose states (X(t), M(t)) evolve
according to

dMi

dt
= −1

τ
M ′

i + cijM
′
j + γi(M

′
jM

′
j − M ′

jM
′
j )

+ Λ(M ′
iM

′
kM

′
k − M ′

iM
′
kM

′
k) + D

dWi

dt
+ Gi (2.23)

and
dXi

dt
= Mi, (2.24)

where the fluctuating part of the molecular velocity is M ′ = M−U . Note that W (t) with
dW = W (t +dt)− W (t) is a Wiener process, which is a rapidly changing random force
with variance dWi dWj ≡ δij dt and zero mean value dWi ≡ 0. In the limit of infinitely
many particle paths {Xα, Mα}α∈� (here α is the particle index) simulated according to
(2.23) and (2.24), the distribution of molecular velocities Mα at a given location x and
time t becomes consistent with the solution F (V , x, t) of the Fokker–Planck (2.21).
It further leads to evaluating various velocity moments based on the ensemble of
simulated particles, i.e. Q(M) =

∫
�3 Q(V )f dV , where f (V ; x, t) =F (V , x, t)/ρ. At

this point, the integrity of the model clearly reveals that it provides enough freedom
to control the relevant moments and it will be shown next that it allows for very
efficient Monte Carlo simulations.

3. Solution algorithm
Here, an algorithm to simulate the particle evolutions according to the stochastic

differential equations (2.23) and (2.24) with the constitutive relations (2.21) and (2.22)
is presented. Following the line of arguments by Jenny et al. (2010), a method with
the following properties will be devised.

(i) Without external force, mean velocity and energy are conserved.
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(ii) All first and second conditional moments of velocity and position are
reproduced.

(iii) The exact velocity auto-correlation coefficient is recovered.
To cope with the mentioned criteria, a very accurate numerical scheme is proposed
in the following subsection.

3.1. Numerical scheme

Since (2.23) and (2.24) form a nonlinear stochastic system, we cannot seek for an
analytical solution like for the linear Langevin model discussed by Jenny et al. (2010).
However, in the following, we present a novel numerical scheme, which will minimize
the numerical errors of the whole algorithm. Since the operator is Galilean-invariant,
the mean velocity will be preserved and main attention will be given to energy
conservation. At first, we focus on the velocity equation (2.23) and then the evolution
of the position (2.24) will be treated separately. For simplicity, but without loss of
generality, let us assume that there exists no external force, i.e. Gi = 0. The strategy
is to split the nonlinear equation (2.23) into a simple linear Langevin part L and a
nonlinear remainder N as

dMi

dt
=

Li︷ ︸︸ ︷
−1

τ
M ′

i + D
dWi

dt
+

1
τ
Ni︷ ︸︸ ︷

cijM
′
j + γi

(
M ′

jM
′
j − M ′

jM
′
j

)
+ Λ

(
M ′

iM
′
kM

′
k − M ′

iM
′
kM

′
k

)
.

(3.1)

First, we consider the linear part, i.e. dMi/dt =Li . It has a closed solution based on
Itō’s calculus, which is consistent with the exact evolution of moments as shown in
various reference works on stochastic processes (see Chandrasekhar 1943; Gardiner
1985). Considering that the time steps n and n + 1 correspond to the times t and
t + �t , respectively, the proposed scheme for the velocity of a representative particle
is

Mn+1
i = Mn

i + M ′
i

n
(e−�t/τ − 1) +

√
Aξi, (3.2)

where A= 2es(1 − e−2�t/τ )/3 arises from the analytical solution of dMi/dt = Li . The
independent Gaussian random term is denoted by ξi with Normal distribution, zero

mean and a variance of ξ 2
i = 1. For the nonlinear part, we adopt the first-order

forward Euler time integration scheme. Therefore, the full equation is integrated as

Mn+1
i = Mn

i + M ′
i

n
(e−�t/τ − 1) +

√
Ãξi +

�t

τ
Nn

i . (3.3)

Now, we have to find a new diffusion coefficient Ã in order to conserve energy. This
is a crucial step; otherwise, we would need to drastically restrict the time-step size.
The operator 〈.|.〉 is introduced for conditional expectation. We have to evaluate the
conditional variance

〈Mn+1
i Mn+1

i |Mn〉 = Mn
i Mn

i + 2M ′
i
n
M ′

i
n(e−�t/τ − 1)

+ M ′
i
n
M ′

i
n(e−�t/τ − 1)2 + 3Ã +

(
�t

τ

)2

Nn
i Nn

i , (3.4)

where we have already used the fact that M ′
iNi and MiNi vanish. First, note

that MiNi = M ′
iNi , since Ni = 0, and consider the related second-order constitutive

equation, i.e.

cilM
′
jM

′
l + cjlM

′
iM

′
l + γiM

′
lM

′
lM

′
j + γjM

′
lM

′
lM

′
i + 2ΛM ′

iM
′
jM

′
kM

′
k = 0. (3.5)
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1. Particles evolve according to (3.7) and (3.8) for half a time step.
2. Boundary conditions are employed.
3. Required statistical moments are evaluated from the particles at each grid point.
4. Statistical moments are extrapolated to the particles.
5. System (B 1) of constitutive equations is solved for each grid point.
6. Constitutive coefficients are interpolated to the particles.
7. Particles evolve a full time step.
8. Repeat steps (2)–(6).
9. Go back to (1) and continue with the next time step.

Table 1. Computational algorithm.

By setting i = j , the left-hand side (l.h.s.) becomes M ′
iNi and therefore has to vanish.

Going back to (3.4), we choose Ã as

Ã = A −
(

�t

τ

)2
Nn

i Nn
i

3
(3.6)

and it can be shown that this modification conserves energy. Note that Ã always
has to remain positive, which limits the time-step size, but in practical problems with
�t � 4τ , the diffusion coefficient Ã stays positive. The position evolution according
to (2.24) should be consistent with the evolution of the joint expectations XiMj and

XiXj . In Appendix A, we derive an exact scheme for the position based on the
velocity evolution. Here, we just present the final result, i.e.

Mn+1
i = Mn

i + M ′
i

n
(e−�t/τ − 1) +

√
Ã − C2

B
ξi,u +

√
C2

B
ξi,X +

�t

τ
Nn

i + Gn
i �t (3.7)

and

Xn+1
i = Xn

i + M ′
i

n
τ (1 − e−�t/τ ) +

√
Bξi,X + Ui�t +

�t2

2τ
Nn

i + Gn
i �t2/2 (3.8)

with the coefficients

Ã =
2es

3
(1 − e−2�t/τ ) −

(
�t

τ

)2
Nn

i Nn
i

3
, (3.9)

B =

⎛
⎜⎜⎜⎝2esτ

2

3
+

τ 2Nn
i Nn

i

(
�t

τ

)2

3(e−2�t/τ − 1)

⎞
⎟⎟⎟⎠

(
2�t

τ
− (1 − e−�t/τ )(3 − e−�t/τ )

)
, (3.10)

and

C =

⎛
⎜⎜⎜⎝2esτ

3
+

τNn
i Nn

i

(
�t

τ

)2

3(e−2�t/τ − 1)

⎞
⎟⎟⎟⎠ (1 − e−�t/τ )2. (3.11)

For each computational grid, the coefficients cij and γi are evaluated from system
of (2.21) and (2.22). The components of the system are presented in Appendix B.

Each time step of the numerical algorithm is summarized in table 1. For accurate
unsteady results, iterations within each time step may be required.
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3.2. Boundary conditions

The boundary conditions are treated in the same way as discussed by Jenny et al.
(2010). Here, only the wall boundary condition treatment is discussed briefly as
follows.

(a) Time and position where a particle hit the boundary is determined.
(b) The particle is positioned at that intersection point.
(c) The remaining time is calculated.
(d) Statistical moments are interpolated to the particle position.
(e) The particle velocity is determined from the proper PDF.
(f) The particle evolves for the remaining time.

In the trivial case of specular reflection, no statistical modelling for the wall treatment
is required. The velocity component normal to the wall is simply reversed and the
tangential ones remains unaffected. Isothermal wall modelling is more challenging.
While the tangential components are sampled from local Maxwellian distributions
with zero mean and variance θ2

w = kTw/m (Tw is the wall temperature and θw the
thermal velocity), the wall-normal velocity Mn shall be sampled from a distribution
corresponding to the inward flux of a Maxwellian distribution (Jenny et al. 2010), i.e.

f (v) =
H (v)v

C
e−v2/(2θ2

w), (3.12)

with H (.) as the Heaviside function and 1/C being the normalization factor. Note that
f is defined over the sample space v which has a direction towards the computational
domain. In order to generate a particle velocity from (3.12), we consider the inverse
of the cumulative distribution function F (v) =

∫ v

−∞ f (m)dm, i.e.

F (v) = e−v2/(2θ2
w). (3.13)

Further, we may generate a random fraction Rf (uniformly distributed random
number between 0 and 1) and set it equal to F (v). Consequently, the desired wall-
normal component of the particle velocity can be sampled as Mn = ± θw

√
−2 ln(Rf )

which depending on the inward direction, + or − is chosen. The same procedure is
employed in DSMC for initializing the particle velocity after hitting the isothermal
wall (Bird 1994). The difference is indeed in the subsequent evolution of the particle
for the remaining time where in DSMC it continues along a straight line but for FP
it otherwise follows (3.7) and (3.8). After enforcing the boundary conditions, there
is a possibility that the particle again hits the wall and in that case the algorithm
has to be repeated. Note that using the diffuse wall boundary condition, proposed by
Maxwell, may lead to certain limitations (see e.g. Sharipov 2002); however, for the
current study this model was employed.

3.3. Statistical moments

The estimation of statistical moments plays a significant role in terms of
computational efficiency. For statistically stationary problems, a relatively cheap
and efficient algorithm was proposed by Jenny et al. (2001), which is based on
a time-weighted averaging method. Suppose that β̃ is a quantity representing the
estimation of a statistical moment like u

(p)
i1,i2,...,in

which is an ensemble average of

the particle velocity product M
(p)
i1,i2,...,in

= |M ′|pM ′
i1
M ′

i1
. . . M ′

in
. To better understand, we

consider W(x l , t) as an estimation of the number of particles at position x l in the
computational cell l ∈ {1, . . . , Nn} and time t . Therefore, the updated estimation of
that for time step J + 1 using the positions Xj , j ∈ {1, . . . , Np} of all the particles
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will be

WJ+1(x l , t) = µWJ (x l , t) + (1 − µ)

Np∑
j=1

{gl(Xj (t))}, (3.14)

where µ = 1 − 1/na is the weight factor and na characterizes the number of steps over
which it is averaged. The kernel gl(x) was introduced with the constraint

Nn∑
l=1

gl(x) ≡ 1 ∀x ∈ Ω (3.15)

for interpolation. The same procedure can be adopted to update the weighted ensemble
averages S(xl , t), i.e.

SJ+1(x l , t) = µSJ (x l , t) + (1 − µ)

Np∑
j=1

{gl(Xj (t))(M (p)
i1,i2,...,in

)j }. (3.16)

Finally, the updated velocity moment will be obtained as

β̃J+1 =
SJ+1

WJ+1
. (3.17)

For unsteady problems, the above-mentioned method should not be used. There, the
only way towards reducing statistical and bias errors is to increase the number of
particles.

3.4. Numerical validation

We now compare the accuracy of the proposed scheme with a conventional finite-
difference (FD) method. Using simple FD gives rise to the discretization

Mn+1
i − Mn

i =

((
−M ′n

i

τ n
+ cn

ijM
′n
j + γ n

i (M ′n
jM

′n
j − 2es

n)

+ Λn(M ′n
jM

′n
l M

′n
l − M ′n

jM
′n
l M

′n
l )

)
�t +

√
4es

n

3τn
�tξi

)(
1 − �t

2τn

)
(3.18)

and

Xn+1
i − Xn

i =
�t

2
(Mn+1

i + Mn
i ) (3.19)

of the nonlinear equations (3.7) and (3.8). Relaxation of a gas in non-equilibrium
is considered. The initial velocity PDF is described by the superposition of three
Gaussian PDFs, i.e.

f (V ) =
1

3π1.5
(e−(V− p1).(V− p1) + e−(V− p2).(V− p2) + e−(V− p3).(V− p3)). (3.20)

The local mean values of the three modes are denoted by the vectors pk (k ∈ {1, 2, 3}),
which are chosen such that the mean velocity is zero; we chose p1 = (5

√
3, −5, 0)m s−1,

p2 = (−5
√

3, −5, 0) m s−1 and p3 = (0, 10, 0) m s−1. Further, we assume homogeneity
without external forces, i.e. Gi = 0 and consequently es and τ have to remain constant.
To evaluate that the proposed method preserves energy, we calculate es from the
particle ensemble after every time step. To keep the statistical errors small, we employ
Np = 105 particles. Different time-step sizes �t ∈ {τ/16, τ/4, 2τ, 4τ} for the proposed
scheme and �t ∈ {τ/16, τ/4, τ} for the FD integration were employed to ensure that
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Figure 1. e∗
s = es/θ

2 for t/τ ∈ [0, 10] with the common scheme (a) and with the new scheme

(b). For both schemes, different time steps are employed, i.e. �t/τ ∈ { 1
16

, 1
4
, 1} for the common

scheme and �t/τ ∈ { 1
16

, 1
4
, 2, 4} for the new scheme.
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Figure 2. 〈M ′
1|M ′

0〉 for t/τ ∈ [0, 10] with the common scheme (left) and with the new scheme

(right). For both schemes different time steps are employed, i.e. �t
τ

∈ { 1
16

, 1
4
, 1} for the common

scheme and �t
τ

∈ { 1
16

, 1
4
, 2, 4} for the new scheme.

the proposed scheme gives more accurate results for even larger time-step sizes. The
superiority of the new scheme is clearly demonstrated in figures 1(a) and 1(b). The FD
method suffers from numerical dissipation (figure 1a), while the new method (figure 1b)
conserves energy independent of the time-step size. Note that normalizations are
adopted based on thermal speed θ as a reference velocity and τ as a reference
time scale. Conditional expectations are examined for particles with initial velocity
M ′

0 = (θ, 0, 0), whereas the macroscopic coefficients are assumed to remain constant
during the simulation time. The results computed with the new scheme are shown in
figures 2(b), 3(b), 4(b), 5(b) and 6(b), and those computed with the conventional FD
method are depicted in the figures 2(a), 3(a), 4(a), 5(a) and 6(a). Comparisons reveal
that new scheme is much more accurate and consistent than FD integration.

4. Results and discussions
In this section, for verification, the presented collision model is compared with

DSMC for different force-driven micro-channel flows with isothermal walls. The
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Figure 3. 〈M1M1|M ′
0〉 for t/τ ∈ [0, 10] with the common scheme (a) and with the new scheme

(b). For both schemes, different time steps are employed, i.e. �t/τ ∈ { 1
16

, 1
4
, 1} for the common

scheme and �t/τ ∈ { 1
16

, 1
4
, 2, 4} for the new scheme.
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Figure 4. 〈M ′
1X1|M ′

0〉 for t/τ ∈ [0, 10] with the common scheme (a) and with the new scheme

(b). For both schemes, different time steps are employed, i.e. �t/τ ∈ { 1
16

, 1
4
, 1} for the common

scheme and �t/τ ∈ { 1
16

, 1
4
, 2, 4} for the new scheme.

DSMC results are based on the algorithm described by Bird (see Bird 1994) and imple-
mented for Maxwellian molecules. The DSMC code has been developed by the authors
for one-dimensional flow geometries and relevant validations have been performed.
First, the effect of Maxwell (Ma) and Knudsen (Kn) numbers on the PDF shape
evolution was studied. Therefore, the corresponding joint PDFs at the left channel wall
were used as initial conditions for homogeneous simulations. Second, the mass flow
rate as a function of Kn was investigated and the classical Knudsen paradox could be
accurately reproduced up to very large Knudsen numbers. Finally, to investigate heat
transport phenomena, the same micro-channel configuration with different wall tem-
peratures on both sides was considered. It could be demonstrated that the correct heat
flux and temperature distributions can be predicted for very large Knudsen numbers.
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Figure 5. 〈X1|M ′
0〉 for t/τ ∈ [0, 10] with the common scheme (a) and with the new scheme

(b). For both schemes, different time steps are employed, i.e. �t/τ ∈ { 1
16

, 1
4
, 1} for the common

scheme and �t/τ ∈ { 1
16

, 1
4
, 2, 4} for the new scheme.
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Figure 6. 〈X1X1|M ′
0〉 for t/τ ∈ [0, 10] with the common scheme (a) and with the new scheme

(b). For both schemes, different time steps are employed, i.e. �t/τ ∈ { 1
16

, 1
4
, 1} for the common

scheme and �t/τ ∈ { 1
16

, 1
4
, 2, 4} for the new scheme.

4.1. Description of test cases

The micro-channel test case is set up as described by Jenny et al. (see Jenny et al.
2010). Vertical flow (in x2-direction) driven by the external force G =(0, G, 0)T between
two parallel walls is considered. Consequently, velocity and temperature gradients in
the cross-stream direction (x1-direction) are expected. Argon as monatomic gas with
a molecular weight of m =66.3 × 10−27 kg was chosen and standard temperature and
pressure were set at T0 = 273 K and p0 = 101 325 Pa, respectively. For the dynamic
viscosity, the constitutive relation µ = 2.117 × 10−5(T/T0)

0.81 was employed and the
mean free path length is defined as λ= µ

√
θ/p. Based on the definition of λ,

the distance L between the two parallel walls can be calculated for any given
Knudsen number. Note that, for convenience, the normalized force Ĝ = GL/θw will be
considered, whereas θw =

√
kTw/m is the thermal speed based on the wall temperature

Tw . In all test cases, isothermal wall-boundary conditions were applied. While for the
first series of test cases, the left and right wall temperatures TL and TR , respectively,
are both equal to 273 K, i.e. TL = 2TR = 273 K in the last test case. Since infinitely
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Figure 7. Depicted are the normalized (red: maximum value; blue: zero) velocity PDF

contours near the wall for different Kn and Ĝ. (a): {Kn= 0.04, Ĝ = 0.235 & Ma = 0.4};
(b): {Kn= 0.04, Ĝ = 2 & Ma = 1.6}; (c): {Kn= 5.3, Ĝ = 0.1 & Ma = 0.15}; (d ): {Kn= 5.3,

Ĝ = 0.235 & Ma = 0.35}.

long channels are considered, periodic boundary conditions were applied at in- and
outflow of the computational domain, which is discretized into 32 equidistant grid
cells, each containing on average Np = 50 computational particles.

4.2. Homogeneous relaxation

To investigate the validity of the Fokker–Planck approximation for different Kn

and Ma numbers, the relaxation of velocity PDFs in a homogeneous environment
is studied. Therefore, the PDFs obtained at the left wall from micro-channel flow
simulations with different Kn and Ma numbers were used as initial conditions. Note
that these initial PDFs approach isotropic Maxwellian distributions, if Ma → 0
and Kn → 0, but deviate significantly from equilibrium for larger Ma and Kn

numbers. Figure 7 shows the steady-state velocity PDF contours for Kn= 0.04 and
Kn= 5 and different (maximum) Mach numbers obtained at the left micro-channel
wall from DSMC. In order to control Ma, different external forces were applied,
i.e. Ĝ = 0.235, Ĝ = 2 and Ĝ = 0.1 (the maximum Mach numbers were calculated
a posteriori from the steady-state solution). Considering the particles reflected from
the wall (corresponding to the right portion of PDFs), it is shown that they all adopt
a half Maxwellian distribution which is due to the isothermal boundary condition.
The differences show up in the left half of the PDFs. Since larger Ma numbers lead to
larger temperature jumps, an increase of the external force leads to more scattering.
Note that the left portion belongs to the molecules propagating towards the wall. This
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Figure 8. (a–f ) Homogeneous relaxation using DSMC and FP: depicted are the normalized
(red: maximum value; blue: zero) velocity PDF contours. The time interval between successive
maps is τ/10.

effect of Ma on the PDF shape shows that deviation from equilibrium is not only a
function of Kn, but also of Ma. For example, note that only the PDF with low Kn

and low Ma, i.e. that with Ma = 0.4 and Kn= 0.04 shown in figure 7, is very close to
Maxwellian. On the other hand, as we increase the Knudsen number or the external
force, the departure from Maxwellian velocity distribution becomes more prominent.
For the cases with {Kn=0.04 and Ma =1.6} and {Kn= 5.3 and Ma = 0.35}, some
strong non-equilibrium features can be observed in the PDFs. Relaxations of the latter
PDF with the FP model and DSMC are shown in figure 8. The discrepancy between
the results is a direct consequence of the fact that jump processes are approximated
by continuous drift and diffusion processes in the FP model. Note, however, that the
coefficients in the FP model are constructed such that the evolution of second joint
moments and heat fluxes is exact in homogeneous scenarios (like in DSMC).
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Fokker−Planck
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Linearized Boltzmann
Experiment
Navier−Stokes (no slip)

Figure 9. Knudsen paradox depicted are normalized mass flow rates J ∗ = J/(θwĜLρ0) as
functions of the reference Knudsen number. The experimental data are from Dong (1956) and
the linearized Boltzmann results from Ohwada et al. (1989).

4.3. Poiseuille flow in slip regime

Variation of the mass flow rate

J =

∫ L

0

ρU2 dx1, (4.1)

as a function of Kn is shown in figure 9 and a very good agreement between the
FP model results and the experimental data by Dong (1956) can be observed up
to Kn= 4. It is encouraging to see that for large Knudsen numbers the FP model
leads to better agreement with experiment and DSMC than linearized Boltzmann
calculations from Ohwada, Sone & Aoki (1989) by using hard sphere molecules.
Moreover, while Navier–Stokes with no-slip boundary conditions depicted here for
general comparisons, cannot predict the flux minimum at Kn ≈ 1, it is captured
very accurately by the FP model. However, it should also be noted that Navier–
Stokes equations with the proper velocity-slip boundary condition, e.g. Cercignani’s
second-order slip model (Cercignani 1964) provides much more accurate results in
the mentioned problem (Hadjiconstantinou 2003). Detailed comparisons between
DSMC and FP for the case of Kn= 0.2 and Kn= 0.5 are shown in figures 10
and 11, respectively. A very good agreement for Kn= 0.2 and close behaviour for
Kn= 0.5 can be observed. For example, the FP model correctly predicts velocity slip
temperature jump at the channel walls, and the local temperature minimum in the
centre of the channel. The latter is a phenomenon which cannot be captured by a
Navier–Stokes–Fourier system, even if the correct velocity slip and temperature jump
are imposed at the wall boundaries (see Zheng, Garcia & Alder 2002; Xu 2003, 2004;
Taheri, Torrilhon & Struchtrup 2009).

In order to study field quantities of flows with higher reference Knudsen numbers,
in the following subsection another test case with an imposed temperature difference
between left and right walls is considered.
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Figure 10. (a–h) Force-driven Poiseuille flow at Kn= 0.2: depicted are normalized mean

velocity U ∗
2 = U2/(θwĜ), normalized temperature T/Tw , normalized stress components π∗

ij =

πππij /(θ
2
w), normalized heat fluxes q∗

i = qi/(θ
3
w) and normalized pressure p/p0 along the cross-

stream direction x1/L. Circles indicate DSMC and solid lines FP results.

4.4. Heat transport

Here, the classical problem of heat transport between parallel plates is considered. The
set-up is the same as in the previous test case, except that different wall temperatures
are imposed, i.e. TL =2TR = Tw as mentioned earlier. This test case has been employed
in the past for various studies with small temperature differences (see Springer 1971;
Sharipov & Seleznev 1998; Torrilhon & Struchtrup 2009). As we do not make any
linearizations, however, a large temperature difference is applied here. FP and DSMC
solutions were calculated for Kn= 1 and Kn= 2 whereas the external force was kept
small, i.e. Ĝ = 0.05. Figures 12 and 13 show profiles of steady-state field quantities for
Kn= 1 and Kn= 2, respectively, and comparison shows that the two methods lead to
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Figure 11. (a–h) Force-driven Poiseuille flow at Kn= 0.5: depicted are normalized mean

velocity U ∗
2 =U2/(θwĜ), normalized temperature T/Tw , normalized stress components π∗

ij =

πππij /(θ
2
w), normalized heat fluxes q∗

i = qi/(θ
3
w) and normalized pressure p/p0 along the cross-

stream direction x1/L. Circles indicate DSMC and solid lines FP results.

almost identical solutions. This is encouraging, especially since the Knudsen numbers
are quite large here.

4.5. Discussion of computational efficiency

Besides comparisons between DSMC and FP regarding their accuracy, their
computational costs are also of major interest. Generally, apart from the number
of particles Np , which is a key parameter, the cost of DSMC scales with the number
of collisions Nc = Npν�t/2, where ν stands for collision frequency and �t for the time-
step size. The collision frequency depends on p/µ and therefore in high-density flows
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Figure 12. (a–d ) Force-driven Poiseuille flow with Kn= 1 and different wall temperatures:

depicted are normalized mean velocity U ∗
2 = U2/(θwĜ), normalized temperature T ∗ = T/TL

and normalized heat fluxes q∗
i = qi/(θ

3
w) along the cross-stream direction x1/L. Circles indicate

DSMC and solid lines FP results.

usually a large number of collisions need to be considered at each time step. This leads
to a very high computational cost, in particular, in the low-Knudsen-number regime.

In contrast, the cost of the FP model scales with the number of time steps and
therefore, with the proposed particle time integration scheme, the efficiency of the
method becomes independent of the collision frequency. As a direct consequence, for
moderate Knudsen numbers, this allows for much faster simulations compared to
DSMC.

To better assess the computational efficiency that would be gained by using
the proposed solution algorithm, a comparison has been done on the CPU-time
consuming by FP and DSMC for Poiseuille flow scenario with constant wall
temperatures described in § 4.1, during one time step. It was carried out by employing
the same spatial and temporal descretizations for both FP and DSMC; hence,
this comparison does not embody the computational advantages of the presented
method comprehensively. However, this would give a rough idea about the speed
of the algorithms. The test has been performed for different number of particles,
i.e. Np ∈ {50, 100, 500, 5000, 104, 105} per computational cell and different Kn ,
i.e. Kn ∈ {0.01, 0.05, 0.1}. Results shown in figure 14, reveal that the FP model
admits much faster simulations which for lower Kn become more prominent, as was
mentioned before.

A further advantage of the FP model is that for steady-state problems, exponentially
weighted moving time averaging can be employed (as described in § 3.3) to drastically
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Figure 13. (a–d ) Force-driven Poiseuille flow with Kn= 2 and different wall temperatures:

depicted are normalized mean velocity U ∗
2 = U2/(θwĜ), normalized temperature T ∗ = T/TL

and normalized heat fluxes q∗
i = qi/(θ

3
w) along the cross-stream direction x1/L. Circles indicate

DSMC and solid lines FP results.

reduce the number of computational particles while keeping statistical and bias errors
constant. This leads to a tradeoff between an increased number of required time
steps due to the induced time lag and computational gain per time step due to a
decrease of the required particle number. In general, however, this technique proved
to significantly reduce the simulation times. Note that although the exponentially
weighted moving time averaging reduces the statistical error in DSMC, it cannot
be employed there to control the deterministic bias error. As the FP model, in the
presented algorithm, is solved by using stochastic particle methods, similar barriers
like DSMC would be faced concerning unsteady flow simulations. However, it is
interesting to note that as in the FP framework particles follow independent stochastic
paths, therefore, in contrast to DSMC (see Dagum 1991), very efficient parallel
implementations of the algorithm can be achieved.

Rarefied gas flows in higher dimensional geometries would be handled by the FP
model with a relatively cheap computational cost. For example, the flow around a
cylinder has been simulated by Jenny et al. (2010), employing linear drift coefficient,
where they have shown that major flow gradients can be captured even by using very
coarse spatial grids. Therefore, the algorithm would deal with complex geometries
very easily which is not surprising as the governing equations here are solved through
particles.
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Figure 14. CPU-time comparison between DSMC and FP. Depicted is the ratio of the
CPU-times between DSMC and FP for different Kn∈ {0.01, 0.05, 0.1} employing different
particle numbers, i.e. Np ∈ {50, 100, 500, 5000, 104, 105} per computational cell. Note that an
identical time-step size and grid spacing have been used for both.

5. Conclusion
In this paper, an extension of the gas-kinetics approximation presented by Jenny

et al. (2010) is proposed, which leads to the correct Prandtl number of 2/3 for
monatomic gas molecules. This was achieved by introducing a cubic drift term in
the stochastic particle model. Moreover, an accurate and energy conserving solution
algorithm was devised in order to allow for large time steps.

Different aspects of the presented FP model were investigated, in which force-
driven Poiseuille flows were considered. From the good agreement with DSMC and
experiments, at least for low Mach numbers, it can be concluded that the continuous
stochastic processes for the particle velocities are suitable for simulations of rarefied
gas flows from very small up to quite high Knudsen numbers.

In terms of efficiency, the FP-based solution algorithm is far superior than collision-
based algorithms like DSMC, which is due to the independent particle evolutions in
the FP model, smaller number of required particles and large time steps which can
be employed.

The authors would like to acknowledge the useful comments from Professor S.
Heinz.

Appendix A. Postition evolution
The position evolution scheme should be calculated by using time integration of

the particle velocity, i.e.

�Xi =

∫ �t

0

Mi dt. (A 1)
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For simplicity, but without loss of generality, we consider an ensemble of particles
without mean velocity, i.e. M = M ′. Before deriving the position evolution scheme,
we need to find a modified Langevin-type equation in order to compensate the error
introduced by the time integration of the nonlinear term in the velocity equation. Let
us assume that we have a modified diffusion coefficient D̃ = D2 + f . In that case,
without external force, the nonlinear Langevin equation becomes

dMi

dt
= −1

τ
Mi +

√
D̃

dWi

dt
+ Ni. (A 2)

Assuming Ni to be independent of time, the solution of (A 2) reads (see Chandrasekhar
1943)

Mn+1
i = Mi

ne−�t/τ + lim
N→∞

N∑
k=1

ξk,i

√
(D2 + f )

(
�t

N

)
e−k�t/Nτ + Ni

(
�t

τ

)
. (A 3)

Now, we have to calculate the evolution of the velocity variance

〈Mi
n+1Mi

n+1|Mn〉 = 3f

∫ �t

0

e
−2�t

τ dt +
Ni

nNi
n

τ 2
�t2. (A 4)

As there is no external force, we need to fulfill the conservation of energy, which leads
to

f = −
Nn

i Nn
i

(
�t

τ

)2

3τ

2
(e−2�t/τ − 1)

. (A 5)

Now, the modified stochastic velocity equation becomes

dMi

dt
= −1

τ
Mi +

√√√√√√√D2 −
Nn

j Nn
j

(
�t

τ

)2

3τ

2
(e−2�t/τ − 1)

dWi

dt
+ Ni. (A 6)

Note that f is a consistent numerical correction and has no physical meaning. Now,
we are ready to show that the proposed scheme is consistent with (A 1) and (A 6) and
accurately reproduces the joint second moments of velocity and position. Using Ito
calculus, from (A 1) and (A 3), it follows that

�Xn+1
i = Mi

nτ (1 − e−�t/τ ) + lim
N→∞

N∑
k=1

ξk,i

√
(D2 + f )

(
�t

N

)
τ (1 − e−k�t/Nτ ). (A 7)

Therefore,

〈�Xn+1
i �Xn+1

j |Mn〉 = Mn
i Mn

j τ 2(1 − e−�t/τ )2 + δij

∫ �t

0

(D2 + f )(1 − e−�t/τ )2dt. (A 8)

Following the same approach for 〈�Xn+1
i Mn+1

j |Mn〉 leads to

〈�Xn+1
i Mn+1

j |Mn〉 = Mn
i Mn

j τ (e−�t/τ − e−2�t/τ ) + δij

∫ �t

0

(D2 + f )τ 2(e−�t/τ − e−2�t/τ ) dt.

(A 9)
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Lets consider a general form for the evolution of velocity and position. We can
use independent Gaussian variables to reproduce the evolution of the joint second
moments, i.e.

Mn+1
i = Mi

ne−�t/τ +

√
Ã − C2

B
ξi,u +

√
C2

B
ξi,x +

�t

τ
Nn

i (A 10)

and

Xn+1
i = Xn

i + Mn
i τ (1 − e−�t/τ ) +

√
Bξi,x +

�t2

2τ
Nn

i . (A 11)

This is consistent with the general solutions given by (A 3) and (A 7). From above
equations, the second-order statistics becomes

〈�Xn+1
i �Xn+1

j |Mn〉 = Mn
i Mn

j τ 2(1 − e−�t/τ )2 + δijB (A 12)

〈�Xn+1
i Mn+1

j |Mn〉 = Mn
i Mn

j τ (e−�t/τ − e−2�t/τ ) + δijC. (A 13)

From the integration term in (A 8), B can be calculated as

B =

⎛
⎜⎜⎜⎝2esτ

2

3
+

τ 2Nn
i Nn

i

(
�t

τ

)2

3(e−2�t/τ − 1)

⎞
⎟⎟⎟⎠

(
2�t

τ
− (1 − e−�t/τ )(3 − e−�t/τ )

)
, (A 14)

and finally C from (A 9) becomes

C =

⎛
⎜⎜⎜⎝2esτ

3
+

τNn
i Nn

i

(
�t

τ

)2

3(e−2�t/τ − 1)

⎞
⎟⎟⎟⎠ (1 − e−�t/τ )2. (A 15)

Appendix B. System of constitutive equations
The constitutive relations can be written as a system of linear equations, i.e.(

V6×6 W6×3

X3×6 Y3×3

) (
C6×1

γ3×1

)
=

(
Z6×1

R3×1

)
, (B 1)

consisting of nine equations (six for Pij and three for Pi) and nine unknown coefficients
(six cij and three γi). Before we proceed, some higher order moments necessary for
further derivations are presented. Moreover, for compactness, the definition

u
(p)
i1,i2,...,in

=

∫
�3

|v′|pv′
i1
v′

i1
. . . v′

in
f dV (B 2)

for general velocity moment is employed. For example,

u
(0)
ijk = u′

iu
′
ju

′
k, (B 3)

u
(2)
i = u′

iu
′
ju

′
j , (B 4)

u(4) = u′
iu

′
iu

′
ju

′
j , (B 5)

u
(2)
ij = u′

iu
′
ju

′
lu

′
l (B 6)

u
(4)
ij = u′

iu
′
ju

′
lu

′
lu

′
ku

′
k (B 7)
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contribute to the blocks in the system (B 1). Now, based on the constitutive relations,
i.e. (2.21) and (2.22), we present the blocks in the linear system (B 1), i.e. the upper
right matrix block

W6×3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2u
(2)
1 0 0

u
(2)
2 u

(2)
1 0

u
(2)
3 0 u

(2)
1

0 2u
(2)
2 0

0 u
(2)
3 u

(2)
2

0 0 2u
(2)
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B 8)

the upper left matrix block

V6×6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2u
(2)
11 2u

(2)
12 2u

(2)
13 0 0 0

u
(2)
12 u

(2)
22 + u

(2)
11 u

(2)
23 u

(2)
12 u

(2)
13 0

u
(2)
13 u

(2)
23 u

(2)
33 + u

(2)
11 0 u

(2)
12 u

(2)
13

0 2u
(2)
12 0 2u

(2)
22 2u

(2)
23 0

0 u
(2)
13 u

(2)
12 u

(2)
23 u

(2)
33 + u

(2)
22 u

(2)
23

0 0 2u
(2)
13 0 2u

(2)
23 2u

(2)
33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B 9)

the transpose of the lower left matrix block

XT
3×6 = 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u
(2)
111 − u

(0)
11 u

(2)
1 2(u(2)

112 − u
(0)
11 u

(2)
2 ) u

(2)
113 − u

(0)
13 u

(2)
1

2(u(2)
112 − u

(0)
11 u

(2)
2 ) 2(u(2)

122 − u
(0)
12 u

(2)
2 ) 2(u(2)

123 − u
(0)
23 u

(2)
1 )

2(u(2)
113 − u

(0)
11 u

(2)
3 ) 2(u(2)

123 − u
(0)
12 u

(2)
3 ) 2(u(2)

133 − u
(0)
13 u

(2)
2 )

u
(2)
122 − u

(0)
12 u

(2)
2 u

(2)
222 − u

(0)
22 u

(2)
2 u

(2)
233 − u

(0)
23 u

(2)
2

2(u(2)
123 − u

(0)
12 u

(2)
3 ) 2(u(2)

223 − u
(0)
22 u

(2)
3 ) 2(u(2)

233 − u
(0)
22 u

(2)
3 )

u
(2)
133 − u

(0)
13 u

(2)
3 u

(2)
233 − u

(0)
23 u

(2)
3 u

(2)
333 − u

(0)
33 u

(2)
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u
(4)
1 − u

(2)
1 u(2) 0 0

u
(4)
2 − u

(2)
2 u(2) u

(4)
1 − u

(2)
1 u(2) 0

u
(4)
3 − u

(2)
3 u(2) 0 u

(4)
1 − u

(2)
1 u(2)

0 u
(4)
2 − u

(2)
2 u(2) 0

0 u
(4)
3 − u

(2)
3 u(2) u

(4)
2 − u

(2)
2 u(2)

0 0 u
(4)
3 − u

(2)
3 u(2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B 10)
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the lower right matrix block

Y3×3 = −2u(2)

⎛
⎜⎜⎝

u
(0)
11 u

(0)
12 u

(0)
13

u
(0)
12 u

(0)
22 u

(0)
23

u
(0)
13 u

(0)
23 u

(0)
33

⎞
⎟⎟⎠ + 2

⎛
⎜⎜⎝

u
(2)
11 u

(2)
12 u

(2)
13

u
(2)
12 u

(2)
22 u

(2)
23

u
(2)
13 u

(2)
23 u

(2)
33

⎞
⎟⎟⎠

+ (u(4) − (u(2))2)I3×3, (B 11)

the upper right-hand side vector

Z6×1 = −2Λ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u
(2)
11

u
(2)
12

u
(2)
13

u
(2)
22

u
(2)
23

u
(2)
33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B 12)

and the lower right-hand side vector

R3×1 = (−2Pr + 3)

⎛
⎜⎜⎝

u
(2)
1

u
(2)
2

u
(2)
3

⎞
⎟⎟⎠

+Λ

⎛
⎜⎜⎜⎜⎝

−3u
(4)
1 + u(2)u

(2)
1 + 2

(
u

(0)
11 u

(2)
1 + u

(0)
12 u

(2)
2 + u

(0)
13 u

(2)
3

)
−3u

(4)
2 + u(2)u

(2)
2 + 2

(
u

(0)
12 u

(2)
1 + u

(0)
22 u

(2)
2 + u

(0)
23 u

(2)
3

)
−3u

(4)
3 + u(2)u

(2)
3 + 2

(
u

(0)
13 u

(2)
1 + u

(0)
23 u

(2)
2 + u

(0)
33 u

(2)
3

)

⎞
⎟⎟⎟⎟⎠ . (B 13)
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