
Proceedings of the Edinburgh Mathematical Society (2019) 62, 179–196

doi:10.1017/S0013091518000111

THREE SOLUTIONS FOR A SINGULAR QUASILINEAR
ELLIPTIC PROBLEM

FRANCESCA FARACI1 AND GEORGE SMYRLIS2

1Dipartimento di Matematica e Informatica, Università degli Studi di Catania,
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Abstract In the present paper we deal with a quasilinear problem involving a singular term. By com-
bining truncation techniques with variational methods, we prove the existence of three weak solutions.
As far as we know, this is the first contribution in this direction in the high-dimensional case.
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1. Introduction

In the present paper we consider the following singular quasilinear problem
⎧⎪⎨
⎪⎩
−Δpu = λf(x, u) + μus−1 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(Pλ,μ)

where Ω is a bounded domain in R
N (N ≥ 2) with boundary ∂Ω of class C2, 1 < p < N ;

Δp is the p-Laplacian operator, i.e. Δpu = div(|∇u|p−2∇u); f : Ω × [0,+∞[→ [0,+∞[ is
a Carathéodory function, 0 < s < 1; and λ, μ are positive parameters. Throughout the
following, we assume that for almost all (a.a.) x ∈ Ω, f(x, 0) = 0, and that f(x, t) > 0 for
t > 0. Moreover, we assume that

f(x, t) ≤ c(1 + tq−1) for a.a. x ∈ Ω and all t ≥ 0, (H)

where c > 0, 1 < q < p∗ and p∗ is the critical Sobolev exponent. Let F : Ω × [0,+∞[→ R

also be the primitive of f , i.e.

F (x, t) =
∫ t

0

f(x, z) dz.
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By a weak solution of (Pλ,μ) we mean a function u ∈W 1,p
0 (Ω) such that u > 0 almost

everywhere (a.e.) in Ω and

us−1ϕ ∈ L1(Ω),
∫

Ω

|∇u|p−2∇u∇ϕ =
∫

Ω

[λf(x, u) + μus−1]ϕ

for all ϕ ∈W 1,p
0 (Ω).

Owing to the presence of the singular term, the energy functional associated with
(Pλ,μ) is not differentiable on the whole space W 1,p

0 (Ω), even in the sense of Gâteaux.
Nevertheless, it is continuous for 0 < s < 1 and of class C1 on certain closed convex
subsets of W 1,p

0 (Ω) (see [4, Corollary A.1]). Moreover, some of its truncations are of class
C1 on the whole space (see [4, Lemma A.3]).

Problems with singular terms were studied primarily in the context of semilinear equa-
tions (i.e. p = 2). In this regard, we mention the works of Coclite and Palmieri [3]; Lazer
and McKenna [8]; Hirano et al. [6]; Lair and Shaker [7]; Sun et al. [15]; Zhang [17] and
the references therein.

Coclite and Palmieri [3] obtained a bifurcation type result for the parametric problem⎧⎪⎨
⎪⎩
−Δu = λuq−1 + us−1 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

where 2 < q < 2∗, λ > 0, s < 1.
More precisely, they showed that if ∂Ω is of class C3, then there exists a positive real

number λ∗ such that the problem has at least one positive solution belonging to C2(Ω) ∩
C(Ω) for 0 < λ < λ∗ and no positive solutions for λ > λ∗. The result was improved by
Hirano et al. [6] who proved, via non-smooth critical point theory, the existence of two
smooth positive solutions for 0 < λ < λ∗.

Inspired by the work of Lair and Shaker [7], Sun et al. [15] and Zhang [17]
considered a parametric problem with a singularity of the type β(x)us−1 with
0 < s < 1, β ∈ L2(Ω)+.

They produced two positive weak solutions for small λ > 0 and for suitable functions
β. In the framework of the multiplicity of solutions for a semilinear elliptic problem with
singular term, let us mention also the recent contribution of Arcoya and Moreno-Mérida
[2], in which two solutions are obtained as the limit of two different sequences of solutions
of suitable approximated problems.

Recently, several authors have focused on singular equations driven by the p-Laplacian.
In this context, we mention the papers of Perera and Zhang [10]; Perera and Silva [9];
Giacomoni et al. [5]; and Giacomoni and Saoudi [4].

Both Perera and Silva [9] and Perera and Zhang [10] studied the parametric singular
problem ⎧⎪⎨

⎪⎩
−Δpu = λf(x, u) + β(x)us−1 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

where f(x, ·) is (p− 1)-superlinear near ∞.
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Under certain hypotheses on β, the authors ensured two positive weak solutions for
small λ.

Giacomoni et al. [5] proved a bifurcation-type result when the reaction term is of the
form λus−1 + uq−1, 0 < s < 1, p < q < p∗ (see also [4] for more general singularities and
superlinear perturbations).

In all the aforementioned works, the existence of at most two positive solutions is
proved. Higher multiplicity results seem to be less investigated. As far as we know, the
only result ensuring the existence of three weak solutions for parametric singular problems
can be found in the paper by Zhao et al. [18], in which the authors study the problem⎧⎪⎨

⎪⎩
−Δpu = λf(x, u) + λβ(x)us−1 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

where f(x, ·) is (p− 1)-sublinear near ∞ and verifies the inequality f(x, t) ≥ β(x) a.e. in
Ω, for t close to zero, where β ≥ 0, β 	= 0. In this paper, it is crucial that p > N . Indeed
it turns out to be essential in the proofs, the compactness of the embedding of W 1,p

0 (Ω)
in C0(Ω).

In the present paper, we prove two multiplicity results. The first ensures the existence
of two solutions via an application of the Ambrosetti and Rabinowitz Mountain Pass
theorem [1] when λ = μ and f satisfies the so-called Ambrosetti Rabinowitz assumption.
In this case, no assumptions on zero are required on f , and direct minimization procedures
as well as the relation between C1 and W 1,p

0 local minimizers are involved. Thus, we
provide here a different proof to that given in [9], where the same result has been obtained
by perturbation methods.

The main contribution of the manuscript is the existence of three weak positive solu-
tions for the problem (Pλ,μ), provided that the positive parameters λ, μ take values in
certain intervals under the assumption that f is (p− 1)-superlinear at zero and (p− 1)-
sublinear at ∞. We emphasize that, unlike in [18], we consider the higher-dimensional
case (i.e. N > p). All three obtained solutions belong to a fixed ball in W 1,p

0 (Ω). Our
approach does not make use of the critical point theory on convex sets or of the more
sophisticated theory of weak slope for semicontinuous functionals. This result is based on
a very careful application of an abstract result of Ricceri [13] ensuring the existence of
two local minimizers, which turn out to be weak solutions of the problem according to
the very general definition given here. The existence of the third solution is obtained by
applying the well-known Mountain Pass theorem of Pucci and Serrin [11] to an appropri-
ate truncation of the energy functional and combining in a suitable way some arguments
of [4], such as regularity theory, a strong comparison principle and the relation between
C1 and W 1,p

0 local minimizers (all in the framework of the singular case).
Our multiplicity results are the following.

Theorem 1.1. In addition to (H), suppose that:

H(j) there exist constants η > p,M > 0 such that

0 < ηF (x, t) ≤ f(x, t)t for a.a. x ∈ Ω and all t ≥M.
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Then, there exists λ̄ > 0 such that, for every λ ∈]0, λ̄[, problem (Pλ,λ) has at least two
weak solutions belonging to int(C1

0 (Ω)+).

Theorem 1.2. In addition to (H), suppose that

H(i) lim
t→0+

supx∈Ω F (x, t)
tp

= 0;

H(ii) lim
t→+∞

supx∈Ω F (x, t)
tp

= 0.

Set

λ∗ =
1
p

inf
{ ∫

Ω
|∇u(x)|p dx∫

Ω
F (x, u(x)) dx

:
∫

Ω

F (x, u(x)) dx > 0
}
. (1)

Then, for each compact interval [a, b] ⊂]λ∗,+∞[, there exists r > 0 with the following
property: for every λ ∈ [a, b], there exists μ∗ > 0 such that for each μ ∈ [0, μ∗], the problem
(Pλ,μ) has at least three weak solutions belonging to int(C1

0 (Ω)+) whose norms are less
than r.

2. Preliminaries and tools

The present section contains our main tools and some auxiliary results which turn out
to be essential for our proof. Let us recall that in the ordered Banach space C1

0 (Ω) the
positive cone

C+ =
{
u ∈ C1

0 (Ω) : u(x) ≥ 0 ∀ x ∈ Ω
}

has a non-empty interior given by

int C+ =
{
u ∈ C+ : u(x) > 0 ∀ x ∈ Ω,

∂u

∂n
(x) < 0 ∀ x ∈ ∂Ω

}

(n being the outward unit normal to ∂Ω).
Moreover, on the Sobolev space W 1,p

0 (Ω)(1 < p <∞), we consider the norm

‖u‖ =
(∫

Ω

|∇u(x)|p dx
)1/p

.

Since we are interested in positive solutions and the hypotheses in our theorems concern
the positive semiaxis, we may (and will) assume that

f(x, t) = 0 for a.a. x ∈ Ω and all t ≤ 0.

Denote by Φ, J,Ψ : W 1,p
0 (Ω) → R the functionals defined by

Φ(u) =
1
p
‖u‖p,

J(u) =
∫

Ω

F (x, u) dx,
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Ψ(u) =
1
s

∫
Ω

us
+ dx,

where, as usual, u+ = max{u, 0} and u− = max{−u, 0}.
Define also the energy functional associated to the problem (Pλ,μ), i.e. the functional

E : W 1,p
0 (Ω) → R given by

E (u) = Φ(u) − λJ(u) − μΨ(u).

Throughout the following, we will adopt the following notations: Br denotes the open
ball in W 1,p

0 (Ω) centred at zero of radius r, and c is a constant whose value (unless
specified) may vary from line to line. In addition, we denote respectively by ϕ1 and λ1 the
|| · ||p-normalized positive principal eigenfunction and the principal eigenvalue associated
with the operator (−Δp,W

1,p
0 (Ω)). It is well known that ϕ1 ∈ int C+.

We introduce now some key tools which resemble classical results from critical point
theory. However, because of the peculiar approach we deal with, we can not make use of
the classical theory.

Proposition 2.1. Assume (H) and let λ, μ > 0. Then, if u is a local minimizer of E ,
it is a weak solution of problem (Pλ,μ).

Proof. Let ρ > 0 such that E (u) ≤ E (v) for every v ∈ Bρ(u) = u+Bp. We claim that
u > 0 a.e. in Ω.

For t ∈ (0, 1) small enough, one has u+ tu− ∈ Bρ(u) and (u+ tu−)+ = u+. So,

0 ≤ E (u+ tu−) − E (u)
t

=
1
p

(‖u+ tu−‖p − ‖u‖p

t

)
− λ

∫
Ω

F (x, u+ tu−) − F (x, u)
t

− μ

s

∫
Ω

(u+ tu−)s
+ − us

+

t

=
1
p

(‖u+ tu−‖p − ‖u‖p

t

)
→

∫
Ω

|∇u|p−2∇u∇u− = −‖u−‖p as t→ 0+.

(Recall that for a.a. x ∈ Ω, f(x, z) = 0, for all z ≤ 0.)
From the above computation, it follows that u− = 0, so u ≥ 0 a.e. in Ω.
Assume that there exists a set of positive measure A such that u = 0 in A. Let

ϕ : Ω → R be a function in W 1,p
0 (Ω), positive in Ω. For t > 0 small enough, the function

u+ tϕ ∈ Bρ(u) and (u+ tϕ)s > us a.e. in Ω, so

0 ≤ E (u+ tϕ) − E (u)
t

=
1
p

(‖u+ tϕ‖p − ‖u‖p

t

)
− λ

∫
Ω

F (x, u+ tϕ) − F (x, u)
t
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− μ

st1−s

∫
A

ϕs − μ

s

∫
Ω\A

(u+ tϕ)s − us

t

<
1
p

(‖u+ tϕ‖p − ‖u‖p

t

)
− λ

∫
Ω

F (x, u+ tϕ) − F (x, u)
t

− μ

st1−s

∫
A

ϕs → −∞ as t→ 0+.

The contradiction ensures that u > 0. Let us prove now that

us−1ϕ ∈ L1(Ω) for all ϕ ∈W 1,p
0 (Ω) (2)

and

∫
Ω

|∇u|p−2∇u∇ϕ− λ

∫
Ω

f(x, u)ϕ− μ

∫
Ω

us−1ϕ ≥ 0 for all ϕ ∈W 1,p
0 (Ω), ϕ ≥ 0. (3)

Choose ϕ ∈W 1,p
0 (Ω), ϕ ≥ 0. Fix a decreasing sequence {tn} ⊆ ]0, 1] with limn tn = 0. The

functions

hn(x) =
(u(x) + tnϕ(x))s − u(x)s

tn

are measurable and non-negative, and limn hn(x) = su(x)s−1ϕ(x) for a.a. x ∈ Ω. From
Fatou’s lemma, we deduce

∫
Ω

us−1ϕ ≤ 1
s

lim inf
n

∫
Ω

hn. (4)

As above, for n large enough,

0 ≤ E (u+ tnϕ) − E (u)
tn

=
1
p

‖u+ tnϕ‖p − ‖u‖p

tn
− λ

∫
Ω

F (x, u+ tnϕ) − F (x, u)
tn

− μ

s

∫
Ω

hn

so, from (4), passing to the lim inf in the above inequality, we deduce at once condition
(2) (it is enough to prove the integrability for a non-negative test function) and

μ

∫
Ω

us−1ϕ ≤
∫

Ω

|∇u|p−2∇u∇ϕ− λ

∫
Ω

f(x, u)ϕ,

which is claim (3).
In what follows, we adapt the argument of [15] (see the proof of Theorem 1). Let

ε ∈]0, 1[ such that (1 + t)u ∈ Bρ(u) for all t ∈ [−ε, ε]. The function ξ̃(t) = E ((1 + t)u)
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has a local minimum at zero and

0 = ξ̃′(0) = lim
t→0

E ((1 + t)u) − E (u)
t

=
∫

Ω

|∇u|p − μ

∫
Ω

us − λ

∫
Ω

f(x, u)u.

So, ∫
Ω

|∇u|p = μ

∫
Ω

us + λ

∫
Ω

f(x, u)u. (5)

Let ϕ ∈W 1,p
0 (Ω) and plug into (3) the test function v = (u+ εϕ)+. Hence, using (5), we

have

0 ≤
∫
{u+εϕ≥0}

|∇u|p−2∇u∇(u+ εϕ) − μ

∫
{u+εϕ≥0}

us−1(u+ εϕ)

− λ

∫
{u+εϕ≥0}

f(x, u)(u+ εϕ)

=
∫

Ω

|∇u|p + ε

∫
Ω

|∇u|p−2∇u∇ϕ− μ

∫
Ω

us − εμ

∫
Ω

us−1ϕ

− λ

∫
Ω

f(x, u)u− ελ

∫
Ω

f(x, u)ϕ

−
∫
{u+εϕ<0}

|∇u|p − ε

∫
{u+εϕ<0}

|∇u|p−2∇u∇ϕ+ μ

∫
{u+εϕ<0}

us−1(u+ εϕ)

+ λ

∫
{u+εϕ<0}

f(x, u)(u+ εϕ)

≤ ε

[∫
Ω

|∇u|p−2∇u∇ϕ− μ

∫
Ω

us−1ϕ− λ

∫
Ω

f(x, u)ϕ
]

− ε

∫
{u+εϕ<0}

|∇u|p−2∇u∇ϕ.

Notice that as ε→ 0, the measure of the set {u+ εϕ < 0} → 0, so

∫
{u+εϕ<0}

|∇u|p−2∇u∇ϕ→ 0.

Hence, dividing by ε, and passing to the limit as ε→ 0, we get that

∫
Ω

|∇u|p−2∇u∇ϕ− μ

∫
Ω

us−1ϕ− λ

∫
Ω

f(x, u)ϕ ≥ 0.

From the arbitrariness of ϕ, we get at once that u is a weak solution of (Pλ,μ). �
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For μ > 0, denote by uμ the unique global minimizer of the functional

u→ 1
p
‖u‖p − μ

s

∫
Ω

us
+ dx.

It is well known that there exists εμ > 0 with uμ ≥ εμϕ1 a.e. in Ω (see [4, Lemma A.4])
and that uμ ∈ int C+ (see [4, Lemmas A.6, A.7, B.1]).

Proposition 2.2. Assume (H) and let λ, μ > 0. Then every weak solution of problem
(Pλ,μ) belongs to C1,β(Ω) ∩ int C+, for some β ∈ (0, 1).

Proof. Let u be a weak solution of (Pλ,μ). Since f ≥ 0, we have that∫
Ω

|∇u|p−2∇u∇ϕ− μ

∫
Ω

us−1ϕ ≥ 0 for every ϕ ∈W 1,p
0 (Ω) with ϕ ≥ 0.

Also ∫
Ω

|∇uμ|p−2∇uμ∇ϕ− μ

∫
Ω

us−1
μ ϕ = 0 for every ϕ ∈W 1,p

0 (Ω),

and the weak comparison principle ensures that u ≥ uμ which, from the properties of uμ,
implies that essinfKu > 0 for every compact set K ⊆ Ω. Thus, u is a weak solution of
(Pλ,μ) in the sense of [4]. Now, by Lemmas A.6, A.7 of [4], we have that

u ∈ L∞(Ω), C1d(x, ∂Ω) ≤ u(x) ≤ C2d(x, ∂Ω) a.e. in Ω,

for some positive constants C1, C2.
If we put

ψ(x) = λf(x, u(x)) + μu(x)s−1,

then

0 < ψ(x) ≤ λc(1 + ||u||q−1
∞ ) + μCs−1

1 d(x, ∂Ω)s−1

≤ C3d(x, ∂Ω)s−1 a.e. in Ω,

where

C3 = λc(1 + ||u||q−1
∞ ) · diam (Ω)1−s + μCs−1

1 .

Moreover, ψ ∈ L∞
loc(Ω), since for each compact set K ⊆ Ω we have d(K, ∂Ω) > 0 and

0 < ψ(x) ≤ C3d(x, ∂Ω)s−1 ≤ C3d(K, ∂Ω)s−1 a.e. in K.
The assumptions of Theorem B.1 of [4] are fulfilled, and so we deduce u ∈ C1,β(Ω) for

some β ∈ (0, 1).
Also,

−Δpu(x) = λf(x, u(x)) + μu(x)s−1 ≥ 0 a.e. in Ω,

so, u ∈ int C+, thanks to the strong maximum principle of Vazquez [16]. �
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The following proposition is an easy consequence of the results proved in [4]. It will be
a crucial tool in our proof.

Proposition 2.3. Assume (H) and let λ, μ > 0. Define g : Ω × R → [0,+∞), Ψ̃ and
F : W 1,p

0 (Ω) → R by

g(x, t) =

{
ts−1 if x ∈ Ω and t ≥ uμ(x),
uμ(x)s−1 if x ∈ Ω and t ≤ uμ(x),

Ψ̃(u) =
∫

Ω

∫ u+

0

g(x, t) dtdx,

and

F (u) =
1
p
‖u‖p − λJ(u) − μΨ̃(u),

respectively. Then, F ∈ C1(W 1,p
0 (Ω)) and the following hold:

(a) if u0 is a critical point of F , then u0 ≥ uμ a.e. in Ω;

(b) if u0 is a critical point of F , then it is a weak solution of (Pλ,μ);

(c) if u0 ∈ int C+ is a local minimizer of F in the C1
0 (Ω)-topology, then u0 is also a

local minimizer of F in the W 1,p
0 (Ω)-topology.

Proof. The fact that F ∈ C1(W 1,p
0 (Ω)) follows from the proof of Lemma A.3 of [4],

and its derivative at u is given by

〈F ′(u), ϕ〉 =
∫

Ω

|∇u|p−2∇u∇ϕ− λ

∫
Ω

f(x, u)ϕ− μ

∫
Ω

g(x, u)ϕ

for every ϕ ∈W 1,p
0 (Ω).

(a) Let u0 be a critical point of F . Choosing (u0 − uμ)− as a test function, one has

−
∫
{u0<uμ}

|∇u0|p−2∇u0 ·(∇u0 −∇uμ) +
∫
{u0<uμ}

[λf(x, u0) + μus−1
μ ](u0 − uμ)= 0.

Bearing in mind that uμ is a global minimum of u→ (1/p)‖u‖p − (μ/s)
∫
Ω
us

+, we also
obtain that

−
∫
{u0<uμ}

|∇uμ|p−2∇uμ · (∇u0 −∇uμ) +
∫
{u0<uμ}

μus−1
μ (u0 − uμ) = 0.

Hence, subtracting the two equalities,∫
{u0<uμ}

(|∇u0|p−2∇u0 − |∇uμ|p−2∇uμ) · (∇u0 −∇uμ)

=
∫
{u0<uμ}

λf(x, u0)(u0 − uμ) ≤ 0.

By the strong monotonicity of the p-Laplacian operator, we deduce that ‖(u0 − uμ)−‖ =
0, that is, u0 ≥ uμ a.e. in Ω.
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(b) This follows from (a).
(c) Assume that u0 ∈ int C+ is a local minimizer of F in the C1

0 (Ω)-topology. Then,
for ϕ ∈ C1

0 (Ω) and t small, one has

0 ≤ lim
t→0

F (u0 + tϕ) − F (u0)
t

=
∫

Ω

|∇u0|p−2∇u0∇ϕ− λ

∫
Ω

f(x, u0)ϕ− μ

∫
Ω

g(x, u0)ϕ.

Rewriting the above inequality, replacing ϕ with −ϕ, we obtain∫
Ω

|∇u0|p−2∇u0∇ϕ− λ

∫
Ω

f(x, u0)ϕ− μ

∫
Ω

g(x, u0)ϕ = 0.

By density, u0 is a critical point of F in W 1,p
0 (Ω). Thus u0 ≥ uμ (see (a)).

Suppose on the contrary that u0 is not a local minimizer of F in the W 1,p
0 (Ω)-topology.

Choose r ∈ (q, p∗) and consider the closed convex sets

Sn =
{
u ∈W 1,p

0 (Ω) :
1
r
||u− u0||rr ≤ 1

n

}
, n ≥ 1

(here, || · ||r stands for the Lr(Ω)-norm). Since F is sequentially weakly lower
semicontinuous and coercive on Sn, we may find vn, n ≥ 1, such that

vn ∈ Sn, F (vn) = min
u∈Sn

F (u), F (vn) < F (u0), n ≥ 1. (6)

Claim. vn ≥ uμ, for all n ≥ 1.

Arguing indirectly, suppose that for some n ≥ 1, we have (uμ − vn)+ 	≡ 0. Set

wt = vn + t(uμ − vn)+, ξ(t) = F (wt), t ∈ [0, 1].

Then, on {uμ > vn}, we have

wt − uμ = (1 − t)(vn − uμ) < 0 for all t ∈ (0, 1).

Therefore, for t ∈ (0, 1),

ξ′(t) = 〈F ′(wt), (uμ − vn)+〉

=
∫
{uμ>vn}

|∇wt|p−2∇wt · (∇uμ −∇vn) − λ

∫
{uμ>vn}

f(x,wt)(uμ − vn)

− μ

∫
{uμ>vn}

g(x,wt)(uμ − vn)

≤
∫
{uμ>vn}

|∇wt|p−2∇wt · (∇uμ −∇vn) − μ

∫
{uμ>vn}

us−1
μ (uμ − vn)

= −
∫
{uμ>vn}

(|∇wt|p−2∇wt − |∇uμ|p−2∇uμ) · (∇vn −∇uμ)

(owing to the choice of uμ),
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so,

(1 − t)ξ′(t) ≤ −
∫
{uμ>vn}

(|∇wt|p−2∇wt − |∇uμ|p−2∇uμ) · (∇wt −∇uμ)

< 0 (by the strong monotonicity of the p-Laplacian operator).

Consequently, ξ is strictly decreasing on [0, 1]. In particular, we have

ξ(1) < ξ(0) ⇒ F (w1) < F (vn).

However, since u0 ≥ uμ, we may check that |w1 − u0| ≤ |vn − u0|. Thus, w1 ∈ Sn, which
contradicts the fact that vn is a global minimizer of F on Sn and finishes the proof of
the claim.

Then the Lagrange multiplier rule gives rise to a sequence kn, n ≥ 1 such that

F ′(vn) = knE
′(vn), n ≥ 1,

where E(u) = ||u− u0||rr/r, u ∈W 1,p
0 (Ω).

Now, the above claim combined with the definition of g yields that for all n ≥ 1,⎧⎪⎨
⎪⎩
−Δpvn(x) = λf(x, vn(x))+μvn(x)s−1 + kn|vn(x)−u0(x)|r−2(vn(x)−u0(x)),

a.e. in Ω,
vn |∂Ω = 0.

We also remark that kn ≤ 0, n ≥ 1. Indeed, for each n ≥ 1, the function

ζn(t) = F ((1 − t)vn + tu0), t ∈ [0, 1]

attains its minimum at t0 = 0, so ζ ′n(0) ≥ 0 ⇒ 〈F ′(vn), u0 − vn〉 ≥ 0, which implies
kn||vn − u0||rr ≤ 0 and thus kn ≤ 0.

Then we proceed as in the proof of Theorem 1.1 of [4, p. 701] to reach a contra-
diction. �

We recall now some abstract results of Ricceri that we will use in the following.

Theorem A (see the proof of Theorem 2.5 in [12]). Let X be a reflexive real
Banach space, and let Γ,Υ : X → R be two sequentially weakly lower semicontinuous
functionals. Assume also that Γ is (strongly) continuous and satisfies lim‖x‖→+∞ Γ(x) =
+∞. For each ρ > infX Γ, put

ϑ(ρ) = inf
x∈Γ−1(]−∞,ρ[)

Υ(x) − inf
(Γ−1(]−∞,ρ[))

w Υ

ρ− Γ(x)
,

where (Γ−1(] −∞, ρ[))
w

is the closure of Γ−1(] −∞, ρ[) in the weak topology. Then,
for each ρ > infX Γ and each μ > ϑ(ρ), the restriction of the functional Υ + μΓ to
Γ−1(] −∞, ρ[) has a global minimum.

Theorem B (see [13, Theorem 4]). Let (X, τ) be a Hausdorff topological space,
and let P,Q : X → R be two sequentially lower semicontinuous functions. Assume that
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there is σ > infX P such that the set P−1(] −∞, σ[) is compact and first countable.
Moreover, assume that there is a strict local minimizer of P , say x0, such that infX P <
P (x0) < σ. Then, there exists δ > 0 such that for each μ ∈ [0, δ], the function P + μQ has
at least two τP local minimizers lying in P−1(] −∞, σ[), where τP denotes the smallest
topology on X which contains both τ and the family of sets {P−1(] −∞, ρ[)}ρ∈R.

We will also need the following theorem, which we state here in a convenient form for
our purposes.

Theorem C (see [14, Theorem C]). Let X be a reflexive and separable real
Banach space, I : X → R a sequentially weakly lower semicontinuous functional and
p > 0. Denote by I : X → R the functional

I(u) =
1
p
‖u‖p + I(u),

and assume that I is coercive. Then, any strict local minimizer of I in the strong topology
is so in the weak topology.

3. Proof of the theorems

3.1. Proof of Theorem 1.1

Proof. In order to prove our first multiplicity result, we apply Theorem A with X =
W 1,p

0 (Ω), Γ = Φ, Υ = −(J + Ψ). Fix ρ > 0 and let λ̄ = (1/ϑ(ρ)) (if ϑ(ρ) = 0, put λ̄ =
+∞). Thus, for λ ∈]0, λ̄[, the energy E = Φ − λ(J + Ψ) has a local minimizer u1 in the
open ball B(pρ)1/p . From Propositions 2.1 and 2.2, u1 ∈ int C+ is a weak solution of (Pλ,λ).

For such fixed λ, denote by uλ ∈ int C+ the global minimizer of the functional u→
‖u‖p/P − (λ/s)

∫
Ω
us

+, and let g, Ψ̃ and F be as in Proposition 2.3. From the strong
comparison principle for singular problems (Theorem 2.3 of [5]), we deduce that u1 − uλ ∈
int C+. (Recall that f(x, t) > 0, for t > 0.)

Also, as u1 is a W 1,p
0 (Ω)− local minimizer of E , it is a C1

0 (Ω)− local minimizer of
E . Since u1 − uλ ∈ int C+ and int C+ is open in the C1

0 (Ω)− topology, there exists a
neighbourhood V of u1 in this topology such that V ⊆ uλ + int C+ and E (u) ≥ E (u1)
for all u ∈ V .

Notice that for every u ∈ uλ + int C+, we have that

E (u) =
1
p
‖u‖p − λJ(u) − λ

∫
Ω

∫ uλ(x)

0

ts−1 dtdx− λ

∫
Ω

∫ u(x)

uλ(x)

ts−1 dtdx

− λ

∫
Ω

∫ uλ(x)

0

uλ(x)s−1 dtdx+ λ

∫
Ω

∫ uλ(x)

0

uλ(x)s−1 dtdx

= F (u) − λ

∫
Ω

∫ uλ(x)

0

ts−1 dtdx+ λ

∫
Ω

∫ uλ(x)

0

uλ(x)s−1 dtdx

= F (u) + const.

By virtue of the above equality, we obtain that u1 is a C1
0 (Ω)− local minimizer of F .

But then Proposition 2.3 implies that u1 is also a W 1,p
0 (Ω)− local minimizer of F .
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Next, we note that F (ζϕ1) → −∞, as ζ → +∞. Indeed, H(j) implies that

lim
t→+∞

F (x, t)
tp

= +∞,

uniformly for a.a. x ∈ Ω.
This fact combined with (H) enables us to choose C4 > λ1, C5 > 0 such that for a.a.

x ∈ Ω,

F (x, t) ≥ C4
tp

p
− C5 for all t ≥ 0.

Then

F (ζϕ1) ≤ λ1
ζp

p
− C4

ζp

p
+ C5|Ω| −

∫
Ω

∫ ζϕ1(x)

0

g(x, z) dz dx→ −∞,

as ζ → +∞. (Recall that C4 > λ1 and g(·, ·) > 0.)
Finally, F satisfies the Palais–Smale condition. The proof of this fact follows from

H(j) in a standard way. We sketch the proof for the sake of completeness.
Let {un}n≥1 ⊆W 1,p

0 (Ω) be a sequence subject to

|F (un)| ≤M1 for some M1 > 0 for all n ≥ 1 (7)

and

||F ′(un)||∗ → 0 as n→ ∞.

We intend to prove that {un}n≥1 is bounded.
Choose a sequence εn → 0+ such that for all h ∈W 1,p

0 (Ω),∣∣∣∣
∫

Ω

|∇un|p−2∇un∇h− λ

∫
Ω

f(x, un)h− μ

∫
Ω

g(x, un)h
∣∣∣∣ ≤ εn‖h‖, n ≥ 1. (8)

Putting into (8) h = −un− and observing that f(x, un)un− = 0, we obtain

‖un−‖p ≤ ‖un−‖p + μ

∫
Ω

g(x, un)un− ≤ εn‖un−‖, n ≥ 1

so,

lim
n→∞ ‖un−‖ = 0. (9)

It remains to prove that {un+} is bounded.
In (8), we choose h = un+. Owing to the definition of g and to hypothesis (H), we get

that

− ‖un+‖p + μ

∫
{un>uμ}

(un+)s + λ

∫
{un>uμ}

f(x, un+)un+ ≤M2 + εn‖un+‖ (10)

for some M2 > 0, all n ≥ 1.
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On the other hand, from (7) and (9), and by using again the definition of g and (H),
we may check that for some M3 > 0,

‖un+‖p − pμ

s

∫
{un>uμ}

(un+)s − λp

∫
{un>uμ}

F (x, un+) ≤M3, n ≥ 1. (11)

Adding (10) and (11) and taking into account (H), we obtain

λ

∫
Ω

[f(x, un+)un+ − pF (x, un+)] ≤M4 + μ
(p
s
− 1

)
‖un+‖s

s + εn‖un+‖, n ≥ 1, (12)

for some M4 > 0.
Now choose ϑ ∈ (1, p). Then, for each n ≥ 1,

‖un+‖s
s =

∫
Ω

(un+)s ≤ |Ω| +
∫
{un+>1}

(un+)ϑ ≤ const. (1 + ||un+||ϑ) (13)

(we have also used Hölder’s and Poincaré’s inequalities).
Meanwhile, hypothesis H(j) enables us to find C6, C7 > 0 such that

tf(x, t) − pF (x, t) ≥ C6F (x, t) − C7 for all t ≥ 0. (14)

Combining (11)–(14), we infer that {un+} is bounded, thus {un} is bounded (see
(9)). By using standard arguments based on the monotonicity properties of the negative
p-Laplacian, we may extract a strongly convergent subsequence of {un}.

Now, from the classical Mountain Pass theorem of Ambrosetti and Rabinowitz (see
[1, Theorem 1]), we obtain the existence of a second critical point for F , i.e. a second
solution of problem (Pλ,λ) as it follows from Proposition 2.3. �

3.2. Proof of Theorem 1.2

Proof. Existence of two local minimizers. We are going to apply Theorem B with
X = W 1,p

0 (Ω) and τ the weak topology on X. Let us prove that

lim
u→0

J(u)
Φ(u)

= 0, (15)

where Φ and J are as in the previous section. Fix ε > 0 and θ ∈]max{p, q}, p∗[. Hypothesis
H(i) and the growth of f (see (H)) imply that for some constant cε > 0,

0 ≤ F (x, t) ≤ ε

p
|t|p + cε|t|θ for a.a. x ∈ Ω and all t ∈ R.

It follows that for some c′ε > 0,

0 ≤ J(u)
Φ(u)

≤ ε

λ1
+ c′ε||u||θ−p for all u ∈ X \ {0}.

Then

lim sup
u→0

J(u)
Φ(u)

≤ ε

and, since ε > 0 is arbitrary, (15) follows.
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From H(ii), we easily deduce that

lim
‖u‖→+∞

J(u)
Φ(u)

= 0. (16)

For all λ > 0, set

Pλ = Φ − λJ.

The functional Pλ is sequentially weakly lower semicontinuous and coercive (see (16)),
whereas 0 turns out to be a (strong) strict local minimizer of Pλ (see (15)). Applying
Theorem C, we get that 0 is a local minimizer of Pλ in the weak topology. Moreover, by
the definition of λ∗ (see (1)), we obtain that for every λ > λ∗, 0 is not a global minimizer
of Pλ. In fact, infX Pλ < Pλ(0) = 0.

We point out that λ∗ > 0. This follows from assumptions (H) and H(i)−(ii). Indeed,
there exists a constant c > 0 such that

F (x, t) ≤ c|t|p for a.a. x ∈ Ω and all t ∈ R.

Thus, ∫
Ω

F (x, u(x)) dx ≤ c‖u‖p
p ≤ c′‖u‖p for all u ∈W 1,p

0 (Ω),

where c′ > 0 also involves the Sobolev embedding constant. This implies that λ∗ > 0.
To proceed, fix [a, b] ⊂]λ∗,+∞[ and choose σ > 0.
From the coercivity of Pλ, it clearly follows that the sets P−1

λ (] −∞, σ[)
w

are compact
and metrizable (thus, first countable) with respect to the weak topology. (Recall that the
weak closure of a bounded subset of a separable reflexive Banach space is compact and
metrizable with respect to the weak topology.) Notice that⋃

λ∈[a,b]

{u ∈ X : Pλ(u) < σ} ⊆ {u ∈ X : Φ(u) − bJ(u) < σ} ⊆ Bη,

for some positive radius η (this follows from the fact that J(u) ≥ 0 for every u ∈W 1,p
0 (Ω)

and from the coercivity of Φ − bJ). Put also c∗ = supBη
(Φ − aJ) and let r > η such that

⋃
λ∈[a,b]

{u ∈ X : Pλ(u) ≤ c∗ + 2} ⊆ Br. (17)

Next, choose λ ∈ [a, b]. Note that Ψ is sequentially weakly continuous but not
differentiable in X, since 0 < s < 1.

In order to obtain a uniform estimate of the norm of our solutions, we need to introduce
a function α ∈ C1(R), bounded, such that α(t) = t for every t such that |t| ≤ supB2r

Ψ.
Therefore,

(α ◦ Ψ)(u) = Ψ(u) for every u ∈ B2r. (18)

Now Theorem B guarantees the existence of some δ = δ(λ) > 0 such that for every μ ∈
[0, δ], Pλ − μ(α ◦ Ψ) has two local minimizers in the τPλ

topology, say u1 and u2, such
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that
u1, u2 ∈ P−1

λ (] −∞, σ[) ⊆ Bη ⊆ Br. (19)

Since Pλ is continuous, the topology τPλ
is weaker than the strong topology, and u1

and u2 turn out to be local minimizers of the functional

Eα : X → R, Eα(u) =
1
p
‖u‖p − λJ(u) − μ(α ◦ Ψ)(u).

Notice that if ‖u− ui‖ < r, then ‖u‖ < ‖ui‖ + r < 2r for i = 1, 2. Therefore, since
(from (18)) Eα = E in B2r, u1 and u2 turn out to be local minimizers of E .

Put μ∗ = μ∗(λ) = min{δ, (sup
R
α)−1} and fix μ ∈ [0, μ∗].

From Propositions 2.1 and 2.2, u1 and u2 are weak solutions of (Pλ,μ) belonging to
int C+ ∩ C1,β(Ω) for some β ∈ (0, 1).

Existence of the third solution. The existence of a third solution is obtained via
regularization methods.

For μ ∈ [0, μ∗], let uμ be the unique global minimizer of the functional

u→ 1
p
‖u‖p − μ

s

∫
Ω

us
+ dx,

define g, Ψ̃ and F as in Proposition 2.3, and let

Fα : W 1,p
0 (Ω) → R, Fα(u) =

1
p
‖u‖p − λJ(u) − μ(α ◦ Ψ̃)(u).

It is clear that since g(x, t) ≤ ts−1 for every t > 0, if ‖u‖ ≤ 2r, one has

Ψ̃(u) ≤ Ψ(u) ≤ sup
B2r

Ψ,

and (α ◦ Ψ̃)(u) = Ψ̃(u), so that Fα coincides with F in B2r.
From the strong comparison principle for singular problems (Theorem 2.3 of [5]), we

deduce that u1 − uμ ∈ int C+ and u2 − uμ ∈ int C+. (Recall that f(x, t) > 0, for t > 0.)
As in the proof of Theorem 1.1, we notice that u1 is a C1

0 (Ω)− local minimizer of E
and, since u1 − uμ ∈ int C+ and int C+ is open in the C1

0 (Ω)− topology, there exists a
neighbourhood V of u1 in this topology such that V ⊆ uμ + int C+ and E (u) ≥ E (u1)
for all u ∈ V .

Moreover, since (again as in Theorem 1.1)

E (u) = F (u) + const. for all u ∈ uμ + int C+,

u1 is a C1
0 (Ω)− local minimizer of F . But then Proposition 2.3 implies that u1 is also a

W 1,p
0 (Ω)− local minimizer of F . Similarly, u2 turns out to be a W 1,p

0 (Ω)− local minimizer
of F . Moreover, since for every ‖u‖ < 2r one has F (u) = Fα(u), u1 and u2 are actually
W 1,p

0 (Ω)− local minimizers of Fα.
The functional Fα is of class C1 in W 1,p

0 (Ω). Indeed, since uμ ≥ εμϕ1, the functional
Ψ̃ is of class C1 in W 1,p

0 (Ω) (see the proof of Lemma A.3 in [4]). Therefore, α ◦ Ψ̃ ∈
C1(W 1,p

0 (Ω)), and the same is true for Fα. Also, it verifies the well known Palais–Smale
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condition. Indeed, hypothesisH(ii) implies that Fα is coercive. Then, owing to the strong
monotonicity of the negative p-Laplacian operator, the Palais–Smale condition follows in
a standard way. (Recall that the operator T : W 1,p

0 (Ω) →W 1,p
0 (Ω)∗ defined by

〈Tu, v〉 =
∫

Ω

|∇u|p−2∇u∇v

is of type (S)+, i.e. it satisfies the following condition:
‘if (un) ⊆W 1,p

0 (Ω) weakly converges to u and lim supn〈Tun, un − u〉 ≤ 0, then (un)
strongly converges to u’.)

By Theorem 1 of [11], there exists a critical point for Fα, say u3, such that

Fα(u3) = inf
γ∈S

sup
t∈[0,1]

Fα(γ(t)),

where
S = {γ ∈ C0([0, 1],W 1,p

0 (Ω)) : γ(0) = u1, γ(1) = u2}.
In particular, if γ̃(t) = tu1 + (1 − t)u2, t ∈ [0, 1], then γ̃ ∈ S and

γ̃(t) ∈ Bη for all t ∈ [0, 1].

(Recall that u1, u2 ∈ Bη (see (19)).
So, by the definition of c∗ and μ∗, one has

Fα(u3) ≤ sup
t∈[0,1]

Fα(γ̃(t))

≤ sup
u∈Bη

[Φ(u) − aJ(u)] + μ∗ sup
u∈Bη

(α ◦ Ψ̃)(u)

≤ c∗ + 1.

Therefore,
P (u3) = Φ(u3) − λJ(u3) ≤ c∗ + 1 + μ(α ◦ Ψ̃)(u3) ≤ c∗ + 2

and, from (17),
u3 ∈ Br.

It is clear that u3 is a critical point of F and, from Proposition 2.3, u3 ≥ uμ. Thus, from
Propositions 2.3 and 2.2, u3 ∈ int C+ is a positive solution of problem (Pλ,μ), and the
proof is concluded. �

Remark 3.1. Our main theorem is the result of a very careful application of the
abstract result of Ricceri. It turns out to be crucial to apply it to the functional Ψ
(which does not depend on μ) in order to individuate the positive numbers δ and μ∗

and subsequently, after fixing μ ∈]0, μ∗[, to work with the functional Ψ̃ (which on the
contrary depends on μ). The functional Ψ has enough regularity that it is possible to
apply Theorem A. It remains an open question whether the existence of three solutions
can also be obtained for problem (Pλ,μ) when s ≤ 0. In this case, it is clear that the above
method can not be used, as the functional Ψ(u) = (1/s)

∫
Ω
u+(x)s dx (for s < 0) is not

well defined even on the Sobolev space W 1,p
0 (Ω).
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