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In this paper, we consider a scalar Peierls–Nabarro model describing the motion of dislocations

in the plane (x1, x2) along the line x2 = 0. Each dislocation can be seen as a phase transition

and creates a scalar displacement field in the plane. This displacement field solves a simplified

elasto-dynamics equation, which is simply a linear wave equation. The total displacement

field creates a stress which makes move the dislocation itself. By symmetry, we can reduce

the system to a wave equation in the half plane x2 > 0 coupled with an equation for the

dynamics of dislocations on the boundary of the half plane, i.e. on x2 = 0. Our goal is to

understand the dynamics of well-separated dislocations in the limit when the distance between

dislocations is very large, of order 1/ε. After rescaling, this corresponds to introduce a small

parameter ε in the system. For the limit ε → 0, we are formally able to identify a reduced

ordinary differential equation model describing the dynamics of relativistic dislocations if a

certain conjecture is assumed to be true.

Key words: Peierls–Nabarro model; Dislocation dynamics; Relativitic dymamics; Formal

asymptotics; Reduced model

1 Introduction

1.1 Setting of the problem

In this paper, we consider a scalar Peierls–Nabarro model describing the dynamics of

dislocations in the plane (x1, x2) along the line x2 = 0. This is a phase field model, where

each dislocation can be seen as a phase transition, essentially between two consecutive

integers. We refer to [13] for an overview on the Peierls–Nabarro model. Our scalar

Peierls–Nabarro model (see (1.1) below) can be seen as a scalar simplification of the

vectorial Peierls–Nabarro–Galerkin model introduced in [3] (see also [4]).

A dislocation is a defect in a crystal and creates a stress field in the material (see [10]).

The total stress field creates a force acting on each dislocation, and makes these dislocations

move on the line x2 = 0. The whole model can be seen as a coupling between the dynamics

on the line x2 = 0 and the dynamics outside the line x2 = 0.
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In the model that we consider, the phase field is a scalar quantity which can be identified

with the scalar displacement of atoms in the crystal. This displacement satisfies a scalar

elasto-dynamics equation, which is simply a linear wave equation in the plane outside the

line x2 = 0. By symmetry, we can reduce the problem to the wave equation in the half

plane x2 > 0 coupled with the Peierls–Nabarro-type dynamics on the boundary of the

half plane, i.e. on x2 = 0. We are interested in the dynamics of well-separated dislocations

and in the limit when the distance between dislocations is very large, of order 1/ε. After

a suitable rescaling, it corresponds to introduce a small parameter ε > 0 in the model and

then to study the limit ε → 0. More precisely, we consider a phase field uε(x1, x2, t), which

is a real function solution of the following system:{
�uε = 0, x2 > 0,

Nεu
ε = 0, x2 = 0,

(1.1)

where the two operators � and Nε applied on a scalar function u = u(x, t), x = (x1, x2) ∈
�2 are defined as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u :=
1

c20
utt − Δu, x2 > 0,

Nεu := β

(
1

c20
utt − ∂11u

)
+ kut − 1

ε

(
∂2u− 1

ε
W ′(u) + σ(x1, t)

)
, x2 = 0,

β = mc20,

(1.2)

where c0 ∈ (0,∞) is the velocity of sound in the crystal, and m, k ∈ [0,∞) are parameters.

The quantity m can be interpreted as a kind of mass of dislocation and k can be seen as

a damping factor that is classical for the evolution of the Peierls–Nabarro model (see, for

instance, [9]). Here we use the notations ut =
∂u

∂t
, utt =

∂2u

∂t2
, ∂iu =

∂u

∂xi
, ∂iiu =

∂2u

∂x2
i

for

i = 1, 2 and Δu = ∂11u+ ∂22u. In this model, the scalar-valued function W is a 1-periodic

smooth potential mimicking the periodicity of the atoms in the crystal. We assume that

W satisfies ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W (u+ 1) = W (u) for any u ∈ �,

W = 0 on �,

W > 0 on � \ �,

α0 := W ′′(0) > 0.

A dislocation will be naturally seen as a phase transition between two consecutive minima

of W . In this model, we consider the presence of a given exterior scalar stress field

σ(x1, t) which has a contribution to the force acting on the dislocations on x2 = 0. This

contribution is taken into account in the definition of operator Nε. The limit ε → 0 has

been studied rigorously in [9] in a particular case of β = 0, c0 = +∞ and k = 1, which

corresponds to a quasi-static approximation.

In the present paper, our goal is to study formally the limit ε → 0 for our more

general model in the relativistic regime. In fact, contrary to [9, Theorem 1.1], where the

passage to limit ε → 0 took place via the stability theorem for viscosity solutions, we

only provide heuristic asymptotic analysis when the term ε becomes negligible assuming
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that Conjecture (A) is true. Note that all derivations made throughout the paper are only

formally (absolutely not rigorously) justified.

For σ ≡ 0, the simplest situation is the case of a single and stationary dislocation

uε(x, t) = φ
(x
ε

)
,

where φ is a normalized phase transition between 0 and 1, solution of the following

system: ⎧⎪⎨
⎪⎩

Δφ = 0, x2 > 0,

β∂11φ+ ∂2φ−W ′(φ) = 0, x2 = 0,

φ(−∞, 0) = 0, φ(+∞, 0) = 1.

(1.3)

We are interested in the dynamics of N � 1 dislocations of positions Xi(t) ∈ � for

i = 1, . . . , N on the axis x2 = 0. Because we are considering a relativistic regime, it is

natural to introduce the following relativistic coefficient:

γi(t) =
1√

1 −
(
X ′
i (t)

c0

)2
, (1.4)

where ( )′ denotes the time derivative. This coefficient γi encodes the contraction of

the fields in the x1 direction. Then a natural ansatz for describing the phase transition

associated with those dislocations is as follows,

ûε(x, t) =

{
N∑
i=1

φ

(
γi(t)

(
x1 −Xi(t)

ε

)
,
x2

ε

)}
+ εvε(x, t), (1.5)

where vε appears to be a correction term that will be precised later. Such an ansatz is

compatible with the dynamics (1.1) only for suitable correction terms vε (and Conjecture

(A)) which impose the following asymptotical dynamics:

m0(γiX
′
i )

′ + k0γiX
′
i = −σ(Xi, t) +

1

π

∑
j�i

1

γj

1

(Xi −Xj)
, i = 1, . . . , N, (1.6)

where m0, k0 are parameters that will be precised later. Our ordinary differential equation

(ODE) dynamics (1.6) is similar to equation (1) in [17].

The term (γiX
′
i )

′ = γ3
i X

′′
i is the natural relativistic acceleration, and m0γ

3
i is the effective

mass of dislocation, which is coherent with the one computed in [11] for screw dislocations

(see also (3.12) in [15]).

The term k0γiX
′
i can be seen as a friction term (viscous force) that will slow down the

motion of dislocations. This term is compatible with the one given in (2.21) and (2.18)

in [15] for the Eshelby approximation [6]. We will see that the damping factor k0 vanishes

when the coefficient k vanishes in (1.2). The precise statement of our result is given in

result 1.1.
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1.2 Assumptions

We will choose

vε(x, t) =
σ(x1, t)

W ′′(0)
−

N∑
i=1

∑
α=1,2,3

aαi (t)ψ
α

(
γi(t)

(
x1 −Xi(t)

ε

)
,
x2

ε

)
, (1.7)

where the coefficients aαi are given as

a1
i :=

2γ′
iX

′
i

c20
, a2

i :=
γ′
iX

′
i + (γiX

′
i )

′

c20
and a3

i := kγiX
′
i for i = 1, . . . , N. (1.8)

Here we assume the existence of corrector functions ψα, α = 1, 2, 3, which satisfy:⎧⎪⎨
⎪⎩

Δψ1 = x1∂11φ, x2 > 0,

Aψ1 = βx1∂11φ− β0

2α0
(W ′′(φ) −W ′′(0)), x2 = 0,

(1.9)

⎧⎪⎨
⎪⎩

Δψ2 = ∂1φ, x2 > 0,

Aψ2 = β∂1φ+
β0

α0
(W ′′(φ) −W ′′(0)), x2 = 0,

(1.10)

and ⎧⎪⎨
⎪⎩

Δψ3 = 0, x2 > 0,

Aψ3 = ∂1φ+
k0

α0
(W ′′(φ) −W ′′(0)), x2 = 0,

(1.11)

where the linearized operator A is defined by:

Aψ := β∂11ψ + ∂2ψ −W ′′(φ)ψ. (1.12)

The fact that the corrector ψ3 has to solve equation (1.11) may be heuristically inferred

from the computations in [9, Section 3.1; see in particular formula (3.18)]. Similarly, it

can be seen from the computations done later in the present paper that the two other

correctors ψ1 and ψ2 have to solve respectively equations (1.9) and (1.10). Although we

have no proof of existence of such ψα, α = 1, 2, 3 (see Conjecture (A)), it is possible to

remark (see Formal Corollary 3.2) that those correctors can only exist with a certain

decay at infinity if they satisfy the compatibility condition that forces the following values

of the parameters:

k0 =

∫
{x2=0}

(∂1φ)2 and β0 =

∫
{x2>0}

(∂1φ)2 +

∫
{x2=0}

β(∂1φ)2. (1.13)

We also define the following parameters:

k0 = k0k and m0 =
β0

c20
=

1

c20

∫
{x2>0}

(∂1φ)2 + m

∫
{x2=0}

(∂1φ)2, (1.14)

where m0 can be interpreted as a kind of effective mass of dislocation. For the simplicity

of notation, we call ψ0 = φ and set the Heaviside function H(x1) = 1[0,+∞)(x1).

https://doi.org/10.1017/S0956792514000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000102


Reduced ODE dynamics as formal relativistic asymptotics of Peierls–Nabarro model 515

Inspired by [9, Theorems 3.1, 3.2], we consider the following.

Conjecture (A)

There exist profile functions ψα, α = 0, 1, 2, 3, respectively as solutions for (1.3), (1.9),

(1.10), (1.11), which satisfy with φ = ψ0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨
⎪⎪⎩

|∇ψα(x)| �
C

1 + |x1| α = 0, 1, 2, 3,

|∂11ψ
α(x)| �

C

1 + |x1|2 α = 0, 1, 2, 3,

|ψα(x1, 0)| �
C

1 + |x1| α = 1, 2, 3,

∣∣∣∣φ(x1, 0) −H(x1) +
1

α0πx1

∣∣∣∣ �
C

1 + |x1|2 if |x1| � 1.

Conjecture (A) remains open in this paper and it is by no means justified in this work.

We only give some comments on this conjecture in Section 3.1. Therefore, it is essential

to have an answer to the following question.

Open question 1. Do we have existence of profiles ψα, α = 0, 1, 2, 3, as in Conjecture (A)?

1.3 The main result

Before stating our main result, we again stress on the fact that all our derivations are

formal and based on Conjecture (A).

Formal Result 1.1 (Reduced ODE dynamics as an asymptotic of the Peierls–Nabarro

model)

Let us consider the assumptions of Section 1.2, with W and σ smooth enough. We assume

in particular that Conjecture (A) holds true. Given T > 0, let us assume the existence of

particles Xi = Xi(t) for i = 1, 2 . . . , N, satisfying

{
Xi+1(t) −Xi(t) � 2δ > 0

|X ′
i | � c0(1 − δ), δ > 0

∣∣∣∣ for t ∈ [0, T ], (1.15)

solutions of dynamics (1.6) for t ∈ (0, T ), namely

m0(γiX
′
i )

′ + k0γiX
′
i = −σ(Xi, t) +

1

π

∑
j�i

1

γj

1

(Xi −Xj)
, i = 1, . . . , N

with γi as given by (1.4) and the parameters m0, k0 as given in (1.14). Let us consider

the ansatz function ûε given by (1.5) and the correction term vε given by (1.7) with the
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coefficients aαi given by (1.8). Then for any fixed δ > 0, we have ε → 0,{
�ûε = Oδ(1) uniformly in L∞ ({x2 > 0} × (0, T )

)
,

Nεû
ε = Oδ(1) uniformly in L∞ ({x2 = 0} × (0, T )

)
.

(1.16)

Here we only get Oδ(1) on right-hand sides of (1.16). Nevertheless, this still means that

the ansatz (1.5) is a good approximation of the solution because the operator Nε involves

O(1/ε2) terms, and the boundary condition involving Nε has consequences on the first

partial differential equation of (1.16). An important consequence of this result is the

identification of the limit dynamics (1.6). It is then natural to raise the following questions:

Open question 2. Do we have a long time existence of solutions of the reduced ODE

dynamics (1.6)?

Open question 3. Can we have a more precise and rigorous justification of the limit

dynamics (1.6) for the solutions of (1.1)?

In the case of finite ε for the Peierls–Nabarro–Galerkin models, the effective dislocation

dynamics can reveal retardation effects. We refer the reader, for instance, to [14, 16, 18].

The interested reader can also consult [7] to see how the classical Peierls–Nabarro

model can be rigorously derived from the Frenkel–Kontorova model at a smaller scale.

We also refer the reader to [5,12] for the relation between the Peierls–Nabarro model and

other models at larger scales.

1.4 Organization of the paper

In Section 2, we recall the physical derivation of our Peierls–Nabarro-type model (1.1).

In Section 3, we give some simple properties on the correctors, including compatibility

conditions. In order to do the proof of our main result, we start with preliminary

computations on our ansatz ûε in Section 4. Finally, in Section 5, we give the proof of

our main result, namely result 1.1.

2 Physical derivation of the model

We consider a two-dimensional crystal and call U(x1, x2, t) the horizontal displacement

(along the axis x1) of the atoms. A natural action of the system without dislocations

describing waves of velocity c0 is as follows:∫
�2×(0,T )

1

2
|∇U|2 − 1

2c20
(Ut)

2. (2.1)

We now assume that dislocations are localized on the line x2 = 0 and can only move

along this line. We also assume the antisymmetry

U(x1,−x2, t) = −U(x1, x2, t),
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but allow a jump of u when we cross the line x2 = 0:

U(x1, 0
+, t) −U(x1, 0

−, t) =: η(x1, t).

Then the function η can describe a dislocation as a phase transition between two integers

(if we normalise to one unit the Burgers vector which is here a scalar quantity because U

is itself scalar). Then the action (2.1) has to be modified as follows:

A(U, η) :=

∫
�2×(0,T )

{
1

2
|∇U − ηe2δ0(x2)|2 − 1

2c20
(Ut)

2

}
+

∫
{x2=0}×(0,T )

W (η).

Here (e1, e2) is the standard orthonormal basis and we had to subtract a Dirac mass in

order to compensate the jump of u. The last integral is an energy term created by the

misfit of upper and lower half crystal created by the presence of dislocation. In particular,

W is 1-periodic, non-negative and vanishes on integers (the case η ∈ � corresponding to

the case of no misfit in the crystal). Then following is the natural Peierls model:

{
A′

U = 0,

kηt = −A′
η,

where the first line is the first variation of the action with respect to u, and the second

line is the gradient flow evolution of the field η, where k is a damping factor. Then it is

easy to check that

u(x1, x2, t) =

{
2U(x1, x2, t) if x2 > 0,

η(x1, t) if x2 = 0,

solves (1.1) for ε = 1, σ = 0, β = 0, k =
k

4
and W =

1

4
W . More generally, we recover

(1.1) if we consider the general action

A(U, η) :=
1

ε

∫
�2×(0,T )

{
1

2
|∇U − ηe2δ0(x2)|2 + (∇U − ηe2δ0(x2)) · Σ − 1

2c20
(Ut)

2

}

+

∫
{x2=0}×(0,T )

{
1

ε2
W (η) + β

(
|∂1η|2 − 1

c20
(ηt)

2

)} (2.2)

assuming that div Σ = 0 and σ(x1, t) := 2e2 ·Σ(x1, 0, t) and β =
β

4
. We have to emphasize

the fact that model (2.2) in the special case β = 0 is a simplified scalar version of a more

general model called the Peierls–Nabarro–Galerkin model [3], where the displacement U

is vectorial.

3 Some remarks on the correctors

In this section, we discuss Conjecture (A) and give some necessary properties of the

correctors.
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3.1 Discussion on conjecture (A)

The aim of this section is to convince the reader that Conjecture (A) sounds very

reasonable. To this end, we indicate several arguments and a possible strategy to try to

prove Conjecture (A), even if we prove no rigorous results in this direction. We discuss

heuristically and successively the existence and asymptotics for each profile function ψα

for α = 0, 1, 2, 3.

Case of ψ0 = φ

For the special case of W ′(u) = − 1
2πa

sin {2π(u − 1
2
)} for some a > 0, we recall (see [9])

that the solution φ0 of (1.3) for β = 0 is

φ0(x) =
1

π
arctan

(
x1

x2 + a

)
+

1

2
. (3.1)

We also refer to [2] for the properties of φ0 in the case β = 0 for more general potentials

W . In Section 5 of [9], we recall that we can see the map Φ = φ(·, 0) 	→ LΦ := ∂2φ(·, 0)

(with φ harmonic on the half plane {x2 > 0}) can be seen as a half-Laplacian L = −(−Δ)
1
2

with symbol L̂ = − |ξ|. Therefore, in equation (1.3), we can reformulate the differential

operator as

β∂11φ+ ∂2φ = β∂11φ− (−Δ)
1
2φ on {x2 = 0} .

First possible strategy

For β = 0, we know that the profile φ(x1, 0) behaves like φ(±∞, 0) ∓ C/x1 at infinity,

and ∂2φ(x1, 0) � ∓C ′/x1 as x1 → ±∞. Now for a general β, this indicates that the term

β∂11φ(x1, 0) is expected to behave like 1/x3
1 and is neglectable at infinity with respect to

∂2φ(x1, 0). This suggests that the term β∂11φ should be seen (at least at infinity) as a

small perturbation of the equation and this suggests to try to construct such solutions by

a perturbation method.

Second possible strategy

Note also that the operator

β∂11Φ+ ∂2Φ (3.2)

enjoys a nice maximum principle for β � 0. Therefore, we could also try to construct hull

functions as in [8], and then travelling waves as in [1]. This alternative approach could

give the existence of such profile φ.

Case of ψ3

The construction of ψ3 is given in [9] in the special case β = 0. For the case β > 0, we

look for solutions ψ3 of⎧⎨
⎩

Δψ3 = 0 on {x2 > 0} ,

Aψ3 = f1 with f1 := ∂1φ+
k0

α0
(W ′′(φ) −W ′′(0)) on {x2 = 0}

(3.3)

with the operator A defined in (1.12). Here the additional term β∂11φ contained in the

operator A has a good sign in all the estimates (and this is related to the fact that the

operator given in (3.2) has a maximum principle). Therefore, it seems reasonable to try
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to adapt the analysis carried out in [9] to the case β > 0, and to get the existence of

corrector ψ3.

In order to check the asymptotics of ψ3, we could try to compare ψ3 with some

supersolution of the same equation, having in mind that f1 behaves at most as O(1/x1)

at infinity. Note that φ is an approximate solution of the left-hand side of (1.11). Looking

at some function such as Cmin(φ(x1, x2), φ(−x1, x2)) for a constant C large enough, it

could be possible to construct such a supersolution and to get some information on the

decay at infinity of ψ3 such as 1/ |x1| as x1 goes to infinity. Note that another approach

could be also to try to estimate directly the half Laplacian on functions behaving like

1/ |x1| at infinity. Then from the estimate on ψ3, and from the elliptic regularity theory,

we could also get some similar decay on ∇ψ3. Finally, since the decay of ψ3(x1, 0) is like

1/ |x1|, it sounds reasonable to get a better decay on ∂11ψ
3(x1, 0), which is the claim in

Conjecture (A).

Case of ψ2

Step 1: An explicit computation and reduction of the problem

We first note that

θ2 =
x1(φ− 1/2)

2

solves

Δθ2 = ∂1φ.

We now define:

h(x1, x2) =
1

2

∫ x1

0

(
φ(y1, x2) − 1

2

)
dy1 − g(x2) with g′′(x2) =

1

2
∂1φ(0, x2),

then Δh = 0. Therefore, if we set θ̄2 = θ2 − h, we obtain

Δθ̄2 = ∂1φ.

Recall that it sounds reasonable to have

φ(x1, 0) − 1

2
= ±1

2
− C

x1
+ O

(
1

x2
1

)
as x1 → ±∞. (3.4)

Then we can see that

θ̄2(x1, 0) = −C

2
ln(2 + |x1|) + C ′ + O

(
1

x1

)
as |x1| → +∞.

Therefore, setting for x = (x1, x2)

¯̄θ2(x) = θ̄2(x) +
C

2
ln |(x1, x2 − 1)| − C0

for a suitable constant C0, we see (because the logarithm function is harmonic in 2D
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outside its singularity) that ¯̄θ2 satisfies⎧⎨
⎩

Δ¯̄θ2 = ∂1φ in {x2 > 0} ,
¯̄θ2(x1, 0) = O

(
1

x1

)
as |x1| → +∞.

(3.5)

This shows that we are looking for a solution ψ2 such that

ψ̄2 = ψ2 − ¯̄θ2

solves⎧⎨
⎩

Δψ̄2 = 0 on {x2 > 0} ,

Aψ̄2 = f2 with f2 := −A¯̄θ2 + β∂1φ+
β0

α0
(W ′′(φ) −W ′′(0)) on {x2 = 0} ,

where it is reasonable to expect that A¯̄θ2 behaves at most like O(1/x1) at infinity because

of (3.5). Therefore, f2 should also behave at most like O(1/x1) at infinity.

Step 2: Conclusion

We now see that the problem reduces exactly to the problem studied in the construction

of ψ3 (see (3.3)). The approach proposed there should allow to conclude to the existence

of a suitable corrector ψ̄2 (and then ψ2) with expected asymptotics.

Case of ψ1

We note that

θ1 =
x2

1∂1φ

4
− θ2

2
, where we recall that θ2 =

x1(φ− 1
2
)

2

solves

Δθ1 = x1∂11φ.

If we have the analogue of (3.4), but for the derivatives, i.e.

∂1φ(x1, 0) =
C

x2
1

+ O

(
1

x3
1

)
as x1 → ±∞,

then we deduce that

x2
1∂1φ

4
= C + O(1/x1) for x2 = 0.

Therefore, proceeding exactly as in the case of ψ2, we can try to get profile ψ1.

3.2 Properties of the correctors

Let us consider a function Ψ solution of{
ΔΨ = F on Ω := {x2 > 0} ,
AΨ = G on ∂Ω = {x2 = 0} . (3.6)
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Formal Lemma 3.1 (Compatibility condition)

If Ψ solves (3.6) with sufficient decay at infinity, then we have∫
Ω

Fζ +

∫
∂Ω

Gζ = 0 with ζ = ∂1φ, (3.7)

where φ is a solution of (1.3).

Proof of Formal Lemma 3.1

Step 1: Self-adjoint property

For (F,G) and (F̂ , Ĝ), let us define the scalar product as∫
Ω

FF̂ +

∫
∂Ω

GĜ.

Then a simple computation (by integration by parts) shows that the operator Ψ 	→
(ΔΨ,AΨ ) is self-adjoint for this scalar product, i.e. for any Ψ,Φ we have∫

Ω

(ΔΨ )Φ+

∫
∂Ω

(AΨ )Φ =

∫
Ω

Ψ (ΔΦ) +

∫
∂Ω

Ψ (AΦ). (3.8)

Step 2: Consequence

Because φ solves (1.3), we deduce that ζ = ∂1φ solves the linearized equation, i.e.{
Δζ = 0 on Ω,

Aζ = 0 on ∂Ω.

Using (3.8), this immediately implies (3.7). �

Formal Corollary 3.2 (Values of the parameters of correctors)

If ψ1, ψ2, ψ3 solve respectively (1.9), (1.10), (1.11), then the values of the parameters k0

and β0 are given by (1.13).

Proof of Formal Corollary 3.2

Applying Formal Lemma 3.1 for Ψ = ψ1 and using equation (1.9), we get

0 =

∫
Ω

x1(∂11φ)∂1φ+

∫
∂Ω

(∂1φ)

{
βx1∂11φ− β0

2α0
(W ′′(φ) −W ′′(0))

}

=

∫
Ω

− (∂1φ)2

2
+

∫
∂Ω

−β(∂1φ)2

2
+
β0

2
,

where we have used integration by parts and the fact that φ(−∞, 0) = 0, φ(+∞, 0) = 1,

W ′(0) = W ′(1) and α0 = W ′′(0). This identifies the value of β0. The reasoning is similar

when dealing with ψ2 and ψ3. �

4 Preliminary computations

The goal of this section is to prove two technical results, namely Formal Lemmata 4.1

and 4.2, which will be used in the next section to do the proof of our main result.
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In order to simplify the presentation, we will use the following notations.

Abridged notations:

• ξ1
i = γi(t)

(
x1 −Xi(t)

ε

)
,

• ξ2
i =

x2

ε
,

• ξi = (ξ1
i , ξ

2
i ),

• φi = φ(ξi), ψαi = ψα(ξi), φ̃i = φi −H(ξ1
i ),

• ∂pφi = (∂pφ)(ξi), ∂pqφi = (∂pqφ)(ξi), p, q = 1, 2,

• ∂pψ
α
i = (∂pψ

α)(ξi), ∂pqψ
α
i = (∂pqψ

α)(ξi), p, q = 1, 2,

• ∂tψ
α
i =

d

dt
[ψα(ξi)], ∂ttψ

α
i =

d2

dt2
[ψα(ξi)].

Remark that with regard of the above notations, the function ûε can be simply written as

ûε =
∑
i

φi + ε

⎧⎨
⎩ σ

α0
−
∑
i=1,..,N

∑
α=1,2,3

aαi ψ
α
i

⎫⎬
⎭ . (4.1)

Then we have the following result.

Formal Lemma 4.1 (Computation of W ′(ûε))

Assume (1.15) for some δ > 0, and assume W to be smooth enough. Given the point

(x1, t) ∈ � × [0, T ], there exists i0 = i0(x1, t) ∈ {1, 2, . . . , N} such that we have with the

previous abridged notations for x2 = 0 and for ε small enough (depending on δ):

W ′(ûε(x1, 0, t))

= W ′(φ̃i0 ) + εW ′′(φ̃i0 )

⎧⎨
⎩σ(x1, t)

α0
−
∑
α=1,2,3

aαi0 (t)ψ
α
i0

− 1

ε

∑
i∈{1,...,N}\{i0}

1

α0πξ1
i

⎫⎬
⎭+ Oδ(ε

2). (4.2)

Proof of Formal Lemma 4.1

Using the expression (4.3) of ûε and the periodicity of W ′, we can write

W ′(ûε) = W ′

((∑
i

φ̃i

)
+ ε

(
σ

α0
−
∑
i

∑
α

aαi ψ
α
i

))
.

We recall from (1.15) that the values of Xi(t) are well separated, i.e.

Xi+1(t) −Xi(t) � 2δ > 0.

Then there exists an index i0 = i0(x1t) (possibly non-unique) such that

|x1 −Xi0 (t)| = inf
i

|x1 −Xi(t)|.
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Step 1: Computations for i� i0

We have |x1 −Xi(t)| � δ > 0, which implies |ξ1
i | �

δ

ε
, and we deduce from the last line of

Conjecture (A) that

φi −H
(
ξ1
i

)
+

1

α0πξ1
i

= O

(
1

1 + (δ/ε)2

)
= Oδ(ε

2),

which shows that

φ̃i +
1

α0πξ1
i

= Oδ(ε
2). (4.3)

Similarly, from the third line of Conjecture (A), we deduce for α = 1, 2, 3

|ψαi | �
C

1 + |ξ1
i |

�
C

1 + δ/ε
= Oδ(ε). (4.4)

Step 2: Conclusion

From (4.3) and (4.4), we obtain

(∑
i

φ̃i

)
+ ε

(
σ

α0
−
∑
i

∑
α

aαi ψ
α
i

)
= φ̃i0 + ε

(
σ

α0
−
∑
α

aαi0ψ
α
i0

)
+ Oδ(ε

2) −
∑
i�i0

1

α0πξ1
i

,

which yields

W ′(ûε) = W ′(φ̃i0 ) +W ′′(φ̃i0 )

{
ε

[
σ

α0
−
∑
α

aαi0ψ
α
i0

]
−
∑
i�i0

1

α0πξ1
i

}
+ Oδ(ε

2),

where we have used a second-order expansion of W ′ and the fact that
1

α0πξ1
i

= Oδ(ε) for

i� i0. This is exactly (4.2). �

We also have the following result.

Formal Lemma 4.2 (Derivatives of profile functions)

We recall that ψ0 = φ, and for α = 0, 1, 2, 3, we set

Ψα
i (x, t) := ψα

(
γi(t)

(
x1 −Xi(t)

ε

)
,
x2

ε

)
.

Under the assumptions and notations of Formal Lemma 4.1, the following holds for (x, t) ∈
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� × �+ × [0, T ]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂1Ψ
α
i0

=
γi0
ε

∂1ψ
α
i0

and ∂1Ψ
α
i = Oδ(1) if i� i0,

∂2Ψ
α
i0

=
1

ε
∂2ψ

α
i0

and ∂2Ψ
α
i = Oδ(1) if i� i0,

∂tΨ
α
i0

= −
γi0X

′
i0

ε
∂1ψ

α
i0

+ O(1) and ∂tΨ
α
i = Oδ(1) if i� i0,

∂11Ψ
α
i0

=
γ2
i0

ε2
∂11ψ

α
i0

and ∂11Ψ
α
i = Oδ(1) if i� i0,

(4.5)

and for all i = 1, . . . , N

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂22Ψ
α
i =

1

ε2
∂22ψ

α
i ,

∂ttΨ
α
i =

1

ε2
(γiX

′
i )

2∂11ψ
α
i +

Jαi
ε

+ O(1) with Jαi :

= −2γ′
iX

′
i ξ

1
i ∂11ψ

α
i − (γ′

iX
′
i + (γiX

′
i )

′)∂1ψ
α
i

(4.6)

with

Jαi0 = Oδ(1) and Jαi = Oδ(ε) if i� i0. (4.7)

Proof of Formal Lemma 4.2

The computation of the space derivatives for i = i0 are straightforward. For i� i0, the

estimates such as Oδ(1) of the space derivatives ∂pΨ
α
i for p = 1, 2 and ∂11Ψ

α
i follow from

Conjecture (A).

We have

∂tΨ
α
i =

(
−γiX

′
i

ε
+
γ′
i

γi
ξ1
i

)
∂1ψ

α
i

and

∂ttΨ
α
i =

(
−γiX

′
i

ε
+
γ′
i

γi
ξ1
i

)2

∂11ψ
α
i +

[
− (γiX

′
i )

′

ε
+

(
γ′
i

γi

)′
ξ1
i +

γ′
i

γi

{
−γiX

′
i

ε
+
γ′
i

γi
ξ1
i

}]
∂1ψ

α
i .

We first note that the second line of (1.15) implies that γi is bounded, and then γ′
i is also

bounded as a consequence of (1.6). Using again Conjecture (A), we immediately obtain

the desired estimates for ∂tΨ
α
i and ∂ttΨ

α
i , in each case i = i0 and i� i0. �

5 Proof of 1.1

The main result in this section is Formal Proposition 5.1, below which we will imply

Formal Result 1.1.

Formal Proposition 5.1 (Plugging ansatz in equations)

Let ûε is given by (1.5) with vε as defined in (1.7) for general coefficients aαi (t) and for φ

solution of (1.3) and for general ψα, α = 1, 2, 3, such that Conjecture (A) holds. Moreover,
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we assume that

|Δψα(x)| �
C

1 + |x1| for α = 1, 2, 3. (5.1)

We assume that (1.15) and also W,σ are smooth enough. Then, for any (x, t) ∈ � ×
�+ × [0, T ], we have the following estimates with the index i0 = i0(x1, t) defined in Formal

Lemma 4.1: ⎧⎪⎨
⎪⎩

�ûε = Oδ(1) +
1

ε
I1
i0
,

Nεû
ε = Oδ(1) +

1

ε
I2
i0
,

(5.2)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1
i = − 1

c20

{
2γ′

iX
′
i ξ

1
i ∂11φi + (γ′

iX
′
i + (γiX

′
i )

′)∂1φi
}

+
∑
α=1,2,3

aαi (t)Δψ
α
i ,

I2
i =

1

α0

⎛
⎝−σ(Xi, t) +

1

π

∑
j�i

1

γj(Xi −Xj)

⎞
⎠ (W ′′(0) −W ′′(φi))

−
{
2mγ′

iX
′
i ξ

1
i ∂11φi + {kγiX ′

i + m(γ′
iX

′
i + (γiX

′
i )

′)} ∂1φi
}

+
∑
α=1,2,3

aαi (t)Aψ
α
i .

with {
Δψαi := ∂11ψ

α
i + ∂22ψ

α
i ,

Aψαi = β∂11ψ
α
i + ∂2ψ

α
i −W ′′(φi)ψ

α
i .

Proof of Formal Result 1.1

From equations (1.9), (1.10) and (1.11) and Conjecture (A), we deduce that (5.1) holds.

The same three equations also yield

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
α=1,2,3

aαi Δψ
α = a1

i x1∂11φ+ a2
i ∂1φ, x2 > 0,

∑
α=1,2,3

aαi Aψ
α =

f

α0
(W ′′(φ) −W ′′(0)) + βa1

i x1∂11φ+ (βa2
i + a3

i )∂1φ, x2 = 0,
(5.3)

with

f := β0

(
−a1

i

2
+ a2

i

)
+ k0a

3
i .

Then we see that I1
i = 0 if and only if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a1
i =

2γ′
iXi

c20
,

a2
i =

γ′
iX

′
i + (γiX

′
i )

′

c20
,

(5.4)
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and I2
i = 0 if and only if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f = −σ(Xi, t) +

1

π

∑
j�i

1

γj(Xi −Xj)
,

βa1
i = 2mγ′

iX
′
i ,

βa2
i + a3

i = kγiX
′
i + m(γ′

iX
′
i + (γiX

′
i )

′).

(5.5)

We therefore see that (5.4) and (5.5) are satisfied if and only if β = mc20, the coefficients

aαi are given by (1.8) and the ODE dynamics (1.6) for the coefficients m0, k0 is given

by (1.14). �

We now turn to the proof of Formal Proposition 5.1.

Proof of Formal Proposition 5.1

The proof is made in several steps.

Step 1: Computation of �ûε

Using Formal Lemma 4.2 (precisely we use (4.6) and the fourth line of (4.5)), we get

�ûε = Oδ(1) +
∑
i

⎧⎨
⎩ 1

ε2

(
A1φi + ε

J0
i

c20

)
− 1

ε

⎧⎨
⎩
∑
α=1,2,3

aαi (t)

(
A1ψ

α
i + ε

Jαi
c20

)⎫⎬
⎭
⎫⎬
⎭ ,

where for α = 0, 1, 2, 3

A1ψ
α
i :=

{(
γiX

′
i

c0

)2

∂11ψ
α
i − γ2

i ∂11ψ
α
i − ∂22ψ

α
i

}
= −Δψαi ,

which reads explicitly for α = 0:

A1φi = −Δφi = 0.

Moreover, using (4.7) and (5.1), we get

�ûε = Oδ(1) +
1

ε

⎧⎨
⎩J

0
i0

c20
−
∑
α=1,2,3

aαi0 (t)A1ψ
α
i0

⎫⎬
⎭ = Oδ(1) +

1

ε
I1
i0
.

Step 2: Computation of Nεû
ε

Step 2.1: Computation

Using Formal Lemma 4.2, we get

Nεû
ε = Oδ(1) +

W ′(ûε)

ε2
− σ

ε

+
∑
i

⎧⎨
⎩ 1

ε2
(A2φi + εmJ0

i − εkγiX
′
i∂1φi) − 1

ε

∑
α=1,2,3

aαi (A2ψ
α
i + εmJαi − εkγiX

′
i∂1ψ

α
i )

⎫⎬
⎭
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with α = 0, 1, 2, 3

A2ψ
α
i := β

(
(γiX

′
i )

2

c20
∂11ψ

α
i − γ2

i ∂11ψ
α
i

)
− ∂2ψ

α
i = −β∂11ψ

α
i − ∂2ψ

α
i .

Using (4.7) and Conjecture (A), we deduce

Nεû
ε = Oδ(1) +

1

ε2

(
W ′(ûε) + A2φi0

)

+
1

ε

⎧⎨
⎩−σ +

1

ε

∑
i�i0

A2φi + mJ0
i0

− kγi0X
′
i0

∂1φi0 −
∑
α=1,2,3

aαi0A2ψ
α
i0

⎫⎬
⎭ .

From equation (1.3) we have, for all i = 1, . . . , N,

A2φi = −W ′(φi) = −W ′(φ̃i).

From Conjecture (A), we deduce that for i� i0,

A2φi = −W ′′(0)φ̃i + O(φ̃2
i ) =

1

πξ1
i

+ Oδ(ε
2),

then

Nεû
ε = Oδ(1) +

1

ε2

(
W ′(ûε) −W ′(φ̃i0 )

)

+
1

ε

⎧⎨
⎩−σ +

∑
i�i0

1

πεξ1
i

+ mJ0
i0

− kγi0X
′
i0

∂1φi0 −
∑
α=1,2,3

aαi0A2ψ
α
i0

⎫⎬
⎭ .

Using now Formal Lemma 4.1, we get

Nεû
ε = Oδ(1) +

1

ε

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
W ′′(φ̃i0 )

⎧⎨
⎩ σ

α0
−
∑
α=1,2,3

aαi0ψ
α
i0

−
∑
i�i0

1

α0πεξ1
i

⎫⎬
⎭+

∑
i�i0

1

πεξ1
i

−σ + mJ0
i0

− kγi0X
′
i0

∂1φi0 −
∑
α=1,2,3

aαi0A2ψ
α
i0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

Using the fact that

A2ψ
α
i0

= −Aψαi0 −W ′′(φi0 )ψ
α
i0
,

we get

Nεû
ε = Oδ(1) +

1

ε

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(W ′′(φ̃i0 ) −W ′′(0))

{
σ

α0
−
∑
i�i0

1

α0πεξ1
i

}

+mJ0
i0

− kγi0X
′
i0

∂1φi0 +
∑
α=1,2,3

aαi0Aψ
α
i0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (5.6)
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Step 2.2: Evaluation

We now write εξ1
i = γi(Xi0 −Xi) +

γi

γi0
εξ1
i0

to obtain for i� i0:

1

α0πεξ1
i

=
1

α0πγi(Xi0 −Xi)
+ Oδ(εξ

1
i0
),

where we have used Assumption (1.15). Therefore,

1

ε
(W ′′(φ̃i0 ) −W ′′(0))

∑
i�i0

1

α0πεξ1
i

=
1

ε
(W ′′(φ̃i0 ) −W ′′(0))

∑
i�i0

1

α0πγi(Xi0 −Xi)
+ Oδ(ξ

1
i0
φ̃i0 ).

Finally, by plugging this relation into (5.6) and using Conjecture (A) to see that

Oδ(ξ
1
i0
φ̃i0 ) = Oδ(1), we obtain the second equation of (5.2). �
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