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We give a probabilistic proof of an identity concerning the expectation of an arbi-
trary function of a compound random variable and then use this identity to obtain
recursive formulas for the probability mass function of compound random vari-
ables when the compounding distribution is Poissonomial negative binomial
random hypergeometriclogarithmic or negative hypergeometrigve then show

how to use simulation to efficiently estimate both the probability that a positive
compound random variable is greater than a specified constant and the expected
amount by which it exceeds that constant

1. INTRODUCTION AND SUMMARY

Let X4, X,,... be a sequence of independent and identically distrib(ited.) pos-

itive random variables that are independent of the nonnegative integer-valued ran-
dom variableN. The random variabl&, = 3\, X is called a compound random
variable In Section 2we give a simple probabilistic proof of an identity concern-
ing the expected value of a function of a compound random vatialfien theX;

are positive integer-valuedn identity concerning the probability mass function of

S\ is obtained as a corollarin Section 3we use the latter identity to provide new
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derivations of the recursive formulas for the probability mass functio®,affhen
X, is a positive integer-valued random variabéend N has a variety of possible
distributions For other derivations of the applications of Sectigth® reader should
see the references

Sections 4 and 5 are concerned with finding efficient simulation techniques to
estimate

p=P{S=c} and 6=E[(S—0)"],
wherec is a specified constant and thg need not be discret8ecause
E[(S—c)"]=E[S—c[S>c](1—p)
and
E[N]JE[X]—-c=E[S—c]

=E[S—c|S>c](1-p) + E[S—c|S=c]p,
it follows that estimatingp andé will also give us estimates &[S— ¢|S> c] and
E[c — S|S= c]. Although our major interest is when thé are positivein Sec-

tion 5 we show how an effective simulation can be performed when this restriction
is removed

2. THE COMPOUND IDENTITY

Consider the compound random variable

Mz

S\lz Xi'

i=1

Let M be independent ofy, X,,... and such that

nP{N = n}

P{M =n} = E[N]

n=0.

The random variabléM is called the sized bias version bf (If the interarrival
times of a renewal process were distributed according tben the average length
of a renewal interval containing a fixed point would be distributed accordii o

TaEOREM 2.1 (The Compound Identiyy For any function h,

E[Svh(Su)] = E[N]JE[X,h(S)].
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PrOOF:
E[Svh(SW)] = E|:__§:1Xi h(Su)]

= goglE[x ih(Sy)IN=n]P{N=n}

= 3 S EDNS)IPN=n}

= 3 nEDX:h(S)IP{N = n}

N] gOE[th(%)]P{M =n}

= E[N]E[X;h(Su)] u
CoroLLARY 2.1: If X; is a positive integer-valued random variable with =
P{X; =i}, then

1 k
P{S\ =k} = P E[N]Ziai P{Su-1=k—i}.

Proor: For an even#, let | (A) equal one ifA occurs and let it equal zero other-
wise Then with h(x) = | (x = k), the compound identity yields that

1
P{Sy =K = E[Su1(Sy =K]

1
« EINIELX: (8w = K)]

L EINIS EDGHS0 = X, = e

k
1
=EE[N]2|P{S\,. KIX; =i}ey
1 , .
=EE[N]ZIP{SV.71=k—'}ai-

3. SPECIAL CASES

Suppose thaX; is a positive integer-valued random variable with= P{X; = i}.
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3.1. Poisson Case
If

e \"
n!

P{N =n} =

then
P{M —-1=n}=P{N=n}, n=0.

Therefore the corollary yields the well-known recursion
1 k

P{S\ = k}:EAEiaiP{S\, =k—i}
i=1

3.2. Negative Binomial Case
For a fixed value o, we say thaiN is anNB(r) random variable if

+r—1

P{N=n}=<n )pr(l—p)“, n=0.

Such a random variable can be thought of as being the number of failures that occur
before a total of successes have been amassed when each trial is independently a
success with probabilitp.

If M is the size-biased version of &B(r) random variabléN, then

PIM 1= — n+1 n+r (1 n+1 n+r r+11 n.
{M— —n}—r(l_p)/p S L e B L L

thatis M — 1 is anNB(r + 1) random variable
Now, for N anNB(r) random variablglet

R (k) = P{Ss = k}.
The corollary now yields the recursion

r(l—p

k
P (k) = i Poyg(k—i).

For instancestarting with

P.(0) = p,
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the recursion yields

P(1) = r(l—;p) @, Pr1(0)
=" (1-pay,
r(l—mp
2p
r(l—mp
2p
r(l—p

Pr(3) = 3p [al Pr+l(2) + 2a, Pr+l(1) + 3as R+1(0)]9

R (2

[al Pr+1(1) + 2a2 Pr+1(o)]

[af(r +)p™" (1~ p) + 2a,p ],

and so on

3.3. Binomial Case
If N is a binomial random variable with parametersndp, then

P{M—l—n}—n+1 r n+1(1_ )rfnfl
7 \n+1 P P

r—1
= . pr(l—p i O=n=r—-1;

thatis M — 1 is a binomial random variable with parameters 1 andp.
For a fixedp, let

P (k) = P{Sy = k}.
The corollary then yields the recursion
r k
P (k) = f S e, Pa(k—i).
i=1

3.4. Hypergeometric Case

LetN = N(w,r) be a hypergeometric random variable having the distribution of the
number of white balls chosen when a random samptei®thosen from a set af
white andb blue balls that is
w b
<n> <r — n)

(*7")

P{N=n}=

https://doi.org/10.1017/50269964804184039 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804184039

478 E. Pekoz and S. M. Ross

Then it is straightforward to check that

("2 8 —n-1)
n r-n-1
w+b—-1 ’
("2
that is M — 1 has the same distribution Blswith the modification thatv becomes
w — 1 andr becomes — 1. Letting

Pw,r(k) = P{S\I(w,r) = k},

P{M—1=n}=

then

rw K
2 iai F’Wfl,rfl(k_ |)

Pw,r(k) = k(w + b) =

This yields

rw <r E 1>

w+b®t <W+b—1>’
r—1

Pur(1) =

W—+b a; owl,r71(0) =

and so on(We are using the convention tl(é@ = 0 if eitherk < 0 ork > n.)

3.5. The Logarithmic Count Distribution
Suppose that for &< g < 1,

P{Nzn}zc'%, n=12,...,
whereC = —1/In(1 - B). Then
P{M—-1=n}=8"(1-58), n=o0;

that is M — 1 has the negative binomial distribution of Subsectichithr = 1
andp = 1 — B. Thus the recursion of SubsectionZand the corollary yield the
probabilitiesP{Sy = k}.

3.6. The Negative Hypergeometric Distribution

Suppose thall has the distribution of the number of blue balls chosen before a total
of r white balls have been amassed when balls are randomly removed from an urn
containingw white andb blue ballg that is

(") wer

< w+b ) w+tb—n—-r+1
n+r—1

P{N=n}=
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UsingE[N] = rb/(w + 1), we obtain
(sb— 1) <W + 1)
n ro/.
<W + b> ’
n+r
that is M — 1 has a hypergeometric distributioimplying that the probabilities

P{Su-1 = j} can be obtained from the recursion of Subsectigh Bpplying the
corollary then gives the probabilitid3{S, = k}.

P(M—1=n}=

4. ESTIMATING P{S = c}

The raw simulation approach to estimgte= P{S < c} would first generate the
value ofN, sayN = n, then generate the valuesXf,..., X, and use them to deter-
mine the value of the raw simulation estimator

1 if ) X =
i .:21 c M

0 otherwise

The average value dfover many such runs would then be the estimataqp. of

We can improve upon the preceding by a conditional expectation approach that
starts by generating the values of ¥ein sequencestopping when the sum of the
generated values exceedld et M denote the number that are neegidt is

i=1

M = min(n:}n:Xi >c>.

If the generated value dfl is m, then we us?{N < m} as the estimate qf from
this run To see that this results in an estimator having a smaller variance than does
the raw simulation estimatdr note that because th§ are positive

I=1oN<M
Hence
E[1/M] = P{N < M|M}. 2)
Now,
P{N<M|M=m} =P{N<m|M =m}
= P{N < m},

where the final equality used the independenc& @ndM. Consequentlyif the
value ofM obtained from the simulation i = m, then the value oE[1|M ] obtained
is P{N < m}.
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The preceding conditional expectation estimator can be further improved by
using a control variabld_et u= E[X; ], and define the zero mean random variable

Y = _:Zl(xi - . 3

BecauseY and the conditional expectation estimakfN < M|M} are(strongly
negatively correlatedy should make an effective control variable
4.1. Improving the Conditional Expectation Estimator

Let M be defined as earlier and write

P{S=c} =3 P{M>jIP{N=j}.
]

The conditional expectation estimator is obtained from the preceding by generating
M and usind {M > j} as the estimator d®{M > j}.

We now show how to obtain a more efficient simulation estimatd{dfl > j}.
Let F denote the distribution function of; and write

P{M >j} =P{M > j|X; = c}F(c).

If we now simulateX,; conditional on the event that it is less than or equal then
for this value ofX,, the estimator

P{M > j[X.}F(c)

is an unbiased estimator BfM > j} having a smaller variance thafM > j}. Let
X; = ¢ be the generated valuEorj > 1, we have

P{M > j|X; = X1 }F(c) = P{M > | X; = X4, X, = ¢ — X }F(c — x,)F(c).

Hence generatingX, conditional on the event that, = ¢ — x; gives when this
generated value is,, the estimate

P{M > j[ Xy = X1, X2 = X2 }F (€ — X;)F(c).

By continuing in this manner it follows that we can obtgior any desired valua,
estimates oP{M > j},j =1,...,n. We can then obtain estimators of the probabil-
itiesP{M > j}, j > n, by switching to an ordinary simulatiokVith g denoting the
estimator ofP{M > j}, we obtain their values as follows

1l e=1s=0.

2. 1=1

3. g =F(c—9)e_;.

4. GenerateX conditional onX = ¢ — s. Let its value beX = x.
5 s—>s+x | —>I1+1
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6. Ifl=n,goto3
7. GenerateXy,... until their sum exceeds — s. Let R denote the number
neededthat is

R=min{k:X; + --- + X, >c—s}.
8. e k=6el{R>kl, k=1

The estimator oP{S = c} from this run is
EST=ZqP{N:j} (4)
J
and its average over many runs is the overall estimate

4.2. A Simulation Experiment

In this subsectioywe give the numerical results of a simulation study done to eval-
uate the performance of the techniques 1W4 letX; be independent and identi-
cally distributed(i.i.d.) uniform(0,1) random variables and Iétbe Poissophaving
mean 10Table 1 summarizes the standard deviations of the estimators for different
values ofc. Ten thousand replications were done for each value tof estimate
P(SN, X = c). Technique 1 is the raw simulation methaechnique 2 is the con-
ditional expectation methotechnique 3 is the conditional expectation method along
with the control variablé3); technique 4 uses the estimatdj. The raw estimator
(technique 1, as expectedperforms poorly and the other estimators perform much
better

Next, we letX; be ii.d. exponential random variables with mearahd again
let N be Poissonhaving mean 10Table 2 summarizes the standard deviations of
the estimators for different values of Ten thousand replications were done for
each value of to estimateP(SY; X, = c).

TABLE 1. Mean and Standard Deviations of the Estimators
for Different Values ofc

c Technique 1 Technique 2 Technique 3 Technique 4
5 Mean 05293 06333901 06332048 06332126
SD 04991657 01828919 006064626 654034
7 Mean 08575 09096527 (009443 09094954
SD 03495797 008442904 04381291 07792921
10 Mean 09924 09960367 (0960445 (960576
SD 008685041 (007884455 06071804 M07213068
15 Mean 099999 09999976 (0999977 (0999977
SD 001 000001479114 00001409331 00001230383
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TABLE 2. Mean and Standard Deviations of the Estimators
for Different Values ofc

c Technique 1 Technique 2 Technique 4
15 Mean 08638 09052721 (0054672

SD 0343018 01489983 01284144
20 Mean 09739 0983253 09832735

SD 01594407 005296109 04602155
25 Mean 09976 09977583 0977649

SD 004893342 01600277 01322325
30 Mean 09996 0999749 09997479

SD 0019997 0003714619 03133148

Thus based on this small experimeittappears that the reduction in variance
effected by technique 4 over technique 2 is not worth the additional time that it
takes to do a simulation ruiMoreover technique,3vhich does not require much
more additional time than either technique 1 or techniquésBally gives an even
smaller variance than technique 4

5. ESTIMATING 6 = E[(S —¢)*]
Start by letting§ = >!_, X; and note that
6= E[E(s = c)*P{N=j}].

]
To estimate, follow the procedure of2) and generate the sequenxg..., stop-
ping at

M =min(j:§ > c).

Let

A=8§,—-c¢
and use the estimator

E[E(S —¢)"P{N =J'}|M,A] =Y (A+(j—ME[X])P{N=]}
J

=M

= (A= ME[X]) X P{N=j}

=M

+ E[X](E[N] - 3 jPIN =j});

<M
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that is if the generated values & andA arem anda, then the estimate af from
that run is

(a— mE[X])P{N = m} + E[X](E[N] - PN =j}).

j<m

6. WHEN THE X; ARE UNCONSTRAINED IN SIGN

When theX; are not required to be positiveur previous methods no longer apply
We now present an approach in the general caseestimatep, note that for a
specified integer,

P{S=c}=> P{§=clP{N=j} +P{S=c|N>r}P{N>r}
j=0
Our approach is to choose a valuand generate the value bfconditional on it
exceeding; if this generated value ig, then simulate the values &,...,S and
S,- The estimate op from this run is

b= 1(S=c)PIN=]} +1(§=Cc)P{N>r}.
j=0

The larger the value af chosenthe smaller the variance of this estimatdihen
r = 0, it reduces to the raw simulation estimajor
Similarly, we can estimaté by using

0= E[§—c)"IP{N=}+E(S —¢)"IN>r]P{N>r}.
j=0

Hence using the same data generated to estimathe estimate o is
6=(S—0)'PIN=}+(S—c)"PIN>Tr}
i=0
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