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Abstract We show that the modules for the Frobenius kernel of a reductive algebraic group over an
algebraically closed field of positive characteristic p induced from the p-regular blocks of its parabolic
subgroups can be Z-graded. In particular, we obtain that the modules induced from the simple modules
of p-regular highest weights are rigid and determine their Loewy series, assuming the Lusztig conjecture
on the irreducible characters for the reductive algebraic groups, which is now a theorem for large p.
We say that a module is rigid if and only if it admits a unique filtration of minimal length with each
subquotient semisimple, in which case the filtration is called the Loewy series.
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Let G be a reductive algebraic group over an algebraically closed field k of positive
characteristic p, P a parabolic subgroup of G, T a maximal torus of P, and G
(respectively, Py) the Frobenius kernel of G (respectively, P). In this paper, we study the
structure of G{T-modules induced from the simple P;T-modules of p-regular highest
weights. Thus our study goes parallel to parabolically induced Verma modules in
characteristic zero. When P is a Borel subgroup of G, assuming Lusztig’s conjecture for
the irreducible characters for G1T, Andersen and the second author of the present paper
showed that the induced modules are rigid, and determined their Loewy series [2]. If M
is a finite-dimensional G|T-module, we call the sum of its simple submodules the socle of
M, and denote it by socM = soc! M. If 7 : M — M/socM is the quotient, we let soc?M =
7w soc(M/socM), and repeat to construct a filtration 0 < socM < soc’M < --- < M,
called the socle series of M. Dually, we call the intersection of all its maximal submodules
the radical of M, and denote it by radM = rad' M. Letting rad’ M = rad(rad’~' M) for
i > 1, one obtains a filtration M > radM > rad’M > --- > 0, called the radical series of
M. Tt is known that the minimal i such that soc’ M = M and the minimal j such that
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rad’ M = 0 coincide, called the Loewy length of M, and denoted ££(M). By definition, each
soc; M = soc! M /soc! ' M, called the ith socle layer of M, and rad; M = rad’ M /rad’ ' M,
called the ith radical layer of M, is semisimple. Any filtration 0 < M! < M? < ... < M
with each subquotient semisimple has length at least ££(M). If the length of such a
filtration M® is £€(M), then soc’ M > M’ > rad®““~*1p1 for each i, and the filtration
is called a Loewy filtration. We say that M is rigid if and only if the socle series and
the radical series of M coincide, in which case we call the filtration the Loewy series.
We now show that our parabolically induced modules are also rigid, and describe their
Loewy series. For that, we show that the parabolic induction is Z-graded. The Lusztig
conjecture is now a theorem for large p thanks to [1, 11, 13, 15], or more recently
to [5].

To go into more detail, let B be a Borel subgroup of P containing T', A the character
group of B, R C A the root system of G relative to T, and RT the positive system of R
such that the roots of B are —R*. We let R® denote the set of simple roots, and I a subset
of R* such that the root subgroups U, of G associated with o € I generate P together
with B. Denote by Vp the induction functor from the category of P;T-modules to the
category of G|T-modules, and let LP (1) denote the simple P;T-module of highest weight
A € A. Our object of study is Vp (LT (1)). After stating some generalities in §§1 and 2, we
specialize into the case where A is p-regular, i.e., when p f(A + p, ") for the coroot a" of
each root @ with p = % Y wer+ @ In §3, we employ graded representation theory from [1]
to show that the induction functor Vp is Z-graded. Each block of finite-dimensional
G T-modules is equivalent to the category of pZR-graded finite-dimensional modules
over the k-algebra E of the endomorphisms of a projective pZR-generator of the
block. Andersen, Jantzen, and Soergel [1] showed that the algebra E for a p-regular
block is (pZR x Z)-graded, and that, assuming Lusztig’s conjecture for the irreducible
characters for G|T, E is Koszul with respect to its Z-gradation. We show in §4 that
the rigidity of Vp(L¥ (1)) for p-regular A follows from a result in [4]. Unlike the case
P = B, the number of G|T-composition factors of Vp (iP(A)) varies depending on the
highest weight A. Nonetheless, we show also in §4 that the Loewy length of Vp (ﬁP (A)) is
uniformly £(wow;) + 1 with wo (respectively, wy) the longest element of the Weyl group
W (respectively, Wy) of G (respectively, P). In §5, we determine the composition factor
multiplicities of the Loewy series of Vp (I:P Q).

Given a category C and its objects X and Y, C(X, Y) will denote the set of morphisms
in C from X to Y. By ® we will always mean ®y, unless otherwise specified.

1. Some generalities

Let G be a reductive algebraic group over an algebraically field k of positive characteristic
p, B a Borel subgroup of G, T a maximal torus of B, A the character group of B, R C A
the root system of G relative to T, and R the positive system of R such that the roots of
B are —RT. We let R® C R™ denote the set of simple roots, and A™ the set of dominant
weights of A. For each o € R we let a¥ denote the coroot of a. Let W be the Weyl
group of G generated by the reflections s,, @ € R, and £ the length function on W with
respect to the simple reflections. Let wg be the longest element of W. For simplicity,
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we will assume throughout the paper that G is semisimple and simply connected; cf. [7,
Remarks 11.3.15.2 and I1.9.7].

For each a € R, let U, denote the root subgroup of G associated with «. Let I € R* and
P =P =(B,Uy | ael), the standard parabolic subgroup of G associated with 7, and
let L; denote its standard Levi subgroup. Let R; C R denote the root system of L; with
its induced positive system R?‘. Put Ap={LeA| A, av)=0Vacl}and AT ={re
A (A aY)>0Va e I}. Let Wy be the Weyl group of P and w; its longest element. Put
w! = wowy. Let p = %ZaeR‘*’a and pp = % ZaeRﬂR,*“ € A®z Q. Let W, = W x pZR,
Wi,p=W; X pZRy, and p; = %ZaeRj“ =p—pp. For x € W,,, we will write x e A for
x(A+p)—p. When x € Wy ,, xeh =x(A+p;) — p;. We will also let (—x) e A stand for
—(xei)—2p=—x(A+p)—p.

(1.1) Let ag be the highest short root of R, and let & = (p, o) + 1, the Coxeter number
of G.

Lemma. 2pp = wyp+p = wo(w! e0) € ApNAT with (2pp,a¥) € [2,h] Va € R*\ 1.
Proof. One has

1
Iy _ _
waom—mewm—p%—wp+p—p+w5 E ﬁ+§ B

BERT\RS BeR}
1 1
=5 X B+ B+ X -2 B|= X B=2r
BERT\RS BeRY BERT\R} BeRf BERT\R}

Ifaecl, 2op,a”)=(wp+p,a¥)={p,wa”)+1=0, and hence 2pp € Ap. If a €
R\, 2pp,a’) =(wip+p,a’) = (p, wra”)+1 < (p, ) + 1 =h. O

(1.2) If H < K are closed subgroups of G, we let ind% denote the induction functor from
the category HMod of rational H-modules to the category KMod of rational K-modules:
if M € HMod, indgM = {f € Schy (K, M) | f(kh) = h~' f(k) Yk € K¥h € H}. Here and
elsewhere throughout the paper we will write the H-action on M simply as hm,
h e H, m € M, though, precisely, one has to consider the action of H(A) on M ® A,
functorially on all k-algebras A. We let Dist(H) (respectively, Dist(K)) denote the algebra
of distributions on H (respectively, K), and let Coindfl = Dist(K)®pisir)? denote the
coinduction functor from the category Dist(H)Mod of Dist(H)-modules to the category
Dist(K)Mod of Dist(K)-modules. For a finite-dimensional H-module M, we will mean
by M* the k-linear dual of M. Let K| denote the Frobenius kernel of K. Then K;H
is a subgroup scheme of G isomorphic to (Kix H)/(KiNH) [7, 1.5.6.8 and 6.2.1].
Recall also for the finite group scheme K that Dist(K{) = k[K{]* with multiplication
given by (uv)(f) = (u®v)oA(f), f €k[K(], o and v € Dist(K;), A denoting the
comultiplication on the coordinate Hopf algebra k[Ki] of K. Thus Dist(K{) coincides
with the restricted universal enveloping algebra of the Lie algebra of K [7, 1.8, 9].
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If M is a P-module, coindg]' M extends to a G| P-module with P acting on Dist(G) and
Dist(P;) by the adjoint action and as given on M, in which case we will write coindg'PM
for coindgl1 M [7,1.8.20]. Let Ru(P) denote the unipotent radical of P.

Proposition (Cf. [7, I1.3.5]). Let M € PMod.
(1) There is an isomorphism of G P-modules indg'PM ~ coindglP(M ®2(1—p)pp).
(i) If M is finite dimensional, there is an isomorphism of G| P-modules,
(ind§"" M)* ~ ind§' P (M* ®@2(p — 1)pp).
Proof. Recall from [7, 1.8.20] an isomorphism of G| P-modules,
coind$'? M ~ind§"" (M @ x1p(x) 7). (1)
(ndS"" M)* ~ind5'P (M* @ x|p(x)™") if dim M < oo, (2)
where x (respectively, x’) is a one-dimensional representation of G (respectively, P)
through which G (respectively, P) acts on Dist(Gl)ZGl = {u € Dist(G1)|vu = v(l)u Yv €

Dist(G1)} (respectively, Dist(Pl)zDl = {u € Dist(Py)|ve = v(1)u Vv € Dist(Py)}). As x is
trivial by [7, 11.3.4/1.9.7], (1) and (2) read, respectively,

coindy' M ~ind 5" (M @ (x)7h), 3)
(indS'F My* ~ind§' P (M* @ (x)7h. (4)

Recall from [7, 1.9.7] that x’ is given by g ~ det(Ad(g))?~', ¢ € P. In particular, x’
factors through P/Ru(P), and is trivial on the derived subgroup of L;. To compute
x’, therefore, we have only to consider the adjoint representation of T on Lie(P) =
Lie(T) ® @ﬁeR+ Lie(U_p) @ @aeR;r Lie(Uy). Thus, for each r € T,

detAd)=| Y =B+ Y e|®=3-| D B=-D a|t®

BERT aeRf BERT aeRf

=|- 2 BlW=(20m).

+
BERT\R;

It follows that x’ = (p — 1)(=2pp), and hence also the assertions. O]

(1.3) Likewise, write coindgllTT M for the GT-module coindgllM in the case when M is
a P;T-module.

Proposition. Let M € PTMod.

(1) There is an isomorphism of G| T -modules, inngITTM ~ coindgﬁ; M®2(1—p)op).
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(ii) If M is finite dimensional, there is an isomorphism of G| T -modules,

(iG] M)* ~ ind5 7 (M* ®2(p — 1)pp).

(1.4) If L is a simple P-module, the P-action on L factors through P/Ru(P), affording
a simple Lj-module of highest weight belonging to A;‘. For each A € AT (respectively,
AE A}"), we let L(A) (respectively, L? (1)) denote the simple G-module (respectively,
P-module) of highest weight 1. Likewise for simple P;T-modules. For each A € A, we let
L (respectively, L? (A)) denote the simple G;T- module (respectively, P;T- module)
of highest weight A. Let A, ={A € A | (x,a") € [0, p[ Ya € R*}. Each » € A admits a
decomposition A = A%+ pA! with 10 € Ap and A e A. Thus f,P(k) ~ LPOO) @ pal; if
A0 =29 426 with A5 € Ap, then L (0) = LP(A)) ® (3 + pa!). In particular,

G]T GIT

{indp'7 (LY )Y ~ ind3'7 (L7 (—wr) ¢ 1) ® pQpp +wir! — 21 (1)

with 2pp +w;A! — Al € ZR.

If H is a closed subgroup of G and if M is an H-module, we let socy M (respectively,
rady M) denote the socle (respectively, the radical) of M, and put hdyM = M/(rady M).
Proposition. For each A € A,

socg, rindj'f (LF (1) = L(2),
hdg, 7indg!7 (L7 (1)) = L(=w2® = pA! +2(p — Dpp)*
= L' e2)® pfr' —2pp —wid' +wo((—wp) e 1) = (—wp) e 2)'}.

Proof. For each A € A, we have socPlT(ind?l;A) ~ SOCPIT(IHdEZEEég;II;)») = I:P(A). Then

ind3'7 L (1) < ind3'find ! 7. (3) ~ ind3 7 4.

G]T

It follows that socGlT(lndG1 LP(A)) = {ind, LP(A)} N SOCGIT(lnd ) = I:(A). Then

hdg, 7 (indf';

L (3))  {socq, r ((ind3'F L (3))")}*
:{socGlT(mdBlT(I:P()L)*®2(p—l)pp))}* by (1.2)(ii).

Now LP(0)* = (LP (W0 @ paly* = LP(\0)* @ —pr! = LP (—w;A%) @ —pA! = LP (—w 20—
pAh). Also, Yv € A,

LPw)®2(p - 1)pp < (indj 7v) ®2(p — Dpp
~indg 7.(v®2(p — 1)pp) by the tensor identity,
and hence
LPm®2(p—1pp < SOCPlTlndB T(v ®2(p—Dpp) = L0 ®2(p - Dpp).
It follows that
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hdg, 7 (indj3'} L (3)) = {socg, 7 (indy 1 (L7 (—w2® — pal +2(p — D pp)))}*
= L(—w;2® = pA' +2(p - Dpp)*.
Finally,
—wiA? — pA' +2(p — Dpp =—w2? — pA' + (p = D(wip+p) by (1.1)
=—w A"+ p) = p+ pwip+p—1")
= (—wp) oA+ pwir' +wrp+p—1")
=(—wy) oA +p(w1k1 +2pp —2H by (1.1) again.
Thus
L(—wi2’ — pa' +2(p — Dpp)* = {L((—wp) e A+ p(wsr' +2pp — A1)}
= L(—wo((—wp) e 1) ® p{—w;a' = 20p + 1" +wo((—wy) e ) — (—wy) e 1))

with —wo((—w;) @A) = —wo(—w; (A +p) —p) = wow;(A+p)—p = wow;er = w! oA
]

(1.5) Corollary. Let » € A.
(i) hdp,7L(A) = L (1) while socp, 7 L(A) = L (wjwor® + prl).
(i) If» € AT, hdpL(A) = LT (L) while socp L(A) = L (wjwor).
Proof. (i) For each v € A,
P\TMod(L(2). L* (v)) ~ G TMod(L (1), ind '} L* (v))
=8wk by (1.4).
It follows that hdp]Ti(A) = iP(A). Then
socp, 7 L(A) 2 {hdp, 7 (LY = {hdp, 7 L(—wor® — pA)Y* = LF (—wor® — pr)*
= {L” (—wor”) ® —pa'}* = LP (wiwor®) @ pa' = LP (wywor® + pr").
(ii) For each u € AT,
PMod(L (1), L (1)) = GMod(L (1), ind% L* (1)) < GMod(L (1), ind$ind% (11))
~ GMod(L (), ind§ (1)) = 8, k.
It follows that hdp L(A) = L (1). Then
socpL(A) =~ {hdp(L(L)*)}* = (hdpL(—wor)}* = LT (—wor)* = LY (wjwor). O

(1.6) Let H be a closed subgroup of G and ¢ an automorphism of G. If M is an
H-module, by M we will mean a ¢ (H)-module of ambient k-linear space M with the
¢ (H)-action twisted by ¢! [7, 1.2.15/3.5]: Vh € ¢(H) Ym € M, the action of 2 on m in
®M is given by ¢~ !(h)m. In particular, under the conjugate action of W on T, Yw € W
and VA € A,

W) = waA. (1)
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If K is a closed subgroup of H and V is a K-module, there is an isomorphism of
¢ (H)-modules [7, 1.3.5.4],

ind® (V) ~ 1nd¢EZ; @V). (2)

Throughout the rest of the paper we will abbreviate indgl'TT (respectively, indg'lg) as Vp
(respectively, VF). More generally, for we W,let P = wPw™ !, and put Vup = indg,‘PT)lT7

VP = dewQIT Let also V,, = 1nd ,,,B)IT, we will abbreviate V, as V. For each A € A and

w € W, we will write A{(w) for L+ (p — 1)(w ¢0), after [1]. Then
UVp(LP () = Vup ("L (1) by (2)
Vup (UVE (1))
Vup(Vufy (V1)) by (2) again
~V,(wir) by (1)
=Vy(wer—we0) =~ Vy(wer+(p—1)(we0)®—p(we0)
Vo (w e M) (w)) ® —p(w e0). (3)

N

[

(1.7) Let t be the Chevalley antiinvolution of G such that t|r =idr [7, 11.1.16],
and hence t(Uy) = U_y for each @« € R. If H is a subgroup of G, and if M is a
finite-dimensional H-module, let M be the 7(H)-module with the ambient space M*
and the t(H)-action twisted by 7: Vx € T(H), Vf € M*, VYm e M, (xf)(m) = f(z(x)m).
Put B* =B and A = coindgf;. Recall from [7, I11.9.3.5] that there is an isomorphism
1
of functors (?°) oV =~ A o (?%) from the category of finite-dimensional BjT-modules to
the category of G| T-modules. More generally, put P* =tP = (BT, U_y|a € I), and let

Ap = coind ITT If M is a finite-dimensional P;T-module, there is an isomorphism of

G T- modules,
V(M) ~ Ap(M7). (1)
Let U1+(w1) = HﬂeR+\R, Ug,1 be the Frobenius kernel of the unipotent radical of Pt If
V is a G1T-module, let yUn — fveVixv=vVx e U1+(w1)}. If M is a B;jT-module, as

G = U (w))Py, V(M@ = (Sehy (G T, M)BITYU WD — Sehy (P T, M)®1T maintains
the structure of a P;T-module such that

VU en =P (). (2)
Recall also that each V()), A € A, is projective/injective as a B/ T-module [7, 11.9.5]. As
Ufr(wl) is a normal subgroup of B1+, Ufr(wl) is exact in Bl+ [7,1.6.5.2], and hence V(L)
remains injective/projective as a UlJr (wy)-module.

2. Translation functors

For A, u e A, let Tf denote the translation functor on the G|7T-modules. If M is a
L 1T-module, we say that M belongs to A if and only if all the L; ; T-composition factors
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of M have highest weights belonging to Wy , e 1. We let T’; , denote the translation functor
on the L 1T-modules. ,

For each ¢ € R and n€Z, let Hy, ={ve AQzR | (v+p,a”) = pn}. We call a
connected component of A ®z R\ Uyer nezHqyn an alcove. If F € A @z R, F will denote
the closure of F in A ®zR. We say that A € A is p-regular if and only if A lies in an
alcove. If x € W), and A is an alcove, we will write xA to mean x e A.

(2.1) Lemma. Let n € A, and let E be a simple G-module of extremal weight n. If wn €
A;r, w e Wy, and if a € I, then wn+ o is not a weight of E.

Proof. Let x € W withxn € AT, andput v=xn,v =wn.Let J ={Bel]|{V,BY) =0}
Wy={(sg|Bel) W/ ={yeW]|yB>0VB e J},and write xw™" = y;y, with y; € W/,
y2 € Wy. Just suppose that wn+ o« is a weight of E. Then v+ yja = y; (v +a) would
also be a weight of E. As v is the highest weight of E, yja < 0, and hence o ¢ J. Then
0 < (V,aY)=(y1V,yia¥) = (v, yja¥), and hence yja > 0, which is absurd. O

(2.2) Proposition. Let &, u € A with p lying in the closure of the facette that A belongs
to with respect to W,,. Regarding an Ly 1T-module as a P1T-module through the quotient
P — P/Ru(P), there is an isomorphism of functors from the category of L1 1T -modules
to the category of G1T -modules,

T{Vp(2) = Vp(T), 7).

Proof. Let M be an Lj1T-module belonging to the A-block, and E a simple G-module
of extremal weight u — A. Let pr, (respectively, pr;, u) be the projection to the u-block of
G T- (respectively, L;1T-) modules. Thus Tﬁf@p(M) =pr (E® Ve (M)). If w(u—2) €
A}" with w € Wy and v € E\O is of weight w(u —A), then Dist(L;)v is by (2.1) an
L;-module of highest weight w(u —A). If we put E’ = Dist(Lj)v, T/]ko =pr;,(E'®
M) [7, Remark I1.7.6.1]. Thus

T} Vp (M) =pr,(E® Vp(M)) ~ pr,(Vp(E ® M))
>pr, (Ve(E'®@ M) > Vp(pr; , (E'® M)) = Vp(T}, (M)).

As it becomes an isomorphism for M = VP(xel) and x € Wi, p, the isomorphism for
general M follows using the five lemma. O

(2.3) Corollary. Let A, u € A. Assume that p lies in the closure of the facette that A
belongs to with respect to W,. Let Fr be the facette that A belongs to with respect to
Wi, p, and let Ey be its upper closure with respect to Wy ,. Then
Vp(LP () if e Fy,

else,

TEVp(LP (1) ~

in the first case of which one has a commutative diagram of G1T-modules
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TV () - )
TYVp(L? (2) ——— Vp(L (n)).

(2.4) For @ € R and n € Z, let sq,, denote the reflection in the wall Hy ,.

Proposition. Let A, u € A with A lying in an alcove A and € A. Assume that {x €
Wplx e = pu} = {e, Sqn} for somea € R;L andn € Z. If M is an L 1T -module belonging
to u, there is an isomorphism of G T -modules

T, Vp (M) =~ Vp(T} M),
regarding M and T?,MM as P1T-modules via the quotient P — P /Ru(P).
Proof. Arguing as in (2.2) yields Tlﬁ@p(M) > @p(T?#M). On the other hand, if M =
VP (x e ) for some x € Wi p,
chTAVp(VP (x o)) =chThV(x e p) = chV(x 1) +ch V(xsa, o 1),
while
chVp(T; , V¥ (x 0 11)) =chVp (V" (x 0 11)) +ch Vp (VP (x50 @ 1) aS Sam € Wi
=chV(x eX)+chV(xsgneh).

By additivity, the character equality holds for general M, and hence the assertion
holds. O

(2.5) Corollary. Let A, € A, and keep the assumptions on A and u from (2.4).

@) Tﬁ@p(I:P(,u)) admits a G T-filtration whose subquotients are @p(ip(x o)), x €
Wi, p, with multiplicity my, € N such that chT’}’MiP(u) =D e, ) mech LP (x o).

(i) If A < San @ A, then socg, T4 Vp(LP (1)) = L(0).

Proof. For (i), argue as in (2.2). As Vp(LP (n) < V(w), (ii) follows from the fact that
soc, 7T, V() = L(3). O

3. Grading the induction functor

In this section, we employ graded representation theory from [1] to show that our
induction functor Vp can be graded on p-regular blocks. To facilitate reference to [1],
we will adapt to their notation except for k =k, A = X, and L = Li. In particular,

we will write Zy for A, and more generally we let Z¥ = coindgllf,T for w € W. For each
1

LeAand B e R, letm e Zwith (A +p, BY) €l(m —1)p, mp],and set B+ A = spn 0L =
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A+ (mp — (A +p, BY))B. Throughout the section we will assume that p > h, the Coxeter
number of G.

Let © be a p-regular block of G{T-modules, Cx(£2) be the category of finite-dimensional
G T-modules, and put ¥ = pZR. We recall in (3.1) that there is a (¥ x Z)-graded
finite-dimensional k-algebra FEq ) such that Cy(2) is equivalent to the category
Eq xmodgry of finite-dimensional Y-graded Eq k-modules. Denote by Eq xmodgry ., the
category of finite-dimensional (Y x Z)-graded Eq k-modules, and let v be the composite
of the forgetful functor from Eq ymeodgry,; to Eq xmodgry and the equivalence from
Eq xmodgry to Cx(2). If @7, Q; € 2, is a p-regular block for L; 1T-modules, we define
in (3.2) with ¥; = pZR; the corresponding (¥; x Z)-graded finite-dimensional k-algebra
Eq, k such that Cx(€2) is equivalent to the category Eq, xmodgry, of finite-dimensional
Y;-graded Egq, x-modules. Denote by Eq, xmodgry, .7 the category of finite-dimensional
(Y1 x Z)-graded Egq, -modules, and let v; be the composite of the forgetful functor from
Eq, xkmodgry, ., to Eq, xmodgry, and the equivalence from Egq, xmodgry, to Cr(2)).
We will show that there is a (Y x Z)-graded left Eq k- and (Y; x Z)-graded right
Egq, x-bimodule Ji to yield an isomorphism of functors v o (‘I]k®EQI,Ik?) ~ @p ovy:

Jk@EQ[,kr]

Eq, ,kmodgryl 7 Egq xmodgry .

vy

O
L;1TMod Ci(£2)
o O B
inflation
P;TMod - G1TMod,
Ve

where the inflation functor L; TMod — P;TMod is defined by inflation along the
quotient P — L;. Thus, if M is a Pr1T-module belonging to the block €2; which lifts
to a (Y] x Z)-graded object, then %p (M) admits a (Y x Z)-graded lift. The category
Eq xmodgry,; (respectively, Egq, xmodgry,.z) will be denoted Ci(Q) (respectively,
Ci(2))) for short, after [1, 18.18], in what follows.

(3.1) Let us first recall [1, § 18] to suit our objectives. Let Sk be the symmetric algebra
on ZR ®zk over k, and Sy its completion along the maximal ideal m generated by R.
We will denote each & € R in Sk by hg, after [1, 14.3]. Thus S’k is the formal poser series
k-algebra in the indeterminates hy, @ € R*. We will regard Sk as a Z-graded algebra with
each hy, o € R, having degree 2. Fix a p-regular weight At belonging to the bottom
dominant alcove, and put Q@ = W,eAt, ¥ = pZR. The category of finite-dimensional
G1T-modules belonging to the block € may be identified with Cx(2) from [1]. For
each A € @, let Qk()) be the projective cover and the injective hull of i(k) in Cx(£2).
If Q=@,cw Ox(wer™), O is a projective Y-generator of Cx(2), i.e., every object of
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Ck(Q) is a quotient of a finite direct sum of some Q[y] =P, Qx(werT+y), y €Y [1,
18.1]. Thus, if Eqk = Ck(Q)*(Q, Q)% = {@yeyck(ﬂ)(Q[y], 0)}°P, it is equipped with
the structure of a finite-dimensional Y-graded k-algebra [1, E.3]. Denoting the category of
Y-graded Eq x-modules of finite type by Eq xmodgry, the functor Hq ) = C]k(Q)ﬁ(Q, 7N =
@er Cx(2)(Qly1, 7) gives an equivalence of categories from Ci(2) to Eq xmodgry with
quasi-inverse v = Q®k, . ? [1, E.4].

Let now S = S[hy' | @ € RT1, and Sﬂf = Sk[h;' | @ € RT\{B}], B € R*, in the field
of fractions of Sk, and put S'[E = .§k ®s, Sﬂg, Sﬂ’f = .§'k ®s, S]f. Let also dy € {1,2,3}
minimal such that the matrix [(dy(y, @"))a,yers be symmetric [1, 2.4 and 14.4]. For
A € {8k, Sk, S[E, S'IE, Sﬂf, S'ﬂf | B € R"}, we define the deformation category C4(2) over A of
C(R2) as follows. Let Hy, € Lie(T), o € R®, Xg € Lie(Ug), B € R, be a Chevalley basis of
Lie(G). We introduce first category C4 of A-graded Dist(G1) ® A-modules. An element
of Cx is a A-graded Dist(G1) ® A-module M = & ., M, graded as an A-module with
each M, an A-submodule of finite type such that XgM, € M, g for each § € R while
Hy, @ € R®, acting on M, by the scalar (v,av)—i—da_lha € A. A morphism of Cy4 is a
homomorphism of Dist(G1) ® A-modules preserving the A-gradings. For each A € A and
w e W, we equip Z%¥(X) = coind®1” (M) ® A with the structure of C4 as follows. Using

wBrT
SI;IZT M) ® A ~Dist(PU;) @ A, we define a A-grading on
Z3(A) such that Z%(X), = Dist(*U;),—» ® A. The action of Dist(G1) on Z}(A) is given
by regarding Z} (A) as Dist(G1) ®Dist("’Bl+) A with the structure of a Dist(“’Bfr )-module
on A defined by Hyl = (A, ") +d; 'he, @ € RS, while Xgl =0 VB € wR*; cf. [1, 2.10].
When w = e, we will simply write Zs(A) for Z%(X). Now C4(R2) is a full subcategory
of C4 consisting of the homomorphic images of all M € C4 which admits a filtration
whose subquotients are all of the form Z4 (1), A € Q2 [1, 6.10]. For each > € Q and w € W,
one has ZY (A(w)) € Ca(R2) [1, 6.11]. We will always regard k as an A-algebra via the
quotient A — A/(hgle € RT). Then Za(h) @4k~ A1) and Z3°(AM{wo)) @4k = V().
We will sometimes write C(2, A) for C4(2) for notational convenience.

Next, let A € {Sk, S’k}, and define a combinatorial category (€2, A) as follows. For each
M eCy, put MY =M @4 A? and MP = M @4 AP. We will write Z(A (A) (respectively,

A(A)) for Z4(M)? (respectively, Z4(A)?). An object of K(Q2,A) is a family M =
(MQ), M, B)req,per+ of A% modules M(A) of finite type, almost all equal to
zero, and finitely generated AP-submodules M (A, B) of ML) ® M(B 1 1) (respectively,
M) if B4 A # A (vespectively, if 1A =1i). A morphism ¥ of K(,S) from M
to M is a family (Y)req of A?-linear maps ¥ : M(X) — M'(L) such that, VB e

W ® Ypr )M, B) S M (x, B) (respectively, Yo M(x, B) € M'(%, B)) if B 1 4 # A
(respectlvely, if B+ r=2).

If F(Q Sy) is the full subcategory of C(£2, Si) consisting of the objects that are free
over Sk, there is a fully faithful functor Vg from F (<2, Si) to the combinatorial category
K($2, Sk) [1, 9.4]. To describe it, put A = Sy for the moment. When B 1 A # A, fix a
generator P (V) of AB-module ExtéAﬂ (Zﬁ A), Zﬁ (B 1 1)) chosen according to the Theorem

of Good Choices [1, 13.4]. Then the functor Vg : F(L, Sk) = K(, 8i) is defined by

an A-linear isomorphism coind
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VaM)(L) = CA(ZQ(A), MY for each A € Q and by VaM) (%, B) = CA(Zﬁ(A), MPY if g 4
A=A, B € RT. When 8 1 A # A, the definition of (Vo M)(X, B) is more elaborate: let 0 —
Zf; B+ A —f> 0 S Zf\ (A) — 0 be an exact sequence representing e ()). As the sequence
splits uniquely over A?, let g’ € CA(Z?‘(A), 0"%) with g’ 0 g% = idzf‘(x)’ =g Qa8 A? We
define (WVaM)(x, B) to be the image of C4(Q, MP) in WVaM)(X) & VaM)(B 1 1) under
the map ¢ > (pog’.po f7).

The category K(2, Sp) has a graded version K(S2, Si) [1, 15.2]: an object of
IC(Q, Sk) is an object M of (2, Sx) with a grading M(X) = @iez M), e, as
an S]E—module such that each M(A, 8) is a homogeneous Suf—submodule of M(A) &
M(B 1 1) (respectively, M(1)) if B 1 A # A (respectively, B 4 A = A). The morphisms
of K(S2, Si) are those of K(2, Sx) that preserve the gradings. We will use the same
notation for an object of K(Q, Sx) and for its image in (€2, Sx) under the forgetful
functor. For M € K(, S¢) and r € Z, let M(r) be M with the grading shifted by r,

e, YVAe Q VieZ, {M{ryM)}i = {MM)(r)}i = MQ)i—,. Also, for each y € Y define
Mly] e K(S2, Si) by the formulae M[y](A) = M —y){(=2ht(y/p)) and M[y](x, B) =
M@=y, B)(=2ht(y/p)) A€, B R, where ht(}",cps maer) = ZaeRA o If NV is
another object of K(S, Si), for each r € Z let K(S2, Si)(M, N), = IC(Q S) (M(r), N,
and put K(S2, S)f (M, N) = @yeylele(Q Sik) (M, N),,; with K(S2, Si)(M, N)yi =
K, Si)(MIy 1), N) = K(Q, S)(MIy], N);i.

If M € K@, S, a graded Si-form of M is an object M of IC(Q Sk) such that
M ®s, Sk ~ M. Each 0Ok (M) lifts to a projective object QSk Q) of C(L2, Sk), and Vg QS]k A)
admits a graded Sk-form Q(A) in the graded combinatorial category K(S2, Si) [1, 17.6].
IfP=@,cw Quwer™), and if Eqg = K(S2, Si)!(P, P)°P, then Egq is a (Y x Z)-graded
Sk-algebra of finite type, and there is an isomorphism of Y-graded k-algebras Eq ®g, k ~
Eq i [1, 18.17.1]. Thus Eq k comes equipped with the structure of a finite-dimensional
(Y x Z)-graded k-algebra. We denote by Cr () the category of finite-dimensional (Y x
Z)-graded Egq x-modules, and let v denote the functor from Cr(RQ) to Cu(Q) composite of
the forgetful functor from Ci(£2) to the category Eq xmodgry of Y-graded Eq x-modules
of finite type and v = O®g, 7. Each Qkx(4), Z) (A (w)), and I:(k), A€ Q we W, admits a
graded object Qk(k), Zﬂ’é’ (1), and Ly () in C~k(§2), respectively, such that 50K(A) ~ Ok(M),
971 (4) =~ Z¥ (M(w)), and 5Lk = L) in Cx(R) [1, 18.8 and 18.10].

(3.2) Fix A] € A NW,eAT with (A7 +p, ") < p Va € R} . Let Q; = W; ,e 1], and
let Cx(S27) denote the category of finite-dimensional Lj7-modules belonging to the
block ;. Put Y; = pZI. For each v e A, let Q;k(v) be the projective cover of
iP(v) as Ly 1T-module. If Q7 = ®w€W1 Q”k(wo)»j'), it is a projective Yj-generator of
Ck(R27). Let Eq, x = C(2D%(Qy, 01)°, and denote the category of finite-dimensional
Y;-graded Egq, k-modules by Egq, xkmodgry, . If Qrly]l = @wewl Or(w o)\;r +vy), y ey,
the functor Hq, x = C(QDYN0;, D = @erz Ck(2D(Qgly], 7 gives an equivalence of
categories from Cy(27) to Eq, xmodgry, with quasi-inverse v; = Q1®E§21,]k ?2.
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Now the category Ci(£2;) can be deformed much in the same way as Cx(2). Let
Six = Sk(ZR; @7 k) be the bymmetric algebra over k on ZR; ®le<§ Denoting o € Ry
by hy as an element of Syk, define S”k = Srklhy Hae R+] and S”k = Sy klhy Hae
R+\{,3} B e R , in the field of fractions of Sjj. Let SIk be the completlon of
Srx along the maxnnal ideal generated by ZR; ®zk, and put S“k = SIk@S,]k ?lk’

A

Sﬂ]k = SIk@SIk I]k For A € {S1k, S, k> SI Kk S?]k, ka, Sﬂ[k | B € R;‘}, define a category
Cy.a of graded A-graded Dist(L; 1) ® A- modules just like C4 in (3.1). An object of Cy 4 is
a A-graded Dist(L;1) ® A-module M = @, ., M, of finite type over A with each M, an
A-submodule of M such that XgM, € M, g for each § € R while H,, a € I, acting
on M, by the scalar (v, av)—i—d;lha € A. We then go on to define the deformation
category C4(R2;) exactly the same way as for C4(2). When R*® has two lengths, if a
component I’ of I with I’ C R® consists only of long roots, the action of Hy, @ € I, on
M, defined above deviates from the convention in [1, 14.4/p. 11], according to which
Hy should have acted via (v, a¥)+hy € A. For our application, however, the deviation
causes no problem. For each A € Q; and w € Wy, define a lift Z}‘fA(A(w)) € Ca(R2r) of

Zy, i) = coind5l, - (h(w)
Z1x(A) for Zl,k()\( e)). Let F (21, S1x) be the full subcategory of C(€2;, Srx) consisting
of the objects that are free over S’I,k, define a combinatorial category IC(QI,S’L]]()
just like KC(S2, S’k)7 and define a fully faithful functor Vg, : F(Lr, SI,H() — K(27, 3‘1’]]&)
using the generators elﬂ()u)7 reQr, Be R;r, according to the Theorem of Good
Choices [1, 13.4] for Q;, just like Vg. Tlle category K(2y, 3‘1,]1() admits a graded version
K1, Srx), Or lifts to QI,§1,k € F(2;, S1x), and Vg, QI,Suk admits a graded Sy k-form

Pr e K(Qr, Six). If Eq, = K(Qu, S1)*(Pr. P = D, ey, icz K(Q1, S1) (P1ly16), P),
it is a (Y x Z)-graded Sy k-algebra of finite type, respoPsible for the structure of the
(Y1 x Z)-graded k-algebra on Eq, x =~ Eq, ®5,k]k Let Cx(€27) denote the category of

(Y1 x Z)-graded Egq, x-modules, and let vy : Ck(QI) — Ck(R21) be the functor composite of
the forgetful functor C’k(QI) — Egq, xmodgry, with v;. Each Z}, (A(w)), LP(A) Qrx(),

A€ Qr, we Wy, admits an object ka()»(w)), Zl,k()») Ql’k()») in Cu(Q) such that
012 (Mw) = ZP, ((w)), 07 L) ~ LP (), 57 Q1() =~ Qrx(h).

) as for G|T in (3.1). Again we will simply write

(3.3) Unless otherwise specified, we will regard an L; ;T-module as a P;T-module via
inflation along the quotient P — P/Ru(P) ~ L;

Lemma. There is an isomorphism of functors from the category Eq, ymodgry, of
finite-dimensional Y;-graded Eq, x-modules to the category Cx(2) of finite-dimensional
G T-modules belonging to the block 2,

0 ®rq, C(R)F(Q, VP(QI))@EQ K7 VP(QI@EQ wD-

Proof. Let M be a Y;-graded Eq, x-module of finite type. As Q®g, , ? and C (%0, D
are quasi-inverse to each other, Q ®g,, Ck()*(Q, Vp(Q))) ®Eq, i M ~Vp(Qr) ®Eq, k
M, which is isomorphic to Vp (0 ®Eq, x M) if M is isomorphic to Eq, k. In general,
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apply the five lemma to a natural homomorphism of G|T-modules, @p(QI) ®Eq, x M —
Ve (Qr ®Eq, & M).

If n:(Q®Eq,7 o C()*(0, ) — ide, (@) is the natural equivalence, the composite
1%,0)) ®E911k M with the homomorphism %P(Q]) ®E91_k M — @p(QI ®E91,k M) via

p@m > ¢ @m, ¢ € Vp(Q) =Schp(GiT, Q)7 m € M, is certainly functorial in
M, and hence the assertion follows. O

(3.4) We wish to lift the isomorphism of the lemma along the functors

5 f tful O®Eq .7
5 : Ck(Q) = Eqxmodgry, ; — > Eg ymodgry ——— > Cy(Q)

and

forgetful Q1®E9, K’
() = Eq, xmodgry, ,; ——— Eq, xmodgry, —————— Ck(2)).

We will show that Cr(Q)*(Q, @p(QI)) carries the structure of a
Y x Z)- graded left Eq k- and (Y7 x Z)- graded right Eq, x-bimodule to yield a functor
C (%0, Vp(QI))<X)EQ N Cx () = Ck(). Then an isomorphism of functors

- Ce(@HQVP(Q®EG, 7 ;
Cr(21) Ck(Q) ——= Cx(Q) — G TMod

and

inflation

Cu(Q) —~ €, (Q)) < L;TMod P, TMod —"~ G,TMod
will follow, i.e., schematically,

Ce(H(Q.VP(QD)®Eq, |, ?

C(Q1) C(S2)
L;1TMod O v
P TMod . G1TMod.
Vp

Let us sketch our strategy before proceeding. Put Ag = S’k and A; = S‘I_k. We know
that Q lifts to an object Qa, of C(R, Ag), and VqoQa, admits a graded Sk-form
P e K(Q, Sy). Likewise, let 01,4, = Duew, QI,AL(wo)L}") € C(Q,AL), with Q7.4, (we
At) € C(Q2r, Ar) a lift of the projective cover of LP(we ™) for LT, and let P; be
a graded Sy-form of Vg, Qr 4,. We say that an object M of C(2, Ag) (respectively,
C(Q1, Ar)) admits a Z-filtration (respectively, Z; 4, -filtration) if and only if there is a
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filtration of M such that each suquotient is of the form Z, (1), A € Q (respectively,
Zia,(A), L€ Q). We will lift the induction functor @p : PiITMod — G TMod to a
functor Vp ALl ]-'(Q,, Ap) — F(2, Ag). We then construct a functor Z : (27, Ar) —
K(L, AG) to lift Vp A;, 1l.e., such that VQO%P A, = ZoVq,, and finally its graded
version 7 : Ky, Srk) — IC(Q Sk). We will find that the (Y x Z)-graded left Eq- and
(Y1 x Z)- graded right Eq,-bimodule J = K(S2, S)*(P, Z(P;)) does the job of equipping
C(E(0, VP(QI)) with the structure of a (Y x Z)-graded left Eq k- and (Y7 x Z)-graded
right Eq, x-bimodule through the isomorphism J ®g, k >~ Ck(Q)ﬁ(Q, VP(QI)).

We start with deforming the functor Vp. Let A% = Ag[(1/hy) | @ € RT, A% =
ALl(1/hy) | @ € R 1; for each B € R put Aﬂ = Ag[(1/hy) | @ € RT\ {B}], and for each
B e RI put Ab = Apl(1/hy) | € R;“\{,B}]. We will regard Ag as an Ap-algebra via
the inclusion R; < R. Thus Afg is an A%—algebra7 and, for each 8 € RT,

o AP @a, AL it B e RS
b~
A% ®a, A'(g; else.
For ve A, define Zy4,(v), Z , (W) =2 1ap ) for p € R, Z?AL(V)=ZI,A2(U),
Ziag(), Z, s (v) for B € R*, and zZ, AP (v), as for v e Qin (3.2). Fora Wy ,-orbit I'y in
AL :

A, define C(T'y, Ap), C(T'y, A®) for B € RF, C(T'1, Ag), C(T'y, AL) for B € RT, F(Ty, Ap),
K7, AL), K(T'7, S;x) and Ci(Ty) for Ly 1T, just as for Q.

Recall from (1.7) the parabolic subgroup P* = (B*, U_q|a € I). Let T be the W,-orbit
in A containing I';. Regarding an object of F(I'y, AL) as a Dist(Pl“L)—module by the
quotient P — P+ /Ru(P*), define a functor Vp 4, : F(I';, AL) — F(T, Ag) via

M > (Dist(G1) ®pigp+y M™)" ®a, Ag = {Dist(G1) @pigyprry (M ®a, Ac)'}"
which reduces to @p by reduction to k. For each v € I';, one has

Ve, (Z7', {w))) = VoA (Z1a, (V) = Zag ()T = Z 40 (v{wo)). (1)

(3.5) Let Uj(wy) = Hﬁ€R+\R1 U_pg,1 be the Frobenius kernel of the unipotent radical

of P and Dist™(U;(wy)) the augmentation ideal of Dist(U;(wy)). Let I' be an arbitrary
Wp-orbit. For each M € C(T', Ag), put

My = M/Dist™ (Uy(wp)M = {Dist(U (w;))/Dist™ (U1 (1))} @pist(w wy)) M.

the module of Dist™ (U; (wy))-coinvariants of M. If M = Z4,(v), v € A, taking the 7-dual
of (1.7) yields an isomorphism in C(Wy , e v, Ag):

ZA@(V)n:ZI,AL(V)®AL AG:ZI,AG(V)~ (1)

Let p € Rf, veTl with B4 v>v, and put I'; = Wy, ev. One has from [1, 8.6], as
dg € k™ by the standing hypothesis on p,

EXté(r,Ag)(Z ), Z GBIV = Aghﬂ /AL ~ (A /A ) R4, Aﬂ
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~ B B
EXtC(r Aﬁ)(ZIsAL(U)’ Zi4,(BTv)®a A

~ g .
~ Ext o, Ag)(Z[ A’(’;(V)’ ZI,A‘;;('B tv) asAgis flat over Ap. (2)
Lemma. Assume that B 1 v >v. If 0 > ZﬁG(,B rTV) > M — Zf;G(v) — 0 is exact in

C(T, Ag), applying 7, to the sequence yields an exact sequence 0 — ZI AP B1v)—>
M, — Z[ AP ) —> 0 with M projective in C(T, AP g) if and only if My projective
i C(I'y, G). Conversely, applying DISt(G1)®DISt(PI+)? to the latter sequence recovers
the former. Likewise, if 0 — Z 1.4, BTV)—> M — Zf,AL v) = 0 is an exact sequence
i C(I'y, L) with M’ projective, then applying Dist(G1)®Di5t(Pl+)? ®a, Ag yields
an exact sequence 0 — ZﬁG (B 1t v) = Dist(G) ®Dist(Pl+) M ®a, Ag — ZﬁG v) — 0 with
Dist(G1) ®Dist(P1+) M ®a, A’é projective in C(T, A’g).

Proof. Assume that the sequence 0 — Z (,3 ry) > M — Z (v) — Oisexact. As 7,
{Dist(U; (wl))/DlStJr(U] (wl))}®Dist(U] (lUI))? and as ZﬁG (v) ~ DlSt(Ul) ~ Dist(U1(wy)) Rk
Dist((BNLyj)1) is free over Dist(Uj(wy)), 0— ZZG Brv)n—> My — Zﬁc W)a—0
remains exact with Zf_(8 1 v)a ~ Z, (B 1 v) and Zh (e Z, 40 (0).

Recall from [1, 12.4] how each M is constructed. Let wg € W; with wglﬁ el.
Let v,” € Zﬁc (v) of weight v(wg) corresponding to the standard generator 1®1 of
szg (v(wg)) under the isomorphism ZﬁG ) = ZA,é v) >~ ng (v(wg)), and define vZ}fV €

Zf; (B 1 v) likewise. Write (v+p,B8Y)=p—n mod p with n € [0, p[, and put z, =
E("/; ;vabwﬁ”ﬁ e Zxk(BAV)®Zg(v) for each b e AP hgl with K = Frac(Ag), so z, is
of weight v(wg). Then M is of the form M, (b) = Dlst(Gl)vﬁTU AP 4 Dist(G1)z, A, living
in Zg(B 1T v)® Zg(v), and the sequence reads Umw mapping to itself while z, w "
Now
Dist(G1) ~ Dist("#U;) ® Dist("# B]")
~ Dist("# U, (wy)) ® Dist(“# (B N L)1) ® Dist(*# B;")
~ Dist(U; (wy)) ® Dist(* (B N L)1) ® Dist(“# B;})

as YBU(wy) = HaeR‘*’\Rl YU _y = HO(ER"'\R] U_y =U(wy). Thus (DISt(Gl)Uﬂm,)n =
Dist(*# (BnL,)l)vg’fv, (Dist(Gl)zU)n ~ Dist(*#(BNL;)1)zy, and hence M,*(b)y =
Dist(L;, 1)UﬁTvA + Dist(L7,1)zvA. It follows from [1, 8.7] that M, P (b) is projective
in C(L, AG) if and only if AGb = Agh;l/Ag if and only if M, (b)y is projective in
C(Qy, A’é). Likewise the last assertion follows from (1). O
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(3.6) We now transfer from F(2, Ag) (respectively, F(Q2s, Ar)) to the combinatorial
category K(2, Ag) (respectively, K(2j, Ar)) via the fully faithful functor Vg
(respectively, Vgq,). Define a functor Z : K(Qr, AL) - K(R2, Ag) as follows: for each
Me K(Rr,Ar) and A € Q, set

A AL ifaeQ
Ty = | MBI Badg Hxe

else,

and for each B € R™ set

M@, B)®a, AL ifheQand e R
M) ®@a, AL, if A e Qand B ¢ R

EM)A, B) = 5
MBI ®a, Ag ifB1AeQ and B¢ RS

0 else.

Note that the second and the third cases above are exclusive to each other. We want to
show an isomorphism of functors Vg o @p,AL ~7ZoVq, from F(Qr, AL) to F(R, Ag).
Recall that Vo and Vg, are defined with specific choice of extensions according to
Theorem of Good Choices [1, 13.4]. In the following crucial lemma the extensions
Yﬁc (L) and YIﬁ,AL()L) are constructed as specified in the proof of (3.5). Also, the

extensions YﬁAL M) ®a, Ag and YﬁG (Mn (respectively, Dist(G1) ®Dist(Pl+) YfAL (M) ®a,

A’f; and Y fG (A)) are isomorphic not just as modules but as extensions of modules, to
emphasize which we denote the isomorphisms by equalities.

+ B 1 B B
Lemma. Let A € Q; and B € R; with B 1 A > M. Let e (A) € EXtC(Q,Ag)(ZAG(A)’ ZAG
B 1 B B ;
B1TA) and e; ()€ EXtC(Q],A’Z)(ZI’AL()\')7 ZI,AL (B 1 X)), chosen according to the
Theorem of Good Choices. Let Yﬁc(k) e C(Q, Aé) (respectively, YﬁAL L) € C(2y, A’Z))
be the module representing e (1) (respectively, elﬂ()\)). Then YI/S,AL M) ®a, Ag = YfG Mn
and Dist(G) ®Dist(Pl+) YfAL M) ®4, A’é = Yﬁc (X) both as extensions of modules.

Proof. Write A = w; e AT + py| = w» okf+py2 with wy € W, wy € Wy, y1 € ZR, y» €
ZR;. By [1, 13.25], we may assume that )»7 = wz_lwl o AT. Then, for each « € R}",

(w;]wl)_lot = wflwza >0, (1)

and hence

1

w; @ >0 if and only if wz_la > 0. (2)

Recall from [1, 13.2.5] that ef (1) = b# (e} (1), and thus ef (1) = b} (e} (3) likewise,
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with the right-hand sides specified as follows. By [1, 13.2.3, 4],

p + _ e ]
bP(1) = 5w1.)\+’7pd(wlo)» s —p, spk(B) ifw; >0

swl.ﬁﬁpd(wl o1t —p, sp)hg else ®
with «(B8) = I1 h;w’av), where wg € Wy such that wlgl,B € I, and thus
Sﬂa<o(l),elfgl(x<0
] & oty diwre il —pr spher(B) ifwy'p >0
AER B .\ (4)
Sl,wzox,*,—p,dl(wz oAy, —pr, sphg else
with x7(B8) = I1 h;(ﬁ’av). By (2) two cases in (3) and (4) agree, and x(B) =

aeRf
s‘ga<0,w§'a<0
k1(B); note that any o € RT with sga < 0 must belong to R;L as B € R?‘, which will be
used repeatedly in the following computations. By [1, 12.12.5]

— l_[ (_1)<—p—w1o){",av)&(—p—wlo)ﬁ') 1_[ (_1)(—p—w10)\+,av>

5 oet
B

Swp)ﬁ,—p

Sﬁﬂt<0,wf;la>0

1 if v,a¥)>0

with a(v) = for each v € A [1, A.1.1], and thus
0 else
&P — 1_[ (_])(—/Jl—wzﬂfﬁav)&(—m—wz')ﬁr) l_[ (_1)(—,01—w2')~1+,av>
I,wzo)f}',—p[ :
aeR} aeRF\(B}
spa<0 sﬁa<0,w;1a>0
Onehas —p—wjeAT = —p—wj e (wz_lwl)*1 e)f =—pp—pr—wrerf.Ifa € RT with
spa <0, a € R?‘, and hence (—p—wjerT,aY) = (—pp—pr—wrer,aV) = (—p; —
+ v = + — 5 + B _ B
wreAy,a’) and a(—p—w;eL") =a(—p; —wreA;). Thus Erort—p = 817w2.ﬁ’_p1.
By [1, 13.2.2]

1—[ [ko; wi @ A1 + p]

d(wl.)‘+7_pv Sﬁ): h
o

’

aeRt
.Sﬂa<0,wf1a<0

l—[ [ke; w2 @ AT + oy

di(wyerf, —pr, sp)= A
o

+
aER;

s,ga<0,w2_1a<0
By (2) again, the products run over the same subset of R;“. By [1, 13.1.4],

kot wi @ AT+ p] = (Ho + (wy A" +p. ) Hy g
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with (w; e AT +p,aV) = (w e (w;lwl)_1 i +p,aY)=(wredr] +p,a¥) = (wreAf +
o1, ), and hence d(w1 o T, —,0, sg) = dj(w2 okl, —p1, sg) and bP(n) = bﬂ()»)

We compare next e, (A) and e 1. 0()») Take w € A in the upper closure of the facette that
A belongs to with respect to (sg, | r € Z). By [1, 12.13.1],

1w, Ml () = el jd (@, 1, sp)hz' + AL, (5)
1ol Alef (W) =l , di(w. A, sp)hg' + AL

By definition [1, 12.12.5] again,

RN,
8)“0 — l_[ (— 1)(0 —AaVa(w—2) l_[ (_1)(0) Ao ):gllg,)h,w' (6)
ek, ccr
B

sﬁa<0,w/§1a>0
By definition [1, A.7.1 and A.2.1],

Ha+<w+p,aV>>“(‘“’>
d(w, A, sg) = dw,  ,a) = =d;(w, A, s8).
( ) 1‘[+ ( ) ]"[+ (Ha+()»+,0,av) 1 )
a€R a€R

spa<0 spa<0

It follows in (5) that ef d(w, A, sp)hy' = ¢}, ,dr(. 1, sph5'. By [1, 12.12.1],

w0 =tk @ol. 1) lo. A= t1lw, A a1,
with

r B
o = Ay uEp

=ef by [1, A12)
=&}, ., by (6)
= a;,k,wglﬂ,k,a) =dal - (7)

We have t[w, A, ayp] = t[w, A, e, €] by [1, 12.8.2] with e € E,_, \ 0, E a simple G-module
of extremal weight @ —2 [1, 11.1], and with é:akw(—l)”E(_";e € Egyw-n\0, (A+
p,BYYy=p—n mod p, n €0, p[, by [1, 12.3.1]. Recall from [1, 12.6] the definition

B B 1,8 1 4B ) 4B
of t{w, A, e, él: Extc(Q i (28, (). ZR (B 1 0) > HF'AL /AL = hg' AL /AL, Let € e

Ext C(Q Aﬂ (Z (k) Z (/3 1 X)) be represented by a short exact sequence

0—>z§ B 1A > M—>zﬁ () = 0. (8)

As Hgé =0, there is j' € C(Q, AP )(Z W), M) with jo j" = Hgid Apply the

B .
Zy .M
G

translation functor 7 to (8) to obtain a split exact sequence

w B B wny B pw B
0—>TAZAG(,BT)»)—>T)LM—>T)\ZAG()»)—>0.

https://doi.org/10.1017/51474748014000012 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748014000012

204 N. Abe and M. Kaneda

Let i’ € CLAG)TPZE (1), TPM) with i'oT?j =id Recall from [1, 11.2.1]

szﬁc(;\)'
isomorphisms f, : Z4_(0) — TPZ4 () =pr(E® Z} (1)) via 1® 1+ pr(e®1® 1) and
for Zh (@) > TPZE (BA 1) =pr(E®ZR (1 1) via 191 prE®@1®1). If aec
AP with £l oi 0T ) o fo = aidyp (,: then t[w, A, e, 2§ = aHy ' + Al Now recall
the Lj;-submodule E’ of E from (2.2), and choose ej =ec E' and eé; =

=~ ’ = 1. 1 B B —1 4B /48 _
ec E' to define tj[lw, A, eq,eq]: EXtC(Q[,A'Z)(ZI’AL(A)’ Zia, (BT RA) — H/3 A7 /AT =

hEIAi /Af likewise. As we have natural isomorphisms from (2.2), or rather from its
7-dual

Dist(G1) @) Z1 4, (M) ®a, Al = Zh (1),
Dist(G1) ®pjgp) Zlﬁ,AL (B12)®a, Ab ~ Zﬁc B 12,
Dist(G1) ®pig e TP Z5 4 () ®a, Al =TPZE (),

DiS(G1) @pigqpyy 11520 a, (B 1 1) @y AG =T Z5 (B 4 1),

the commutative diagram

1) olw.i]

Ext! )(Zi A, (0. Z0 4 (Bt ) ————=H'AL/Af

c@ Al
Dist(G, )®Dist(P1+)?®AL Al l

t(’)s [w,A]

Ext! )(Zﬁc(x), Zh (B 1 W) —————= Hy ' AL /AL,

B
cQ AL

follows. More precisely, if on (A) (respectively, Y{f AL(A)) is the module representing
eP(1) (respectively, ef (1)), then Dist(G 1) @i P, 0@, Al =Y () with
YL, (M) ®a, Al =YL (Un by (3.5). O

(3.7) We are now ready to show the following.

Theorem. There is an isomorphism of functors from F (2, Ar) to K(2, Ag):
VQO%P’AL ZIOVQI.

Proof. For each X € D(Q2, Ag) and M € D(;, AL), one has, as X (respectively, M) is
free of finite rank over Ag (respectively, Ay ),

C(R, Ag)(X, Vp as (M) = C(Q, Ag)(X, (Dist(G1) Bpisi(py M) ®a, AG)
=C(2, Ag)(X, {Dist(G1) Bpjg(pit) (M @4, AG)™Y")
~C(R, Ag)(Dist(Gy) ®Dist(P1+) (M ®4, Ag)*, XT) by [1, 4.5.5]
~Cp,(Ac)((M ®4, Ag)", Annx« (Dist™ (U (w))))).
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with
Anny: (Dist™ (U;" () ={f € Moda, (X, Ag) | 0 =xf = f(r(x)?) Vx € Dist" (U;" (w)))}

~ {X/TDist" (U;" (wn) X)*
= (X/@ist" (U1 (w) X)) = (Xu)".

Thus
C(RQ, Ag)(X, @p,AL (M) ~C(Rr, Ag) (M ®4, AG)", (Xn)")
~C(Qr, AG)(Xn, M ®4, AG). (1)
The isomorphism is functorial in both X and M: V¢ € C(R, Ag)(X, X') and V¢ €
C(Q, AL (M, M), ¢ induces ¢ € C(Q, Ag) (X, X)) to yield the commutative diagrams
C(R, AG)(X, Vp a, (M) <——C(Q, Ag)(Xn, M’ ®4, AG)
C(sz,AGxx,%p,AL(w»T [cm,AG)(xn,«/@ALAG)
C(Q, AG)(X, Vp a, (M) <——C(21, Ag)(Xn. M ®4, Ag)
C(sz,Acxwp,AL(M»] $C<Q,AG>(43,M®ALAG)
C(2, AG) (X', Vp a, (M) =—— C(Q, Ag) (X}, M ®a, Ag).
It follows for each A € Q that
Va o Vp a )(M)(W) =C(2, AL)Z" (W), Vi a, (M)
~C(Q1 AG)Z; 40 (1), M" @4, AG) by (3.5)(1)
~C(Q, AD(Z] 4, 0). M) ®4, AY,
Vo, M)W ®a, AL if 2 € Q

0 else

(ZoVa)(M)(R).

Let now ch (A), A € Q, B € RT, be the extension of Zf;G (B 1 A1) by ZﬁG (L) constructed
according to the Theorem of Good Choices. Assume first that L € Q. If 8 € R;”,

(Voo Ve a (M), B) = C(2, A (1), Vi a, (M)P)
~C(Q, ADY] 4, 0). MPy®4, AL, likewise by (3.6)
~ Vo, (M), ) ®a, Al = (Zo Vo, )(M)(, B).

If BeRY\RS, BArgQ. As AL~ AY@s AL, YE G2, ez, (B1
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MNI®4, A’g by (3.5), and hence
(Vo oVp.a )(M)(h. B) = C(Q. AGY(YE (). Ve 4, (M)P)
~C(Qr, AR ((MP @4, AL, (Y5, (M)

~ C(Qr, ALY (MY @4, AL (ZY 4 (W) ®a, AL)T)
as M € D(2,AL)
~C(Q ADZY 4, (), M) @4, AL,

=V, (M)(%) ®4, A = (To Vo, (M), B).

IfreQ\Q andif B € R+\R;' with 8 1 A € Qj, we have likewise

Voo Vp.a, ) (M)(, B) = Vo, (M)(B 1 1) @4, AL = (To Vo) (M1, B).
If 2 e Q\Q, and if B 1 A ¢ Q,
VaoVp.a ) (MG, p) =0 = (ToVa,) (M), B).

There follows an isomorphism (Vg o @p, A ) (M) = (ZoVg,)(M) functorially in M. O

(3.8) Recall from (3.1) (respectively, (3.2)) the graded version K(S2, Sk) (respectively,
I@(QI,SM{)) of the combinatorial category K, Si) (respectively, IC(QI,S'I,k)), and
define finally a functor 7:K(Qy, Srx) — K, Sk just like Z as follows: for each
M e K(Ry,Ar) and A € @, set

~ A S@ i A Q
ZM))HM) = M) ®s; S i A €€y

else,
and for each 8 € RT set

MG, B)®s;, SE ifh e Qpand B € R
5 MQO) ®s,, SP if » € Q and g ¢ R
M), B) = e ! !

MPBAV®s,, Sy ifB1TAeQ and B¢ RS

0 else.

Thus f@sk Sk ~ Z. For each w € W, recall from [1, 14.10 and 15.3] an Sg-form Z)” €
K€, S) of VQZX)G (M{w)) defined by setting, for each u € A,

A2 if =2
20w =4 ¢
0 else,
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and, for each 8 € RT,
Al fpu=xr=p81%xr
AP0y ifpu=a#£BtA
Z (1, B) = AP0, hp) ifu=BLrr#ptrandw >0
AP, 1) fpu=Blrr#Brtrandw !p <0

0 else,

where B | A € A such that B 1 (8 | A) = 4. For A € ; and w € Wy, define an Sy k-form
Z}fl € K(2y, Srx) of VQ,ZZL (M{w)) likewise. One has, in particular, for each A € Qy,

L =2 1

Let Qr.a, = @ypew, Qr.a,(wer]) € C(Q, Ar) with Qa, (wer]) the lift of the
projective cover off,P(w ° A}") for Ly over Ar. Let Py be a graded Sy x-form of Vg, (Q071,4,)-

Lemma. If M is a graded Sy k-form of Vo, M for M € C(Q1, AL), there are isomorphisms
in K(R2, Ag),

IM) ®s, Ag =~ I(Vq,(M)) = VaoVp 4, (M).
In particular, Z(P) ®s, Ac = I(Ve,(Q1.4,)) = VaoVp a,(Or.4,)-

Proof. The first isomorphism follows from the definition that M ®g,, AL >~ Vg, (M), and
the second from (3.7). O

(3.9) Recall from  (3.1) the (Y xZ)-graded Sk-algebra of finite type Eq =
K(S2, Su)* (P, P)°P inducing the structure of a (Y x Z)-graded k-algebra on Eqx =
C(D*(Q, Q)% ~ Eq®s, k, and from (3.2) the (Y; x Z)-graded Sjg-algebra of finite
type Eq, = Ky, SI,k)ﬁ(PI, Pr)°P, responsible for the structure of the (¥Y; x Z)-graded
k-algebra on Egq, x = C(2)*(Q, 0)® ~ Eq, ®s,, k. Now set J = K(Q, S)*(P, Z(P))),
which comes equipped with the structure of a (Y x Z)-graded left Eq and (Y x Z)-graded
right Eq j-bimodule. If Jy = J ®g, k, it is thus a (¥ x Z)-graded left Eq ) and (¥; x
Z)-graded right Eq, k-bimodule.

For each A € Q and o € R, let ny € Z such that (A + p, @) €lngp, (ne + 1) p[, and
put §(A) =) ,crt+ M- If L € Qy, define §;(1) = ZdeR;r ng likewise. For each w e W
(respectively, w € Wy) and A € Q (respectively, A € ), set Zﬂz’(k) = K(Q, Sp) (P,
Z}L”(ja()»))) ®s. k € Ck(2) (respectively, Z’;fk()u) = K(Rg, Sl’k)j(PI, Z}Ifk<—31 1)) Qs
k € Ck(27)), which is a graded form of Z}(A(w)) € Ck(2) (respectively, Z?jk()»(w)) €
Ce(2)). Put Vk(A) = Z;° (1) and V() = Z," (1) for simplicity.

Corollary. The parabolic induction functor Vp is Z-graded by the bimodule Jy, i.e., one
has an isomorphism of functors v o Uk@EQ,,k?) >~ Vpouy:Cr(Rr) = C(R):
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» Jk@EQI’k? »
C]k (27) C]k(Q)
l
L;1TMod O b
P TMod - G TMod.
Vp

For each ) € Qj, there is an isomorphism in Cr(Q):
Tk ®Eq, ; Vik() = Vi) (8() — 81 ().

Proof. The commutativity of the diagram, i.e., the naturality of the isomorphism, follows
from (3.3) by the isomorphism of left Eq k- and right Eq, k-bimodules

= J ®s, Ac Qag k
~K(Q, A6)* Va(Qag). Z(P1) ®s, Ac)) ®agk by [1, 18.9.3]
~K(2, Ac) Va(Qag) VaoVp.a, (Q1.4,) ®ack by (3.8)
~C(R, Ac)*(Qag. Vp.a, (Q1.4,) ®agk by [1,18.9.5/6]
~ Cu(2)*(Qag ®agk, Vp.a, (Q1.4,) ®ac k) by [1, 3.3]
~ Ck(%(Q, Vp(Qr) from (3.4)(3).

For A € @, one has

Je ®kq, , Vi) = (K(Q, S (P, Z(PD) ®kq, K(Q1, S1i)*(Pr, 211 (=81 (D)) ®s, , k.
(1)

Consider a natural map of C(),
K(Q, )" (P, Z(P1)) ®kq, K(Q1, S1.)*(P1, 2]’ (=8:(1)) ®s,, k
— K(Q, S*(P, Z(Z} (=8:(M)) ®s, k.
It reads as a k-linear map,
K(Q, S0 (P, Z(P1)) ®kq, K(Q1, S1:)*(P1, Z]'1(=81(1)) ®s,, A ®ag k
— K(Q, S* (P, Z(Z}'1(=8:(1)) ®s, Ac @ k.

which in turn reads, by (3.7), as

K(Q, A6)* VP, Va(Vp,a, (Q1,4,)) ®Fq, 0, , A

K(Qr, AL Ve, Pr, Va, Z}Ijﬂ_fsl M) ®as k
— K(Q, A6)*(VaP, Va(Vp 4, (Z], (H(wi)))) ®4, k.

Asboth Vq : C(R2, Ag) — K(2, Ag) and Vg, : C(21, AL) — K(21, Ar) are fully faithful,
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the last map reads, with Q4, = VP,

C(Q, A6)(Qag Vr.a,(Q1.4.)) Bc(o,,a )01 - 01ap)
C(Rr, AL (Qr.a,, Z 1 W, Awr) ®ag k
— C(2, AG)* (Qag, Vp AL(ZI 4, Mwr))) ®ag k

which is bijective by the five lemma. Thus the isomorphism (1) continues as

Je ® kg, , Vi) =K(Q, S (P, (2} (—8: (1)) ®s, k
~K(Q, S)*(P, 2°(—81(1)) ®s,k by (3.8)(1)
= V(W) (8(1) — 81(A)). O

4. Rigidity

Keep the notation of §3. We show first that all Vp(LP (1)) for p-regular A € A
are Z-graded. Recall Lusztig’s conjecture on the irreducible character formulae for
G T-modules [14]/[12]:

chiy = Y (=D PP, 5 (1)chV(w),
neWwped

where d(u, A) =8§(A) —8(w), and IA’M,;L = 13A,c for alcove A containing u and alcove C
containing 2 is Kato’s periodic Kazhdan-Lusztig polynomial for W, [12]. We will refer
to the conjecture as (LG). It is now a theorem for large p thanks to [1, 11, 13, 15], and
more recently to [5]. The conjecture for L; T, to which we refer as (LP), reads likewise
for p-regular A with respect to Wy ,:

chiPy= 3 (=DUUPEL (echVF (),
HEW] ped

where dj (e, A) = 8;(A) —&7(m), and Pl{ , is Kato’s periodic Kazhdan—Lusztig polynomial
for Wy . Conjecture (LP) follows in fact from (LG); one just checks an analogue of [7,
11.5.21.2], namely, for each A, € A with A —u € ZI, one has [V(X) : L()] = [VP (1) :
L? (m)]- As the analogous equality holds for the corresponding quantum algebras, and as
Lusztig’s conjecture holds for the quantum algebras, [@P(X) : iP(u)] should be equal to
what is expected by (LP), which in turn implies (LP) by inversion.

Assuming (LG), [1] has shown that the endomorphism algebra of a projective
Y-generator for the block of A is Koszul. We show that the I‘lgldlty of Vp (LP (A)) follows
from a result of [4]. We will also find that the Loewy length of Vp(LP (1)) for a p-regular
A € A is uniformly equal to £(w!) +1.

Thus fix a p-regular weight A, and put 2 = W, eA. For M € C(2), we let [M : i(u)],
u € Q, denote the multiplicity of simple i(u) among the Cy (2)-composition factors of M.

(4.1) Let us first recall the construction of Li (), slightly simplifying the one
given in [1, 18.12]. As Zy(r) has a simple head in Egqymodgry by the
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categorical equivalence v, the radical radEQ_kmodgrYZk(k) of Zx(}) in the category
Eqmodgry is maximal. But radg,,modgr, Zk(A) belongs to Ck(Q) by [1, E.11],
and hence coincides with the radical radék(mzk(k) of Zp(}) in the category of

Ce(Q). We set Le(h) = Zx(W)/radg o Zi(%). Then 9Lx(h) = Q ®kq, Lx(M) =~ (0 ®kq,

ZkON/Q ®kq , 1adEg ymodgr, 21 (M)} = Zi(3) /radey (@) Zi() = L(). Thus Vp(LP () is
(Y x Z)-graded by (3.9). In turn, Ly (1) ~ HqL(}) in Eqgmodgry while Hg kL(1) =
C (%0, L)) ~ Cx(2)(Qr (M), L) as Qx (1) is the projective cover of I:(X), and hence
Ly (1) is of dimension 1.

By the equivalence v, the Ly (A), A € Q, exhaust the simple objects of Egq xmodgry. If
L is a simple object of C(2), then

0# Eq modgry (L, Ly (1)) for some A €

=P Eqmodgry (L, Li.(1)i = ) C(Q)(L, L(A)(—i)),
i€Z i€Z
and hence Ci(Q)(L, Lx(A\)(i)) #0 for some i. Then L ~ Ly(A)(i) in Ck(R) by their
simplicity. Such A and i are unique, by [1, 18.8]. Thus we have obtained the first two
parts of the following.

Proposition. (1) Each Lx(A), » € , is one dimensional.
(i) Fach simple object of C~k(£2) 18 isomorphic to some L) for unique A € Q and

i € Z. Any simple object of Eq modgry is isomorphic to some L(A) for unique
A€ Q.

(iii) If M € ék(Q), the radical (respectively, socle) series of M in Eg ymodgry and in
Ck(2) coincide.

Proof. (iii) We show first that each radical layer radiEQYkmodgrY M /radg;l’kmodgryM remains

semisimple in Cx(€2). As it inherits the structure of Cx(2) from M by [1, E.11], we

may assume that M is semisimple in Eq ymodgry. If L is a simple component of M

in Eq modgry, as L is one dimensional by (i), each (Eq k)yx{i}, i # 0, annihilates L

while each element of (Eq k)yx{o} is acting by a scalar, and hence M is semisimple also

in Cx(R2); each Z-homogeneous component M; of M must be Egq k-stable. On the other

hand, each 1rad27 (Q)M /radig(]Q)M is semisimple in Eq ymodgry as each simple component
k k

is one dimensional by (i) again. It now follows that the radical series of M in Eq ymodgry
and Ci(£2) coincide.

The socle version of [1, E.11] holds, and hence also the assertion about the socle series
of M. 0

(4.2) Assume now Lusztig’s conjecture (LG) on the irreducible characters of
GiT-modules. Then Egq ) is Koszul with respect to its Z-gradation, thanks to [1,
18.17]. In particular, Eq | is positively graded: Eqx = @,;n(Eok)i with (Eq ko =
[Tyew kmw, and is generated by (Eq k)1 over k, by [4, Props. 2.1.3 and 2.3.1], where m,, :
[Ticw Ox(x @A) — Qu(w e A7) is the projection. Let Eq ymodgr; denote the category
of finite-dimensional Z-graded Egq k-modules.
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Proposition. Assume the Lusztig conjecture (LG).

() Each Ly(A), A € Q, is homogeneous of degree 0 with respect to the Z-grading. In
particular, each Ly(w e A1), w € W, is isomorphic to kmy, in Eq xmodgry.

(ii) Each simple object of Eq xmodgry is isomorphic to some Li(w o A ) (i) for unique
weWandi €Z.

(iii) If M e ék(Q), the radical (respectively, socle) series of M in Eq ymodgry and in
Cr(2) coincide.

Proof. (i) Recall from (4.1) that the Z-grading on Egq i arises from that of Eg. Thus
kry =k ® 1) if Ty @ [[iew Q(x @AT) — Q(w o A7) is the projection. But

K(€2, Si)* <@ Q(xer™), Qe Aﬂ)

xeW

=P PP K@ SQxerHlyl. Qwert)); by definition [1, E.1, E.3]

xeW yeY i€l

= P P K@, 5)(Qx e M)yl Qw ert)) by [1, E.1]

xeWyeY

~ PP K@ S)(Qxert +y), Qwer™)) by [1, 17.6/18.5]

xeWyeY

with K(Q, Sk)(Q(x e At +y), Qwer™)) =D, o K(Q, S)(Qx e AT +y), Q(werh));
unless xoAT+y =wei™ while K(Q, Si)(QwerT), QwerT))g = Skidgert) [1,
17.9]. On the other hand,

xeW
by definition [1, 18.10.1 and 18.12]
~ @ @ K2, $i)(Q(x e A1 +1), Zpertiy (—o(w AT 1)) ®s, k as above.
xeWveY
Each K(2, Sk) (Q(x e AT +v), Zert+y —S(werT 4+ y))) is a direct summand of
K2, Sk) (Q(xert+v), Qwert +1y)), by [1, 15.10 and 17.6.1/18.9.c], and hence
K(2, Sk) (Qx o rT 4 ), Zyartpy (—S(werT +))) = K(Q, S)(Q(x e AT +v), Zy05+ 4y

(—8(weAT +9)))-0 unless x e AT +v=weAT +y, ie., x =w and v =y, by [1, 17.9]
again, while

ZywerT +y) =K@, Sp)* (69 Q(x 0 1T), Zypesv iy (—S(werT + y>>) ®s, k

K(Q, $)(Q(w e AT +¥), Zypast iy (—8(w o 2T + 7))o
= KA, S)(Zy05 1, IR = 8(w @ AT + 1)), Zypart 1y (=8 (w e 2T +1)))o
by [1, 15.10 and 17.6.2]
~ (S0 by [1, 15.10.2].
Thus the epi Zy(w oAt +y)/Z(w oAt +y)-0 — Li(wert +y) is an isomorphism of

Eq xmodgr; by dimension, and hence Li(w e AT +y) is of degree 0. In particular, Ly (w e
A ~k(, ®1).
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(ii) Let L be a simple object of Eq xmodgry. As (Eq k)-oL = 0, L is an (Eg k)o-module.
Then L is by its simplicity isomorphic to some ki, (i), w € W, i € Z.

(iii) This now follows from (ii), just like (4.1)(iii), applying [1, E.11] to the pair
(Y X Z,7Z) in place of (Y X Z,Y). O

(4.3) We are now to obtain from [4, Proposition 2.4.1] the rigidity of Vp(LP (1)), as
well as %()\‘) and Q()L) = Qk(A) for each A € Q, demonstrated first in [2] by a different
method using Vogan’s version of the Lusztig conjecture. The result from [4] referred to
above asserts that, for a finite-dimensional graded module M over a Koszul k-algebra A,
if M has a simple socle and a simple head, then both the socle series and the radical
series of M coincides with the grading filtration on M up to degree shifts.

Lemma. Assume the Lusztig conjecture (LG). Let M € Ci(R). If M has a simple socle
and a simple head as an object of Eq xmodgry, then M is rigid in Eq ymodgry .

Proof. By the hypothesis, M has a simple socle and a simple head in (Eq x)modgry, by
(4.1) and (4.2). If hdgg , modgr, M (respectively, socgg ,modgr, M) is concentrated in degree
J (respectively, k), then, from [4, Proposition 2.4.1],

= L i = ) ;
1radEQ gmodgr,M = M>iyj and socy  meagr,M = Mzi—it1 Vi.

e(M)—i
Thus Myy_iy1 = socEQ L modgr, M/radE  modgry, M = Mzpem)-ivj, and hence k—i+

1 <UM)—i+j. Astheequahtyholdsforl =0,k+1=0LM)+j.ThenVi,k—i+1<
UM)—i+j=lM)—i+k+1—2L(M)=k—i+ 1, and hence

0(M)—i
Eg,kmodgrz

M = M = M>opmy+j—i = rad M.

i i
SOCEQYkmodgrY SOCEQ,kmodng

O

(4.4) Recalling from (1.4) that each Vp(LP (1)) has a simple socle and a simple head
yields the following.

Theorem. Assume the Lusztig conjecture (LG). Each Vp(LP (1)) for p-regular A is rigid.

(4.5) To determine eventually the Loewy series of @p (I:P (1)), we have to compute its
Loewy length. As £4(Vp(LP (1)) = €6(*' Vp (L (1)), we will compute €£(*' Vp(LF (M))).

Lemma. hdg,7 ("' Vp(LP (1)) = L(w’ e 1 — p(w! ¢ 0)).
Proof. We may assume that A' = 0. By (1.4),
I A~ A
hdg, 7 (" Vp(L" (1))

=""hdg, 7 (Vp(LF (1))
=""{Lw! e ) ® p(=2pp + wo((—w;) e 1) = (—w;) e M)}
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=""{(L(w" e )" ® p((w' e 1)° = 2pp +wo((—wr) o 1) — (—wy) e 1))}
= L((w! ¢ 1)) ® pw! {(w’ e 1)° —2pp +wo(—wp) e M) — (—wy) e )}
while L(w! e2)®@ —p(w! ¢0) = L((w! e1)%) @ p{(w! e1)! — (w! ¢0)}. Thus we have to
show
w' o) —(w' 00) = w!{(w' o) —=2pp +wo((—wp) e V) — (—wpen)'}. (1)

Write w;er = u®+ pu! with ule A, and u' e A. Thus u® is p-regular. As
w! ex = wpe (u+ put) = wo e u + pwou!, (w! er)! = wou! — p. Likewise, as (—w;) o
r=De(ul+puhy=(=Deu’—pul, (—wp)er)! =—u! —p. It follows that the
left-hand side of (1) is equal by (1.1) to

won' — p —wow; @0 = won' — p — (wowsp — p) = won' — p — wo2pp = wo(u' +p —2pp)
while the right-hand side of (1) is equal to

w'{won' —p —2pp +wo(—p' —p) = (' = p)} = w' (=2pp + 1" +p)
= wo(wip' +wip—2pp) as wi2pp = 2pp.
Thus we are left to verify that u!+p = w;(u' + p), for which we have only to check
(' +p,av)y=0Va e I. But
10, pl+p(n' +p.a) 5 (u’ +p, @)+ plu' +p. ) as u®is pregular
= (W +pu' +po+p,a¥)y=(wrer+po+p,a¥)=(A+p,wa’)+p
e —10, p[+p as wjax € —I
=10, pl,

and hence (u' + p, V) = 0, as desired. O

(4.6) Recall from (1.6)(3) that *' Vp(LF (1) < Vi (w! e A)(w!)) ® (—p(w! ¢0)). Recall
also from [2] an intertwining homomorphism ¢, € G; TMod(Vy, ((w e A)(w)), V(w e 1))\ 0
for each w € W, which is unique up to k*. As 1 = [%(w’ o)) : I:(wl o) = [%wl((w’ °
M)y Lw! e 1)) by [2, 1.2.3], one obtains from (4.5) a commutative diagram of

G1T-modules,

¢,1®(—p(w!e0)) .

Vi (W e 1)(w!) ® (—p(w! 80)) “——= V(w! 0 2) @ (—p(w! ¢ 0)) (1)
w7 (LP (1) Lw! e ) ® (—p(w! ¢ 0)).

As ¢w1(soc£(w1)@w1((w1 e M) (w!))) =0 [2], we must have
™ VpLP ) = L) +1. (2)

On  the other hand, there is another intertwining homomorphism
¢!, € GITMod(Vy, (w' @ 1) (wp)), Vyr ((w @ 1) (w!)))\ 0. As

hdg, 7V (w' @ 1) (wp)) ® —p(w' 0 0) =hdg,7Aw’ 1) ® —p(w' 0) by [2, 1.2]
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= L(w' e1)® —p(w’ ¢0) = hdg,7 ("' Vp(LF W))).

one obtains as in (1) another commutative diagram,

Vo (W' 0 2)(wp)) ® (—p(w! 0 0)) (3)

\

¢ 1 ®(=p(w'e0)) //M@p(if’ )
Vi (w! e ) (w!) ® (—p(w’ 0 0))

with ¢1/u[ (soc’z(w(’)_awl)@wo((wl e 1) {wp))) = 0. Assuming the conjecture (LG), one has
Eﬁ(@wo((wl o) {(wp))) = £(wp) + 1. It follows that

o™ Vp(LP (1)) < Lwo) + 1 — {L(wo) — L(w’)} = Lw) + 1.

Thus, together with (2), we have obtained the following.

Theorem. Assume the Lusztig conjecture (LG). For any p-reqular 1 € A,
e(Vp(LY (W) = e(w’) + 1.

(4.7) Remark. This is a generalization of [8, 1.4] and [9], where we found for G of rank
at most 2 or when G = GLy41(k), with P a maximal parabolic such that G/P >~ P" for
any n € N, that M(@p(k)) =¢(w!)+1 for p-regular A € Ap. In fact, for G/P ~P", we
computed £€(Vp(X)) for any A € Ap in [9, 2.3], dispensing with the Lusztig conjecture.

(4.8) Recall that Z(A)/Zg(A)=0 = Li(A) ~ hdg, ,modgr, Zk(A) for each A € Q. It follows
that the Z-gradation on Zi(}) is such that, for each j € N,

J
Zk N)zj= radEQ wmodgry, Z]k A) = radEQ xmodgry Z]k (A)
— el RTIFL=) [RT|+1-j 5
= SOCE,, , modgr,, Zi(\) = SOCE,, . modgry Zx (M),

and hence

R 1— -5 j
soclc (S‘; 2k = (25 ) = rad), o Zi ().

More generally, we have the following.

Proposition. Assume the Lusztig conjecture (LG). The Z-gradation on each Zﬂ‘é’()»), A€
Q, w e W, is such that, for each i € N,

rad}, o) Zi (M(w)) = radly Vi, ((wwo)) = 5(ZY W) > —eqw)+i)

R 1— R 1—
—soclc (s‘zt lZﬂ’f(Mw)) = soch TH AV wwo(k(ww()))
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Thus, Vi € K,

[radc, (o). Zi (A (w)) : LG =2 () : Li(u)(—E(w) +i)]

= [soce, (), |k +i+1-i ZE (-(w)) : L],

where the middle term is the multiplicity of simple Li(u){(—€(w) +i) in Zu’: (L) considered
as objects of Eq xmodgry.
Proof. One has, from [1, 15.3.2],

k = Cu(Q)(ZY ({w)), Zu(W) = Cu(@)(Z} (1), Zi(W)(—2E(w))).
Let j € Z minimal such that Z"(A); # 0, so Z¥(M)>;/Z (M)~ = hdEg ,modgr, Z\ (M) =
hdgg ,modgr, Zi, (A) = Hg k(radc, (@),0Zy (A{w))), which is sent to

Zk) > jr20a0)/ Zk W)= j 420wy = (Z O(=2L(W))) > j /(Zr (AW (—2L(w)))
= Hgq k(rade, (), e(w) Zk (X))
= Zk(M\) o)/ Zk(W)=ew) by the above.

Thus j = —€(w). As €L(Z}! (M(w))) = |[RT|+ 1, the assertion follows. O

(4.9) Untwisting w! of (4.6)(3) reads

Zﬁ:’wo(k(wlwo)) (1)
Ve(LP (1)
Z" (Mwo)).

Thus one obtains a commutative diagram in Eq ymodgry
Ha 1 Z,"™ (Mwiwo)) (2)

.

Hqo Ve (LY (W)

Hg 1 Z,.° (M{wo)).

Recall that Cy(2)(Z,""" (A {w;wo)), Z,° (A{wo))) is one dimensional. On the other hand,
each Z(A(w)), w € W, admits a graded object Zﬂ’f(k) € Cx(Q) such that ﬁka(A) ~
Z (M (w)). It follows that

Egq gmodgry (Ho 1 Z, " (Mwywo)), Ha kZy * (AM(wo)))
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= Egq xmodgry (""" (1), Z"° (1)
= @D Eq.xmodgry (Z;"" (1), Z"° (1)) = @D Cu()(Z;"™ (). Z" (\)(—i))
i€’ i€Z
= Cu((Z"" M), Z" ) (=)
for some single j € Z by dimension; in fact, j =0, by [1, 15.3.2]. Then, taking
n € Ce(Q)(ZL™ (), Z0(0))\ 0, im(n) € Cu(Q) with #(im(p)) = Vp(LF (1)). This gives
another proof that Vp (LP (X)) is Z-graded, and hence is rigid.

Corollary. Assume the Lusztig conjecture (LG). The Z-gradation on im(n) is such that,
for eachi € N,

B((m()>—) = rad{") ¥ p(LF (1) = soc L Vp (L7 ().

Proof. As
socG, V(LY (1)) = socG, 72" (A (wo)) by (1)
=0(Z" (A(wo))o) by (4.8),
v(im(n)g) = socGlT@p (ip(k)), and hence the assertion follows. O]

5. The Loewy series

Keep the notation of section 4. In particular, we continue to assume the Lusztig conjecture
(LG). In this section, we will derive a formula to describe the socle series of Vp(L¥ (1)).

(5.1) Let us first recall from [2] or from [1, 18.19] a formula for the socle series of V(1):
)=
0r* =3 g™ soc 1 V() 1 L(wl, (1)

J

where Q** = QA€ for alcove A containing u and alcove C containing A is a periodic
inverse Kazhdan—Lusztig polynomial defined in [14]. We will prove a formula

> T soci VPG s Ll = Y Q=P B (2)

Jj veW per

The formula reduces to (1) when I =@, i.e., when P is a Borel subgroup. It also holds
for P = G by the inversion formula 3, Q*V(—= )M P, ; =5, ; [14, 11.10]/[12, p. 129].

(5.2) Recalling the abbreviation V(L) = Zﬂz)o(k) for each A € Q, we see by (4.8) that
formula (5.1)(1) reads, with ¢!/ =

QM (%) =Y 1PN+ L () (= )] (1)
J
If we write QY (¢) = Zj Q?”t% with Q;f" € Z, formula (1) reads, in the Grothendieck
group of Eq xmodgry,

Vel =" 04— () (= )], (2)

JEZ ne
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inverting which reads, if we write ﬁu,,\(t) = Zjez ﬁuk,jt%,

L] =Y > (=D P Py jagea V) (). (3)
JEL ne
We now verify formula (5.1)(2).

Theorem. Assume the Lusztig conjecture (LG). If X is a p-regular weight, the Loewy
series of Vp(LF (L)) is given by

3 g™ soc Ve P W) Ll = Y 0P (=DYCPBLL Ve A
jeN UEW[VI;O)\

Proof. Put Vp = Jk®Eq, ;7 from (3.9) for simplicity. In the Grothendieck group of

Ce(Q)), formula (3) reads [L1x(W)] =Y ez eq(=DITEDPL 0 S IVIEGO ()] Put
ny, = 8() —81(A), 50 Vp(Vrk(h) ~ V(W) (n;) by (3.9). As Vp is exact, so is Vp by (3.9)
also. Then

Wp(il,k(x))hZ( YR PL, e [VP VL)) ()]
—Z( DIERPL Vi) g+ )]

—Z( DUEDPL i 2 Lt i L)+ j — k)]

k,v

= Z (=D EP P i n Qaty L)y + j = ).
W, j,v,k

Recall now im(n) from (4.9). As L“k()») VIk(k), Vp(le()\)) Vp(VIk(k))N
V(W) (ny). As im(n) < Vi(A), it follows that Vp (LI k(X)) >~ im(n){(n,). Thus

[soci+1Vp(LP (L)) : L)1 =[im(n) : Lx(v)(—i)] by (4.9)
=[Vp(L1))(—n3) : L(v)(—i)]
=[Vp(Lix() : L) {ny —i)]

() p
Z( DR P s e Qo +6G)—81 09 —5G0+81 G~
) Bl
—Z( DIURP L jraren Lot —d ui—i—j
dr(u.h) p
—Z( DD P Qi —i o

and hence

D 40P soci  Vp(LP (1) - Lv)] = Zf‘“”” ’Z( DR B Ol i

i
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_ d;(u,2) pl i AV d(v,A)—i—j
=D D DUEPPL QU it !
ipJ

dy(u.2) pl j k
D) DERLLET N S
wooj k
=) (DUER B %)M ),
"

as desired. ]

(5.3) Given a simple GT-module, formula (5.1)(2) need not immediately locate a
simple factor in the Loewy layers of Vp (iP (A)). The following are particularly important
factors in the study of the Frobenius direct image of the structure sheaf of G/P ([6],
[8]). Let W = {w e W | L(ww') = £(w) + £(w') Yw' € W;}, which forms a complete set of
representatives of W/ Wy.

Proposition. Assume the Lusztig conjecture (LG). Let A € A be p-regular. If w e W,
L(we A)O) ® p(w’1 o (w ok)l) appears in the (L(w) + 1)-st socle layer of Vp(LP(M)).

Proof. In the commutative diagram (4.6)(1), put ¢ = ¢,. Write w! =s152...5,
in a reduced expression with m = £(w!), and put y, =sis2...s, for r <m. Then
yo'wl =s.41...5m € W, Recall from [2] that ¢, : @uﬂ((wl e M) (w!)) = V(w! o) is
the composite

Vo (! @0y (w!)) = Vi, s, (! @) (51 ... 5m))

A ¢I’l_
Vsiosmei ((wl o A)(s1...85m—-1)) i

Uy, (! e 1) (s1)) 25 V(w! o).

A ¢I)‘l— ¢
Vs (W @) (s1 .. sm2)) == ... 2>

Put L =soc¥y, (w! e 2)(y) ® (—p(w! 0) and ¢, = {($r110---0dn) S(—pw'e
0))}|wzﬁp(ipm). As ¢, #0, and as each ¢; annihilates the socle of its domain, we
must have ££(img) = £4(Vp(LP (1)) — (m —r) =r+1by (4.6). Then L = soc(im¢.) =
rad,(im¢)), which is a quotient of rad,”' ¥V p(LP(%)). Thus L lies in rad,” Vp (L (1)).
It follows from the rigidity of %P(I:P()\.)) that @)L appears in its socle layer of
level L6(Vp(LP(W)) —r =twH+1—r=m+1—r = Z(yr_lwl) + 1. Recall now from [2,
1.2.4] that

L

Ly, e (w! 1)+ p(yr 0 (3 o (w! 0 2))1) ® (—p(w! @ 0))
Ly w! e ) + p(yr 0 (3 w! e 2)1) @ (—p(w! 0 0)).

Thus

@O = Ly w! e ) @ plaw) (v e (3w e 1) — (w0 0)}}
=Ly, 'w' e ) @ plw!) 'y, 0 (v, w0 2)!)
=L((y;'w' e )@ pl(y; ' wh) e (v w e n)').
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Finally, we check that any w € W/ may be realized as y~'w! as above. Let w € W/. As
Lwwy) = £(w) +£(wy), one can write wo = 5}, ... s, ww; with r = £(wo) — £(w) — £(wy).
Then w! = wow; = S ...8j,w with L(w!) = r 4+ £(w). Thus, putting y, = Sj ...sj, yields
w = y,‘lwl7 as desired. O

(5.4) Remark. This is a generalization of [8, 1.5], [9], and [10, 3.5]. For A =0, we
constructed for G of rank at most 2 [8] or for G = GL,41(k) and P maximal parabolic
such that G/P ~P" for any n € N [9], a Karoubian complete strongly exceptional
sequence {&, | w € W'} for the bounded derived category of coherent OG/p.-modules
out of GiMod(L((w e0)?), SOC[(wH_l@P (0)), where G¢ and Pc are the groups over the
complex number field corresponding to G and P, respectively. Our (5.3) ensures at least
that GiMod(L((w e0)?), soc@(w)+1@p (0)) # 0 in general for large p.
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