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In this paper, convergence rates of solutions towards stationary solutions for the
outflow problem of planar magnetohydrodynamics (MHD) are investigated. Inspired
by the relationship between MHD and Navier-Stokes, we prove that the global
solutions of the planar MHD converge to the corresponding stationary solutions of
Navier-Stokes equations. We obtain the corresponding convergence rates based on
the weighted energy method when the initial perturbation belongs to some weighted
Sobolev space.
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1. Introduction

1.1. The problem

Magnetohydrodynamics (MHD) concerns the motion of a conducting fluid in
an electro-magnetic field and has very wide range applications in astrophysics,
plasma, and so on. There is a complex interaction between the magnetic and fluid
dynamic phenomena, and both hydrodynamic and electrodynamic effects have to
be considered. The planar MHD on a half line R+ =: (0,+∞) is governed by the
following equations in Eulerian coordinates:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ+ ∂x(ρu) = 0,

ρ(∂tu+ u∂xu) + ∂x

(
p+

1
2
|b|2

)
= λ∂2

xu,

ρ(∂tw + u∂xw) − ∂xb = μ∂2
xw,

∂tb + ∂x(ub − w) = ν∂2
xb,

R

γ − 1
ρ(∂tθ + u∂xθ) + p∂xu = λ(∂xu)2 + κ∂2

xθ + ν|∂xb|2 + μ|∂xw|2,

(1.1)

where ρ(x, t) ∈ R, u(x, t) ∈ R, w(x, t) ∈ R
2, b(x, t) ∈ R

2 and θ(x, t) ∈ R denote,
respectively, the mass density, longitudinal velocity, transverse velocity, transverse
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magnetic field and temperature of the fluids. The longitudinal magnetic field is a
constant which is taken to be one in (1.1). Here, the constants λ > 0 and μ > 0
are the viscosity coefficients of the fluids; the constants ν > 0 and κ > 0 are the
resistivity coefficient acting as the magnetic diffusion coefficient of the magnetic
field and the heat conductivity coefficient, respectively. In fact, the system (1.1)
arises from a 3-D MHD with a special structure: the flow depends on only one
space variable x ∈ R and does not change in the transverse directions; however, the
velocity and magnetic field still have three components. For the detailed derivation
of planar MHD (1.1), please refer to [3,4,25] and references therein. Liu, Yin
and Zhu in [15] studied Euler–Maxwell equations which have a similarly special
structure.

Assume that the conducting fluid is perfect. Hence, for pressure p, we have the
state equation:

p = Rρθ, (1.2)

where R > 0 is a gas constant.
The initial data for the system (1.1) is given by

(ρ, u,w,b, θ)(x, 0) = (ρ0, u0,w0,b0, θ0)(x), inf
x∈R+

ρ0(x) > 0, inf
x∈R+

θ0(x) > 0.

(1.3)
We assume that the initial data in the far field x = +∞ is constant, namely

lim
x→+∞(ρ0, u0,w0,b0, θ0)(x) = (ρ+, u+,w+,b+, θ+), (1.4)

and the boundary data for u, w, b and θ at x = 0 is given by

(u,w,b, θ)(0, t) = (u−,w−,b−, θ−), ∀ t � 0, (1.5)

where u− < 0, θ− > 0 are constants, and w−, b− are constant vectors, and the
following compatibility conditions hold

u0(0) = u−, w0(0) = w−, b0(0) = b−, θ0(0) = θ−. (1.6)

The assumption u− < 0 means that fluid blows out from the boundary x = 0
with the velocity u−. Thus this problem is called the outflow problem (see [17]).
The outflow boundary condition implies that the characteristic of the hyperbolic
equation (1.1)1 for the density ρ is negative around the boundary so that boundary
conditions on u, w, b and θ to parabolic equations (1.1)2, (1.1)3, (1.1)4 and (1.1)5
are necessary and sufficient for the wellposedness of the outflow problem. Motivated
by the relationship between MHD and Navier-Stokes, we temporarily assume that
w± = b± = 0, and can consider the large time behaviour of solutions to the outflow
problem (1.1), (1.3), (1.4), (1.5), (1.6) in the setting of w(x, t) = b(x, t) = 0.Then
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the outflow problem is reduced to consider the following Navier-Stokes system in
the form of ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tρ+ ∂x(ρu) = 0,

ρ(∂tu+ u∂xu) + ∂xp = λ∂2
xu,

R

γ − 1
ρ(∂tθ + u∂xθ) + p∂xu = λ (∂xu)

2 + κ∂2
xθ,

(1.7)

with the initial data

(ρ, u, θ)(x, 0) = (ρ0, u0, θ0)(x) → (ρ+, u+, θ+), as x→ +∞, (1.8)

and the boundary data

(u, θ)(0, t) = (u− < 0, θ− > 0), ∀ t � 0. (1.9)

Hence, when time tends to infinity, it is reasonable for us to expect that the solutions
to the outflow problem (1.1), (1.3), (1.4), (1.5), (1.6) asymptotically converge to
the stationary solutions defined in § 1.2. Moreover, the cases for w+ �= w− and
b+ �= b− which lead to more complex structures are left for study in future.

1.2. The existence of stationary solutions

We define stationary solutions (ρ̃, ũ, θ̃, w̃, b̃)(x) by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x(ρ̃ũ) = 0, x ∈ R+,

ρ̃ũ∂xũ+ ∂xp̃ = λ∂2
xũ, x ∈ R+,

R

γ − 1
ρ̃ũ∂xθ̃ + p̃∂xũ = λ (∂xũ)

2 + κ∂2
xθ̃, x ∈ R+,

ũ(0) = u− < 0, θ̃(0) = θ−, (ρ̃, ũ, θ̃)(+∞) = (ρ+, u+, θ+),

infx∈R+ ρ̃(x) > 0, infx∈R+ θ̃(x) > 0,

(1.10)

with w̃ = b̃ = 0, where p̃ = Rρ̃θ̃.
From the fact ρ̃(x) > 0 and u− < 0, we have

ρ− := ρ̃(0) =
ρ+u+

u−
, ρ̃(x) =

ρ+u+

ũ(x)
, ũ(x) < 0, u+ < 0. (1.11)

Thus, (1.10) is equivalent to the coupling of (1.11) and the following ODE system:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂xũ =
ρ+u+

λ

[
(ũ− u+) +R

(
θ̃

ũ
− θ+
u+

)]
, x ∈ R+,

∂xθ̃ =
ρ+u+

κ

[
R

γ − 1
(θ̃ − θ+) − 1

2
(ũ− u+)2 +

Rθ+
u+

(ũ− u+)
]
, x ∈ R+,

ũ(0) = u−, θ̃(0) = θ−, (ũ, θ̃)(+∞) = (u+, θ+).
(1.12)

The strength of the stationary solutions is measured by δ̃ = |u+ − u−| + |θ+ − θ−|.
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We define the pressure in the far field: p+ := Rρ+θ+. We also introduce the Mach
number M+ in the far field x = +∞: M+ = ((|u+|)/(c+)), where c+ =

√
Rγθ+ is

the sound speed. Then one has the following lemmas.

Lemma 1.1. Suppose that the boundary data (u−, θ−) satisfies

(u−, θ−) ∈ M+ :=
{
(u, θ) ∈ R

2; |(u− u+, θ − θ+)| < δ0
}

(1.13)

for a certain positive constant δ0. Notice that (1.13) is equivalent to the inequality
δ̃ < δ0.

(i) For the supersonic case M+ > 1, there exist unique smooth solutions (ũ, θ̃)(x)
to the problem (1.12) satisfying

|∂k
x(ũ(x) − u+, θ̃(x) − θ+)| � Cδ̃e−cx, k = 0, 1, 2, . . . , (1.14)

where c and C are positive constants.

(ii) For the transonic case M+ = 1, if the boundary data (u−, θ−) ∈ M0 which
is defined in (A.19), then there exist unique smooth solutions (ũ, θ̃)(x) to the
problem (1.12) satisfying

|∂k
x(ũ(x) − u+, θ̃(x) − θ+)| � C

δ̃k+1

(1 + δ̃x)k+1
+ Cδ̃e−cx, k = 0, 1, 2, . . .

(1.15)

(iii) For the subsonic case M+ < 1, if the boundary data (u−, θ−) ∈ M− which is
defined in (A.20), then there exist unique smooth solutions (ũ, θ̃)(x) to the
problem (1.12) satisfying (1.14).

Lemma 1.2. Suppose that M+ = 1. Namely, the same conditions as in lemma 1.1
(ii) hold. Then the degenerate stationary solutions (ρ̃, ũ, θ̃) satisfy

(ρ̃, ũ, θ̃)(x) = (ρ+, u+, θ+) +
(
− ρ+

θ+(γ − 1)
,

u+

θ+(γ − 1)
,−1

)
z̃(x)

+O(z̃2 + δ̃e−cx)(1, 1, 1), (1.16)

(ũx, θ̃x) =
γ2(γ + 1)R2ρ+

2(γ − 1)[λγR+ κ(γ − 1)2]u+

(
u+

θ+(γ − 1)
,−1

)
z̃2(x)

+O(z̃3 + δ̃e−cx)(1, 1), (1.17)

|∂k
x(ũ, θ̃)| � Cz̃k+1(x) + Cδ̃e−cx, k = 1, 2, . . . (1.18)

Remark. z̃(x) is defined in (A.11). For the sake of completeness, the detailed proofs
of lemmas 1.1 and 1.2 are given in the appendix.
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1.3. The main result

Before stating our main result, we first introduce the following notation. A norm
with algebraic weight is defined as follows:

‖f‖α,ξ,i :=

⎛
⎝∫

Wα,ξ

∑
j�i

(∂jf)2dx

⎞
⎠1/2

, i, j ∈ Z, i, j � 0,

Wα,ξ := (1 + ξx)α, α > 0.

Note that this norm is equivalent to the norm defined by ‖(1 + ξx)α/2f‖i. The last
subscript i is often dropped for the case of i = 0, that is, ‖f‖α,ξ := ‖f‖α,ξ,0.

The main result of our paper is stated as follows.

Theorem 1.3. Suppose that the stationary solutions (ρ̃, ũ, w̃ = b̃ = 0, θ̃) exist.

(i) Assume that M+ > 1 and p+ > 1/γ hold. For an arbitrary positive constant
λ̂, there exist positive constants β and ε0 such that if (1 + βx)λ̂/2(ρ0 − ρ̃),
(1 + βx)λ̂/2(u0 − ũ), (1 + βx)λ̂/2w0, (1 + βx)λ̂/2b0, (1 + βx)λ̂/2(θ0 − θ̃) respec-
tively belongs to the Lebesgue space L2(R+) and ‖[ρ0 − ρ̃, u0 − ũ,w0,b0,
θ0 − θ̃]‖H1 + β + δ̃ � ε0, then the outflow problem (1.1), (1.3), (1.4), (1.5),
(1.6) has unique solutions [ρ, u,w,b, θ] verifying the decay estimate

‖[ρ− ρ̃, u− ũ,w,b, θ − θ̃](t)‖∞ � C(1 + t)−λ̂/2. (1.19)

(ii) Assume that M+ < 1 holds. There exists a positive constant ε0 such that if
‖[ρ0 − ρ̃, u0 − ũ,w0,b0, θ0 − θ̃]‖H1 + δ̃ � ε0, the outflow problem (1.1), (1.3),
(1.4), (1.5), (1.6) has unique solutions [ρ, u,w,b, θ] verifying the decay
estimate

‖[ρ− ρ̃, u− ũ,w,b, θ − θ̃](t)‖H1 � Cε0. (1.20)

Moreover, the solutions [ρ, u,w,b, θ] converge to the stationary solutions
[ρ̃, ũ,0,0, θ̃] uniformly as time tends to infinity:

lim
t→∞ sup

x∈R+

∣∣∣[ρ, u,w,b, θ](x, t) − [ρ̃, ũ,0,0, θ̃](x)
∣∣∣ = 0. (1.21)

(iii) Assume that M+ = 1 and p+ > 1/γ hold. For some positive constant 1 � λ̂

< 2(1 +
√

2), there exists a positive constant ε0 such that if (1 + δ̃x)λ̂/2

(ρ0 − ρ̃), (1 + δ̃x)λ̂/2 (u0 − ũ), (1 + δ̃x)λ̂/2 w0, (1 + δ̃x)λ̂/2 b0, (1 + δ̃x)λ̂/2 (θ0 −
θ̃) respectively belongs to the Sobolev space H1(R+) and δ̃−1/2‖[ρ0 − ρ̃,
u0 − ũ,w0,b0, θ0 − θ̃]‖λ̂,δ̃,1 + δ̃ � ε0, then the outflow problem (1.1), (1.3),
(1.4), (1.5), (1.6) has unique solutions [ρ, u,w,b, θ] verifying the decay
estimate

‖[ρ− ρ̃, u− ũ,w,b, θ − θ̃](t)‖∞ � C(1 + t)−λ̂/4. (1.22)
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Remark. For the supersonic case M+ > 1 and transonic case M+ = 1, we prove
that an exponential convergence rate

‖[ρ− ρ̃, u− ũ,w,b, θ − θ̃](t)‖∞ � Ce−λ̂t (1.23)

holds provided that the initial data satisfies the conditions as in theorem 1.3
(i) and (iii) with the exponential weight function e−λ̂x instead of the algebraic
weight function (1 + ξx)α. Since the estimates for the exponential weight function
are easier than that for the algebraic weight function, we only prove theorem 1.3
(i) and (iii) for the algebraic weight function in the sequel.

There have been a lot of studies on MHD equations by physicists and mathemati-
cians because of their physical importance, complexity, rich phenomenology, and
mathematical challenges; see [2–8,14,16,24–26] and the references cited therein.
Here we only listed some related paper. For the initial boundary value problem, we
refer to [3,4,25] for the global existence of large solutions of non-isentropic planar
MHD equations with a special structure. In [8], Hu and Wang studied the global
weak solutions to the three-dimensional MHD equations with large initial data,
and investigated the fundamental problems such as global existence and large-time
behaviour. Lv and Huang in [16] studied strong solutions to the Cauchy problem
of the two-dimensional compressible MHD equations with vacuum. See [6] and [26]
for some interesting results on the vanishing shear viscosity limit for the isentropic
or non-isentropic planar MHD equations with special structures. Li, Xu and Zhang
in [14] proved the global well-posedness of a classical solution of the Cauchy prob-
lem of three-dimensional isentropic compressible MHD equations, where the flow
density is allowed to contain vacuum states. The authors in [2] and [24] proved the
global existence of smooth solutions near the constant states for Cauchy problem
to the three-dimensional isentropic or non-isentropic compressible MHD equations
by energy method and meanwhile obtained convergence rates of the Lp-norm of
these solutions to the constant states.

In fact, equations (1.1) reduce to the classical Navier-Stokes equations if we ignore
the effect of the magnetic field. As far as we know, there have been a great num-
ber of mathematical studies about the outflow problem, impermeable wall problem
and inflow problem on Navier-Stokes equations, please see [9,12,18–21] and the
references therein. Three problems mentioned above are still important topics in
the theory of fluid dynamics and plasma physics, for example, see [10,27]. Hence,
it is important and meaningful for us to study the corresponding problem for MHD
equations. Here, in this paper, we only discuss the outflow problem for MHD equa-
tions. The other two problems remain to be discussed in future. In this paper,
we obtain convergence rates of solutions towards nontrivial stationary solutions
by employing the weighted energy method, provided that the initial perturbation
belongs to the weighted Sobolev space. According to our knowledge, this paper is
the first result in this direction. It should be pointed out that the outflow problem
is divided into three cases for discussion according to the value of Mach number
M in the far field, that is, M+. Compared with [13] for compressible Navier-Stokes
equations, the outflow problem for compressible MHD equations is more compli-
cated. Due to the strong interaction between the fluid motion and the magnetic
field, the main trouble arising in this paper is that we must deal with the coupled
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term w · b under an extra assumption p+ > 1/γ for both supersonic case M+ > 1
and transonic case M+ = 1. One can see (2.12) and (2.51) for details. So far it is
unclear how to remove such restriction for the stability of stationary solutions on
MHD equations. Moreover, it is also interesting to obtain the convergence rates of
solutions towards stationary solutions for the outflow problem of the planar MHD
in the current setting.

The rest of the paper is arranged as follows. In the main part § 2, we give the a
priori estimates on the solutions of the perturbative equations for the supersonic
case M+ > 1, subsonic case M+ < 1 and transonic case M+ = 1, respectively. The
proof of theorem 1.3 is concluded in § 3. In the Appendix, we present the detailed
proofs of lemmas 1.1 and 1.2 for completeness of the paper.

Notation. Throughout the paper, we denote positive constants (generally large)
and (generally small) independent of t by C and c, respectively. And the character
‘C’ and ‘c’ may take different values in different places. Lp = Lp(R+) (1 � p � ∞)
denotes the usual Lebesgue space on [0,∞) with its norm ‖ · ‖Lp , and when p = 2,
we write ‖ · ‖L2(R+) = ‖ · ‖. Hs(R+) denotes the usual s-th order Sobolev space with
its norm ‖f‖Hs(R+) = ‖f‖s = (

∑s
i=0 ‖∂if‖2)1/2.

2. Energy estimates

To prove theorem 1.3, we use the energy method. Define the perturbation as

[ϕ,ψ, ζ](x, t) = [ρ− ρ̃, u− ũ, θ − θ̃],

then [ϕ,ψ,w,b, ζ](x, t) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tϕ+ u∂xϕ+ ρ∂xψ = −∂xũϕ− ∂xρ̃ψ,

ρ(∂tψ + u∂xψ) +R∂x(ρθ − ρ̃θ̃) + ∂x(
1
2
|b|2) = λ∂2

xψ − ∂xũ(ũϕ+ ρψ),

ρ(∂tw + u∂xw) − ∂xb = μ∂2
xw,

∂tb + ∂x(ub − w) = ν∂2
xb,

R

γ − 1
ρ(∂tζ + u∂xζ) +Rρθ∂xψ = κ∂2

xζ + λ(∂xψ)2

− R

γ − 1
∂xθ̃(ũϕ+ ρψ) − ∂xũR(ρθ − ρ̃θ̃)

+2λ∂xũ∂xψ + ν|∂xb|2 + μ|∂xw|2

(2.1)

with the initial data

[ϕ,ψ,w,b, ζ](x, 0) = [ϕ0, ψ0,w0,b0, ζ0](x) (2.2)

and the boundary condition

ψ(0, t) = ζ(0, t) = 0, w(0, t) = b(0, t) = 0. (2.3)

In the paper, to prove theorem 1.3, for brevity, we only devote ourselves to obtaining
the global-in-time a priori estimates in the following.
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Lemma 2.1 plays an important role in the proof of the a priori estimates for
the supersonic case M+ > 1, subsonic case M+ < 1 and transonic case M+ = 1,
respectively.

Lemma 2.1.

(i) For any function h(·, t) ∈ H1(R+), there is a positive constant C such that∫
R+

e−cx|h|2dx � C(h2(0, t) + ‖∂xh(t)‖2). (2.4)

(ii) Let ν̂ � 1. For a function h(x, t) satisfying (1 + δ̃x)ν̂/2h and (1 + δ̃x)ν̂/2∂xh
∈ L2(R+), we have∫

R+

(1 + δ̃x)ν̂−1|h|3dx � Cδ̃−ν̂ δ̃−1/2‖h‖ν̂,δ̃[h
2(0, t) + δ̃2‖h‖2

ν̂−2,δ̃
+ ‖∂xh‖2

ν̂,δ̃
].

(2.5)

Proof.

(i) (2.4) can be derived from the following Poincaré type inequality:

|h(x, t)| � |h(0, t)| + x1/2‖∂xh‖. (2.6)

(ii) Letting ν̂ � 1 and using Hölder inequality, we compute as

(1 + δ̃x)ν̂h− h(0, t) =
∫ x

0

∂y[(1 + δ̃y)ν̂h]dy =
∫ x

0

(1 + δ̃y)ν̂∂yhdy

+ ν̂δ̃

∫ x

0

(1 + δ̃y)ν̂−1hdy

�
(∫ x

0

(1 + δ̃y

)ν̂

|∂yh|2dy)1/2

(∫ x

0

(1 + δ̃y)ν̂dy
)1/2

+ ν̂δ̃

(∫ x

0

(1 + δ̃y

)ν̂−2

h2dy)1/2

(∫ x

0

(1 + δ̃y)ν̂dy
)1/2

� Cδ̃−1/2(1 + δ̃x)ν̂/2+1/2(‖∂xh‖ν̂,δ̃ + δ̃‖h‖ν̂−2,δ̃).

Thus we have

(1 + δ̃x)((ν̂−1)/(2))h � (1 + δ̃x)−ν̂/2−1/2h(0, t)

+ Cδ̃−1/2(‖∂xh‖ν̂,δ̃ + δ̃‖h‖ν̂−2,δ̃). (2.7)

Using (2.7) and the Hölder inequality, we can see∫
R+

(1 + δ̃x)ν̂−1|h|3dx

� h(0, t)
∫

R+

(1 + δ̃x)−1h2dx+ Cδ̃−1/2(‖∂xh‖ν̂,δ̃

+ δ̃‖h‖ν̂−2,δ̃)‖h‖1,δ̃‖h‖ν̂−2,δ̃
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� h(0, t)‖h‖1,δ̃

(∫
R+

(1 + δ̃x

)−3

h2dx)1/2

+ Cδ̃−3/2‖h‖1,δ̃[δ̃
2‖h‖2

ν̂−2,δ̃
+ ‖∂xh‖2

ν̂,δ̃
]

� Cδ̃3/2‖h‖1,δ̃

∫
R+

(1 + δ̃x)−3h2dx

+ Cδ̃−3/2‖h‖1,δ̃[h
2(0, t) + δ̃2‖h‖2

ν̂−2,δ̃
+ ‖∂xh‖2

ν̂,δ̃
]

� Cδ̃−3/2‖h‖1,δ̃[h
2(0, t) + δ̃2‖h‖2

ν̂−2,δ̃
+ ‖∂xh‖2

ν̂,δ̃
]

� Cδ̃−ν δ̃−1/2‖h‖ν̂,δ̃[h
2(0, t) + δ̃2‖h‖2

ν̂−2,δ̃
+ ‖∂xh‖2

ν̂,δ̃
],

where we have used −3 � ν̂ − 2 and δ̃3/2 � δ̃1/2 in the fourth inequality and
ν̂ � 1 in the last inequality. Thus we complete the proof of lemma 2.1 (ii).

�

Remark. In order to estimate the last term
∫

R+
z̃−ν̂+1(|ϕ|3 + |ψ|3 + |ζ|3)dx in

(2.54), we need the smallness of δ̃−1/2‖h‖ν̂,δ̃. Moreover, we need the condition
λ̂ � 1 in theorem 1.3 (iii).

2.1. The a priori estimates for M+ > 1

The key to the proof of our main theorem 1.3 (i) is to derive the uniform a priori
estimates of solutions to the initial boundary value problem (2.1), (2.2) and (2.3).

Proposition 2.2. Assume the same conditions as in theorem 1.3(i) hold. Let λ̂
and κ̂ be the positive constants. Suppose [ϕ,ψ,w,b, ζ] is a solution to (2.1), (2.2)
and (2.3) which satisfies (1 + βx)λ̂/2ϕ, (1 + βx)λ̂/2ψ, (1 + βx)λ̂/2w, (1 + βx)λ̂/2b,
(1 + βx)λ̂/2ζ ∈ C([0, T ];L2(R+)) for a certain positive constant T . For arbitrary
ν̂ ∈ [0, λ̂], there exist positive constants C and ε1 independent of T such that if

sup
0�t�T

‖[ϕ,ψ,w,b, ζ](t)‖1 + δ̃ + β � ε1 (2.8)

is satisfied, it holds for an arbitrary t ∈ [0, T ] that

(1 + t)λ̂−ν̂+κ̂‖[ϕ,ψ,w,b, ζ](t)‖2
1 +

∫ t

0

(1 + τ)λ̂−ν̂+κ̂‖∂x[ψ,w,b, ζ](τ)‖2
1dτ

� C(1 + t)κ̂(‖[ϕ0, ψ0,w0,b0, ζ0]‖2
1 + ‖[ϕ0, ψ0,w0,b0, ζ0]‖2

λ̂,β
). (2.9)

Now, we prove proposition 2.2 by the following three steps.
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Step 1. The zero-order energy estimates.
Set Φ(s) = s− 1 − ln s, and define η = Rρθ̃Φ(ρ̃/ρ) + ρ/2ψ2 + ρ/2|w|2 + 1/2

|b|2 + ((R)/(γ − 1))ρθ̃Φ(θ/θ̃). Direct calculations give rise to

∂tη + λ
θ̃

θ
(∂xψ)2 + κ

θ̃

θ2
(∂xζ)2 + ν|∂xb|2 + μ|∂xw|2 + ∂xH1

= ∂xH2 + ∂xũQ1 + ∂xθ̃Q2 +Q3, (2.10)

where

H1 = uη +R(ρθ − ρ̃θ̃)ψ +
1
2
|b|2ψ − w · b,

H2 = λψ∂xψ + κ
ζ∂xζ

θ
+ μw · ∂xw + νb · ∂xb,

Q1 =

(
Rθ̃

ũ
− ũ

)
ϕψ − ρψ2 − 1

2
|b|2 −R(ρθ − ρ̃θ̃)

ζ

θ
,

Q2 = RρuΦ
(
ρ̃

ρ

)
− R

γ − 1
ρuΦ

(
θ̃

θ

)
− R

γ − 1
(ũϕ+ ρψ)

ζ

θ
,

and

Q3 =
2λ
θ
∂xũ∂xψζ + κ∂xθ̃

ζ∂xζ

θ2
+ ν

ζ

θ
|∂xb|2 + μ

ζ

θ
|∂xw|2.

Multiplying (2.10) by Wν̂,β , then we integrate the resulting equality over R+ to
get

d

dt

∫
R+

Wν̂,βηdx+ λ

∫
R+

Wν̂,β
θ̃

θ
(∂xψ)2dx+ κ

∫
R+

Wν̂,β
θ̃

θ2
(∂xζ)2dx

+
∫

R+

Wν̂,β [ν|∂xb|2 + μ|∂xw|2]dx+Rρ(0, t)θb|ub|φ

×
(
ρ̃

ρ

)
(0, t) − ν̂β

∫
R+

Wν̂−1,βH1dx

=−ν̂β
∫

R+

Wν̂−1,βH2dx︸ ︷︷ ︸
J1

+
∫

R+

Wν̂,βQ3dx︸ ︷︷ ︸
J2

+
∫

R+

Wν̂,β(∂xũQ1 + ∂xθ̃Q2)dx︸ ︷︷ ︸
J3

.

(2.11)

Now we estimate each term in (2.11). We decompose ρ as ρ = ϕ+ (ρ̃− ρ+) + ρ+,
u as u = ψ + (ũ− u+) + u+ and θ as θ = ζ + (θ̃ − θ+) + θ+. Then we see, under
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the condition M+ > 1 and u+ < 0, that

− uη −R(ρθ − ρ̃θ̃)ψ − 1
2
|b|2ψ + w · b

� [−Rθ+u+

2ρ+
ϕ2 − ρ+u+

2
ψ2 − Rρ+u+

2(γ − 1)θ+
ζ2 −Rθ+ϕψ −Rρ+ζψ] − ρ+u+

2
|w|2

− u+

2
|b|2 + w · b − C(ε1 + δ̃)(ϕ2 + ψ2 + |b|2 + |w|2 + ζ2)

= [ϕ,ψ, ζ]M1[ϕ,ψ, ζ]T + [w,b]M2[w,b]T − C(ε1 + δ̃)(ϕ2 + ψ2 + |b|2 + |w|2 + ζ2),
(2.12)

where [ ]T denotes the transpose of a row vector. The 3 × 3 real symmetric matrix
M1 and 2 × 2 real symmetric matrix M2 are respectively given by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Rθ+u+

2ρ+
−Rθ+

2
0

−Rθ+
2

−ρ+u+

2
−Rρ+

2

0 −Rρ+

2
− Rρ+u+

2(γ − 1)θ+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and ⎛
⎜⎜⎝

−ρ+u+

2
1
2

1
2

−u+

2

⎞
⎟⎟⎠ .

One can compute all the leading principal minors Δll (1 � l � 3) ofM1 as follows:

Δ11 = −Rθ+u+

2ρ+
> 0,Δ22 =

Rθ+
4

(u2
+ −Rθ+) > 0,

and

Δ33 = −R
2ρ+u+

8(γ − 1)
[u2

+ − γRθ+] > 0,

where we have used the condition M+ > 1 and u+ < 0.
Similarly, we can get all the leading principal minors Δll (1 � l � 2) of M2 as

follows:

Δ11 = −ρ+u+

2
> 0, Δ22 =

ρ+u
2
+ − 1
4

>
γp+ − 1

4
> 0,

where we have used the condition M+ > 1, u+ < 0 and p+ > 1/γ.
Thus we have

−ν̂β
∫

R+

Wν̂−1,βH1dx � c‖[ϕ,ψ,w,b, ζ]‖2
ν̂−1,β ,

where we take ε1 and δ̃ small enough.
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It is easy to obtain that

Rρ(0, t)θb|ub|φ
(
ρ̃

ρ

)
(0, t) � cϕ(0, t)2.

Using lemma 2.1(i), (2.8), (2.3) and the Sobolev inequality, we have

|J1| � cβ‖[ψ,w,b, ζ]‖2
ν̂−1,β + cβ‖∂x[ψ,w,b, ζ]‖2

ν̂−1,β ,

|J2| � Cδ̃‖ζ‖2
ν̂−1,β + Cδ̃‖∂x[ψ, ζ]‖2

ν̂−1,β + Cε1‖∂x[w,b]‖2
ν̂,β ,

|J3| � Cδ̃ϕ(0, t)2 + Cδ̃‖∂x[ϕ,ψ,b, ζ]‖2.

Inserting the above estimations into (2.11) and then choosing ε1, δ̃ and β suitably
small, we obtain

d
dt

∫
R+

Wν̂,βηdx+ cϕ(0, t)2 + c‖[ϕ,ψ,w,b, ζ]‖2
ν̂−1,β

+ c‖∂x[ψ,w,b, ζ]‖2
ν̂,β � Cδ̃‖∂xϕ‖2. (2.13)

Multiplying (2.13) by (1 + t)ξ and integrating in τ over [0, t] for any 0 � t � T ,
we have

(1 + t)ξ‖[ϕ,ψ,w,b, ζ](t)‖2
ν̂,β +

∫ t

0

(1 + τ)ξ‖[ϕ,ψ,w,b, ζ](τ)‖2
ν̂−1,βdτ

+
∫ t

0

(1 + τ)ξ‖∂x[ψ,w,b, ζ](τ)‖2
ν̂,βdτ +

∫ t

0

(1 + τ)ξϕ2(0, τ)dτ

�C‖[ϕ0, ψ0,w0,b0, ζ0]‖2
λ̂,β

+ ξ

∫ t

0

(1 + τ)ξ−1‖[ϕ,ψ,w,b, ζ](τ)‖2
ν̂,βdτ

+ Cδ̃

∫ t

0

(1 + τ)ξ‖∂xϕ‖2(τ)dτ. (2.14)

Step 2. Dissipation of ‖∂xϕ‖2.
We first differentiate (2.1)1 with respect to x, multiplying the resulting equations

and (2.1)2 by Λ((∂xϕ)/(ρ2)) and ((∂xϕ)/(ρ)) respectively to obtain

λ
∂xϕ

ρ2
∂t∂xϕ+ λ∂xu

(∂xϕ)2

ρ2
+ λu

∂xϕ∂
2
xϕ

ρ2
+ λ

∂xϕ

ρ2
∂xρ∂xψ + λ∂xũ

(∂xϕ)2

ρ2

= −λ∂2
xψ

∂xϕ

ρ
− λ∂2

xũϕ
∂xϕ

ρ2
− λ∂xρ̃∂xψ

∂xϕ

ρ2
− λ∂2

xρ̃ψ
∂xϕ

ρ2
, (2.15)

∂tψ∂xϕ+ u∂xψ∂xϕ+R
∂x(ρθ − ρ̃θ̃)

ρ
∂xϕ+

∂x|b|2
2ρ

∂xϕ

= λ∂2
xψ

∂xϕ

ρ
− ũ∂xũ

ρ
ϕ∂xϕ− ∂xũψ∂xϕ. (2.16)
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The summation of (2.15) and (2.16), and then taking integration over R+ further
imply

d

dt

∫
R+

[
ψ∂xϕ+ λ

(∂xϕ)2

2ρ2

]
dx+

∫
R+

[
λ∂xũ

(∂xϕ)2

ρ2
+
Rθ

ρ
(∂xϕ)2

]
dx

=

∫
R+

ψ∂t∂xϕdx− λ

∫
R+

(∂xϕ)2ρ−3∂tρdx−
∫

R+

Rρ̃

ρ
∂xζ∂xϕdx−

∫
R+

Rϕ
∂xθ

ρ
∂xϕdx

−
∫

R+

Rζ
∂xρ̃

ρ
∂xϕdx−

∫
R+

u∂xψ∂xϕdx−
∫

R+

ũ∂xũ

ρ
ϕ∂xϕdx−

∫
R+

∂xũψ∂xϕdx

− λ

∫
R+

∂xu
(∂xϕ)2

ρ2
dx− λ

∫
R+

u
∂xϕ∂2

xϕ

ρ2
dx− λ

∫
R+

∂xϕ

ρ2
∂xρ∂xψdx− λ

∫
R+

∂2
xũϕ

∂xϕ

ρ2
dx

− λ

∫
R+

∂xρ̃∂xψ
∂xϕ

ρ2
dx− λ

∫
R+

∂2
xρ̃ψ

∂xϕ

ρ2
dx−

∫
R+

∂x|b|2
2ρ

∂xϕdx =

18∑
l=4

Jl, (2.17)

where we have used R(ρθ − ρ̃θ̃) = Rθϕ+Rρ̃ζ and Jl (4 � l � 18) denote the
corresponding terms on the left of (2.17).

Applying the Sobolev’s inequality, the Young’s inequality and the Cauchy-
Schwarz’s inequality with 0 < η < 1 and using lemma 2.1, (2.8), one has

J4 =
∫

R+

∂xψ∂x(ρu− ρ̃ũ)dx

=
∫

R+

ρ(∂xψ)2dx+
∫

R+

∂xρ̃ψ∂xψdx+
∫

R+

ϕ∂xũ∂xψdx+
∫

R+

u∂xψ∂xϕdx

� (η + Cδ̃)‖∂xϕ‖2 + (Cη + Cδ̃)‖∂xψ‖2 + Cδ̃ϕ(0, t)2,

J5 + J12 + J13

= − λ|u−|
2ρ(0, t)2

(∂xϕ)2(0, t) +
λ

2

∫
R+

∂xũ(∂xϕ)2ρ−2dx+
λ

2

∫
R+

∂xψ(∂xϕ)2ρ−2dx

� − λ|u−|
2ρ(0, t)2

(∂xϕ)2(0, t) + C(δ̃ + ε1)‖∂xϕ‖2 + Cε1‖∂2
xψ‖2,

|J6| + |J9| + |J14| + |J16| � (η + Cδ̃ + Cε1)‖∂xϕ‖2

+ (Cη + Cδ̃)‖∂x[ψ, ζ]‖2 + Cε1‖∂2
xψ‖2,

|J7| + |J8| + |J10| + |J11| + |J15| + |J17| � C(ε1 + δ̃)‖∂x[ϕ,ψ, ζ]‖2 + Cδ̃ϕ2(0, t),

|J18| � Cε1‖∂x[ϕ,b]‖2.

Inserting the above estimates for Jl (4 � l � 18) into (2.17) and then choosing
ε1, δ̃ and η suitably small, we obtain

d
dt

∫
R+

(
ψ∂xϕ+ λ

(∂xϕ)2

2ρ2

)
dx+ ‖∂xϕ‖2 + (∂xϕ)2(0, t)

� C‖∂x[ψ,b, ζ]‖2 + Cε1‖∂2
xψ‖2 + ϕ2(0, t). (2.18)
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Multiplying (2.18) by (1 + t)ξ and integrating in τ over [0, t] for any 0 � t � T ,
using (2.14) and the Cauchy-Schwarz’s inequality, one has

(1 + t)ξ‖∂xϕ‖2 +
∫ t

0

(1 + τ)ξ‖∂xϕ‖2dτ +
∫ t

0

(1 + τ)ξ(∂xϕ)2(0, τ)dτ

� C(‖[ϕ0, ψ0,w0,b0, ζ0]‖2
λ̂,β

+ ‖∂xϕ0‖2)

+ ξ

∫ t

0

(1 + τ)ξ−1(‖[ϕ,ψ,w,b, ζ](τ)‖2
ν̂,β + ‖∂xϕ‖2)dτ

+ Cε1

∫ t

0

(1 + τ)ξ‖∂2
xψ‖2dτ. (2.19)

Step 3. Higher order energy estimates.
Multiplying (2.1)2 by −((∂2

xψ)/(ρ)), and then integrating the resulting equations
over R+, one has

d
dt

∫
R+

(∂xψ)2

2
dx+ λ

∫
R+

(∂2
xψ)2

ρ
dx

= R

∫
R+

∂x(ρθ − ρ̃θ̃)
ρ

∂2
xψdx︸ ︷︷ ︸

J19

+
∫

R+

u∂xψ∂
2
xψdx︸ ︷︷ ︸

J20

+
∫

R+

ũ∂xũ

ρ
ϕ∂2

xψdx︸ ︷︷ ︸
J21

+
∫

R+

∂xũψ∂
2
xψdx︸ ︷︷ ︸

J22

+
∫

R+

∂x|b|2
2ρ

∂2
xψdx︸ ︷︷ ︸

J23

. (2.20)

We utilize integration by parts, the Cauchy-Schwarz’s inequality and lemma 2.1 to
address the following estimates:

|J19| + |J20| � η‖∂2
xψ‖2 + Cη‖∂x[ϕ,ψ, ζ]‖2,

|J21| + |J22| � η‖∂2
xψ‖2 + Cη δ̃‖∂x[ϕ,ψ]‖2 + Cδ̃ϕ2(0, t),

and

|J23| � Cε1‖∂x[b, ∂xψ]‖2.

Substituting the above estimates for Jl (19 � l � 23) into (2.20) and taking η
small enough, one has

d
dt

∫
R+

(∂xψ)2

2
dx+ ‖∂2

xψ‖2 � C‖∂x[ϕ,ψ,b, ζ]‖2 + Cϕ2(0, t). (2.21)
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Multiplying (2.1)3 and (2.1)4 by −((∂2
xw)/(ρ)) and −∂2

xb respectively, and
integrating the resulting equality over R+, we obtain

1
2

d
dt

∫
R+

(|∂xw|2 + |∂xb|2)dx+ μ

∫
R+

|∂2
xw|2
ρ

dx+ ν

∫
R+

|∂2
xb|2dx

=
∫

R+

u∂xw · ∂2
xwdx︸ ︷︷ ︸

J24

−
∫

R+

1
ρ
∂xb · ∂2

xwdx︸ ︷︷ ︸
J25

+
∫

R+

∂x(ub − w) · ∂2
xbdx︸ ︷︷ ︸

J26

. (2.22)

To obtain the estimates for J24-J26, we use the Cauchy-Schwarz’s inequality with
0 < η < 1 to get

|J24| + |J25| + |J26| � η‖∂2
x[w,b]‖2 + Cη‖∂x[w,b, ψ]‖2.

Then we have

1
2

d
dt

∫
R+

(|∂xw|2 + |∂xb|2)dx+ ‖∂2
x[w,b]‖2 � C‖∂x[w,b, ψ]‖2 (2.23)

if η is small enough.
Similarly, multiplying (2.1)5 by −∂2

xζ
ρ , and integrating the resulting equations

over R+, one has

R

2(γ − 1)

d

dt

∫
R+

(∂xζ)
2dx+ κ

∫
R+

(∂2
xζ)

2

ρ
dx

=
R

γ − 1

∫
R+

u∂xζ∂
2
xζdx︸ ︷︷ ︸

J27

+

∫
R+

Rθ∂xψ∂
2
xζdx︸ ︷︷ ︸

J28

−λ
∫

R+

(∂xψ)2ρ−1∂2
xζdx︸ ︷︷ ︸

J29

−
∫

R+

2λ∂xũρ
−1∂xψ∂

2
xζdx︸ ︷︷ ︸

J30

+
R

γ − 1

∫
R+

ũ∂xθ̃ρ
−1ϕ∂2

xζdx︸ ︷︷ ︸
J31

+
R

γ − 1

∫
R+

∂xθ̃ψ∂
2
xζdx︸ ︷︷ ︸

J32

+R

∫
R+

∂xũ(ρθ − ρ̃θ̃)ρ−1∂2
xζdx︸ ︷︷ ︸

J33

−
∫

R+

ν|∂xb|2 + μ|∂xw|2
ρ

∂2
xζdx︸ ︷︷ ︸

J34

. (2.24)

Performing the similar calculations as Jl (19 � l � 23), we have

|J27| + |J28| � η‖∂2
xζ‖2 + Cη‖∂x[ζ, ψ]‖2,

|J29| � Cε1‖∂x[ψ, ∂xψ, ∂xζ]‖2, |J30| � Cδ̃‖∂x[ψ, ∂xζ]‖2,

|J31| + |J32| + |J33| � η‖∂2
xζ‖2 + Cη δ̃‖∂x[ϕ,ψ, ζ]‖2 + Cδ̃ϕ2(0, t),
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|J34| � C‖∂x[w,b]‖∞‖∂x[w,b]‖‖∂2
xζ‖

� C‖∂x[w,b]‖ 1
2 ‖∂2

x[w,b]‖ 1
2 ‖∂x[w,b]‖‖∂2

xζ‖
� C(‖∂x[w,b]‖ + ‖∂2

x[w,b]‖)‖∂x[w,b]‖‖∂2
xζ‖

� Cε1(‖∂x[w,b]‖2 + ‖∂2
x[w,b]‖2 + ‖∂2

xζ‖2).

Plug the above estimates for Jl (27 � l � 34) into (2.24), to derive

1
2

d
dt

∫
R+

(∂xζ)2dx+ ‖∂2
xζ‖2 � C‖∂x[ϕ,ψ, ζ]‖2

+ Cε1(‖∂x[w,b]‖2 + ‖∂2
x[w,b]‖2) + Cϕ2(0, t). (2.25)

The summation of (2.21), (2.23) and (2.25) and multiplying the resulting inequal-
ity by (1 + t)ξ, then integrating the resulting inequality in τ over [0, t] for any
0 � t � T , using (2.14), (2.19) and the Cauchy-Schwarz’s inequality, one has

(1 + t)ξ‖∂x[ψ,w,b, ζ](t)‖2 +
∫ t

0

(1 + τ)ξ‖∂2
x[ψ,w,b, ζ]‖2dτ

� C(‖[ϕ0, ψ0,w0,b0, ζ0]‖2
λ̂,β

+ ‖∂x[ϕ0, ψ0,w0,b0, ζ0]‖2)

+ ξ

∫ t

0

(1 + τ)ξ−1(‖[ϕ,ψ,w,b, ζ](τ)‖2
ν̂,β + ‖∂x[ϕ,ψ,w,b, ζ]‖2)dτ.

(2.26)

Proof of proposition 2.2. Now, following the three steps above, we are ready to
prove proposition 2.2. Summing up the estimates (2.14), (2.19) and (2.26), and
taking δ̃ and ε1 suitably small, we have

(1 + t)ξ(‖[ϕ,ψ,w,b, ζ](t)‖2
ν̂,β + ‖∂x[ϕ,ψ,w,b, ζ](t)‖2)

+
∫ t

0

(1 + τ)ξ(‖[ϕ,ψ,w,b, ζ, ](τ)‖2
ν̂−1,β + ‖∂x[ψ,w,b, ζ](τ)‖2

ν̂,β)dτ

+
∫ t

0

(1 + τ)ξ‖∂x[ϕ, ∂x[ψ,w,b, ζ]](τ)‖2dτ

� C(‖[ϕ0, ψ0,w0,b0, ζ0]‖2
λ̂,β

+ ‖∂x[ϕ0, ψ0,w0,b0, ζ0]‖2)

+ ξ

∫ t

0

(1 + τ)ξ−1(‖[ϕ,ψ,w,b, ζ](τ)‖2
ν̂,β + ‖∂x[ϕ,ψ,w,b, ζ]‖2)dτ, (2.27)

where C is a positive constant independent of T , ν̂, β, ε1 and δ̃. Hence, similarly
as in [11,23], applying an induction to (2.27) gives the desired estimate (2.9). �

2.2. The a priori estimates for M+ < 1

The key to the proof of our main theorem 1.3 (ii) for the subsonic case M+ < 1
is to derive the uniform a priori estimates of solutions to the initial boundary value
problem (2.1), (2.2) and (2.3).
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Proposition 2.3. Assume the same conditions as in theorem 1.3 (ii) hold. Suppose
[ϕ,ψ,w,b, ζ] is a solution to (2.1), (2.2) and (2.3) on 0 � t � T for T > 0. There
exist positive constants C and ε2 independent of T such that if

sup
0�t�T

‖(ϕ,ψ,w,b, ζ)(t)‖1 + δ̃ � ε2 (2.28)

is satisfied, it holds that

sup
0�t�T

‖[ϕ,ψ,w,b, ζ](t)‖2
1 +

∫ T

0

‖∂x[ψ,w,b, ζ](t)‖2
1dt

+
∫ T

0

|[ϕ, ∂xϕ](0, t)|2 dt � C‖[ϕ0, ψ0,w0,b0, ζ0]‖2
1. (2.29)

For the subsonic case M+ < 1, one characteristic is positive. Due to this, it is
difficult to obtain a convergence rate for the subsonic case by using the weighted
energy method. Hence we only need to re-estimate step 1 in the proof of supersonic
case M+ > 1. We integrate (2.10) over R+ to get

d

dt

∫
R+

ηdx+ λ

∫
R+

θ̃

θ
(∂xψ)2dx+ κ

∫
R+

θ̃

θ2
(∂xζ)2dx+

∫
R+

(ν|∂xb|2 + μ|∂xw|2)dx

+Rρ(0, t)θ−|u−|φ
(
ρ̃

ρ

)
(0, t) =

∫
R+

(∂xũQ1 + ∂xθ̃Q2)dx+
∫

R+

Q3dx. (2.30)

Using lemma 2.1 and the Sobolev inequality, we have∣∣∣∣∣
∫

R+

Q3dx

∣∣∣∣∣ � Cδ̃‖∂x[ψ, ζ]‖2 + Cε2‖∂x[w,b]‖2,

∣∣∣∣∣
∫

R+

(∂xũQ1 + ∂xθ̃Q2)dx

∣∣∣∣∣ � Cδ̃ϕ(0, t)2 + Cδ̃‖∂x[ϕ,ψ,b, ζ]‖2.

Inserting the above estimates into (2.30) and then choosing δ̃ and ε2 suitably
small, we obtain

d
dt

∫
R+

ηdx+ ϕ2(0, t) + ‖∂x[ψ,w,b, ζ]‖2 � Cδ̃‖∂xϕ‖2. (2.31)

Proof of proposition 2.3. Now we are ready to prove proposition 2.3. Summing
up (2.18), (2.21), (2.23), (2.25) and (2.31) together and integrating the resulting
inequality over [0, T ], we get the desired estimate (2.29) when we take δ̃ and ε2
small enough. Thus the proof of proposition 2.3 is complete. �

2.3. The a priori estimates for M+ = 1

Proposition 2.4. Assume the same conditions as in theorem 1.3 (iii) hold. Let
1 � λ̂ < 2(1 +

√
2) and κ̂ be positive constants. Suppose [ϕ,ψ,w,b, ζ] is a solution
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to (2.1), (2.2) and (2.3) which satisfies (1 + δ̃x)λ̂/2ϕ, (1 + δ̃x)λ̂/2ψ, (1 + δ̃x)λ̂/2w,
(1 + δ̃x)λ̂/2b, (1 + δ̃x)λ̂/2ζ ∈ C([0, T ];H1(R+)) for a certain positive constant T .
For arbitrary ν̂ ∈ [0, λ̂], there exist positive constants C and ε3 independent of T
such that if

sup
0�t�T

δ̃−1/2‖(ϕ,ψ,w,b, ζ)(t)‖λ̂,δ̃,1 + δ̃ � ε3 (2.32)

is satisfied, it holds for an arbitrary t ∈ [0, T ] that

(1 + t)λ̂−ν̂+κ̂‖[ϕ,ψ,w,b, ζ](t)‖2
ν̂,δ̃,1

+
∫ t

0

(1 + τ)λ̂−ν̂+κ̂‖∂x[ψ,w,b, ζ](τ)‖2
ν̂,δ̃,1

dτ

� C(1 + t)κ̂‖[ϕ0, ψ0,w0,b0, ζ0]‖2
λ̂,δ̃,1

. (2.33)

Step 1. The zero-order energy estimates.
From (2.10), we have

∂tη + ∂x(H1 −H2) + λ
θ̃

θ
(∂xψ)2 + κ

θ̃

θ2
(∂xζ)2

+ ν|∂xb|2 + μ|∂xw|2 − ∂xũQ1 − ∂xθ̃Q2 = Q3. (2.34)

In the sequel, we employ a space weight function w(x) := z̃(x)−ν̂ . Notice that
w(x) ∼ δ̃−ν̂(1 + δ̃x)ν̂ holds due to (A.15). Furthermore, we have w(0) = z̃(0)−ν̂ ∼
δ̃−ν̂ and

∂xw =
γ2(γ + 1)R2ρ+

2(γ − 1)[λγR+ κ(γ − 1)2]|u+| ν̂z̃
−ν̂+1 +O(ν̂z̃−ν̂+2) (2.35)

due to (A.13). Then, multiplying (2.34) by the weight function w(x) to get

∂t[w(x)η] + ∂x[w(x)(H1 −H2)]−∂xw(H1 −H2)︸ ︷︷ ︸
I1

+w(x)[∂xũ(−Q1) + ∂xθ̃(−Q2)]︸ ︷︷ ︸
I2

+w(x)

[
λ
θ̃

θ
(∂xψ)2 + κ

θ̃

θ2
(∂xζ)2

]
︸ ︷︷ ︸

I3

+w(x)[ν|∂xb|2 + μ|∂xw|2] = w(x)Q3, (2.36)

where

I1 = ∂xw[−uη −R(ρθ − ρ̃θ̃)ψ]︸ ︷︷ ︸
I1
1

+∂xw

[
λψ∂xψ + κ

ζ∂xζ

θ

]
︸ ︷︷ ︸

I2
1

+ ∂xw

[
−1

2
|b|2ψ + w · b + μw · ∂xw + νb · ∂xb

]
. (2.37)

By using (1.16), we have

(ρ, u, θ) = (ρ+, u+, θ+) +
(
− ρ+

θ+(γ − 1)
,

u+

θ+(γ − 1)
,−1

)
z̃(x)

+O(z̃2 + δ̃e−cx)(1, 1, 1) + (ϕ,ψ, ζ). (2.38)
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Then we see, under the condition M+ = 1 and u+ < 0, and using (1.16) and (2.38)
that

− uη −R(ρθ − ρ̃θ̃)ψ

=

[
−Rθ+u+

2ρ+
ϕ2 − ρ+u+

2
ψ2 − Rρ+u+

2(γ − 1)θ+
ζ2 −Rθ+ϕψ −Rρ+ζψ

]
− ρu

2
|w|2 − u

2
|b|2

+

[
Ru+(γ − 3)

2ρ+(γ − 1)
ϕ2 − Rρ+u+

2(γ − 1)θ2+
ζ2 +

Rρ+
(γ − 1)θ+

ζψ +Rϕψ

]
z̃

+O(|ϕ| + |ψ| + |ζ| + z̃2 + δ̃e−cx)(ϕ2 + ψ2 + ζ2).

Combining this with (2.35), (1.16) and (2.38), we arrive at

I1
1 = ∂xw

[
−Rθ+u+

2ρ+
ϕ2 − ρ+u+

2
ψ2

− Rρ+u+
2(γ−1)θ+

ζ2 −Rθ+ϕψ −Rρ+ζψ
]

︸ ︷︷ ︸
F1

+∂xw
(
−ρu

2
|w|2 − u

2
|b|2

)

+
γ2(γ + 1)R3ρ+

2(γ − 1)[λγR+ κ(γ − 1)2]u2
+

[−u2
+(γ − 3)

2ρ+(γ − 1)
ϕ2

+
ρ+u

2
+

2(γ − 1)θ2
+

ζ2 − ρ+u+

(γ − 1)θ+
ζψ − u+ϕψ

]
︸ ︷︷ ︸

F2

ν̂z̃−ν̂+2

+O(|ϕ| + |ψ| + |ζ| + z̃2 + δ̃e−cx)z̃−ν̂+1(ϕ2 + ψ2 + ζ2)

and

I3 + I2
1 =

(√
λ∂xψ +

√
λγ2(γ + 1)R2ρ+

4(γ − 1)[λγR+ κ(γ − 1)2]|u+| ν̂z̃ψ
)2

z̃−ν̂

+

( √
κ√
θ+
∂xζ +

γ2(γ + 1)R2ρ+
√
κ

4(γ − 1)[λγR+ κ(γ − 1)2]|u+|
√
θ+
ν̂z̃ζ

)2

z̃−ν̂

− γ4(γ + 1)2R4ρ2
+

16(γ − 1)2[λγR+ κ(γ − 1)2]2u2
+

(λψ2 +
κ

θ+
ζ2)︸ ︷︷ ︸

F3

ν̂2z̃−ν̂+2

+O(|ϕ| + |ψ| + |ζ| + z̃)[z̃−ν̂+2(ϕ2 + ψ2 + ζ2) + z̃−ν̂(∂xψ)2 + z̃−ν̂(∂xζ)2].

By using (1.15), we have

(ρ̃, ũ, θ̃) = (ρ+, u+, θ+) +O(δ̃), (2.39)

and

(ρ, u, θ) = (ρ+, u+, θ+) +O(ε3 + δ̃). (2.40)
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By using (2.39) and (2.40), we have

−Q1 =
(γ − 1)Rθ+

u+
ϕψ + ρ+ψ

2 +
Rρ+

θ+
ζ2 +Rϕζ +

1
2
|b|2

+O(ε3 + δ̃)(ϕ2 + ψ2 + ζ2). (2.41)

Similarly, we have

−Q2 = −Ru+

2ρ+
ϕ2 +

Rρ+u+

2(γ − 1)θ2
+

ζ2 +
Ru+

(γ − 1)θ+
ϕζ +

Rρ+

(γ − 1)θ+
ψζ

+O(ε3 + δ̃)(ϕ2 + ψ2 + ζ2). (2.42)

Combining this with (1.17) and noticing w(x) = z̃(x)−ν̂ , we have

I2 =

γ2(γ + 1)R3ρ+

2(γ − 1)[λγR+ κ(γ − 1)2]u2
+

[
u2

+

2ρ+
ϕ2 +

γρ+

γ − 1
ψ2

+
Rγρ+ζ

2

2(γ − 1)θ+
+ u+ϕψ − ρ+u+ψζ

(γ − 1)θ+

]
︸ ︷︷ ︸

F4

z̃−ν̂+2

+
γ2(γ + 1)R2ρ+|b|2z̃−ν̂+2

4(γ − 1)2[λγR+ κ(γ − 1)2]θ+
+ [O(ε3 + δ̃)z̃−ν̂+2

+O(δ̃)z̃−ν̂e−cx](ϕ2 + ψ2 + ζ2 + |b|2), (2.43)

where we have used the transonic condition M+ = 1 ⇐⇒ u2
+ = Rγθ+.

Now we make a simple conclusion from the above analysis. We can rewrite (2.36)
as follows:

∂t[w(x)η] + ∂x[w(x)(H1 −H2)] + ∂xwF1 + ∂xw(−ρ+u+

2
|w|2 − u+

2
|b|2 + w · b)

+ (F2ν̂ + F3ν̂
2 + F4)z̃−ν̂+2 +

γ2(γ + 1)R2ρ+

4(γ − 1)2[λγR+ κ(γ − 1)2]θ+
|b|2z̃−ν̂+2

+ [ν|∂xb|2 + μ|∂xw|2]z̃−ν̂ +

(√
λ∂xψ +

√
λγ2(γ + 1)R2ρ+

4(γ − 1)[λγR+ κ(γ − 1)2]|u+| ν̂z̃ψ
)2

z̃−ν̂

+

( √
κ√
θ+
∂xζ +

γ2(γ + 1)R2ρ+
√
κ

4(γ − 1)[λγR+ κ(γ − 1)2]|u+|
√
θ+
ν̂z̃ζ

)2

z̃−ν̂

= w(x)Q3 + ∂xw

[
1
2
|b|2ψ − μw · ∂xw − νb · ∂xb

]
+O(ε3 + δ̃)∂xw(|b|2 + |w|2)

+O(ε3 + δ̃)[(∂xψ)2 + (∂xζ)2]z̃−ν̂ + [O(|ϕ| + |ψ| + |ζ|)z̃−ν̂+1

+O(δ̃)z̃−ν̂e−cx](ϕ2 + ψ2 + ζ2). (2.44)

We rewrite

F1 = [ϕ,ψ, ζ]M3[ϕ,ψ, ζ]T ,
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where [ ]T denotes the transpose of a row vector, and the 3 × 3 real symmetric
matrix M3 is given by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Rθ+u+

2ρ+
−Rθ+

2
0

−Rθ+
2

−ρ+u+

2
−Rρ+

2

0 −Rρ+

2
− Rρ+u+

2(γ − 1)θ+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

One can compute all the leading principal minors Δll (1 � l � 3) of M3 as follows:

Δ11 = −Rθ+u+

2ρ+
> 0, Δ22 =

R2θ2
+(γ − 1)

4
> 0, Δ33 = 0,

where we have used the transonic condition M+ = 1 ⇐⇒ u2
+ = Rγθ+. Then we see

that the matrix M3 admits three eigenvalues 0, λ− and λ+ satisfying

0 < λ− < λ+.

Let q1, q2 and q3 be unit eigenvectors of M3 corresponding to the eigenvalues 0,
λ− and λ+, respectively. We define Q := (q1, q2, q3) which is an orthogonal matrix.
Especially, we obtain

q1 = (ρ+,−u+, (γ − 1)θ+)T q̄, q̄ = detQ > 0.

Furthermore, we employ a new function (ϕ̂, ψ̂, ζ̂)T defined by

(ϕ̂, ψ̂, ζ̂)T := Q−1(ϕ,ψ, ζ)T .

Using the fact that

QTM3Q = Q−1M3Q = diag(0, λ−, λ+),

we see that the quadratic form F1 satisfies the estimate from below as

F1 = (Q(ϕ̂, ψ̂, ζ̂)T )TM3Q(ϕ̂, ψ̂, ζ̂)T = λ−ψ̂2 + λ+ζ̂
2 � c(ψ̂2 + ζ̂2).

Combining this estimate with the inequality ∂xw � cν̂z̃−ν̂+1, which follows from
(2.35) with δ̃ � 1, we have

∂xwF1 � cν̂z̃−ν̂+1(ψ̂2 + ζ̂2). (2.45)

We rewrite

F2ν̂ + F3ν̂
2 + F4 =

γ2(γ + 1)R3ρ+

2(γ − 1)[λγR+ κ(γ − 1)2]u2
+

[ϕ,ψ, ζ]M4[ϕ,ψ, ζ]T , (2.46)
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where [ ]T denotes the transpose of a row vector, and the 3 × 3 real symmetric
matrix M4 is given by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u2
+

2ρ+
[1 − γ − 3

γ − 1
ν̂]

u+

2
(1 − ν̂)

u+

2
(1 − ν̂)

γρ+

γ − 1
− λγ2(γ + 1)Rρ+ν̂

2

8(γ − 1)[λγR+ κ(γ − 1)2]

0 −ρ+u+(ν̂ + 1)
2(γ − 1)θ+

0

−ρ+u+(ν̂ + 1)
2(γ − 1)θ+

ρ+u
2
+(ν̂ + 1)

2(γ − 1)θ2
+

− κγ2(γ + 1)Rρ+ν̂
2

8(γ − 1)[λγR+ κ(γ − 1)2]θ+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Noticing z̃ � δ̃, we make use of the semi-positive definition matrix M3 to control
M4. In fact, let M̂4 := (âij)ij := QTM4Q. Then we see that

F2ν̂ + F3ν̂
2 + F4 =

γ2(γ + 1)R3ρ+

2(γ − 1)[λγR+ κ(γ − 1)2]u2
+

(Q(ϕ̂, ψ̂, ζ̂)T )TM4Q(ϕ̂, ψ̂, ζ̂)T

=
γ2(γ + 1)R3ρ+

2(γ − 1)[λγR+ κ(γ − 1)2]u2
+

(ϕ̂, ψ̂, ζ̂)M̂4(ϕ̂, ψ̂, ζ̂)T

= â11ϕ̂
2 +O(|(ψ̂, ζ̂)|2 + |ϕ̂(ψ̂ + ζ̂)|). (2.47)

Since the sign of â11 will play an important role later, we obtain it explicitly:

â11 =
γ2(γ + 1)R3ρ+

2(γ − 1)[λγR+ κ(γ − 1)2]u2
+

qT
1 M4q1

=
γ3(γ + 1)2R3ρ2

+

16(γ − 1)2[λγR+ κ(γ − 1)2]
[4 + 4ν̂ − ν̂2]q̄2. (2.48)

When 0 � ν̂ < 2(1 +
√

2), we see that â11 > 0. When ν̂ = 0, the real symmetric
matrix M4 becomes a real symmetric matrix M5 defined by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

u2
+

2ρ+

u+

2
0

u+

2
γρ+

γ − 1
− ρ+u+

2(γ − 1)θ+

0 − ρ+u+

2(γ − 1)θ+

ρ+u
2
+

2(γ − 1)θ2
+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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One can compute all the leading principal minors Δll (1 � l � 3) of M5 as follows:

Δ11 =
u2

+

2ρ+
> 0, Δ22 =

(γ + 1)u2
+

4(γ − 1)
> 0, Δ33 =

γρ+u
4
+

8(γ − 1)2θ2
+

> 0.

Hence matrix M5 is positive definite.
Now we claim that there exists a non-negative constant ν̂ satisfying 0 � ν̂

< 2(1 +
√

2) such that

∂xwF1 + (F2ν̂ + F3ν̂
2 + F4)z̃−ν̂+2 � cz̃−ν̂+2(ϕ2 + ψ2 + ζ2). (2.49)

When ν̂ = 0, ∂xwF1 + (F2ν̂ + F3ν̂
2 + F4)z̃−ν̂+2 = ((γ2(γ + 1)R3ρ+)/(2(γ − 1)

[λγR+ κ(γ − 1)2]u2
+))[ϕ,ψ, ζ]M5[ϕ,ψ, ζ]T z̃2. Since matrix M5 is positive definite,

(2.49) holds for ν̂ = 0. Owing to the continuous dependency on ν̂, there exists a
positive constant ν̂∗ > 0 such that (2.49) holds for 0 � ν̂ � ν̂∗. In fact, the constant
â11 > 0 when 0 < ν̂∗ � ν̂ < 2(1 +

√
2). Thus using (2.45) and (2.47), we have

∂xwF1 + (F2ν̂ + F3ν̂
2 + F4)z̃−ν̂+2 � cν̂∗z̃−ν̂+1(ψ̂2 + ζ̂2)

+ â11z̃
−ν̂+2ϕ̂2 − Cz̃−ν̂+2(ψ̂2 + ζ̂2 + |ϕ̂(ψ̂ + ζ̂)|)

� (cν̂∗ − C
√
δ̃)z̃−ν̂+1(ψ̂2 + ζ̂2) + (â11 − C

√
δ̃)z̃−ν̂+2ϕ̂2, (2.50)

which yields (2.49) if δ̃ is sufficiently small. Therefore, we have shown that (2.49)
holds for 0 � ν̂ < 2(1 +

√
2).

Similar to the real symmetric matrix M2 and recalling (2.35), we have

∂xw
(
−ρ+u+

2
|w|2 − u+

2
|b|2 + w · b

)
� cz̃−ν̂+1(|w|2 + |b|2) (2.51)

provided that conditions M+ = 1 and p+ > 1/γ hold.
Combining (2.49) and (2.51) with Cauchy-Schwarz’s inequality, we deal with

(2.44) as follows:

∂xwF1 + (F2ν̂ + F3ν̂
2 + F4)z̃−ν̂+2 + ∂xw

(
−ρ+u+

2
|w|2 − u+

2
|b|2 + w · b

)
+

γ2(γ + 1)R2ρ+

4(γ − 1)2[λγR+ κ(γ − 1)2]θ+
|b|2z̃−ν̂+2 + [ν|∂xb|2 + μ|∂xw|2]z̃−ν̂

+
(
∂xψ +

(K + 1)3ρ+

4[K(D + 1) + 1]|u+| ν̂z̃ψ
)2

z̃−ν̂

+

( √
D√
θ+
∂xζ +

(K + 1)3ρ+

√
D

4[K(D + 1) + 1]|u+|
√
θ+
ν̂z̃ζ

)2

z̃−ν̂
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� cz̃−ν̂+2(ϕ2 + ψ2 + ζ2 + |b|2) + cz̃−ν̂+1(|w|2 + |b|2) + cz̃−ν̂(| ∂xb|2

+ |∂xw|2 + (∂xψ)2 + (∂xζ)2) (2.52)

and

The right hand side of (2.44)

� O(ε3 + δ̃
1
2 )z̃−ν̂ [|∂xb|2 + |∂xw|2 + (∂xψ)2 + (∂xζ)2] + [O(ε3

+ δ̃)z̃−ν̂+2 +O(δ̃)z̃−ν̂e−cx](ϕ2 + ψ2 + ζ2)

+O(ε3 + δ̃
1
2 )z̃−ν̂+1(|w|2 + |b|2) +O(|ϕ| + |ψ| + |ζ|)z̃−ν̂+1(ϕ2 + ψ2 + ζ2).

(2.53)

Then using (2.52), (2.53) and boundary condition ub < 0 and (2.3), and integrate
(2.44) over R+, and take δ̃ and ε3 small enough to derive

d
dt

∫
R+

w(x)ηdx+ z̃(0)−ν̂Rρ(0, t)θb|ub|φ
(
ρ̃

ρ

)
(0, t)

+ c

∫
R+

z̃−ν̂+2(ϕ2 + ψ2 + ζ2 + |b|2)dx

+ c

∫
R+

z̃−ν̂+1(|w|2 + |b|2)dx+ c

∫
R+

z̃−ν̂(| ∂xb|2

+ |∂xw|2 + (∂xψ)2 + (∂xζ)2)dx

� C

∫
R+

δ̃z̃−ν̂e−cx(ϕ2 + ψ2 + ζ2)dx+ C

∫
R+

z̃−ν̂+1(|ϕ|3 + |ψ|3 + |ζ|3)dx. (2.54)

Combining the above estimates with (A.15), lemma 2.1 and (2.32), then multiplying
the resulting inequality by (1 + t)ξ and integrating in τ over [0, t] for any 0 � t � T ,
we have

(1 + t)ξ‖[ϕ,ψ,w,b, ζ](t)‖2
ν̂,δ̃

+ δ̃2
∫ t

0

(1 + τ)ξ‖[ϕ,ψ, ζ,b](τ)‖2
ν̂−2,δ̃

dτ

+
∫ t

0

(1 + τ)ξϕ2(0, τ)dτ + δ̃

∫ t

0

(1 + τ)ξ‖[w,b](τ)‖2
ν̂−1,δ̃

dτ

+
∫ t

0

(1 + τ)ξ‖∂x[ψ,w,b, ζ](τ)‖2
ν̂,δ̃

dτ

� C‖[ϕ0, ψ0,w0,b0, ζ0]‖2
λ̂,δ̃

+ ξ

∫ t

0

(1 + τ)ξ−1‖[ϕ,ψ,w,b, ζ](τ)‖2
ν̂,δ̃

dτ. (2.55)

Step 2. The first order derivative estimates.
We only show the estimate for ∂xϕ as the other estimates for ∂x[ψ,w,b, ζ] can be

established by similar computations. The summation of (2.15) and (2.16) further
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implies

∂t

(
ψ∂xϕ+ λ

(∂xϕ)2

2ρ2

)
+ ∂x

[
λu

2ρ2
(∂xϕ)2 − ψ∂tϕ

]
+

[
λ∂xũ

(∂xϕ)2

ρ2
+
Rθ

ρ
(∂xϕ)2

]

= − ∂xψ∂tϕ+
λ∂xũ

2
(∂xϕ)2ρ−2 − Rρ̃

ρ
∂xζ∂xϕ−Rϕ

∂xθ

ρ
∂xϕ−R∂xρ̃

ζ

ρ
∂xϕ

− u∂xψ∂xϕ− ũ∂xũ
ϕ

ρ
∂xϕ− ∂xũψ∂xϕ+

λ

2
∂xψ(∂xϕ)2ρ−2 − λ∂xϕ

ρ2
∂xρ∂xψ

− λ∂2
xũϕ

∂xϕ

ρ2
− λ∂xρ̃∂xψ

∂xϕ

ρ2
− λ∂2

xρ̃ψ
∂xϕ

ρ2
− ∂x|b|2

2ρ
∂xϕ =: R̃,

(2.56)
where we have used R(ρθ − ρ̃θ̃) = Rθϕ+Rρ̃ζ and R̃ denotes all terms on the right
of (2.56). Then, multiplying (2.56) by the weight function Wν̂,δ̃ and integrating
resulting equality over R+ to get

d
dt

∫
R+

[Wν̂,δ̃(ψ∂xϕ+λ
(∂xϕ)2

2ρ2
)]dx+

λ|ub|
2ρ(0, t)2

(∂xϕ)2(0, t)+
∫

R+

Wν̂,δ̃

Rθ

ρ
(∂xϕ)2dx

= ν̂δ̃

∫
R+

Wν̂−1,δ̃

λu

2ρ2
(∂xϕ)2dx︸ ︷︷ ︸

K1

−λ∂xũ

∫
R+

Wν̂,δ̃

(∂xϕ)2

ρ2
dx︸ ︷︷ ︸

K2

−ν̂δ̃
∫

R+

Wν̂−1,δ̃ψ∂tϕdx︸ ︷︷ ︸
K3

+
∫

R+

Wν̂,δ̃R̃dx︸ ︷︷ ︸
K4

.

(2.57)
Applying the Sobolev’s inequality, the Young’s inequality and the Cauchy-

Schwarz’s inequality with 0 < η < 1 and using (1.17), (A.15), and integration by
parts, one has

|K1| + |K2| � Cδ̃‖∂xϕ‖2
ν̂,δ̃
,

K3 = −ν̂(ν̂ − 1)δ̃2
∫

R+

Wν̂−2,δ̃[ψ(ρu− ρ̃ũ)]dx− ν̂δ̃

∫
R+

Wν̂−1,δ̃[∂xψ(ρu− ρ̃ũ)]dx

� Cδ̃2‖[ϕ,ψ]‖2
ν̂−2,δ̃

+ C‖∂xψ‖2
ν̂,δ̃
,

K4 � Cδ̃2‖[ϕ,ψ, ζ]‖2
ν̂−2,δ̃

+ η‖∂xϕ‖2
ν̂,δ̃

+ Cη‖∂x[ψ, ζ]‖2
ν̂,δ̃

+ C‖∂xψ‖∞‖∂xϕ‖2
ν̂,δ̃

+ C‖b‖∞‖∂x[b, ϕ]‖2
ν̂,δ̃

� Cδ̃2‖[ϕ,ψ, ζ]‖2
ν̂−2,δ̃

+ η‖∂xϕ‖2
ν̂,δ̃

+ Cη‖∂x[ψ, ζ]‖2
ν̂,δ̃

+ (‖∂xψ‖ + ‖∂2
xψ‖)‖∂xϕ‖2

ν̂,δ̃
+ Cε3‖∂x[b, ϕ]‖2

ν̂,δ̃

� Cδ̃2‖[ϕ,ψ, ζ]‖2
ν̂−2,δ̃

+ η‖∂xϕ‖2
ν̂,δ̃

+ Cη‖∂x[ψ, ζ]‖2
ν̂,δ̃

+ Cε3‖∂x[b, ϕ, ∂xψ]‖2
ν̂,δ̃
.

Inserting the above estimates for Kl (1 � l � 4) into (2.57) and multiplying the
resulting inequality by (1 + t)ξ and integrating in τ over [0, t] for any 0 � t � T ,
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using (2.55), the Cauchy-Schwarz’s inequality, and then choosing ε3, δ̃ and η
suitably small, one has

(1 + t)ξ‖∂xϕ(t)‖2
ν̂,δ̃

+
∫ t

0

(1 + τ)ξ‖∂xϕ‖2
ν̂,δ̃

dτ +
∫ t

0

(1 + τ)ξ(∂xϕ)2(0, τ)dτ

� C(‖[ψ0,w0,b0, ζ0]‖2
λ̂,δ̃

+ ‖ϕ0‖2
λ̂,δ̃,1

) + Cε3

∫ t

0

(1 + τ)ξ‖∂2
xψ‖2

ν̂,δ̃
(τ)dτ

+ ξ

∫ t

0

(1 + τ)ξ−1(‖ϕ(τ)‖2
ν̂,δ̃,1

+ ‖[ψ, ζ,w,b](τ)‖2
ν̂,δ̃

)dτ. (2.58)

The estimates for ∂x[ψ,w,b, ζ] are obtained by similar computations to Step 3 for
the supersonic case M+ > 1. Thus we have

(1 + t)ξ‖∂x[ψ,w,b, ζ](t)‖2
ν̂,δ̃

+
∫ t

0

(1 + τ)ξ‖∂2
x[ψ,w,b, ζ]‖2

ν̂,δ̃
dτ

� C‖[ϕ0, ψ0,w0,b0, ζ0]‖2
λ̂,δ̃,1

+ ξ

∫ t

0

(1 + τ)ξ−1‖[ϕ,ψ,w,b, ζ](τ)‖2
ν̂,δ̃,1

dτ. (2.59)

Proof of proposition 2.4. Now we are ready to prove proposition 2.4. Summing up
(2.55), (2.58) and (2.59) together, and similarly as in [11,23], applying an induction
to the resulting inequality gives the desired estimate (2.33) when we take δ̃ and ε3
small enough. Thus the proof of proposition 2.4 is complete. �

3. Global existence and large time behaviour

We are now in a position to complete the proof of theorem 1.3.

Proof of theorem 1.3. Here we omit the proof of theorem 1.3 (i) and (ii). We only
prove theorem 1.3 (iii) for the transonic case M+ = 1. In view of the energy
estimates obtained in proposition 2.4, one sees that

‖[ϕ,ψ,w,b, ζ](t)‖1 � C(1 + t)−λ/4‖[ϕ0, ψ0,w0,b0, ζ0]‖λ,δ̃,1. (3.1)

The global existence of the solution to the initial boundary value problem (2.1),
(2.2) and (2.3) follows from the standard continuation argument based on the local
existence [22] and the a priori estimate (2.33). Moreover, (3.1) implies (1.22) with
the aid of the Sobolev’s inequality. Thus we complete the proof of theorem 1.3 (iii).

�

Appendix A

In this appendix, we will give the detailed proofs of lemmas 1.1 and 1.2 for the
completeness. One can see [13] for reference about proofs of lemmas 1.1 and 1.2
in the dimensionless form. Since the process of proof is borrowed from [13], so we
use the same notations as in [13] for convenience.
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Proof of lemma 1.1. Define (ū, θ̄)(x) := (ũ, θ̃)(x) − (u+, θ+), and then we rewrite
system (1.12) into the following system

d
dx

(
ū
θ̄

)
= J

(
ū
θ̄

)
+

(
f̄(ū, θ̄)
ḡ(ū, θ̄)

)
, (ū, θ̄)(0) = (u− − u+, θ− − θ+),

(ū, θ̄)(+∞) = (0, 0), (A.1)

where the matrix J and nonlinear terms f̄ and ḡ are defined by

J :=

⎛
⎜⎜⎝

(M2
+γ − 1)p+

λu+

Rρ+

λ
p+

κ

Rρ+u+

κ(γ − 1)

⎞
⎟⎟⎠ , f̄(ū, θ̄) :=

p+ū
2

λu+(ū+ u+)
− Rρ+ūθ̄

λ(ū+ u+)
,

ḡ(ū, θ̄) := −ρ+u+ū
2

2κ
.

To prove the existence of the stationary solutions (ρ̃, ũ, θ̃), it suffices to show the
existence of the solutions (ū, θ̄) to the boundary value problem (A.1). To this end,
we first diagonalize the system (A.1). Let λ1 and λ2 be eigenvalues of the Jacobian
matrix J . Since we see later that J has real eigenvalues, without loss of generality,
we assume λ1 � λ2. Let r1 and r2 be eigenvectors of J corresponding to λ1 and λ2,
respectively, and let P := (r1, r2) be a matrix. Furthermore, using the matric P ,
we employ new unknown functions U(x) and Θ(x) defined by

(
U(x)
Θ(x)

)
:= P−1

(
ū(x)
θ̄(x)

)
. (A.2)

We also define a corresponding boundary data and nonlinear terms by

(
U−
Θ−

)
:= P−1

(
u− − u+

θ− − θ+

)
,

(
f(U,Θ)
g(U,Θ)

)
:= P−1

(
f̄(ū, θ̄)
ḡ(ū, θ̄)

)
.

Using these notations, we rewrite the system (A.1) to that for (U,Θ) in a diagonal
form as

d

dx

(
U
Θ

)
=

(
λ1 0
0 λ2

)(
U
Θ

)
+

(
f(U,Θ)
g(U,Θ)

)
, (A.3)

lim
x→+∞(U,Θ)(x) = (0, 0), (U,Θ)(0) = (U−,Θ−). (A.4)

Note that solving the problem (A.3) and (A.4) immediately yields the existence of a
solution to (1.12). Hereafter, we consider the existence of a solution to the problem
(A.3) and (A.4).
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(i) Firstly, we consider the case M+ > 1. Since a discriminant of an eigen-
equation of the matrix J satisfies

(TrJ)2 − 4detJ =
[

R

κ(γ − 1)
− M2

+γ − 1
λM2

+γ

]2

ρ2
+u

2
+ +

4R
λκM2

+γ
ρ2
+u

2
+ > 0.

Moreover, by u+ < 0 and M+ > 1, we see

λ1 + λ2 = TrJ =
[

R

κ(γ − 1)
+
M2

+γ − 1
λM2

+γ

]
ρ+u+ < 0,

λ1λ2 = detJ =
(M2

+ − 1)γRρ+p+

λκ(γ − 1)
> 0,

which show that λ1 < 0 and λ2 < 0. Thus, the equilibrium point (0, 0) of (A.3)
is asymptotically stable. Consequently, if |(U−,Θ−)| is sufficiently small, the
problem (A.3) and (A.4) has a unique smooth solution (U,Θ) satisfying

|∂k
x(U(x),Θ(x))| � Cδ̃e−cx, k = 0, 1, 2, . . . . (A.5)

(ii) Secondly, we consider the case M+ = 1. Since the matrix J satisfies

λ1 + λ2 = TrJ =
[

R

κ(γ − 1)
+
γ − 1
λγ

]
ρ+u+ < 0, λ1λ2 = detJ = 0,

which show that λ1 = 0 and λ2 = [((R/(κ(γ − 1))) + ((γ − 1)/(λγ))]ρ+u+ < 0.
The eigenvectors of λ1 and λ2 are explicitly given by

r1 =

( u+

θ+(γ − 1)
−1

)
, r2 =

⎛
⎝ −1

− λu+

κ(γ − 1)

⎞
⎠ .

Thus the matrix

P =

⎛
⎜⎝

u+

θ+(γ − 1)
−1

−1 − λu+

κ(γ − 1)

⎞
⎟⎠ (A.6)

satisfies detP = −((λγR+ κ(γ − 1)2)/(κ(γ − 1)2)) < 0. It is easy to compute
that

P−1 =

⎛
⎜⎜⎜⎝

λ(γ − 1)u+

λγR+ κ(γ − 1)2
− κ(γ − 1)2

λγR+ κ(γ − 1)2

− κ(γ − 1)2

λγR+ κ(γ − 1)2
− Rκγ(γ − 1)

[λγR+ κ(γ − 1)2]u+

⎞
⎟⎟⎟⎠ , (A.7)

such that

P−1JP =

⎛
⎝0 0

0
[

R

κ(γ − 1)
+
γ − 1
λγ

]
ρ+u+

⎞
⎠ . (A.8)
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We can see that the nonlinear terms f and g satisfy

f(U,Θ) =
γ2(γ + 1)R2ρ+

2(γ − 1)[λγR+ κ(γ − 1)2]u+
U2 +O(|U |3 + |UΘ| + |Θ|2), (A.9)

and

g(U,Θ) =
γR2ρ+[λRγ2 − 2κ(γ − 1)2 − 2κ(γ − 1)]

2λ(γ − 1)[λγR+ κ(γ − 1)2]u2
+

U2+O(|U |3 + |UΘ|+|Θ|2).
(A.10)

Recalling λ1 = 0 and λ2 = [((R/(κ(γ − 1))) + ((γ − 1)/(λγ))]ρ+u+ < 0 in
(A.3), thus the problem (A.3) and (A.4) has a local centre manifold Θ = hc(U)
and a local stable manifold U = hs(Θ) corresponding to the eigenvalues
λ1 = 0 and λ2 = [((R)/(κ(γ − 1))) + ((γ − 1)/(λγ))]ρ+u+ < 0, respectively.
In order to show the existence of the solution, we have to examine dynamics
on the centre manifold. To this end, we employ a solution z̃ = z̃(x) to (A.3)
restricted on the centre manifold satisfying the equation

z̃x = f(z̃, hc(z̃)). (A.11)

By virtue of the centre manifold theory in [1], there exists a solution z̃ to
(A.11) such that the solution (U,Θ) to (A.3) and (A.4) is given by

U(x) = z̃(x) +O(δ̃e−cx), Θ(x) = hc(z̃(x)) +O(δ̃e−cx). (A.12)

Therefore, to obtain the solution (U,Θ) to (A.3) and (A.4), it suffices to
show the existence of the solution to (A.11) satisfying z̃x → 0 as x→ +∞.
Substituting (A.9) into (A.11), we deduce (A.11) to

z̃x =
γ2(γ + 1)R2ρ+

2(γ − 1)[λγR+ κ(γ − 1)2]u+
z̃2 +O(|z̃|3), (A.13)

which yields that z̃ is monotonically decreasing for sufficiently small z̃. Thus,
to satisfy z̃x → 0 as x→ +∞, the boundary data z̃(0) should be positive.
Namely, for the existence of the solution (U,Θ), the boundary data (U−,Θ−)
should be located in the right region from the local stable manifold, that is,
(U−,Θ−) should satisfy a condition

U− � hs(Θ−). (A.14)

From (A.13), we also see that the solution z̃ satisfies

0 < c
δ̃

1 + δ̃x
� z̃(x) � C

δ̃

1 + δ̃x
, |∂k

x z̃(x)| � C
δ̃k+1

(1 + δ̃x)k+1
. (A.15)

Combining (A.12) and (A.15) with using hc(z̃) = O(z̃2), we have the following
decay property of (U,Θ):

|∂k
x(U,Θ)| � C

δ̃k+1

(1 + δ̃x)k+1
+ Cδ̃e−cx, k = 0, 1, 2, . . . (A.16)
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(iii) Thirdly, we consider the case M+ < 1. For this case, the

eigenvalues of the matrix J are λ1 > 0 and λ2 < 0, so that there exist a local
unstable manifold and a local stable manifold corresponding to the eigenvalues
λ1 > 0 and λ2 < 0, respectively. Therefore the problem (A.3) and (A.4) has a solu-
tion (U,Θ) satisfying (A.5) if the boundary data is located on the stable manifold,
that is

U− = hs(Θ−). (A.17)

Finally, we precisely define the regions M0 and M− in lemma 1.1. Define
(Û(u, θ)) and (Θ̂(u, θ)) by(

Û(u, θ)
Θ̂(u, θ)

)
:= P−1

(
u− u+

θ − θ+

)
. (A.18)

Then we have U(x) = Û(ũ, θ̃) and Θ(x) = Θ̂(ũ, θ̃) from (A.2) and (A.18). Then,
define the regions M0 and M− by

M0 :=
{

(u, θ) ∈ M+; Θ̂(u, θ) = hc(Û(u, θ)), Û(u, θ) � hs(Θ̂(u, θ))
}
, (A.19)

and

M− :=
{

(u, θ) ∈ M+; Û(u, θ) = hs(Θ̂(u, θ))
}
. (A.20)

We see that conditions (A.14) and (A.17) are equivalent to (u−, θ−) ∈ M0 and
(u−, θ−) ∈ M− in lemma 1.1, respectively. Thus combining this with the above
analysis, we complete the proof of lemma 1.1. �

Finally, we give the detailed proof of lemma 1.2.

Proof of lemma 1.2. The estimates for (ũ, θ̃) in (1.16) are obtained by using (A.12)
and

(
ũ

θ̃

)
:=

(
u+

θ+

)
+ P

(
U(x)
Θ(x)

)
, P =

⎛
⎜⎝

u+

θ+(γ − 1)
−1

−1 − λu+

κ(γ − 1)

⎞
⎟⎠ , (A.21)

which follows from (A.2). Due to the fact that ρ̃ũ = ρ+u+, we have the estimates
for ρ̃ in (1.16). By using (A.12) and (A.13), we have

Ux =
γ2(γ + 1)R2ρ+

2(γ − 1)[λγR+ κ(γ − 1)2]u+
z̃2 +O(|z̃|3 + δ̃e−cx), Θx = O(|z̃|3 + δ̃e−cx).

(A.22)
Differentiating (A.21) in x and substituting (A.22) yield the desired estimate
(1.17). We also have the estimates |∂k

x(U,Θ)| = O(z̃k+1 + δ̃e−cx) inductively, which
give the estimate (1.18) due to (A.21). Therefore, we complete the proof of
lemma 1.2. �
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