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Channel formation by turbidity currents:
Navier–Stokes-based linear stability analysis
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The linear stability of an erodible sediment bed beneath a turbidity current is analysed,
in order to identify potential mechanisms responsible for the formation of longitudinal
gullies and channels. On the basis of the three-dimensional Navier–Stokes equations,
the stability analysis accounts for the coupled interaction of the three-dimensional
fluid and particle motion inside the current with the erodible bed below it. For
instability to occur, the suspended sediment concentration of the base flow needs to
decay away from the sediment bed more slowly than does the shear stress inside
the current. Under such conditions, an upward protrusion of the sediment bed will
find itself in an environment where erosion decays more quickly than sedimentation,
and so it will keep increasing. Conversely, a local valley in the sediment bed will
see erosion increase more strongly than sedimentation, which again will amplify the
initial perturbation.

The destabilizing effect of the base flow is modulated by the stabilizing perturbation
of the suspended sediment concentration and by the shear stress due to a secondary
flow structure in the form of counter-rotating streamwise vortices. These streamwise
vortices are stabilizing for small Reynolds and Péclet numbers and destabilizing for
large values.

For a representative current height of O(10–100 m), the linear stability analysis
provides the most amplified wavelength in the range of 250–2500 m, which is consistent
with field observations reported in the literature. In contrast to previous analyses
based on depth-averaged equations, the instability mechanism identified here does
not require any assumptions about sub- or supercritical flow, nor does it require the
presence of a slope or a slope break.

1. Introduction
Submarine channels and gullies play an important role as pathways for sediment

transport across continental shelves and down continental slopes. They range in
width from O(100 m) to several kilometres, and from a few metres to hundreds
of metres deep. Since they contribute significantly to the architecture of slope
deposits (Syvitski et al. 1996), it is desirable to obtain insight into the processes
underlying their formation. While a clear understanding of the governing mechanisms
and their interplay has not yet evolved, both erosion by turbidity currents and
deposition from the overlying water column are believed to play a role in their
formation (Field, Gardner & Prior 1999; cf. also Campbell et al. 2004). Interestingly,
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as these authors point out, gullies and channels on the sea floor frequently appear in
straight evenly spaced patterns, which suggest the presence of an underlying coupled
hydrodynamic/sediment-driven instability.

The hypothesis of an instability mechanism at the heart of submarine and subaerial
channel inception has spawned a number of investigations, based on a variety of
flow and sediment transport models, starting with the work of Smith & Bretherton
(1972). Izumi & Parker (1995) considered the generation of terrestrial channel systems
as a result of shallow overland flow due to rainfall. By employing a set of depth-
averaged flow equations in conjunction with the Exner equation for the sediment bed,
they showed that the presence of a threshold condition for bed erosion provides a
wavelength selection criterion that predicts the correct order of magnitude. Since a
sufficiently strong base flow due to rainfall is needed to cause erosion, they termed their
theory ‘upstream-driven’. The extension to non-flat sediment beds was undertaken by
Revelli & Ridolfi (2000). A complementary ‘downstream-driven’ theory was presented
by Izumi & Parker (2000) for a downward-concave hillslope, along which a base state
slowly migrates in the upstream direction. Birnir, Smith & Merchant (2001) employed
deterministic and stochastic elements in analysing the processes underlying river basin
formation. For their system of depth-averaged equations, white noise is seen to give
rise to a channelization process that reproduces several of the scaling laws observed
in nature.

The case of channel inception by submarine sediment gravity flows was addressed
by Imran, Parker & Katopodes (1998). These authors analysed the role of erosional
and depositional turbidity currents, based on initial-value simulations of the depth-
averaged equations. A key hypothesis in their argument lies in the assumption that the
erosion rate has a narrower peak in the transverse direction than the deposition rate.
While their model provides insight into the formation of a single channel downstream
of a submarine canyon, it does not address the generation of equidistantly spaced
parallel arrays of channels. Similarly, the depth-averaged numerical simulations by
Fedele (2003) exhibit channel-like topographical features that develop preferentially
in the presence of a slope break.

Building on the ‘downstream-driven’ theory of Izumi & Parker (2000), Izumi (2004)
conducted a linear stability investigation into the formation of submarine gullies by
turbidity currents (cf. also the investigation by Izumi & Fujii 2006). Again, layer-
averaged equations were employed for a spatially developing downward-concave slope
profile. The author obtained an estimate of the preferred wavelength in the range of
150–8000 m, which is consistent with field observations. A physical explanation for
the observed instability is not presented.

All of these investigations are based on depth-averaged equations, and consequently
they do not provide any insight into the transverse flow structure near the sediment
bed. Specifically, potential coupling mechanisms between the spanwise and vertical
velocity components on one hand and the erosion process on the other cannot
be explored with this approach. A hint that such coupling mechanisms may be
important with regard to the formation of longitudinal topographical features is
found in the investigation by Colombini (1993), who draws attention to the importance
of secondary transverse flow structures in the form of counter-rotating streamwise
vortices. The author formulates a stability problem for the sediment that invokes a
turbulence closure model resulting in the formation of secondary streamwise vortices.
This flow causes spanwise bedload transport, which deforms the geometry of the
sediment bed, and thus causes a feedback onto the fluid velocity field. This approach
yields an eigenvalue problem for the stability of the sediment bed which indicates
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a competition between the destabilizing secondary flow and the stabilizing effects
of gravity. A related experimental investigation was conducted by Wang & Cheng
(2005). Colombini & Parker (1995) further elaborated on this concept with a view
towards generating small amplitude ‘streak’ features of a few grain diameters. Further
connections between the structural elements of turbulent boundary-layer flows and
topographical features of sediment beds are reviewed in the papers by Blondeaux
(2001) and Gyr & Kinzelbach (2004).

In contrast to these studies, the present investigation aims to explore the importance
of two-way coupling mechanisms between transverse flow structures and suspended
sediment for the formation of submarine gullies and channels. Towards this end,
we conduct a linear stability analysis based on the full Navier–Stokes equations
rather than depth-averaged equations. The base flow around which the equations
will be linearized mimics a turbidity current propagating over a nominally plane
sediment bed. For an introduction to the rich topic of gravity and turbidity currents,
the reader is referred to the monograph by Simpson (1997). Submarine turbidity
currents can be maintained for extended periods of time, and so they can give rise
to well-developed and approximately quasi-steady flow fields that are suitable as a
basis for conducting a linear stability investigation. Typically, turbidity currents are
characterized by pronounced vertical profiles of the suspended particle concentration
and the streamwise velocity above the sediment bed (cf. Parker et al. 1987; Stacey &
Bowen 1988; Chikita 1990; Garcia & Parker 1993; Garcia 1994; Altinakar, Graf &
Hopfinger 1996; Kneller & Buckee 2000; McCaffrey et al. 2003; Choux et al. 2005).
These vertical profiles, and their interaction with the sediment bed, will represent the
focus of our investigation.

The flow model will be introduced in § 2, along with the governing equations
and the corresponding dimensionless parameters. These equations will be linearized
around the unidirectional quasi-steady base state, thus resulting in a computational
eigenvalue problem that can be solved numerically. Section 3 presents solutions in
the form of dispersion relations and eigenfunctions, whose detailed analysis provides
insight into the governing physical mechanisms. The key conclusions will be presented
in § 4.

2. Model formulation
2.1. Governing equations

The mathematical description of the turbidity current flow field follows the
approach introduced by Necker et al. (2002, 2005). It employs the three-dimensional
incompressible Navier–Stokes equations in the Boussinesq approximation, based on
the assumption of moderate density variations. We assume that the suspended particle
concentration is sufficiently small for the fluid–particle interactions to occur primarily
through the momentum equations, and for the effect of the particles in the continuity
equation to be negligible (Necker et al. 2005). A convection–diffusion equation
accounts for the motion of the particulate phase. We consider small monodisperse
particles with negligible inertia, whose velocity equals the sum of the fluid velocity
plus a constant downward-settling velocity ws . Note that this modelling approach is
appropriate for turbidity currents, but would not be applicable to, say, debris flows.
The analysis focuses on a cross-section of the flow, as shown in figure 1, where the flow
is fully developed in the streamwise x-direction (∂/∂x = 0, except for the pressure).
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Figure 1. The linear stability analysis focuses on the current–substrate boundary layer in a
cross-section of the turbidity current. This cross-section is located some distance behind the
current head, where the flow is well developed.

Hence we obtain the two-dimensional three-component system

∂v

∂y
+

∂w

∂z
= 0, (2.1)

∂u

∂t
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρf

∂p

∂x
+ ν

(
∂2u

∂y2
+

∂2u

∂z2

)
, (2.2)

∂v

∂t
+ v

∂v

∂y
+ w

∂v

∂z
= − 1

ρf

∂p

∂y
+ ν

(
∂2v

∂y2
+

∂2v

∂z2

)
, (2.3)

∂w

∂t
+ v

∂w

∂y
+ w

∂w

∂z
= − 1

ρf

∂p

∂z
+ ν

(
∂2w

∂y2
+

∂2w

∂z2

)
− ρ

ρf

g, (2.4)

∂c

∂t
+ v

∂c

∂y
+ (w − ws)

∂c

∂z
= D

(
∂2c

∂y2
+

∂2c

∂z2

)
. (2.5)

Here, u, v and w denote the components of the velocity vector. ν represents the
(constant) eddy viscosity of the flow and D indicates an effective turbulent diffusion
coefficient for the particulate phase. We note that a real turbidity current will not
have a constant eddy viscosity (Stacey & Bowen 1988). However, we do not know the
precise form of the turbulent stress tensor in a complex flow such as the present one
(variable concentration, particle-laden flow near an erodible sediment bed). Hence
we feel it is best to employ the simplest possible turbulence model in the form of a
constant eddy viscosity. As we will see later, this approach is adequate for capturing
the basic instability mechanism.

We refer (2.1)–(2.5) as the Navier–Stokes equations, even though ν and D represent
effective turbulent transport properties rather than molecular quantities. The density
ρ of the suspension is linearly related to the volume fraction c of the particles by
ρ(c) = ρf (1 + γ c), where ρf (ρp) is the fluid (particle) density and γ = (ρp − ρf )/ρf

represents the excess density ratio. Note that, in employing these systems of equations,
we assume the interactions among particles to be small, and so effects such as
hindered settling or an increase in the effective viscosity of the suspension can be
safely neglected.

To analyse the coupled dynamics of the turbidity current and the fluid–substrate
interface, we require an equation that describes how the interface location changes
as a result of particle settling and erosion. Towards this end, we define the interface
position by its height η(y, t) above the y-axis (cf. figure 2). Now, we will separately
discuss the effects of particle settling and erosion.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

34
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008003467


Channel formation by turbidity currents 189
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∂η

∂t

n

2

Figure 2. As a result of particle sedimentation and erosion, the interface location η(y, t)
evolves as a function of time.

Particle settling: The rate at which the interface moves upward due to particle
sedimentation is given by the settling velocity and the particle volume fraction at the
interface according to

∂η

∂t
= wsc(z = η). (2.6)

Note that we neglect the volume of the interstitial voids in the sediment bed. In
order to account for this effect, we would have to assume a packing ratio, which in
turn has to be based on assuming a certain grain shape. This packing ratio would
multiply the left-hand side of the equation, indicating a faster advancement of the
interface. However, as will be seen later, the effect of the packing ratio is not essential
to the linear instability mechanism that will be identified. Consequently, as a first
approximation, we neglect its influence.

Particle erosion: The erosion of particles from the interface causes the interface to
recede in the direction normal to itself, as sketched in figure 2. This shows an interface
that is receding from position 1 to position 2 with time. The erosion velocity Vn is
the rate at which the interface recedes in the direction normal to itself. This direction
is defined by the unit vector

n =
1√

1 + (∂η/∂y)2

(
∂η/∂y

1

)
. (2.7)

The rate of change ∂η/∂t in the interface height is related to the erosion velocity by

∂η

∂t
= −|Vn|

nz

. (2.8)

On the basis of a series of flume experiments, Garcia & Parker (1993) established a
relationship among the erosional particle flux, the shear stress at the fluid–substrate
interface, the particle Reynolds number and the settling velocity. They observe a
threshold-like behaviour, which reflects a sudden onset, increase and saturation of
erosion over a relatively small interval in the parameter regime. Such threshold-like
behaviour is always nonlinear and cannot be incorporated into a linear stability
analysis. Hence, for the purpose of the present stability analysis, we replace the
threshold-like behaviour with a linear relationship between the erosional particle flux
and the shear stress at the fluid–substrate interface

|Vn| = βτn. (2.9)
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Here again, if we account for the interstitial void fraction, the packing ratio would
multiply the left-hand side. The constant β quantifies the rate at which particle
volume is eroded per unit area and per unit shear stress. It depends on factors such as
particle size, shape and cohesion and is measured in m2 s kg−1. While this linearization
of the experimentally observed threshold behaviour represents an idealization, it will
nevertheless allow us to gain insight into the physical mechanisms governing the
instability of the fluid–substrate interface. The results will have to be interpreted
correspondingly. Clearly, if the flow is such that the shear stress at the surface of the
sediment bed is below the threshold for erosion everywhere, an instability will not be
observed.

The experiments by Garcia & Parker (1993) provide information regarding the rate
at which particle volume is eroded from the interface as a function of the flow and
particle parameters. However, it is not entirely clear how the nature of the particle
transport away from the interface can be described mathematically. For the purpose
of the present analysis, we assume that the motion of the particles away from the
interface is primarily caused by the turbulent eddies of the flow rather than by
particle collisions or other processes. Hence we model this particle transport away
from the interface as a (turbulent) diffusive flux, following the approach of other
authors (Parker 1978; Blanchette et al. 2005):

D
∂c

∂n

∣∣∣∣
z=η

= −βτn. (2.10)

Note that the issue of modelling the particle flux away from the sediment bed does
not arise within the framework of depth-averaged equations. In such an approach,
vertical fluxes are assumed to be negligible, and erosion is accounted for by distributing
particles instantaneously in a uniform fashion across the entire height of the current.
Combining (2.8) with (2.9) provides a relation for the evolution of the interface height
due to erosion in the form

∂η

∂t
= −β

τn

nz

. (2.11)

By superimposing the depositional (2.6) and erosional (2.11) components, we thus
obtain the following evolution equation for the interface height:

∂η

∂t
= wsc(z = η) − β

τn

nz

. (2.12)

Equations (2.1), (2.5) and (2.12) comprise the evolution equations for the coupled
turbidity current–substrate dynamics in terms of u, v, w, p, c and η. At the interface,
no-slip conditions are imposed for the u- and v-velocity components, while the w-
velocity component has to equal the rate at which the interface advances or recedes
in the vertical direction

u(z = η) = 0, (2.13)

v(z = η) = 0, (2.14)

w(z = η) =
∂η

∂t
. (2.15)

If the interstitial void fraction was to be accounted for, the packing ratio would
multiply the right-hand side of the boundary condition for w. Since the present
work focuses on instability mechanisms in systems governed by the Navier–Stokes
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equations, note that we avoid effective slip conditions such as the one introduced by
Engelund (1964).

2.2. Non-dimensionalization

In order to render the above system of equations and boundary conditions
dimensionless, we introduce l∗ = D/ws as the characteristic length scale. l∗ represents a
measure of the particle concentration boundary-layer thickness which, to a first degree,
is governed by a balance of downward settling and upward (turbulent) diffusion. Note
that the assumption of a balance between settling and diffusion represents a relatively
crude approximation of the mechanisms governing particle settling in turbulent shear
flows. It is well known that both one-way and two-way coupling effects exist in
such flows that modify the settling motion of particles. Detailed investigations of
these mechanisms have shown both delayed (Raju & Meiburg 1995) and accelerated
(Bosse, Kleiser & Meiburg 2006) settling.

Together with the typical streamwise velocity u∗ = u∞ in the main body of
the current, the above scaling yields as characteristic time t∗ = l∗/u∗ =D/(wsu∞).
Pressure is scaled with p∗ = ρf (u∗)2, and a characteristic shear stress is obtained as
τ ∗ = u∗νρf / l∗. The value c∞ in the body of the current is taken as the characteristic
concentration c∗. For dilute turbidity currents, we can assume c∗ � O(10−2). As
characteristic density difference ρ∗, we employ c∞(ρp − ρf ), i.e. the excess density due
to particle loading in the body of the turbidity current. u∞ and c∞ will be further
discussed later in the context of the unidirectional base flow.

It is important to realize that the formation of channels may take place during net
overall deposition or erosion (Field et al. 1999), i.e. an overall upward or downward
motion of the interface. Since the linear stability analysis is to be performed for a
quasi-steady base state, we shift to a reference frame that moves with the velocity of the
advancing–receding interface. If the unperturbed interface moves with a dimensionless
velocity dη/dt = wav in the laboratory reference frame, we introduce z′ = z − wavt ,
η′ = η−wavt and w′ = (w−wav). After shifting into this new reference frame, and omitt-
ing the primes, the set of governing field equations remains unchanged, and we obtain

∂v

∂y
+

∂w

∂z
= 0, (2.16)

∂u

∂t
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+

1

Re

(
∂2u

∂y2
+

∂2u

∂z2

)
, (2.17)

∂v

∂t
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+

1

Re

(
∂2v

∂y2
+

∂2v

∂z2

)
, (2.18)

∂w

∂t
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+

1

Re

(
∂2w

∂y2
+

∂2w

∂z2

)
− Gc, (2.19)

∂c

∂t
+ v

∂c

∂y
+

(
w − 1

Pe

)
∂c

∂z
=

1

Pe

(
∂2c

∂y2
+

∂2c

∂z2

)
, (2.20)

∂η

∂t
= −wav +

c∞

Pe
c(z = η) − N

τn

nz

. (2.21)

Here the Reynolds number, based on the thickness of the concentration boundary
layer as the characteristic length scale, is defined as Re = u∞D/νws . The Péclet number
Pe = u∞/ws represents the ratio of the characteristic streamwise velocity of the current
to the settling velocity. Alternatively, Pe indicates an inverse dimensionless diffusion
coefficient. It can be interpreted as the ratio of two time scales, viz. the time it takes
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for a particle to diffuse across the concentration boundary layer versus the time it
would take a particle moving with u∞ to cover the same distance. It is to be kept
in mind that D indicates an effective turbulent diffusion coefficient for the particle
transport, while ν represents an effective turbulent diffusion coefficient for momentum.
For small particles, we can assume D and ν to be roughly of the same magnitude,
and so we will often employ Re = Pe in the following.

The gravitational parameter, G =(c∞(ρp − ρf )gD)/(ρf u2
∞ws) represents the ratio

of gravitational to inertial forces. The erosion coefficient N = βνρf ws/D describes the
ratio of the velocity at which the interface recedes as a result of erosion and of the
free stream velocity. The dimensionless boundary conditions become

u(z = η) = 0, (2.22)

v(z = η) = 0, (2.23)

w(z = η) =
∂η

∂t
, (2.24)

∂c

∂n

∣∣∣∣
z=η

= −NPe

c∞
τn. (2.25)

In order to associate meaningful numerical values with the above dimensionless
parameters, it is helpful to employ typical orders of magnitude for the involved
quantities. Settling velocities of sand grains commonly are in the range of a few tens
of millimetres per second. Laboratory and environmental measurements of turbidity
currents (Parker et al. 1987; Chikita 1989; Normark 1989; Chikita 1990; Garcia 1994;
Altinakar et al. 1996; McCaffrey et al. 2003; Choux et al. 2005) indicate that the
concentration of suspended particles decays fairly uniformly across the entire height
of the current, and so a characteristic ‘decay length’ should be of the same order of
magnitude as the current height. Hence a representative value of l∗ may be in the
range of 10–100 m (Komar 1969; Zeng et al. 1991; Piper & Savoye 1993). These
values yield an effective turbulent diffusion coefficient in the range of 0.1–1 m2 s−1. A
characteristic streamwise velocity of the current is 10 m s−1, and so we obtain a typical
value of Pe = Re ≈ 103. For (ρp −ρf )/ρf ≈ 1, the preceding estimates yield G ≈ 0.1–1.
As discussed earlier, the assumption of a linear relationship between the erosion
rate and the shear stress at the surface of the sediment bed represents a relatively
crude approximation of the more threshold-like behaviour observed experimentally
by Garcia & Parker (1993). While the relationship forwarded by these authors does
not allow us to determine a representative value for β , we can nevertheless safely
assume that N � O(10−5).

2.3. Unidirectional quasi-steady base state

We address the situation of a turbidity current flowing into ambient clear fluid at rest.
The linear stability analysis focuses on a cross-section of the turbidity current some
distance behind the head, where the flow is well developed and changes slowly in
the x-direction (except for the pressure). We derive a unidirectional one-dimensional
quasi-steady base state by assuming

∂

∂t
=

∂

∂x
=

∂

∂y
≡ 0, (2.26)

v = w ≡ 0. (2.27)

We note that assuming ∂/∂x =0 represents a simplification of real currents, which
typically evolve in the streamwise direction due to entrainment. As we will see, this
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assumption still allows us to develop a realistic model of a base state that retains
all of the characteristic features of real currents required for a linear instability to
develop. We obtain for the base state variables uo(z), po(x, z) and co(z) and for the
velocity wav at which the interface rises/recedes

∂po

∂x
=

1

Re

d2uo

dz2
, (2.28)

∂po

∂z
= −Gco, (2.29)

dco

dz
= −d2co

dz2
, (2.30)

wav =
c∞

Pe
co(z = 0) − N

duo

dz

∣∣∣∣
z=0

. (2.31)

We assume that the instability giving rise to the formation of channels and gullies
is governed by the interaction of the sediment bed with the regions of the current
immediately above, where the velocity increases and the sediment concentration
decreases. The results of the analysis will confirm the validity of this assumption a
posteriori, as they will show that the vertical extent of the eigenfunctions is limited to
the flow regions near the sediment bed. Consequently, the features of the base flow
profile beyond this nearwall region will not affect the linear stability results. Hence
we can apply as boundary conditions

uo(z = 0) = 0, (2.32)

uo(z → ∞) = 1, (2.33)

dco

dz

∣∣∣∣
z=0

= −NPe

c∞

duo

dz

∣∣∣∣
z=0

, (2.34)

co(z → ∞) = 1. (2.35)

In principle, it would be possible to employ base flow models for the velocity and
concentration that capture the presence of the clear ambient fluid at rest above the
current. While this would not affect the analysis of the channelization instability, it
would likely capture the Kelvin–Helmholtz and Holmboe instabilities of the mixing
layer separating the turbidity current from the ambient fluid above. Since the analysis
of these instabilities is beyond the scope of the current work, and so we limit the
present analysis to the near-wall region.

By using (2.30) and applying boundary conditions (2.34) and (2.35), we obtain

co(z) =
NPe

c∞

duo

dz

∣∣∣∣
z=0

e−z + 1. (2.36)

To obtain the base flow velocity profile uo(z), we need information on the base
pressure profile po(x, z). Since the base concentration profile varies exponentially with
z in the boundary layer, we assume that po also varies exponentially with z. However,
we allow for the fact that this variation may occur over a different length scale L 	= 1,
and so the velocity and concentration boundary layers may have different thicknesses.
We also assume that the pressure variation in the x-direction is separable from the
variation in the z-direction

po (x, z) = A(x)e−z/L. (2.37)
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Note that an arbitrary function F (z) can be added to the base pressure in (2.37) in
order to obtain any desired far field decay. This arbitrary function F (z) will not affect
the linear stability analysis.

Thus from (2.28) and (2.37) we obtain

d2uo

dz2
= A′(x)e−z/L. (2.38)

Integrating twice and applying the boundary conditions (2.32) and (2.33) gives

uo(z) = 1 − e−z/L. (2.39)

In turn, this yields for the concentration profile

co(z) =
NPe

Lc∞
e−z + 1. (2.40)

Equations (2.39) and (2.40) represent the base flow profile around which the governing
equations will be linearized. The dimensionless base flow shear stress at the interface
can be determined by differentiating (2.39) to give 1/L. Thus N/L is a measure of
erosion at the interface, while c∞/P e represents the importance of interface growth
due to sedimentation. Consequently, the dimensionless parameter group in (2.40)
denotes the ratio of settling and erosion near the interface.

Note that the balance between settling and erosion described by eqn. (2.31)
determines the quasi-steady velocity wav with which the surface of the sediment
bed advances upward for the base state. For the base state described earlier, it yields
wav = c∞/P e. This reflects the fact that for a quasi-steady base state, there is no
accumulation of particles in the concentration boundary layer. Hence the rate at
which particles sediment out at the bottom equals the rate at which particles enter
the boundary layer from above, which is given by c∞/P e, with Pe denoting the
dimensionless inverse settling velocity. Note that the quasi-steady base state describes
a current with net deposition. For an eroding current, particles would enter the base
flow both from below (through erosion from the bed) and from above (through
sedimentation from the core of the turbidity current), and so there would be a
continuous accumulation of particles in the near-wall region. This would have to be
modelled via an unsteady base flow. We remark that from a physical point of view,
the assumption of different velocity and concentration boundary-layer thicknesses is
reasonable and in agreement with laboratory observations (Parker et al. 1987; Garcia
1994; Altinakar et al. 1996; McCaffrey et al. 2003; Choux et al. 2005). While the
velocity boundary-layer thickness is governed primarily by the Reynolds number Re,
the concentration boundary-layer thickness is determined by a balance of diffusion
and settling velocity, as captured by the Péclet number Pe. As discussed earlier, this
assumption is a relatively crude approximation, as one-way and two-way coupling
effects can either delay or accelerate the particle settling. Hence, in principle, the
concentration boundary layer can be thicker or thinner than the velocity boundary
layer. However, the assumption of different boundary-layer thicknesses formally does
not satisfy (2.29), and so our base state represents an approximate model rather
than an exact solution of the full Navier–Stokes equations. It offers the advantage of
clearly identifying the role of the dimensionless parameters, which will facilitate the
physical interpretation later. We note that the assumption of ‘model’ base flows that
do not represent exact solutions of the governing equations represents a common,
well-established approach in linear stability theory. As an alternative, we could have
obtained the base state by solving the governing equations numerically. This approach
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would yield a quantitatively more accurate base state, at the expense of making it
less straightforward to identify the role of the dimensionless parameters.

2.4. Linearization and numerical implementation

Each of the flow variables is decomposed into base flow and perturbation components,
e.g. u(y, z, t) = uo(z) + u′(y, z, t), which are then substituted into (2.16)–(2.21).
Subtracting the base flow and neglecting nonlinear perturbation terms yield a set of
linear equations governing the evolution of the perturbations. For the field equations,
this process is straightforward. For the interface equation we obtain

∂η′

∂t
=

c∞

Pe

(
c′(z = 0) + η′ dco

dz

∣∣∣∣
z=0

)
− N

(
∂u′

∂z

∣∣∣∣
z=0

+ η′ d2uo

dz2

∣∣∣∣
z=0

)
. (2.41)

We assume normal mode perturbations that are periodic in y and grow exponentially
in time, i.e. of the form

u′(y, z, t) = U (z) sin(αy)eσ t , (2.42)

v′(y, z, t) = V (z) cos(αy)eσ t , (2.43)

w′(y, z, t) = W (z) sin(αy)eσ t , (2.44)

c′(y, z, t) = C(z) sin(αy)eσ t , (2.45)

p′(y, z, t) = P (z) sin(αy)eσ t , (2.46)

η′(y, t) = E sin(αy)eσ t . (2.47)

Here, α denotes the spatial wavenumber of the perturbation, while σ represents its
exponential growth rate. Capital letters indicate the perturbation eigenfunctions. The
ansatz for the perturbations is in line with our goal to obtain insight into the formation
of straight longitudinal channels. Clearly, there is the possibility that such channels
may develop a streamwise structure, e.g. through meandering. The mechanisms behind
such features would have to be explored via a secondary instability analysis, which is
beyond the scope of the present investigation. Incorporating this perturbation ansatz
into the linearized equations yields the following system of equations:

− αV +
dW

dz
= 0, (2.48)

σU + W
duo

dz
=

1

Re

(
−α2U +

d2U

dz2

)
, (2.49)

σV = −αP +
1

Re

(
−α2V +

d2V

dz2

)
, (2.50)

σW = −dP

dz
+

1

Re

(
−α2W +

d2W

dz2

)
− GC, (2.51)

σC + W
dco

dz
− 1

Pe

dC

dz
=

1

Pe

(
−α2C +

d2C

dz2

)
, (2.52)

σE = E
c∞

Pe

dco

dz

∣∣∣∣
z=0

− EN
d2uo

dz2

∣∣∣∣
z=0

+
c∞

Pe
C(z = 0) − N

dU

dz

∣∣∣∣
z=0

(2.53)
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with boundary conditions

U (z = 0) + E
duo

dz

∣∣∣∣
z=0

= 0, (2.54)

V (z = 0) = 0, (2.55)

W (z = 0) = σE, (2.56)

E
d2co

dz2

∣∣∣∣
z=0

+
dC

dz

∣∣∣∣
z=0

= −NPe

c∞

(
E

d2uo

dz2

∣∣∣∣
z=0

+
dU

dz

∣∣∣∣
z=0

)
, (2.57)

U (z → ∞) = V (z → ∞) = W (z → ∞) = C(z → ∞) = 0. (2.58)

Equations (2.48)–(2.53) combined with the boundary conditions (2.54)–(2.58) comprise
an eigenvalue problem of the form

A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

U

V

W

C

E

P

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= σB

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

U

V

W

C

E

P

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.59)

where the matrices A and B are given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1 0 −dzuo 0 0 0

0 M1 0 0 0 −αI

0 0 M1 −GI 0 −dz

0 0 −dzco M2 0 0

M3 0 0 M4 M5 0

0 −αI dz 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.60)

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

0 0 0 0 1 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.61)

with

M1 =
1

Re
[−α2I + dzz], (2.62)

M2 =
1

Pe
[−α2I + dz + dzz], (2.63)

M3 = −Ndz|z=0 , (2.64)
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Figure 3. Convergence tests for the growth rate as a function of the domain size Z and the
average grid spacing �z. Parameters for this computation were α = 0.2, Re = Pe = 1000, L = 0.5,
G = 10−1, c∞ = 10−2 and N = 10−5.

M4 =
c∞

Pe
, (2.65)

M5 =
N

L

(
1

L
− 1

)
, (2.66)

with the eigenvalue σ as the growth rate. The derivative operators in the z-direction
(dz, dzz) are discretized by a second-order finite differencing scheme, with variable
grid spacing to provide finer resolution close to the interface. The grid is generated
using the hyperbolic tangent stretching method described in Fletcher (1991). The
resulting eigensystem is solved by using the sparse eigensolver in MATLAB, which
is based on LAPACK routines. The computational domain 0 � z � Z is discretized
into Nz intervals. The value of Z needs to be sufficiently large, and the average grid
spacing �z = Z/Nz sufficiently fine, for the solution to be independent of Z and Nz.
Figure 3 provides relevant convergence information for a representative test case.
Most calculations were performed for a domain height Z =20 and �z = 2 × 10−2.

3. Results
In this section, we discuss solutions to the eigenvalue problem (2.59) that provide

σ = σ (α, Re, Pe, L, G, c∞, N). As usual, positive growth rates indicate perturbation
modes that are unstable and grow exponentially in time, while negative growth rates
are associated with damped modes. In general, we will keep Re and Pe equal, as
the turbulent diffusion of momentum and particle concentration is assumed to occur
with equal vigor.

Figure 4 depicts a representative family of dispersion relations for different Re =Pe.
In this figure, as well as in corresponding figures presented later, only the largest
eigenvalue is shown. For small wavenumbers, σ is seen to increase with α until it
eventually reaches a maximum. Thereafter, it quickly decays and eventually becomes
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Figure 4. Representative dispersion relations for various values of Pe = Re, with L = 0.5,
G =10−1, c∞ = 10−2 and N = 10−5. Note that for all values of the Reynolds and Péclet
numbers, the most dangerous wavenumber αmax is near 0.25. Furthermore, all dispersion
relations display a cut-off wavenumber αc = 1.

negative. We refer to the wavenumber αmax associated with the highest growth rate
σmax as the most dangerous wave number. For a small amplitude, random initial
perturbation αmax can be expected to become dominant in the sense that it will
quickly overcome all other modes because of the exponential nature of perturbation
growth. A critical Reynolds number does not appear to exist, as our calculations
yield positive growth rates even for relatively small values of Re = O(100). All of the
dispersion relations exhibit a maximum growth rate for αmax ≈ 0.25. This indicates a
dominant wavelength λmax = 2π/αmax of O(25), which is much larger than both the
concentration and velocity boundary-layer thicknesses.

In order to gain insight into the physical mechanisms responsible for the instability,
it is instructive to discuss the contributions of the individual terms in (2.53). A term-
by-term examination of this equation sheds light on the mechanisms that govern
the growth of interface perturbations. The first two terms on the right-hand side
capture the effects of the perturbed interface location in the base concentration and
velocity fields, while the last two terms describe the influence of the perturbation
concentration and velocity fields. By differentiating the base flow profiles (2.39) and
(2.40), and evaluating them at z = 0, we obtain

c∞

Pe

dco

dz

∣∣∣∣
z=0

− N
d2uo

dz2

∣∣∣∣
z=0

=
N

L

(
1

L
− 1

)
. (3.1)

Employing this simplification in (2.53), we obtain

σ =
N

L

(
1

L
− 1

)
+

c∞

PeE
C(z = 0) − N

E

dU

dz

∣∣∣∣
z=0

. (3.2)

Positive terms on the right-hand side supply a destabilizing mechanism, while negative
terms act in a stabilizing fashion. The first term on the right-hand side of (3.2)
primarily reflects the influence of L, i.e. the ratio of the thicknesses of the base
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Figure 5. Maximum growth rate as a function of Re and Pe, for L = 0.5, G =10−1, c∞ =10−2

and N = 10−5. The solid line shows the dependence of σmax on Re and Pe. Increasing Re and
Pe has a uniformly destabilizing effect on the system. The contributions from the individual
terms on the right-hand side of (3.2) to the overall growth rate are also shown.

velocity and concentration profiles. For L < 1 the term is positive, and so it contributes
to the instability. Physically, L < 1 indicates that the base profile of the suspended
particle concentration is thicker, i.e. decays more slowly, than its velocity counterpart.
This implies that as an interface bump intrudes into the flow, it finds itself in an
environment where particle settling decreases more slowly than erosion due to the
shear stress, which will amplify the initial protrusion. Conversely, a local valley in
the sediment bed will see erosion increase more strongly than sedimentation, which
again will amplify the initial perturbation. This existence of a base flow velocity
boundary layer that is thinner than the base concentration profile represents the main
mechanism driving the channelization instability. We can thus identify L < 1 as the
key criterion for instability to occur.

For L > 1, on the other hand, the velocity boundary layer is thicker than the
concentration boundary layer. As an interface perturbation intrudes into the flow,
particle settling diminishes faster than shear-induced erosion, which will dampen the
original perturbation. A valley in the sediment bed will see settling increase more
rapidly than erosion, which again will inhibit further growth of the perturbation.
For L =1 there is no direct effect of the base flow on the interfacial stability. The
identification of L as the key stability parameter for channelization emerges as the
main finding from the present analysis. Note that this result relies crucially on the
fact that the analysis resolves the vertical structure of the current. A depth-averaged
approach could not arrive at this result.

The last two terms on the right-hand side of (3.2) describe the influence of the
concentration perturbation C and the perturbation shear dU/dz on the interfacial
stability. Figure 5 indicates that the C-term is always stabilizing, while the dU/dz-term
is stabilizing for small values of Re = Pe and destabilizing for larger values.

In order to understand the role of these terms in amplifying or damping the
instability, it is helpful to analyse the structure of the eigenfunctions. Towards this
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y

Figure 6. Dominant unstable eigenfunction modes for αmax = 0.24, Re = Pe =1000, L = 0.5,
G =10−1, c∞ = 10−2 and N = 10−5. The solid and dashed lines depict positive and negative
concentration perturbation contours, respectively. Streamlines of the transverse perturbation
velocity field are superimposed, with arrows denoting the flow direction. In the top frame, grey
shading reflects the perturbation u-velocity, with lighter areas indicating positive values and
darker areas negative values. The middle frame shows perturbation shear ∂u/∂z through grey
shading, with lighter areas indicating positive values and darker areas negative values. The
shape of the interface perturbation is shown in the bottom frame.

end, figure 6 shows the interfacial shape, along with the concentration disturbance
and the streamwise and transverse perturbation velocity fields in the y, z-plane, for the
representative case of αmax =0.24 and Re = Pe =1000. All other parameter values are
as in figure 4. The shape of the interface perturbation is shown in the bottom frame.
The semicircular lines close to the interface in the top and middle frames represent
concentration perturbation contours, with solid lines indicating positive values and
dashed lines negative values. Streamlines of the transverse velocity perturbations are
superimposed, with arrows denoting the direction of the flow. In the top frame,
grey shading reflects the perturbation u-velocity, with lighter areas indicating positive
values and darker areas negative values. Above the peaks of the perturbed interface,
we observe a negative concentration perturbation (reduced particle loading), which
results in lower hydrostatic pressure as compared to the troughs of the interface, where
the particle concentration increases. Hence a spanwise pressure gradient exists along
the interface, which drives a perturbation flow from the troughs to the peaks. Via the
continuity equation, this perturbation flow along the interface leads to the formation
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of the counter-rotating streamwise vortices visible in the figure. Note that above the
peaks, these vortices carry low-speed fluid, i.e. fluid with a small streamwise velocity,
away from the interface, while high-speed fluid from the free stream is brought
towards the interface at the troughs. In this way the shear stress, which primarily is
a function of the local streamwise velocity gradient, is enhanced above the troughs
and lowered above the peaks. This is reflected by the middle frame of the figure,
which shows the perturbation shear ∂u/∂z through grey shading, with lighter areas
indicating positive values and darker areas negative values. Thus, in turn, erosion
increases in the valleys and decreases at the peaks, which further amplifies the initial
concentration perturbation.

Note that the vertical extent of the velocity and concentration eigenfunctions is
limited to the near-wall region, where the base velocity increases and the sediment
concentration decreases. This indicates that the detailed features of the base flow far
away from the sediment bed do not have an appreciable influence on the instability,
which justifies a posteriori our assumption of boundary conditions (2.33) and (2.35)
for the base flow.

On the basis of these eigenfunction structures, we can now understand the role of
the second term on the right-hand side of (3.2), which reflects the rate of particle
settling at the interface as a result of the perturbation concentration. This effect is
destabilizing if C and E are of the same sign, i.e. if the concentration perturbation
is positive above the peaks of the interface. Figure 5 and the eigenfunction plot in
figure 6 indicate that for this representative case C and E are of opposite signs, and
so the effect of settling as a result of the concentration perturbation field is stabilizing.

The third term on the right-hand side of (3.2) accounts for the rate at which
particle volume is removed from the interface as a result of the shear stress induced
by the velocity perturbation U . Figure 5 indicates that for the representative case
discussed earlier, this effect is destabilizing, which indicates that E and dU/dz must
be of opposite signs. This confirms the physical picture developed on the basis of
figure 6, in that the perturbation shear stress ∂u/∂z is negative at interfacial peaks
and positive in troughs. The erosion of particles decreases and increases, respectively.

Hence, the case shown in figure 6 depicts a situation for which the secondary
transverse flow and the shear stress it causes are destabilizing (cf. figure 5). For
smaller values of Re and Pe, on the other hand, this figure shows the perturbation
shear to be stabilizing. An inspection of the corresponding eigenfunctions (not shown)
indicates that for such a case the streamwise vortices rotate in the opposite direction.

Figure 7 shows the contributions of the individual terms in (3.2) to the overall
dispersion relation. The base flow term is independent of the eigenfunctions and
hence contributes a constant value for all wavenumbers. Interestingly at the cutoff
wavenumber, where the overall growth rate is zero, the concentration perturbation
vanishes, and the destabilizing contribution of the base flow term is balanced by the
stabilizing perturbation shear term. The reason for this can be found in the governing
equations. For C ≡ 0, boundary condition (2.57) yields

1

E

dU

dz

∣∣∣∣
z=0

=
1

L2
− 1

L
. (3.3)

By substituting (3.3) into (3.2), we immediately obtain that σ = 0 when C ≡ 0. For
C ≡ 0, (2.52) furthermore states that W ≡ 0. For σ =0, (2.49) then yields

d2U

dz2
− α2

cU = 0, (3.4)
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Figure 7. The overall dispersion relation for Pe = Re = 1000, L = 0.5, G =10−1, c∞ = 10−2

and N = 10−5, along with the contributions of the individual terms in (3.2).

which, together with the boundary conditions for U , leads to

U (z) = −E

L
e−αcz. (3.5)

Substitution into (3.3) immediately yields for the cutoff wavenumber

αc =
1

L
− 1. (3.6)

For L =0.5, we obtain αc = 1, in agreement with figures 4 and 7.
Figure 8 displays dispersion relations for 0.1 � L � 0.9. As L increases, both the

maximum growth rate σmax and the associated wavenumber αmax decrease, until
eventually for L =1 the system becomes stable to perturbations of all wavenumbers.
For L < 0.5, the scaled maximum growth rate becomes independent of L, indicating
that the growth is dominated by the base flow term.

3.1. Influence of the gravitational parameter G

As we vary G over three orders of magnitude, the growth rate increases only by a
factor of approximately 5, while the dominant wavenumber remains roughly constant
(cf. figure 9). An inspection of the system of governing equations suggests that G

primarily affects the secondary transverse flow via (2.51). Hence the counter-rotating
streamwise vortices will grow stronger as G increases. This is confirmed by figure 10
which shows an increase in the destabilizing effect of the perturbation shear as G

increases. Note that our finding of a destabilizing effect of G is in contrast to the
observations by Colombini (1993), who found gravity to have a stabilizing effect.
This difference can be traced back to the consideration of bedload only in the work
of Colombini (1993), which shows that gravity has the effect of moving sediment
from the peaks to the valleys. On the other hand, in the present formulation a
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Figure 8. Dispersion relations for various values of L, along with Re = Pe = 1000, G =10−1,
c∞ =10−2 and N = 10−5. (a) Unscaled results; (b) σ scaled with the base flow contribution
(1/L2 − 1/L) and α scaled with the cut-off wavenumber (1/L − 1).
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Figure 9. Dispersion relations for various values of the gravitational parameter G, along
with Re = Pe = 1000, L = 0.5, c∞ = 10−2 and N = 10−5. A variation of G over three orders of
magnitude results only in a modest increase of the growth rate, which indicates that the base
flow term, which is independent of G, dominates the perturbation growth.

larger gravitational term will strengthen the secondary streamwise vortices, thereby
accelerating the growth of the instability.

3.2. Influence of the sediment loading parameter c∞/Pe

The parameter c∞ represents the free stream volume fraction of suspended particles.
c∞/Pe then is the volume flux of sedimenting particles far from the sediment bed.
When multiplied by the dimensionless concentration at the interface, it gives the rate
at which particle volume accumulates at the interface due to settling. Note that c∞/Pe
appears only in (2.53), which governs the evolution of the interface, and in boundary
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Figure 10. Individual contributions to the maximum growth rate as functions of the
gravitational parameter G, for Re = Pe =1000, L = 0.5, c∞ = 10−2 and N = 10−5. An increase
in G is seen to amplify the secondary streamwise vortices, and hence the perturbation shear,
thereby strengthening the instability.
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Figure 11. Dispersion relations for various values of the sediment loading parameter c∞,
along with Re = Pe =1000, L = 0.5, G =10−1 and N = 10−5. While increased particle loading
is seen to have a stabilizing effect, the most dangerous wavenumber depends only weakly
on c∞.

condition (2.57), which links the resuspension flux to the local shear stress. Figure 11
displays dispersion relations for c∞ ranging from 10−4 to 5 × 10−2. Increased particle
loading is seen to have a stabilizing influence on the interface. The cutoff wavenumber
is independent of c∞, while the dominant wavenumber αmax shows a weak dependence
on the sediment loading parameter.

Figure 12 shows the maximum growth rate σmax as a function of c∞, along with the
individual contributions from the terms in (3.2). Interestingly, the stabilizing effect due
to the perturbation concentration term involving C(z) in (3.2) increases only slightly
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Figure 12. Individual contributions to the maximum growth rate as functions of the settling
loading parameter c∞, along with Re =Pe = 1000, L = 0.5, G = 10−1 and N = 10−5. For larger
sediment loading parameters, the destabilizing contribution of the perturbation shear stress
diminishes.

with c∞, even though it is this term that contains c∞/Pe. The figure indicates that the
influence of increasing c∞/Pe is primarily felt in a reduction of the destabilizing effect
of perturbation shear. The reason for this lies in the way in which the process of
non-dimensionalization affects the base concentration profile (cf. (2.40)). For a larger
value of c∞, the process of rendering the governing equations dimensionless will lead
to a smaller gradient dco/dz of the dimensionless base concentration profile at the
interface. Hence, for a larger c∞ an interfacial dislocation will result in a weaker
dimensionless concentration perturbation, and hence in weaker streamwise vortices.
Consequently, the vertical transport of low- and high-speed fluid above the interfacial
peaks and troughs is reduced, and the destabilizing perturbation shear decreases.

3.3. Influence of the erosion parameter N

The erosion parameter N quantifies the dimensionless rate at which particle volume
is removed from the substrate per unit shear. Larger values of N imply that it is
relatively easier for the particles to be re-entrained into the flow. Primarily, this
parameter affects the base flow term on the right-hand side of (3.2), amplifying the
stabilizing or destabilizing effect of L discussed earlier. In addition, it multiplies the
perturbation shear term in (3.2). Figure 13 shows dispersion relations obtained for
10−6 � N � 10−4. After scaling the growth rate with N , the dispersion relations nearly
collapse. This indicates that the base flow and perturbation shear terms in (3.2), both
of which are proportional to N , dominate the growth rate, while the perturbation
settling term remains small over the range of N considered.

4. Discussion and conclusions
The current investigation analyses the linear stability of an erodible sediment

bed beneath a turbidity current with regard to spanwise perturbations, in order to
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Figure 13. Dispersion relations for various values of the erosion parameter N , along with
Re = Pe = 1000, L =0.5, G =10−1 and c∞ = 10−2. When scaling the growth rate with N , the
dispersion relations nearly collapse, indicating that the base flow and the perturbation shear
term dominate over the perturbation settling term.

identify potential mechanisms responsible for the formation of longitudinal gullies
and channels. To our knowledge, it represents the first attempt at a formal stability
analysis that accounts for the coupled interaction of the three-dimensional fluid and
suspended sediment motion with the erodible bed below.

As the main criterion for instability, the analysis yields that L < 1. Physically, this
implies that for instability to occur, the suspended sediment concentration needs to
decay more slowly away from the sediment bed than the shear stress. Under such
conditions, an upward protrusion of the surface of the sediment bed will find itself in
an environment where erosion decays more quickly than sedimentation, and so it will
keep growing. Conversely, a local valley in the sediment bed will see erosion increase
more strongly than sedimentation, which again will amplify the initial perturbation.
Note that the derivation of this stability criterion requires an approach that resolves
the vertical velocity and concentration structure of the current. It could not have
been obtained from an analysis based on a set of depth-averaged equations.

Laboratory experiments provide evidence that turbidity currents frequently do give
rise to L < 1, and so the instability mechanism identified here is relevant. For example,
the measurements reported by Parker et al. (1987), Garcia (1994), Altinakar et al.
(1996), McCaffrey et al. (2003) and Choux et al. (2005) show that the concentration of
suspended sediment decays over a length scale comparable to the height of the current
(see also Normark 1989), whereas the streamwise velocity profile reaches a maxi-
mum at substantially less than half the current height (typically 0.2–0.3; Kneller &
Buckee 2000) and subsequently decays (see also Stacey & Bowen 1988). This would
indicate a value of L on the order of one half.

The destabilizing effect of the base flow for L < 1 is modulated by the perturbation
of the suspended sediment concentration, and by the perturbation shear stress due to
a secondary flow structure in the form of counter-rotating streamwise vortices. While
the perturbation concentration is uniformly stabilizing, the streamwise vortices are
stabilizing for small Reynolds and Péclet numbers and destabilizing for large values.
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Since we do not know the precise form of the turbulent stress tensor in a complex
flow such as the present one, we employ the simplest possible turbulence model in the
form of a constant eddy viscosity. The analysis shows that this approach is adequate
for capturing the basic instability mechanism.

It is of interest to compare the present approach to the earlier linear stability
analysis by Colombini (1993), who considered the effect of a secondary flow structure
on the spanwise bedload transport. He found the sediment bed stability to be
governed by a balance of the destabilizing secondary flow and the stabilizing effects
of gravity. Our current approach, on the other hand, considers the effect of suspended
sediment on the flow, with secondary streamwise vortices emerging naturally. While
the investigation by Colombini (1993) identifies the streamwise vortices as the main
ingredient driving the instability, our analysis shows the main cause for the instability
to be the difference in concentration and velocity boundary-layer thicknesses. The
streamwise vortices can be stabilizing or destabilizing depending on the parameter
regime.

An interesting related analysis is given by Thorsness & Hanratty (1979), although
for a quite different type of flow (cf. also the review by Hanratty 1981). These authors
consider the emergence of streamwise waves in dissolving or depositing solid surfaces
such as cave walls or river ice. For these streamwise waves, the phase difference
between the surface deformation and the mass transfer rate determines the stability
properties and the propagation direction of the waves.

The present linear stability analysis provides the most amplified wavelength of about
25 times the height over which the suspended sediment concentration decays. For
representative current heights of 10–100 m, this yields gully spacings of about 250–
2500 m, which are consistent with the observations by Greene, Maher & Paull (2002)
(500–2000 m) as well as by McAdoo, Pratson & Orange (2000) and Driscoll, Weissel
& Goff (2000) (a few hundred metres to a few kilometres). It is to be kept in mind
that currents at the upper end of this range of magnitudes may behave differently in
some aspects from the laboratory-scale currents employed to study sediment erosion
(Garcia & Parker 1993). Nevertheless, it is interesting that the present analysis yields
gully spacings consistent with field observations. This spacing is in the same range
as the linear stability results by Izumi (2004) (150–8000 m). On the other hand, field
observations by Field et al. (1999) report channel spacings of 180–1000 m. Note,
however, that the most amplified wavenumber is largely insensitive to the values of
Re, Pe, G and c∞, and so the preferred wavelength is roughly proportional to the
turbidity current height. Hence, currents with a height somewhat smaller than 100 m
may well be able to produce spacings in the range observed by Field et al. (1999). We
remark that it might be difficult to reproduce these observations in laboratory-scale
facilities. Even for a relatively small current height of 10 cm, the predicted spanwise
wavelength would be on the order of 2.5 m, which exceeds the size of most flumes.

In contrast to previous analyses based on various systems of depth-averaged
equations, the instability mechanism identified in the present analysis does not require
any assumptions about sub- or supercritical flow. Furthermore, it does not require
the presence of a slope break, a curved slope or, for that matter, a slope at all.
However, field observations indicate that such topographical features may promote
the formation of gullies and channels. Hence it would be interesting to investigate the
extent to which slope breaks, curved slopes or sub- and supercritical currents may play
a role in generating flows for which L < 1. Two-dimensional nonlinear simulations
based on the Navier–Stokes equations should be able to provide information in this
regard.
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The analysis furthermore sheds light on the influence of additional dimensionless
parameters, viz. Re, Pe, G, c∞ and N . An increase in Re and Pe increases the growth
rate, as it enhances the destabilizing effect of the counter-rotating streamwise vortices.
For the same reason, an increase in the gravitational parameter G is destabilizing as
well. On the other hand, increasing the sediment loading parameter c∞ has a stabilizing
influence. The erosion parameter N is seen to have a weak overall influence.

Clearly, some of the assumptions invoked here represent idealizations of real flows.
For example, the current analysis is based on the Boussinesq equations, implying
that any density variations due to particle loading are relatively modest. Real
flows, in contrast, may exhibit sufficiently high suspended sediment concentrations
to give rise to non-Boussinesq effects (Birman, Martin & Meiburg 2005; Etienne,
Hopfinger & Saramito 2005; Lowe, Rottman & Linden 2005). Similarly, such large
concentrations can modify the effective viscosity of the suspension, and they can affect
the sedimentation velocity due to hindered settling (Ham & Homsy 1988). However,
while these effects may modify the results quantitatively to some degree, they are
unrelated to the fundamental nature of the instability mechanism identified by the
analysis. Similarly, we wish to point out that by focusing on the well-developed flow
in a cross-section some distance behind the front of the current, the present analysis
is unable to elucidate any potential connections between the formation of channels
and the lobe and cleft instability at the current front (Simpson 1997; Härtel, Carlsson
& Thunblom 2000; Härtel, Meiburg & Necker 2000).

Perhaps the most far-reaching approximation invoked in this analysis is the
assumption of a linear relationship between the bed shear stress and the erosional
particle flux rather than the more threshold-like behaviour reported by Garcia &
Parker (1993). This threshold-like behaviour may limit the appearance of the sediment
bed instability to certain flow regimes. For flows involving only very small shear
stresses, the instability may be too weak to be noticeable. On the other hand, for very
rapid flows that give rise to extremely large shear stresses, saturation may become
important, and so the bed is eroded uniformly without noticeable spatial variations.
However, in the important transitional regime where any increase in the bed shear
stress translates into a higher erosional particle flux, the basic mechanism identified
here will still be effective in giving rise to spatially periodic erosional patterns. In
this context, it will be interesting to extend the current analysis by performing fully
nonlinear simulations based on a threshold-like relationship between bed shear stress
and erosion.

The authors gratefully acknowledge financial support from BHP Billiton Petroleum,
as well as fruitful discussions with Bill McCaffrey, Michael Glinsky, Chris Lerch,
Moshe Strauss and Rama Govindarajan.
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Necker, F., Härtel, C., Kleiser, L. & Meiburg, E. 2005 Mixing and dissipation in particle-driven
gravity currents. J. Fluid Mech. 545, 339–372.

Normark, W. R. 1989 Observed parameters for turbidity-current flow in channels, Reserve Fan,
Lake Superior. J. Sedim. Petrol. 59, 423–431.

Parker, G. 1978 Self-formed straight rivers with equilibrium banks and mobile bed Part 1. The
sand-silt river. J. Fluid Mech. 89(1), 109–125.

Parker, G., Garcia, M., Fukushima, M. & Yu, W. 1987 Experiments on turbidity currents over an
erodible bed. J. Hydraul. Res. 25, 123–147.

Piper, D. J. W. & Savoye, B. 1993 Processes of late quaternary turbidity current flow and deposition
on the Var deep-sea fan, north-west Mediterranean sea. Sedimentology 40, 557–582.

Raju, N. & Meiburg, E. 1995 The accumulation and dispersion of heavy particles in forced
two-dimensional mixing layers. II. The effect of gravity. Phys. Fluids 7(6), 1241–64.

Revelli, R. & Ridolfi, L. 2000 Inception of channelization over a non-flat bed. Meccanica 35,
457–461.

Simpson, J. E. 1997 Gravity Currents in the Environment and the Laboratory, 2nd edn. Cambridge
University Press.

Smith, T. R. & Bretherton, F. P. 1972 Stability and the conservation of mass in drainage basin
evolution. Water Resour. Res. 8, 1506–1529.

Stacey, M. W. & Bowen, A. J. 1988 The vertical structure of density and turbidity currents: theory
and observations. J. Geophys. Res. 93, 3528–3542.

Syvitski, J., Field, M., Alexander, C., Orange, D., Gardner, J. & Lun, L. 1996 Continental-slope
sedimentation: the view from northern California. Oceanography 9, 163–167.

Thorsness, C. B. & Hanratty, T. J. 1979 Stability of dissolving or depositing surfaces. AIChE J.
25(4), 697–701.

Wang, Z. & Cheng, N. 2005 Secondary flows over artificial bed strips. Adv. Water Res. 28, 441–450.

Zeng, J., Lowe, D. R., Prior, D. B. & Wiseman Jr, W. D. 1991 Flow properties of turbidity currents
in Bute Inlet, British Columbia. Sedimentology 38, 975–996.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

34
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008003467


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 15%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveEPSInfo false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.30000
    0.30000
    0.30000
    0.30000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.30000
    0.30000
    0.30000
    0.30000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /Description <<
    /DEU <>
    /FRA <>
    /JPN <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000760065007200690066006900630061007200650020006c006100200063006f006e0066006f0072006d0069007400e0002000610020005000440046002f0058002d0031006100200065002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200073006f006c006f00200069006e0020006300610073006f00200064006900200063006f006e0066006f0072006d0069007400e0002e0020005000440046002f0058002000e800200075006e006f0020007300740061006e0064006100720064002000490053004f00200070006500720020006c006f0020007300630061006d00620069006f00200064006900200063006f006e00740065006e00750074006f0020006700720061006600690063006f002e002000500065007200200075006c0074006500720069006f0072006900200069006e0066006f0072006d0061007a0069006f006e0069002000730075006c006c006100200063007200650061007a0069006f006e006500200064006900200064006f00630075006d0065006e00740069002000500044004600200063006f006e0066006f0072006d0069002000610020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740061007200650020006c0061002000470075006900640061002000640065006c006c0027007500740065006e007400650020006400690020004100630072006f006200610074002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200034002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e500200072006100700070006f007200740065007200650020006f006d0020005000440046002f0058002d00310061002d006b006f006d007000610074006900620069006c00690074006500740020006f00670020006c0061006700650020005000440046002d0064006f006b0075006d0065006e00740065007200200062006100720065002000680076006900730020006b006f006d007000610074006900620065006c002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e006400610072006400200066006f00720020006700720061006600690073006b00200069006e006e0068006f006c006400730075007400760065006b0073006c0069006e0067002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006b0061006e002000640075002000730065002000690020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f0067002000730065006e006500720065002e>
    /SVE <>
    /ENU (Cambridge University Press - Distiller version 6 job options for Press quality - 16-Feb-05)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


