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We study the stability of two-fluid flow through a plane channel at Reynolds numbers
of 100–1000 in the linear and nonlinear regimes. The two fluids have the same density
but different viscosities. The fluids, when miscible, are separated from each other
by a mixed layer of small but finite thickness, across which the viscosity changes
from that of one fluid to that of the other. When immiscible, the interface is sharp.
Our study spans a range of Schmidt numbers, viscosity ratios and locations and
thicknesses of the mixed layer. A region of instability distinct from that of the
Tollmien–Schlichting mode is obtained at moderate Reynolds numbers. We show
that the overlap of the layer of viscosity-stratification with the critical layer of the
dominant disturbance provides a mechanism for this instability. At very low values
of diffusivity, the miscible flow behaves exactly like the immiscible one in terms
of stability characteristics. High levels of miscibility make the flow more stable.
At intermediate levels of diffusivity however, in both linear and nonlinear regimes,
miscible flow can be more unstable than the corresponding immiscible flow without
surface tension. This difference is greater when the thickness of the mixed layer is
decreased, since the thinner the layer of viscosity stratification, the more unstable
the miscible flow. In direct numerical simulations, disturbance growth occurs at
much earlier times in the miscible flow, and also the miscible flow breaks spanwise
symmetry more readily to go into three-dimensionality. The following observations
hold for both miscible and immiscible flows without surface tension. The stability
of the flow is moderately sensitive to the location of the interface between the two
fluids. The response is non-monotonic, with the least stable location of the layer
being mid-way between the wall and the centreline. As expected, flow at higher
Reynolds numbers is more unstable.

Key words: multiphase flow, stratified flows, transition to turbulence

1. Introduction
Two-fluid flows display interesting instabilities due to viscosity and density contrasts

between the fluids. Differences in these properties across the flow often exist
simultaneously, but our interest is in isolating the effects of viscosity contrasts alone.

† Email address for correspondence: rama@tifrh.res.in
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890 K. C. Sahu and R. Govindarajan

The reverse case, of contrasting density but constant viscosity, has been far more
widely studied in geophysical and other contexts. Instabilities due to viscosity
variation too have been investigated by several authors (see e.g. Yih 1967; Preziosi,
Chen & Joseph 1989; Chen & Meiburg 1996; Petitjeans & Maxworthy 1996; Joseph
et al. 1997; Lajeunesse et al. 1999; Balasubramaniam et al. 2005; d’Olce et al.
2008; Talon, Goyal & Meiburg 2013; John et al. 2013; Naraigh et al. 2014) for both
immiscible and miscible fluids. An extensive discussion of instability associated with
such flows can be found in a recent review by Govindarajan & Sahu (2014).

By conducting a linear-stability analysis, Yih (1967) was the first to demonstrate
that immiscible fluid layers (with a sharp interface between the two fluids) in shear
flow are unstable to infinitesimally small long-wave disturbances at any Reynolds
number. Since then, instability in the context of sharp interfaces has been investigated
by many researchers (e.g., Hooper & Boyd 1983; Hooper 1985; Valluri et al. 2010),
and short-wave instabilities were found as well. The mechanism of this short-wave
instability was provided by Hinch (1984).

Miscible flows are different from immiscible flows in an important way. The
diffusivity, characterised by the inverse of the Schmidt number, is among the factors
that play an important role. Govindarajan (2004) investigated three-layer Poiseuille
channel flows (wherein two miscible fluids are separated by a mixed region) and
showed that at higher Schmidt numbers these flows go unstable at lower Reynolds
numbers. She found that when the more (less) viscous fluid occupies the near-wall
regions, the flow is significantly destabilised (stabilised). These effects are accentuated
by an increase in viscosity contrast. For pipe flow when the viscosity ratio is large,
Selvam et al. (2007) found that the flow can be destabilised even in the opposite
scenario, i.e. when the less viscous fluid is near the wall. Ern, Charru & Luchini
(2003) studied the influence of diffusion and mixed layer thickness in a miscible
two-fluid Couette flow at a Reynolds number of less than one, and showed that
diffusivity has a non-monotonic effect on the growth rate of the disturbance. They
reported that flows at intermediate Schmidt numbers can be more unstable than flows
at either very low or very high Schmidt numbers. They also found regimes at low
Reynolds numbers where miscible flows are more unstable than those interfacial flows
(with no diffusion across the sharp interface). The geometry and flow considered in
the present work is the same as that of Talon & Meiburg (2011). They found that
in the limit Re→ 0, instability can be triggered by four different types of modes
depending on the interface location. A mechanism of these instabilities in the Stokes
flow regime was also provided based on perturbation of the concentration relative to
the interface. The authors distinguish this instability from the inertial mechanisms of
both Hinch (1984) and Govindarajan (2004). Talon & Meiburg (2011) also remarked
that the instability observed in their study is similar to that of Ern et al. (2003) in
the Couette flow. Instability at high Reynolds number of this miscible flow and its
dynamics in the nonlinear regime has not been investigated yet. In the present study,
we also investigate the difference between interfacial instabilities (without surface
tension) with a viscosity jump across the interface, and instabilities at high Schmidt
number (poor diffusivity) and at high Reynolds number in pressure-driven two-layer
miscible channel flow, by performing linear stability analyses and direct numerical
simulations.

Important in our discussion will be the location of the critical layer (the layer at
which the phase speed of the disturbance is close to the mean streamwise velocity,
and a major portion of the kinetic energy production takes place). In miscible
flow, when this layer overlaps the viscosity-stratified layer, the dominant balance at
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FIGURE 1. Schematic of the flows. (a) Miscible case: fluids ‘2’ and ‘1’ occupy the bottom
(0 6 y 6 h − q/2) and top (h + q/2 6 y 6 H) layers, respectively. The two fluids are
separated by a mixed layer of uniform thickness q. (b) The corresponding immiscible case.

the lowest order is changed (Govindarajan 2004), so an additional ‘overlap’ mode of
instability can occur. When the two layers are well separated, the Tollmien–Schlichting
mode of instability is the most likely. In immiscible flows too, both scenarios can
occur, i.e. the interface may or may not coincide with the critical location of the
dominant disturbance.

The rest of the paper is organised as follows: the mathematical formulation of
the linear stability equations for miscible and immiscible flows are presented in §§ 2
and 3, respectively. The budget for disturbance kinetic energy is formulated in § 4.
The results are discussed in § 5, and concluding remarks are given in § 6.

2. Formulation: two miscible fluids with a mixed layer in between

The linear stability analysis and direct numerical simulation of a two-layer channel
flow made up of two miscible, Newtonian and incompressible fluids of equal density
and different viscosities is considered. The Cartesian coordinate system (x, y, z) is used
to formulate the problem, where x, y and z denote the coordinates in the horizontal,
the vertical and the spanwise directions, respectively. As shown in figure 1(a), the
top (fluid ‘1’ of dynamic viscosity µ1) and bottom (fluid ‘2’ of dynamic viscosity
µ2) fluids occupy the regions h + q/2 6 y 6 H and 0 6 y 6 h − q/2, respectively,
where q is the mixed layer thickness. The channel walls are located at y = 0 and
y=H, and periodic boundary conditions are imposed in the spanwise direction. The
viscosity variation occurs due to the spatially varying magnitude of a scalar (s), which
could be, for example, the concentration of a solute, or temperature. Without loss of
generality, the base-state concentration s0 is taken to be 1 in the bottom layer, and
0 in the top layer, and it varies from 1 to 0 in the mixed layer. Thus, q= H and 0
represent complete stratification and a sharp interface, respectively. The latter is shown
in figure 1(b).

The viscosity, µ, is modelled as an exponential function of the scalar s:

µ=µ1exp(sRs), (2.1)

where Rs (≡ ln (µ2/µ1)) is the log-mobility ratio of the scalar. The following scaling
is employed to render the governing equations dimensionless:
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(x, y, z, q, h)=H(x̃, ỹ, z̃, q̃, h̃), t= H2

Q
t̃, (u, v)= Q

H
(ũ, ṽ),

p= ρQ2

H2
p̃, µ= µ̃µ1,

 (2.2)

where the tildes designate dimensionless quantities: Q denotes the total volume
flow rate per unit distance in the spanwise direction; u, v and w are the velocity
components in the x, y and z directions, respectively; p denotes pressure; ρ is the
constant density and t is time. The dimensionless governing equations (after dropping
the tildes) are given by

∇ · u= 0, (2.3)[
∂u
∂t
+ u · ∇u

]
=−∇p+ 1

Re
∇ ·
[
µ(∇u+∇uT)

]
, (2.4)

∂s
∂t
+ u · ∇s= 1

ScRe
∇2s, (2.5)

where u is the velocity vector, and Re (≡ρQ/µ1) and Sc (≡µ1/ρD) are the Reynolds
number and Schmidt number, respectively, wherein D is the diffusion coefficient of
the scalar.

2.1. Base state
The base state corresponds to a steady, parallel, fully developed flow, i.e. U =
U(y), V =W = 0 and P is linear in x. Here, the base-state quantities are designated
by upper-case letters for the flow variables, and by the subscript 0 for viscosity and
s. In order to make the concentration of the scalar continuous up to the second
derivative at y = h − q/2 and y = h + q/2, the mean scalar s0(y) is chosen to be
fifth-order polynomial in the mixed layer (Malik & Hooper 2005):

s0 = 1, 0 6 y 6 h− q/2,

s0 =
6∑

i=1

aiyi−1, h− q/2 6 y 6 h+ q/2,

s0 = 0, h+ q/2 6 y 6 1,

 (2.6)

where the ai (i= 1, 6) are given by

a1 = (h+ q/2)3

q5
[6(h− q/2)2 − 3(h− q/2)q+ q2], a2 =−30(h− q/2)2(h+ q/2)2

q5
,

a3 = 60(h− q/2)
q5

(h+ q/2)h, a4 =−10
q5
[6(h− q/2)2 + 6(h− q/2)q+ q2],

a5 = 30
q5

h and a6 =− 6
q5
.


(2.7)

We have confirmed that results indistinguishable from the present ones are obtained by
using any other sufficiently smooth profile, such as the error function or the hyperbolic
tangent. For the parameter range of the present study (high Reynolds numbers and
high Péclet numbers) the mixed layer diffuses very slowly, with a divergence angle
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FIGURE 2. Typical base steady-state profiles of (a) µ0 and (b) U′′ for different values of
Rs. The other parameters are chosen as h= 0.25 and q= 0.1.

of the order of Pe−1. Thus the assumption of locally parallel flow and the ensuing
use of a constant thickness mixed layer are extremely reasonable in this context, with
errors of O[Pe−1]. A brief description on the validity of the parallel flow assumption
is provided in appendix A. The assumption will also be justified later in the form of
comparisons with direct numerical simulations, where no such assumption is made.

The base-state streamwise velocity profile U(y) is obtained by solving the steady,
fully developed version of (2.4) using no-slip and no-flux conditions at the wall and
the centreline of the channel, respectively, i.e.,

Re
(

dP
dx

)
= (µ0U′

)′
, (2.8)

where µ0 = e(Rss0) and the prime represents differentiation with respect to y. The non-
dimensional pressure gradient dP/dx is fixed by using

∫ 1
0 U dy= 1.

In figure 2(a,b) we show, respectively, typical profiles of the base-state viscosity
and of the second derivative of the mean velocity for different values of Rs. We
choose to show the second derivative rather than the velocity profile itself because
it demonstrates that the velocity profile changes slope very rapidly in the mixed layer.
Moreover, the case of Rs = 1 is seen to contain a point of inflexion, which indicates
a tendency for inviscid instability.

2.2. Linear stability analysis
The temporal linear stability of the base flow given by (2.6)–(2.8) using a normal
mode analysis considering two-dimensional perturbations is investigated. For a single
fluid flow, Squire’s theorem (Squire 1933) states that every unstable three-dimensional
disturbance is associated with an equally unstable two-dimensional disturbance
at a lower value of Reynolds number. We assume that in our stratified flow
too, two-dimensional disturbances go unstable at lower Reynolds numbers than
three-dimensional ones. We therefore study the linear instability to two-dimensional
perturbations. Our direct numerical simulations confirm that in the range we study,
two-dimensional disturbances are the first to go unstable. The flow variables are split
into base-state quantities and two-dimensional perturbations (designated by a hat):

(u, v, p, s)(x, y, t)= (U(y), 0, P, s0(y))+ (û, v̂, p̂, ŝ)(y)ei(αx−ωt), (2.9)
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and the perturbation viscosity is given by

µ̂= dµ0

ds0
ŝ, (2.10)

where i≡√−1, α and ω (≡αc) are the wavenumber and frequency of the disturbance,
respectively, and wherein c is the phase speed of the disturbance. In temporal stability
analysis, α and ω are treated as real and complex quantities, respectively, whereas
both are complex in spatio-temporal analysis (e.g. see Schmid & Henningson 2001).
We conduct the former here, where a given mode is unstable if ωi> 0, stable if ωi< 0
and neutrally stable if ωi = 0; ωi being the imaginary part of ω.

Following a standard approach by substituting (2.9) into (2.3)–(2.5), subtracting
the base-state equations and subsequently linearising and eliminating the pressure
perturbation, we obtain the following linear stability equations (Govindarajan 2004),
with the hat notation suppressed:

iαRe[(ψ ′′ − α2ψ)(U − c)−U′′ψ] =µ0(ψ
iv − 2α2ψ ′′ + α4ψ)

+2µ′0(ψ
′′′ − α2ψ ′)+µ′′0(ψ ′′ + α2ψ)+U′(µ′′ + α2µ)+ 2U′′µ′ +U′′′µ, (2.11)

iαScRe[(U − c)s−ψs0
′] = (s′′ − α2s), (2.12)

wherein the amplitude of the velocity disturbances is re-expressed in terms of a
streamfunction [(û, v̂)= (ψ ′,−iαψ)].

Solutions of these equations are obtained subject to the following boundary
conditions at both walls

ψ =ψ ′ = s′ = 0 at y± 1. (2.13)

Equations (2.11)–(2.12) along with the boundary conditions (2.13) constitute an
eigenvalue problem, which is solved using the public domain software LAPACK. A
Chebyshev spectral collocation is used to discretise the domain. Due to the presence
of large gradients in the viscosity-stratified region, a large number of grid points
are required in this region. For this we use the stretching function proposed by
Govindarajan (2004):

yj = a
sinh(by0)

[sinh {(yc − y0)b} + sinh(by0)], (2.14)

where yj are the locations of the grid points, a is the mid-point of the stratified layer,
yc is a Chebyshev collocation point,

y0 = 0.5
b

ln
[

1+ (eb − 1)a
1+ (e−b − 1)a

]
, (2.15)

and b is the degree of clustering; b = 8 is taken in this present study. The above
formulation gives an accuracy of at least five decimal places in the range of
parameters used.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

34
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.346


Two-layer channel flow 895

3. Formulation: two immiscible fluids separated by a sharp interface
3.1. Base state

For pressure-driven flow of two immiscible fluids separated by a sharp interface
(shown in figure 1b), the base-state velocity profile is given by

U1 = 1
2
(dP/dx)−1

eRs

[
dP
dx

y+ c3

]2

+ c4, (3.1)

U2 = dP
dx

y2

2
+ c1y+ c2, (3.2)

with subscripts 1 and 2 denoting the upper and lower layers, respectively. We
obtained (3.1) and (3.2) by integrating the steady, fully developed dimensionless
Navier–Stokes equations. Taking the undisturbed height of the interface to be h0,
the pressure gradient, dP/dx, and the integration constants, c1, c2, c3 and c4, are
obtained by solving the following simultaneous equations, which correspond to
no-slip conditions at the walls and balance of the tangential component of the stress
at the interface.

(dP/dx)−1

2eRs

{[
dP
dx

h0 + c3

]2

− c2
3

}
− 1

2
dP
dx

(
h0

2 − 1
)− c1 (h0 − 1)= 0,

c3 = c1, c2 =−1
2

dP
dx
− c1, c4 =− (dP/dx)−1

2eRsc2
1
.

 (3.3)

The pressure gradient, dP/dx, is obtained from the constant volumetric flow rate
condition, i.e., ∫ h0

0
U1 dy+

∫ 1

h0

U2 dy= 1. (3.4)

3.2. Linear stability analysis
We also examine the linear stability of the base state, obtained by solving (3.1)
and (3.2), to infinitesimal, two-dimensional disturbances. Each flow variable is
expressed as the sum of a base state and a two-dimensional perturbation,

(ũi, ṽi, P̃i)(x, y, t)= [Ui(y), 0, Pi
]+ (ûi, v̂i, p̂i

)
(x, y, t), (3.5)

with i= 1, 2. Similarly the height h of the interface can be expressed as

h(x, y, t)= h0 + ĥ with ĥ(x, t)= h̃ei(αx−ωt). (3.6)

Substituting (3.5) and (3.6) into the governing equations and following the same
procedure as before yields the following linear stability equations. In the lower layer:

iαRe[{v1
′′ − α2v1}(U1 − c)−U′′1v1] = v′′′′1 − 2α2v′′1 + α4v1. (3.7)

In the upper layer:

iαRe[{v2
′′ − α2v2}(U2 − c)−U′′2v2] = eRs[v′′′′2 − 2α2v′′2 + α4v2]. (3.8)
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The no-slip and no-penetration conditions at the walls can be written as

v1 = v1
′ = 0 at y= 0, (3.9)

v2 = v2
′ = 0 at y= 1. (3.10)

The kinematic boundary condition gives

h= v1

iα(U1 − c)
= v2

iα(U2 − c)
at y= h. (3.11)

The continuity of the velocity components across the interface is expressed as

v1
′ − iαhU1

′ = v2
′ − iαhU2

′ at y= h, (3.12)
v1 = v2 at y= h. (3.13)

The normal stress jump and continuity of the tangential stress balance in the
streamwise and spanwise directions are respectively given by

iαRe[{v2
′(c−U2)+U2

′v2} − {v1
′(c−U1)+U1

′v1}]
+ eRs[v2

′′′ − 3α2v2
′] − [v′′′1 − 3α2v′1] = α4Γ

(v2
′ − v1

′)
iα(U′2 −U′1)

at y= h, (3.14)

eRs[v2
′′ + α2v2] − (e

RsU2
′′ −U1

′′)
(U2 − c)

v2 = v1
′′ + α2v1 at y= h. (3.15)

Here Γ ≡ γH/µ1Q is an inverse capillary number, in which γ denotes the interfacial
tension. The complete derivation and linearisation of the stability equations can be
found in Sahu & Matar (2010). In this work, we set Γ to zero, because we wish to
compare the miscible and immiscible cases without the additional factor of surface
tension in the latter.

4. Budget of disturbance kinetic energy
An energy budget analysis can highlight the physical differences between the two

flows in their stability behaviour. A budget of disturbance kinetic energy, neglecting
the surface-tension and gravity, is given by

2ωi
1
λ

∫ b

a

∫ λ
0

E dx dy= 1
λ

∫ b

a

∫ λ
0

P dx dy+ 1
λRe

∫ b

a

∫ λ
0

D dx dy+ I, (4.1)

where λ≡ 2π/α. For fluid 1 and fluid 2 (a= h, b= 1) and (a= 0, b= h), respectively.
The kinetic energy, the rate of its production and the rate of dissipation are given
respectively by

E= 1
2
(u2 + v2), P=−uv

dU
dy
, (4.2a,b)

and

D= 2µ

[(
∂u
∂x

)2

+
(
∂v

∂y

)2

+ 1
2

(
∂u
∂y
+ ∂v
∂x

)2
]
. (4.3)

The viscous work done by the mean flow on the interface is given by

I = 1
λRe

∫ λ
0

[
u1τ

xy
1 − u2τ

xy
2

]
dx (at y= h), (4.4)
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wherein

τ xy =µ
(
∂u
∂y
+ ∂v
∂x

)
. (4.5)

Continuity of shear stresses implies that for the mean flow there is a jump in the slope
of U, i.e.,

U′1
∣∣

y=h = exp(Rs)U′2
∣∣

y=h, (4.6)

and for the disturbance
τ

xy
1

∣∣
y=h = τ2

∣∣yx

y=h = τ xy. (4.7)

Thus, equation (4.4) can be written as

I = 1
λRe

∫ λ
0
τ xy [u1 − u2] dx (at y= h). (4.8)

When the interface is being deformed, streamwise disturbance velocities of unequal
size are forced at the interface, i.e., u1 6= u2, due to which energy transfer occurs from
the mean flow to the disturbance. This quantity will remain positive even if the fluid
layers are interchanged (Boomkamp & Miesen 1996).

For miscible flow, we would have the same expressions for E, P and D, but
integrated across the entire channel, and of course I = 0.

Next we evaluate how miscible and immiscible two-fluid flows differ in their
stability behaviour. We then perform direct numerical simulations and show that
the nonlinear behaviour is consistent with the predictions of linear instability. The
simulations also help us to estimate how three-dimensional the flow is.

5. Results
5.1. Linear stability analysis

A log viscosity ratio of Rs> 1 gives rise to a velocity profile with a point of inflexion
for h < 0.5, as seen in figure 2. Such a profile is likely to be more unstable than
one without a point of inflexion, and therefore be the more interesting case, so we
restrict ourselves to positive values of Rs. A typical set of disturbance growth rates is
presented in figure 3. The growth rates of the most unstable eigenmode are plotted as
functions of the wavenumber, for different values of Reynolds number. The instability
behaviour for both miscible and immiscible two-fluid flows is shown in the same
figure. As is usual in shear flows, the instability gets more severe as the Reynolds
number increases. More remarkable is the fact that, for higher Reynolds numbers
(Re>200), the miscible flow is more unstable than the flow containing the immiscible
interface.

It is now accepted knowledge that shear flows of two or more fluids most often
become more unstable at high Schmidt numbers (when the diffusivity of one fluid
in another is very low). The expectation therefore would be that if we increase the
Schmidt number of the miscible flow, flow would become increasingly unstable. We
see in figure 4(a) that the behaviour is not monotonic with increased Schmidt number.
While the flow becomes more unstable as we increase the Schmidt number up to a
value of 100, a further increase in Sc decreases the growth rate of the most unstable
mode. For very high Sc, i.e. for Sc> 105, the behaviour of the most unstable mode
is the same as that of the immiscible flow. Thus the immiscible case is less unstable
than two-fluid flow of intermediate miscibility. We will show later in this section that
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FIGURE 3. (Colour online) Growth rates, ωi, of the most unstable disturbances as
functions of the wavenumber, α, for different values of the Reynolds number Re for
Sc= 10, q= 0.02, Rs= 1 and h= 0.15. The solid lines represent miscible flow, and the red
dotted lines represent the result for immiscible two-fluid flow, with the interface placed at
the same value of h, and with the same Rs. The symbols for a given Reynolds number
are the same for miscible and immiscible flows.
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FIGURE 4. (Colour online) The dispersion curves (ωi versus α) for different values of (a)
Sc for q = 0.02, and (b) q for Sc = 10. The rest of the parameter values are Re = 500,
Rs = 1 and h= 0.15. The dotted lines represent the results for the immiscible case.

the overlap of the mixed layer with the critical layer is the underlying mechanism
in the present system, which is characteristic of high Reynolds number flow. A non-
monotonic response to changes in the Schmidt number was also obtained by Ern et al.
(2003) in Couette flow at low Reynolds number, but their mechanism was not the
same as this one, as will be discussed below.

Another parameter which is known to affect flow stability significantly is the
thickness q of the mixed layer. In figure 4(b), we see that as the mixed layer is made
thinner, the growth rate of the dominant instability increases. This is as expected,
and is caused by the fact that as q decreases, the viscosity gradient becomes sharper,
making the stability operator more singular. In this figure, Sc= 10 is used as a typical
example. It can be seen that the growth rate remains sensitive to q at all values of
q that we have considered. Here too it can be observed that the dispersion curve for
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FIGURE 5. (Colour online) Dispersion curves (ωi versus α) for different values of (a) h
for Rs = 1, (b) Rs for h= 0.3. The rest of the parameter values are Re= 500, Sc= 100
and q = 0.01. The red dotted lines show the corresponding growth rates in the case of
immiscible flow.

the immiscible flow (shown by the dashed line) is well below the dispersion curves
of the miscible system for q 6 0.05. This figure is for a Reynolds number of 500,
but we have repeated all our calculations at a Reynolds number of 1000 as well (not
shown), and the behaviour is qualitatively the same. Again, when the layer is thin
enough, the flow of intermediate miscibility is significantly more unstable than the
immiscible case.

In figure 5(a), we investigate the effect of h, the height of the mixed layer from the
bottom wall. When the interfacial layer is close to the bottom or top walls, the flow
is stabler than when the mixed layer is near the middle, and a value of h∼ 0.3 is the
least stable. The response to the location of the interfacial layer is thus non-monotonic.
For h< 0.4 we see that the miscible flow is more unstable than the immiscible. It can
be seen in figure 5(b) that immiscible flow is not very sensitive to viscosity ratio, but
disturbances in miscible flow grow much faster at higher viscosity ratios. For all the
viscosity ratios considered, it is seen that the miscible flow is more unstable than the
corresponding immiscible flow. Taking into consideration all the linear stability results,
we see that our finding that the miscible flow (at intermediate levels of miscibility) is
more unstable than the immiscible flow is a general result for high Reynolds number
channel flow of two fluids.

In order to investigate the instability mechanism, neutral stability curves for
different values of Sc and h are plotted in figures 6(a) and 6(b), respectively. The
standard Tollmien–Schlichting mode contributes a region of instability, seen on the
extreme right of the plots, i.e., at high Reynolds number. In addition, a distinct
region of instability is observed, which grows in size with increasing Schmidt
number (figure 6a). The phase speed in this regime is close to the mean velocity
in the mixed-fluid layer (we shall return to this point in figure 7). Note that the
neighbourhood of thickness O(R−1/3), where the phase speed of the dominant
disturbance is close to the mean velocity, is the critical layer where most of the
disturbance kinetic energy is produced. It was shown in Govindarajan (2004) for
a three-layer channel flow that the above condition, of an overlap between the
critical layer with the mixed layer, contributes to a singular perturbation term in the
stability operator. The resulting new mode of instability was termed the ‘overlap’
mode. The energy production is interfered with in a major way by this overlap.
Since this instability is inherently inertial it is distinct from the modes obtained by
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FIGURE 6. (Colour online) Neutral stability curves for different values of (a) Sc for h=
0.8, and (b) h for Sc= 1000. The rest of the parameter values are Rs = 0.6 and q= 0.05.
For the boundaries which appear as closed curves, the region contained within is unstable,
and the outside is stable. For the open curves, the region to the right is unstable, and
that to the left is stable. The curves at high Reynolds number (of approximately 10 000,
where α∼2) correspond to the Tollmien–Schlichting mode of instability, whereas the other
curves correspond to the overlap mode, as defined in Govindarajan (2004).

Talon & Meiburg (2011) for Stokes flow. Besides the fact that Talon & Meiburg
found a similarity between their instability and that of Ern et al. (2003), we may
check directly whether there is an overlap mechanism operational in the latter. It can
be checked that the critical layer obtained by Ern et al. (2003) is well below their
mixed layer. Thus the instabilities observed by Talon & Meiburg (2011) and Ern
et al. (2003) are not overlap modes. In fact in Stokes flow, the dissipation of the
overlap mode would be infinite and energy production could never exceed dissipation
in order to make the flow unstable.

It is seen in figure 6(b) that the overlap mode displays a distinct region of instability
when h > 0.7, whereas for lower values of h a much larger region is unstable, and it
is difficult to distinguish the ‘overlap’ mode anymore, except that it can be recognised
by an apparent kink in the neutral boundary. This behaviour is observed over a range
of parameters, and an example at low Sc is shown in figure 7(a) for Rs = 1, h= 0.2
and q = 0.05. To verify whether some part of the neutral boundary corresponds to
an overlap mode of instability, we examine figure 7(b), which represents behaviour
along the lower limb of the neutral stability boundary of figure 7(a). The distance
between the centres of the mixed layer and the critical layer is the quantity h − ycr.
This quantity is plotted versus Reynolds number along the lower limb of the neutral
stability boundary in this figure. The width of the critical layer may be estimated as
∼(U′crReα)−1/3, and this is denoted by the region within the red lines. It is now evident
that different modes of instability are in operation on either side of the kink seen
in the neutral stability boundary in figure 7(a). The neutral mode at low Reynolds
numbers has a small distance between ycr and h. In fact this distance is seen to be
smaller than the critical layer thickness over a range of Reynolds numbers, indicating
that overlap effects must be in operation at the lowest order. At high Reynolds number
however (beyond the kink, coming downwards along the neutral boundary), a sudden
jump is seen in h− ycr, and this difference is greater than the critical layer thickness,
indicating that different physics is operational there.
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FIGURE 7. (Colour online) (a) Neutral stability curves, (b) ycr − h versus Re along the
lower limb of the neutral stability curves (shown in (a)). Without symbols: Sc= 0.01, with
symbols: Sc= 1. The rest of the parameter values are Rs = 1, h= 0.2 and q= 0.05. The
regions contained within the red lines correspond to an order of magnitude estimate of
the critical layer thickness ±(U′crReα)−1/3/2. Here ycr is the location of the critical layer,
i.e. the y at which U = cr.

The production of disturbance kinetic energy is examined next for the intermediate
Schmidt number case of figure 3. The variations of the disturbance kinetic energy
rate E, the production rate P and the dissipation rate D across the channel are
displayed in figures 8(a), 8(b) and 8(c), respectively. At Rs= 1, the maximum growth
rate in both miscible and immiscible flows occurs at a wavenumber α ∼ 4.5, so
the most dangerous mode at α = 4.5 is chosen to do this energy budget analysis.
The kinetic energy production is seen in figure 8(c) to peak close to the location
of the mixed layer, indicating that overlap effects are in operation. The difference
between the production and the dissipation rates, which gives, in the miscible flow
case, the change disturbance kinetic energy per unit time, is shown in figure 8(d).
The production and the dissipation in the portions of the channel away from the
interfacial or mixed layer are very similar in the two flows. The major difference is
apparent in the vicinity of the interfacial or the viscosity stratified layer. It is clear
that the net production P − D in the miscible case exceeds that in the immiscible
case in the mixed region. The immiscible flow has an additional contribution I to
disturbance growth. We denote by E , P and D the integrals of E, P and D across
the channel from wall to wall. It is seen from (4.1) that the growth rate is given by
2ωi = (P −D + I)/E . P , D and I normalised with E for the immiscible case are
0.7479, −0.6054 and 1.03423, respectively. This gives the growth rate ωi,max= 0.5878,
where the subscript max stands for the maximum growth rate of the fastest-growing
mode. For the miscible case: the values of P and D normalised with E are 5.6366
and −3.5407, respectively, giving ωi,max= 1.045. It is thus seen that the net production
minus dissipation on disturbance kinetic energy in the miscible case is larger than
the contribution of all terms in the immiscible case.

5.2. Three-dimensional numerical simulations
5.2.1. Numerical method

For miscible systems, equations (2.3)–(2.5) are solved by a finite-volume approach
(Ding, Spelt & Shu 2007) using a staggered grid discretisation, i.e. the scalar variables
(the pressure and concentration of the scalar) and the velocity components are defined
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FIGURE 8. (Colour online) Variation of (a) kinetic energy E, (b) dissipation rate. The
negative (−D) is shown to help viewing. (c) Production rate P and (d) P−D of the most
dangerous disturbance mode (α= 4) in the wall-normal direction for Re= 500. The rest of
the parameters are the same as those used to generate figure 3. The values of P , D and I
normalised with E for the immiscible case are 0.8458, −1.0745 and 1.1326, respectively;
ωi,max = 0.2159. For the miscible case, the values of P and D normalised with E are
4.5379 and −1.9227, respectively; ωi,max = 0.3269.

at the centre and at the cell faces, respectively. The discretised convection-diffusion
equation of s0 is given by

3
2 s0

n+1 − 2s0
n + 1

2 s0
n−1

1t
= 1

ReSc
∇2s0

n+1 − 2∇ · (uns0
n)+∇ · (un−1s0

n−1), (5.1)

where 1t = tn+1 − tn and the superscript n represents the time step. The advective
terms, i.e. the nonlinear terms in (2.5) are discretised using a weighted essentially non-
oscillatory scheme, and a central difference scheme is used to discretise the diffusive
terms on the right-hand side of (2.4)–(2.5). Second-order accuracy in the temporal
discretisation is obtained by employing the Adams–Bashforth and the Crank–Nicolson
methods for the advective and second-order dissipation terms in (2.4), respectively.
This discretised form of (2.4) is given by

u∗ − un

1t
= 1

pn+1/2

{
−
[

3
2
H (un)− 1

2
H (un−1)

]
+ 1

2Re

[
L (u∗, µn+1)+L (un, µn)

]}
,

(5.2)
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where u∗ is the intermediate velocity, and H and L denote the discrete convection
and diffusion operators, respectively. The intermediate velocity u∗ is then corrected to
(n+ 1)th time level.

un+1 − u∗

1t
=∇pn+1/2. (5.3)

The pressure distribution is obtained from the continuity equation at time step n+ 1
using

∇ ·
(
∇pn+1/2

)= ∇ · u∗
1t

. (5.4)

For the corresponding immiscible system, a diffuse interface method based on Ding
et al. (2007) is used. In this case, instead of the diffusion equation (i.e. (2.5)), the
Cahn–Hilliard equation, given by

∂s0

∂t
+ u · ∇s0 = 1

ReSci
∇ · (M∇φ), (5.5)

where Sci ≡ µ1/(ρMcφc), is solved. Here Mc and φc are the characteristic values of
mobility and chemical potential, φ (≡ ε−1σαΨ ′(s0)− εσα∇2s0), respectively, wherein
ε is the measure of interface thickness, Ψ (s0) = s0

2(1 − s0)
2/4 is the bulk energy

density and α is a constant.
The above discretised equations are solved by employing the no-slip and the

no-penetration boundary conditions for the velocity components and no-flux condition
for concentration (s0) at the walls, and periodic boundary conditions in the axial
and lateral directions. The pressure gradient is kept the same as that of the stability
analysis conducted in the previous section. A domain with 321, 81 and 161 cells
in the axial x, wall-normal y and spanwise z, directions, respectively, are used in
the simulations. Grid refinement tests have been conducted to ensure that we obtain
grid-converged results. The numerical procedures described above for miscible and
immiscible systems are similar to the ones used by Ding et al. (2007). The reader is
referred to this paper for detailed descriptions and validation of the solvers.

In figure 9, we compare the maximum value of the wall-normal velocity component,
vmax, obtained from our direct numerical simulations with that obtained from linear
stability analysis for Re= 500, Sc= 100, Rs = 2, h= 0.3 and q= 0.01. The miscible
and immiscible simulations are conducted inside a channel with a length that is twice
the wavelength of the most dangerous mode obtained from linear stability analysis
(α = 4 for this set of parameter values). If we were to prescribe the dominant
perturbation mode in the initial conditions, we would expect this perturbation to grow
in consonance with linear theory at early times. We choose to study the harder case,
i.e. one in which we prescribe no initial perturbation. Thus all modes of perturbation
are equally initialised, so the dominant one will need time to become visible and
to grow in accordance with linear theory. In the miscible case, we see that at some
time (after t = 1), the growth rate of the disturbance in the numerical simulations
is close to that of the dominant mode predicted by linear theory (seen by the fact
that the two lines are parallel). In the immiscible case, the dominant mode is not
distinguishable by its linear growth rate at any time, indicating that nonlinear effects
dominate the entire process. In the nonlinear regime too, it can be observed that
the miscible flow with finite Schmidt number is more unstable than the immiscible
flow. The subsequent three-dimensional plots (figures 10 and 11) convey the same
information but in pictorial form of an iso-concentration contour.
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FIGURE 9. Comparison of the temporal evolution of the vertical perturbation obtained
from linear stability analysis (solid lines) and direct numerical simulations (dashed lines).
Miscible flow: symbols; immiscible flow: no symbols. The rest of the parameter values
are Re= 500, Sc= 100, Rs = 2, h= 0.3 and q= 0.01.
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FIGURE 10. (Colour online) Temporal evolution of (a,c,d,g,h) s= 0.5 contour for miscible
flow with q= 0.05, Sc= 100; (b,e, f,i,j) interface for the immiscible case. (a,b) t= 4, (c–f )
6 and (g–j) 10. The rest of the parameter values are h= 0.3, Re= 500 and Rs = 2. The
flow is along the positive x direction. The side panels at t=6 are the cross-sectional views
in the x–z plane at y= 1, and those at t= 10 are the cross-sectional views in the y–z plane
at x= 3.
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FIGURE 11. (Colour online) Temporal evolution of (a,c,e, f,i) s= 0.5 contour for miscible
flow with q= 0.01, Sc= 100; (b,d,g,h,j) interface for the immiscible case. (a,b) t= 3, (c,d)
5, (e–h) 7 and (i,j) 9. The rest of the parameter values are h= 0.4, Re= 500 and Rs = 2.
The flow is along the positive x direction. The insets at t = 7 represent cross-sectional
views in the x–z plane.

A few cases were computed, of which we present results for a Reynolds number
of Re= 500 and Rs = 2 as being representative. The spatio-temporal evolution of the
interface separating the fluids in the immiscible flow (q= 0, Sc=∞) and the s= 0.5
contour for the miscible flow (Sc = 100) for q = 0.01, h = 0.4 and q = 0.05, h =
0.3 are presented in figures 10 and 11, respectively. A computational domain of size
4× 2× 1 is used for these simulations, wherein velocity components are set to zero
initially. Given the constraints of numerical accuracy, we did not perform simulations
with thinner mixed layers. It can be seen in figure 10(a,c,d,g,h) that the miscible flow
becomes unstable, and rolled-up structures are obtained, which can be observed at t=
6 in the contour of s=0.5. At later times the nonlinear instability develops an irregular
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lateral structure too (see the side panel at t= 10 in figure 10g,h). However, it can be
seen in figure 10(b,e, f,i,j) that the interfacial flow becomes unstable at a time much
later than the corresponding miscible flow. Secondly, the immiscible flow remains two-
dimensional in the regime where the miscible flow has become three-dimensional. For
h= 0.4 (figure 11) the contrast is even more pronounced; in this case the interfacial
flow is stable till t= 9, whereas the miscible flow becomes unstable at t≈ 5. At early
times this behaviour is consistent with that obtained in the linear stability analysis,
and at later times it is seen that the tendency for the immiscible flow to remain less
unstable than the miscible persists into the nonlinear regime as well.

6. Discussion and summary
In the present study, we have investigated the difference between interfacial flow

instabilities (without surface tension) with a viscosity jump across the interface,
and instabilities associated with two-layer miscible channel flow of two fluids with
different viscosities. We show that in this flow too, an overlap mode of instability,
seen before in other miscible flow configurations (Govindarajan & Sahu 2014) is
dominant, where the mixed layer overlaps significantly with the critical layer of the
dominant disturbance. This means that the lower-order terms in the critical layer
balance get disturbed by the viscosity variation in the mixed layer and contribute
to significant changes in the stability behaviour. The overlap mode of instability is
produced by an inertial effect, and is driven by different physics from instabilities seen
before in this flow under zero Reynolds number conditions. In fact the overlap mode
of instability will necessarily vanish at zero Reynolds number. At Reynolds numbers
of order 1 or lower, the critical layer is as wide as the flow, and is thus unable
to produce singular effects. Interestingly the overlap mode of instability becomes
operational at relatively low Schmidt numbers and low viscosity ratios, unlike the
mechanisms in operation at very low Reynolds number, which are triggered by high
viscosity ratio and poor diffusivity.

We have studied how decreasing the diffusivity of the fluids takes the results closer
to the immiscible case. Above a Schmidt number of ∼105, the behaviour of the
miscible layer is very close to that of the immiscible. At moderate Schmidt number,
of up to 100, we find that the channel flow of two miscible fluids can be more
unstable than the case where the two fluids are immiscible. The increase in the
disturbance growth rate due to finite diffusivity is not too large, but makes a point
of principle which needs further investigation. Whether this effect at high Reynolds
number has any connection with the destabilisation due to diffusivity seen at very
low Reynolds numbers by Ern et al. (2003) is not established yet, but as discussed
above we have strong reasons to believe that the two are completely different.

As expected, increasing the Reynolds number destabilises the flow. We find that
increasing the viscosity contrast between the two fluids does not have any significant
effect on instability characteristics in the immiscible case, but significantly increases
the growth rate for the miscible two-layer flow. Reducing the thickness of the mixed
layer increases the growth rate, as expected. Thus for thin mixed layers at intermediate
diffusivity, the increase in instability as compared to the immiscible case is larger.
Varying the location of the mixed layer or the interface has an effect on the stability.
In some range of this parameter, distinct regions of overlap instability are obtained,
whereas in others, the instability regions due to different mechanisms merge with each
other.

The miscible two-layer channel flow has not been studied earlier in the nonlinear
regime to our knowledge, and we therefore conduct direct numerical simulations for
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both the miscible and immiscible cases. At a Schmidt number of 100, linear stability
analysis predicts a faster growth rate for the miscible than for the immiscible. This is
borne out by the simulations. Also, we see that nonlinear effects on the immiscible
flow are visible at earlier times than in the miscible, and the rate at which we see the
interface roll-up can be made much slower by immiscibility, or even suppressed.
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Appendix A. Validity of the parallel flow assumption
Consider a situation in which a splitter plate is located at x< x0, at a constant y, and

parallel streams of two miscible fluids flow on both sides of this plate. The streams
come into contact with each other at x= x0. The two fluids begin to mix with each
other for x> x0, thus producing a stratified layer. The thickness, q, of this layer grows
as the fluids move in the downstream direction and therefore q is a function of x. We
note that the flow diffuses as it moves downstream but does not diffuse in time at one
x location, i.e., the base flow is steady in time.

We know that at any location, the concentration s0 satisfies the following equation,

∂s0

∂t
+U

∂s0

∂x
+ V

∂s0

∂y
= 1

ReSc

[
∂2s0

∂x2
+ ∂

2s0

∂y2

]
. (A 1)

For slow diffusion (i.e for high Pe≡ ReSc), we can make the assumption on locally
parallel flow (variation of s0 in the y direction is much larger than that in the x
direction); thus V � U and ∂2/∂x2 � ∂2/∂y2. This is equivalent to saying that the
variations of the gradients of the flow variables and the thickness q of the mixed
region have much larger length scale than the disturbance wavelength. In such a
scenario, the concentration is a function of y and t only and not of x. Thus the above
equation reduces to

∂s0

∂t
= 1

Pe
∂2s0

∂y2
. (A 2)

Using the same approximation, we know that U ∼ O(1), y ∼ √ν, where ν is the
kinematic viscosity, as the viscosity is directly proportional to the concentration in the
mixed layer. Therefore, qs0 ∼ O(y2). This implies that ∂s0/∂x' (1/q)O(1/Pe). Thus
for Pe� 1, ∂s0/∂x is very small, i.e., the downstream variation of s0 is very small
which in turn implies that the change in the thickness of the mixed layer (q) along
the x-direction is very small.

Alternatively, if we assume a similarity solution s0(y/q(x)) ' s(ξ) (where ξ =
(y/q(x))), from (A 1), we get

U
ds0

dξ

(
−ξ

q
dq
dx

)
' 1

Pe

(
d2s0

dξ 2

1
q2

)
. (A 3)

As a consequence,
1
q

dq
dx
∼ 1

q2Pe
⇒ dq

dx
∼ 1

q
O(Pe)−1. (A 4)

Thus, the downstream growth of the mixed layer is inversely proportional to the
Péclet number as U and ξ are of O(1), and O(ds0/dξ) ' O(d2s0/dξ 2). For most of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

34
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.346


908 K. C. Sahu and R. Govindarajan

0 0.2 0.4 0.6 0.8

Present
Error function

1.0 0 2 4 6 8 10
 0.20

0.25

0.30

0.35

0.40

0.15

0.30

0.45

y

(a) (b)

FIGURE 12. (Colour online) (a) S0 profile, (b) the dispersion curve (ωi versus α) obtained
using the present base state and an error function profile. The other parameters are chosen
as Re= 500, Sc= 10, Rs = 1, h= 0.3 and q= 0.1.

the simulations considered in the present study, Pe > 1000, Re > 100 and q > 0.05;
these parameter values are well above the limit for which parallel flow assumption
is valid. This confirms that for the Reynolds and the Schmidt numbers considered in
the present study, the assumption of uniform thickness of the viscosity stratified layer
is justified.

Now, the solution of (A 2) is an error function, and the fifth-order polynomial is a
good representation of this, as seen in figure 12(a) in this response. The growth rates
obtained using an error function type profile and the fifth-order polynomial used in
the present study are compared in figure 12(b). It can be seen that they too agree
very well.

We also note that such basic flows are commonly used in stability studies. Several
authors have used the same logic to give a basic concentration profile in the form of
a hyperbolic tangent (Ern et al. 2003) or an error function (e.g. Selvam et al. 2009;
Talon & Meiburg 2011), given by

s0 = 0.5− 0.5erf
[

y− h− 0.5q
q

]
. (A 5)

Some have also used a fifth-order polynomial (see e.g. Malik & Hooper 2005) which
is smooth enough to approximate either profile.

In summary, the disturbance wavelength is much shorter than the downstream length
scale over which the mixed-layer thickness registers any growth, so it is justifiable to
use locally a constant-thickness approximation.
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