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We give an algorithm allowing the construction of bases of local unitary invariants of pure

k-qubit states from a knowledge of the polynomial covariants of the group of invertible

local filtering operations. The simplest invariants obtained in this way are made explicit and

compared with various known entanglement measures. Complete sets of generators are

obtained for up to four qubits, and the structure of the invariant algebras is discussed in

detail.

1. Introduction

From a mathematical point of view, Quantum Information Theory deals with finite

dimensional Hilbert spaces, the state spaces of finite k-partite systems, which have the

special form
H = V1 ⊗ V2 ⊗ · · · ⊗ Vk, (1)

where Vi is the finite dimensional state space of the ith part (or particle) of the system,

which is usually assumed to be a qubit, which means that dim Vi = 2.

The interesting non-classical behaviours on which the theory is based already occur for

two-qubit systems with the so-called entangled states – those ψ ∈ V1 ⊗ V2 that cannot

be written in the form v1 ⊗ v2. The properties of such states are the basis of the EPR

paradox (Einstein et al. 1935), and since its discovery, the entanglement phenomenon has

been thoroughly investigated by physicists, see Bell (1966), Clauser et al. (1969), Aspect

et al. (1982) and Bennett and Wiesner (1992), and more recently by mathematicians, see, for

example, Brylinski and Brylinsky (2002), Klyachko (2002) and Meyer and Wallach (2002).

There is, however, no general agreement on the definition of entanglement for systems

with more than two parts. Klyachko has proposed (Klyachko 2002; Klyachko and

Shumovsky 2003) that we regard as entangled the states that are semi-stable for the action

of the group of invertible local filtering operations, also called SLOCC§,

G = SL(V1) × · · · × SL(Vk) (2)

in the sense of geometric invariant theory, which means those states on which at least one

non trivial G-invariant polynomial does not vanish. The point of introducing geometric

§ This stands for Stochastic Local Operations assisted with Classical Communication.
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invariant theory is that this theory provides methods for characterising such states without

explicitly computing the invariants. In order to explore the significance of this property,

the invariants have been made explicit in the simplest cases (completely for up to 4

qubits, and 3 qutrits, with partial results for 5 qubits (Luque and Thibon 2003; Luque

and Thibon 2005; Osterloh and Siewert 2005)).

One would also like to quantify entanglement. The non-locality properties of an

entangled state does not change under unitary operations acting independently on each of

its sub-systems. The idea of describing entanglement by means of local unitary invariants

is explored in Grassl et al. (1998), see also Schlienz and Mahler (1996; 1995). However,

except for the simplest systems, there are far too many orbits and a complete classification

is out of reach.

An intermediate possibility is to look at the G-orbits. A knowledge of the G-invariant

polynomials is not sufficient to separate the G-orbits, and, in general, one has to look

for the covariants in the sense of classical invariant theory. The orbit structure for qubit

systems is known for up to 4 qubits (Verstraete et al. 2002), see also Osterloh and

Siewert (2004).

The algebra of G-covariants for 4 qubits was investigated in Briand et al. (2003), and

a complete set of generators was given.

In the present paper, we will explain how these results can be applied to the calculation

of bases of unitary invariants. As an application, we compute bases of the spaces of local

unitary and special unitary invariants of degree 4 of k qubits for arbitrary k, and recover

the results of Grassl (2002) for 3 and 4 qubits.

The paper is organised as follows. In Section 3 we recall some background on SLOCC

covariants and describe a method allowing us to obtain local unitary (LUT) and special

unitary (LSUT) invariants from them. Section 4 is devoted to the computation of the

simplest LUT and LSUT invariants from SLOCC covariants. Finally, we give some

examples and applications in Section 5.

2. Invariants and covariants of qubit systems

2.1. Group actions on state spaces

Let V = � 2 be the local Hilbert space of a two-state system (a qubit), and H = V⊗k be

the state space of a system of k qubits. We shall regard it as the natural representation of

the group G = GSLOCC = SL(2,� )k , known in quantum information theory as the group

of reversible local filtering operations, or stochastic local quantum operations assisted by

classical communication (SLOCC) (Bennett and Wiesner 1992; Dür et al. 2001). This is

a semisimple complex Lie group, whose representation theory follows immediately from

that of SL(2,� ). The maximal compact subgroup of G is K = GLSUT = SU(2)k , the group

of local special unitary transformations. We shall also be interested in arbitrary local

unitary transformations, which form the group U = GLUT = U(2)k .

If |j〉, j = 0, 1 is a basis of V , a state |Ψ〉 can be written as

|Ψ〉 =

1∑
i1 ,...,ik=0

ai1i2···ik |i1i2 · · · ik〉 (3)
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where, as customary in the physics literature,

|i1i2 · · · ik〉 = |i1〉 ⊗ · · · ⊗ |ik〉. (4)

It will be convenient to interpret such a state as a multilinear form

f(x) = f(x(1), . . . , x(k)) =

1∑
i1 ,...,ik=0

ai1i2···ik x
(1)
i1

· · · x(k)
ik
, (5)

where x(j) = (x(j)
0 , x

(j)
1 ) are pairs of variables.

The action of a k-tuple of matrices g = (g(1), . . . , g(k)) on the various vector spaces

introduced so far is defined by gx = x′, x′(i) = g(i)x(i), and the components a′
i1i2···ik of

f′ = gf are defined by the condition∑
i1 ,...,ik

ai1i2···ik x
(1)
i1

· · · x(k)
ik

=
∑
i1 ,...,ik

a′
i1i2···ik x

′(1)
i1

· · · x′(k)
ik
. (6)

In the following we shall be interested in LUT and LSUT invariants of a state |ψ〉, that

is, polynomial functions I(a, ā) in the components of |ψ〉, such that

I(a, ā) = I(a′, ā′) (7)

where a′
i1···ik are the components of f′ = gf for g a LUT or a LSUT. Our main point

will be the application of the SLOCC invariant theory to the calculation of such unitary

invariants.

2.2. SLOCC invariants

The SLOCC invariants are the holomorphic polynomials I(a) such that I(a) = I(a′) for

g ∈ GSLOCC. Of course, the squared modulus |I |2 of a SLOCC invariant is an LSUT

invariant, but only a small subset of unitary invariant are of this form.

The methods of classical invariant theory can be applied to the determination of

the SLOCC invariants of k qubits for small k. An important preliminary step is the

determination of the Hilbert series

h(t) =
∑
d�0

td dim Sd(H)GSLOCC , (8)

which is the generating series of the dimension of the space of homogeneous polynomial

invariants of degree d.

For k = 3, the only fundamental polynomial invariant of three qubits has been known

since the nineteenth century – it is the Cayley hyperdeterminant (Le Paige 1881), see also

Miyake (2003):

Det(A) = (a2
000a

2
111 + a2

001a
2
110 + a2

010a
2
101 + a2

011a
2
100)

− 2(a000a001a110a111 + a000a010a101a111 + a000a011a1000a1111

+ a001a010a101a110 + a001a011a110a100 + a010a011a101a100

+ 4(a000a011a101a110 + a001a010a100a111)

https://doi.org/10.1017/S0960129507006330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006330


J.-G. Luque, J. Y. Thibon and F. Toumazet 1136

The polynomial invariants of four qubits were constructed in Luque and Thibon (2003).

Here, the Hilbert series is

h(t) =
1

(1 − t2)(1 − t4)2(1 − t)6
. (9)

For five qubits, the Hilbert series and a few fundamental invariants were given in Luque

and Thibon (2005).

2.3. Covariants

In order to construct the invariants, as well as for the more difficult problem of classifying

the orbits, we need the classical notion of a covariant. A covariant Φ of f is a multi-

homogeneous GSLOCC-invariant polynomial in the form coefficients ai1 ...ik and in the original

variables x(i)
j , that is, an invariant in some space

Φ ∈ S (d)(H) ⊗ Sα1 (V ∗) ⊗ · · · ⊗ Sαk (V ∗), (10)

where α is the multidegree of Φ in the x(i)
j .

Clearly, a covariant can be interpreted as an equivariant map uΦ from the irreducible

representation

Sα(V ) := Sα1 (V ) ⊗ · · · ⊗ Sαk (V ) (11)

of G to Sd(H). Such a map is uniquely determined by the image of the highest weight

vector vα of Sα(V ). This highest weight vector is the coefficient of the highest monomial in

Φ, classically called the source of the covariant. The coefficients of the other monomials

form a basis of weight vectors in the image of uΦ.

The covariants form an algebra, which is naturally graded with respect to d and α. We

use Cd;α to denote the corresponding graded pieces. Knowledge of their dimensions cd;α
is equivalent to the decomposition of the character of Sd(H) into irreducible characters

of G, and knowledge of a basis of Cd;α allows us to write down a Clebsch–Gordan series

with respect to G for any polynomial in a. Also, it is known that the equations of any

G-invariant closed subvariety of the projective space �(H) are given by the simultaneous

vanishing of the coefficients of some covariants.

The book Olver (1999) provides a modern introduction to classical invariant theory.

3. LUT-invariants from SLOCC-covariants

3.1. General construction

A generating set of the algebra of the polynomial covariants for the action of the SLOCC

group can, in principle, be computed by a slight adaptation of the classical method (the

Cayley Omega process, see, for example, Olver (1999)). The covariants can be obtained

recursively from the simplest one (the ground form f)

f =
∑
i1···ik

ai1···ik x
(1)
i1

· · · x(k)
ik
, (12)
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by iterating an operation called transvection, defined by

(Ψ,Φ)ε1···εk = tr Ωε1
x(1) · · · Ωεk

x(k)Ψ(x′(1)
, . . . , x′(k))

× Φ(x′′(1)
, . . . , x′′(k))

(13)

where

Ωx = det

∣∣∣∣∣
∂
∂x′

0

∂
∂x′

1

∂
∂x′′

0

∂
∂x′′

1

∣∣∣∣∣ (14)

and tr : x′, x′′ → x.

In practice, obtaining a description of the algebra in terms of generators and syzygies

seems to be beyond reach for more than four qubits (Briand et al. 2003; Luque and

Thibon 2005). Nevertheless, it may be always possible to compute the smallest covariants

with relevant geometric properties.

As already mentioned, a basis Covk of the space of the polynomial SLOCC-covariants

can be identified with a basis of highest weight vectors in the symmetric algebra S(H),

so that one can write

S(V⊗k) =
⊕
φ∈Covk

Vφ,

where Vφ denotes the irreducible representation of G whose highest weight vector

corresponds to the covariant φ.

Polynomial invariants under LUT and LSUT live in S(V⊗k) ⊗ S(V ∗⊗k) and hence in⊕
φ,φ′∈Covk
degφ=degφ′

(
Vφ ⊗ V ∗

φ′
)LUT

(15)

and

⊕
φ,φ′∈Covk

(
Vφ ⊗ V ∗

φ′
)LSUT

, (16)

respectively, where degφ denotes the degree of φ in the variables ai1 ...ik .

Note that if φ is a covariant whose multidegree in the auxiliary variables is (n1, . . . , nk),

the corresponding irreducible representation is

Vφ � Sn1
(
� 2

)
⊗ · · · ⊗ Snk

(
� 2

)
. (17)

If φ and φ′ are two polynomial covariants whose respective multidegrees are (n1, . . . , nk)

and (m1, . . . , mk), then Vφ ⊗ V ∗
φ′ contains polynomial invariants under LUT (and LSUT)

if and only if n1 = m1, . . . , nk = mk . Moreover, combining the previous abstract nonsense

identifying covariants with G-highest weight vectors and G-equivariant maps, and the

canonical antilinear isomorphism of a Hilbert space with its hermitian dual implies the

following result.

Proposition 3.1. Using Φα
d,i to denote a basis of SLOCC covariants of degree d in the

entries of the tensor and multidegree α in the auxiliary variables, we have:

1 The scalar products 〈Φα
d,i|Φα

d,j〉 with respect to the auxiliary variables, the ai1 ...ik being

regarded as scalars, form a basis of the space of LUT invariants.
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2 Similarly, the scalar products 〈Φα
d,i|Φα

d′ ,i〉 (where d′ is not necessarily equal to d), form

a basis of the space of LSUT invariants.

The hermitian scalar product induced by the one of V can be calculated by the formula

〈x1 · · · xm|y1 · · · ym〉 = perm
(
〈xi|yj〉

)
if 〈xi|yj〉 = 1 when xi = yj and 0 otherwise.

This property should be of interest for the study of entanglement measures, which are

special LSUT invariants. Indeed, expressing such a measure as a simple combination of

scalar products of covariants with known geometric properties might lead to interesting

insights.

In the rest of the paper, we will use CovSLOCC(k), InvLUT, and InvLSUT to denote the algebra

of polynomial SLOCC-covariants, LUT-invariants and LSUT-invariants, respectively.

Note that these algebras are multigraded. The space of multihomogeneous SLOCC-

covariants (respectively, LUT-invariants, LSUT -invariants) of degree n in the ai1···ik and

d = (d1, . . . , dk) in the auxiliary variables (respectively, degree n in the ai1···ik ’s and the ai1···ik ’s,

degree n1 in the ai1···ik ’s and degree n2 in the ai1···ik ’s) will be denoted by CovSLOCC(k; n; d)

(respectively, InvLUT(k; n), InvLSUT(k; (n1, n2))).

3.2. Hilbert series

From Proposition 3.1, we see that a knowledge of the Hilbert series of the SLOCC-

convariants allows us to compute the Hilbert series of the LUT and LSUT-invariants. We

will use

hSLOCC(k; z; u) =
∑

dimCovSLOCC(n; k; d)znud, (18)

where ud = ud1

1 · · · udkk , to denote the Hilbert series of InvSLOCC. The Hilbert series of the

algebras InvLUT and InvLSUT are obtained from hSLOCC(k; z; u) by the formulae

hLUT(k; z) =
∑
n

dim InvLUT(k; 2n)z2n

= hSLOCC(k; z
2; u) 
 hSLOCC(k; z

2; u)
∣∣
ui=1

= CTz,u1 ,...,uk

{
hSLOCC(k; zt; (u1, . . . , uk))hSLOCC

(
k;
z

t
; (u−1

1 , . . . , u−1
k

)}
, (19)

where 
 denotes the Hadamard product of the power series ring � [[z, u1, . . . , uk]] (that

is, uα 
 uβ = δαβu
α), and CTx1 ,...,xnf means the constant term of the series f with respect to

the variables x1, . . . , xn.

Similarly, we have

hLSUT(k; z) =
∑
n1 ,n2

dim InvLUT(k; (n1, n2))z
n1zn2

= hSLOCC(k; z; u) 
� [[z,z]] hSLOCC(k; z; u)|ui=1

= CTu1 ,...,uk

{
hSLOCC(k; z; (u1, . . . , uk)hSLOCC(k; z; (u−1

1 , . . . , u−1
k )

}
, (20)

where 
� [[z,z]] denotes the Hadamard product in � [[z, z]][[u1, . . . , uk]] (that is, considering

� [[z, z]] as the ring of scalars).
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Hence,

dim InvLUT(k; 2n) =
∑

d

(dim CovSLOCC(n; k; d))2 (21)

and

dim InvLSUT(k; (n1, n2)) =
∑

d

dim CovSLOCC(n1; k; d) dim CovSLOCC(n2; k; d). (22)

Classical methods of invariant theory allow us to express the Hilbert series of algebras of

covariants as a constant term (see Briand et al. (2003) for an example). Hence, the Hilbert

series of unitary and special unitary invariants are

hLUT(k; z) =

(
−1

2

)k

CTt,u

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∏
i

u2
i (1 − u−2

i )2

∏
α∈{−1,+1}k

a=±1

(1 − taz
∏
i

uα)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(23)

and

hLSUT(k; z) =

(
−1

2

)k

CTu

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∏
i

u2
i (1 − u−2

i )2

∏
α∈{−1,+1}k

[(1 − zuα)(1 − zuα)]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (24)

These expressions were first derived by Beth et al. using a different method (this work is

unpublished – see Grassl (2002)).

4. Simplest invariants

4.1. Dimension formulas for SLOCC-covariants

The characters of the irreducible polynomial representations of the group GL(2,� )k are

the products

sλ := sλ(1) · · · sλ(k) (25)

where λ = (λ(1), . . . , λ(k)) is a tuple of partitions λ(i) of length at most 2, and sλ(i) the

corresponding irreducible character of GL(2,� ), that is, a Schur function (Macdonald

1991). In particular, the characters of the one-dimensional representations

det l(g) = (det g(1))l1 (det g(2))l2 · · · (det g(k))lk (26)

containing the SLOCC invariants are the products

s(l1l1)s(l2l2) · · · s(lk lk), (27)

and the character of GL(V ) in Sd(V ) is sd.

Hence, the dimension of the space of invariants of degree d and weight l, which is

also the multiplicity of the one-dimensional character detl in Sd(V ), is given by the scalar

product

dim InvSLOCC(d, k; l) = 〈sd | s(l1l1) · · · s(lk lk)〉 (28)
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of SLOCC characters (where l = (l1, . . . , lk)). We see that InvSLOCC(d; k; l) can be non-zero

only if the condition

d = 2l1 = 2l2 = · · · = 2lk (29)

is satisfied. Hence,

dim InvSLOCC(2l; k) =
∑
λ�2l
l(λ)�2

1

zλ
χllλ · · · χllλ , (30)

where χllλ denotes the value of the irreducible character χll (labelled by the partition (l, l))

of the symmetric group S2l on the conjugacy class λ = (1m12m2 · · · nmn ), and zλ =
∏

i i
mimi!,

cf. Macdonald (1991).

In the same way, the SLOCC-covariants of a k-qubit system form the algebra

Cov = [S(V⊗k) ⊗ S(V ∗ ⊕ · · · ⊕ V ∗)]SLOCC, (31)

which can be graded according both to the degree in the ai1 ...ik and the multidegree in the

auxiliary variables. A similar reasoning gives the dimension of the space of covariants of

degree d as

dimCovSLOCC(d; k) =
∑
µ�n

1

zµ

⎛
⎜⎝∑

λ�d
l(λ)�2

χλµ

⎞
⎟⎠
k

. (32)

Although impratical for finding closed forms of the Hilbert series, these expressions are

useful for computing the first terms.

4.2. Simplest SLOCC-covariants

The space of covariants of degree 1 is generated by the ground form

f =
∑

0�i1 ,...,ik�1

ai1···ik x
(1)
i1

· · · x(k)
ik
. (33)

The dimension of the space of covariants of degree 2 of a k- qubit system follows from

formula (32) to give

dim CovSLOCC(2, k) = 2k−1. (34)

Observe that the only multihomogeneous covariants in this space have a multidegree in

the auxiliary variables belonging to {0, 2}k . If d is any tuple, we will use |d|a to denote

the number of occurrences of a in d. The dimension of the space of covariants of degree

d = (d1, . . . , dk) ∈ {0, 2}k in the auxiliary variables is

dimCovSLOCC(2, k; d) = 〈(χ2)(k−|d|0)(χ11)|d|0 |χ2〉 =

{
0 if |d|0 is odd

1 if |d|0 is even .
(35)

Hence, we can state the following result.

Proposition 4.1. The space of the covariants of degree 2 of a k-qubit system has dimension

2k−1 and is spanned by f2 and the polynomials

Bd = (f, f)
2−d1

2 ,...,
2−dk

2 , (36)
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where d = (d1, . . . , dk) ∈ {0, 2}k and |d|0 is even.

Note that if k is odd, there are no invariants of degree 2, and if k is even, the invariants

are all proportional to the hyperdeterminant (f, f)(1
k).

The dimension of the space of covariants of degree 3 is, from formula (32),

dimCovSLOCC(3, k) = 1
2
3k−1 + 1

2
. (37)

The only covariants of degree 3 in the entries of the tensor have a multidegree d =

(d1, . . . , dk) ∈ {1, 3}k in the auxiliary variables. Let d = (d1, . . . , dk) ∈ {1, 3}k be a

multidegree. Then the dimension of the space of the covariants having multidegree d

is

dim CovSLOCC(3, k; d) = 〈(χ21)|d|1 (χ3)|d|3 |(χ3)〉

= 1
3

(
2|d|1−1 + (−1)|d|1

)
(38)

if |d|1 > 0, and

dimCovSLOCC(3, k; (3k)) = 〈(χ3)k|χ3〉 = 1. (39)

This implies that all the homogeneous covariants of multidegree (3n) are proportional to

f3. From (38), the dimension of the space of the k-linear covariants of degree 3 is

dim CovSLOCC(3, k; d) = 1
3

(
2k−1 + (−1)k

)
. (40)

We will use {Ci}i=1,..., 13 (2k−1+(−1)k−1) to denote a basis of the space of covariants of

multidegree (1k). Applying transvections with the ground form to the Ci, we obtain

invariants of degree 4. Note that the dimension of the space of invariants of degree 4

is equal to the dimension of the space of multilinear covariants of degree 3, so we have

recovered a result of Brylinski and Brylinsky (2002). We will use (Di) to denote a basis of

the space of SLOCC invariants of degree 4.

4.3. Polynomial LUT-invariants of degree 4

From Proposition 4.1, one can construct a basis of the space of LUT invariants of

degree 4. If d = (d1, . . . , dk), the dimension of CovSLOCC(2, k; d) is 0 or 1. Hence, the only

possibilities are the squared norms

Bd := 〈Bd|Bd〉 (41)

where d = (d1, . . . , dk) ∈ {0, 2}k and |d|0 is even.

The dimension of the space is the coefficient of z4 in the Hilbert series

dim InvLUT(4, k) =
∑

d

(dim CovSLOCC(2, k; d))2 = 2k−1. (42)

Thus, the following result holds.

Proposition 4.2. The space of the LUT invariants of degree 4 of a k-qubit system has

dimension 2k−1 and is spanned by the polynomials Bd and 〈f|f〉2.
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Furthermore, one can show that

B22...2 = 〈f2|f2〉 = 2k〈f|f〉2 −
∑

d=(2,...,2)

Bd. (43)

Indeed, 〈f|f〉2 = 〈f⊗f|f⊗f〉, and the classical Clebsch–Gordan series allows us to express

f ⊗ f in terms of transvectants, which then gives us the result.

If we just consider the LSUT group, we have generators of bidegree (4, 0), (3, 1), (2, 2),

(1, 3), (0, 4) in the components of the state and their conjugates. The subspace of bidegree

(2, 2) is the space of LUT-invariants of degree 4:

InvLSUT((2, 2), k) = InvLUT(4, k). (44)

The subspace of bidegree (4, 0) is the space of the SLOCC invariants of degree 4

InvLSUT((4, 0), k) = InvSLOCC(4, k). (45)

In the same way, the subspace of bidegree (0, 4) is the space of the conjugates of the

SLOCC invariants of degree 4. A basis of the space of the LSUT-invariants of bidegree

(3, 1) can be obtained from the scalar products 〈Ci|f〉.

Proposition 4.3. The subspace of LSUT-invariants of degree 4 of a k-qubit system has

dimension
7

3
2k−1 − 4

3
(−1)k−1

and is spanned by the polynomials Di (bidegree (4, 0)), Ci = 〈Ci|f〉 (bidegree (3, 1)), Bd

(bidegree (2, 2)), Ci (bidegree (1, 3)) and Di (bidegree (0, 4)).

5. Examples

5.1. LUT-invariants and linear entropies

Let |Ψ〉 =
∑
ai1 ...ik |i1 · · · ik〉 be a pure k-qubit state. Meyer and Wallach (Meyer and

Wallach 2002) have defined an entanglement measure Q by

Q(|Ψ〉) =
1

k

k∑
i=1

D
(i)
1 (|Ψ〉) (46)

where

D
(i)
1 (|Ψ〉) = 2

∑
(ε1 ,...,εk−1)=(ε′

1 ,...,ε
′
k−1)

∣∣∣∣∣∣
∣∣∣∣∣∣
(
ε0i |Ψ

) (
ε′0
i |Ψ

)
(
ε1i |Ψ

) (
ε′1
i |Ψ

)
∣∣∣∣∣∣
∣∣∣∣∣∣
2

.

In this expression,
(
εδi |Ψ

)
denotes the coefficient of |ε1 · · · εi−1δεi+1 · · · εk〉 in |Ψ〉, and the

double bars mean the squared modulus of the determinant.

The interest of this measure resides in its physical interpretation, which is related to the

average purity of the constituent qubits (Brennen 2003) or the linearised form of the Von

Neumann entropy of a single qubit with the rest of the system.

Emary has remarked (Emary 2004) that the functions D(i)
1 are entanglement monotones,

and thus, in particular, LU-invariants. Hence, each D(i)
1 can be written in terms of squares
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of transvectants. We have

D
(i)
1 =

1

2k−2

∑
d=(d1 ,...,dk )∈{0,2}k

di=0

Bd. (47)

Indeed, D(i)
1 = ‖Φi ⊗ Φi‖2, where Φi = B22···202···2, and the result follows again from the

Clebsch–Gordan series.

Hence, in terms of our basis, the quantity Q(|Ψ〉) has the simple expression

Q(|Ψ〉) =
1

2k−2k

∑
d=(d1 ,...,dk)∈{0,2}k

|d|0Bd. (48)

5.2. LUT-invariants for 3-qubits

The algebra of covariants of 3 qubits is generated by the polynomials (Le Paige 1881)

f :=
∑

ai1i2i3xi1yi2zi3

Hx :=

∣∣∣∣∣∣∣∣

∂2f

∂y0∂z0

∂2f

∂y1∂z0

∂2f

∂y0∂z1

∂2f

∂y1∂z1

∣∣∣∣∣∣∣∣

Hy :=

∣∣∣∣∣∣∣∣

∂2f

∂x0∂z0

∂2f

∂x1∂z0

∂2f

∂x0∂z1

∂2f

∂x1∂z1

∣∣∣∣∣∣∣∣

Hz :=

∣∣∣∣∣∣∣∣

∂2f

∂x0∂y0

∂2f

∂x1∂y0

∂2f

∂x0∂y1

∂2f

∂x1∂y1

∣∣∣∣∣∣∣∣

T :=

∣∣∣∣∣∣∣∣

∂f

∂x0

∂f

∂x1

∂Hx

∂x0

∂Hx

∂x1

∣∣∣∣∣∣∣∣
∆ := (T , f)111

From these polynomials, we can construct the following LU-invariants

A111 := 〈f|f〉
B200 := 〈Hx|Hx〉
B020 := 〈Hy|Hy〉
B002 := 〈Hz |Hz〉
C111 := 〈T |T 〉
D000 := 〈∆|∆〉
F222 := 〈∆f2|T 2〉.
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Grassl et al. computed a minimal system of seven generators (denoted fi) of the algebra

of LU invariants (Grassl 2002). We shall give their expressions in terms of scalar products

of covariants.

The generator of degree 2, f1, is clearly A111. To define generators of degree 4 and 6,

the authors introduce the notation

fσ,τ,ρ :=
∑

i=(i1 ,i2 ,...,in),
j=(j1 ,j2 ,...,jn),

k=(k1 ,k2 ,...,kn )

aijkaiσ jτkρ (49)

where iσ = (iσ(1), . . . , iσ(n)) and aijk = ai1j1k1
· · · ainjnkn . Their generators in degree 4 and 6 are

f2 := f(12),(12),Id = A2
111 − B200 − B020

f3 := f(12),Id,(12) = A2
111 − B200 − B002

f4 := fId,(12),(12) = A2
111 − B020 − B002

f5 := f(12),(23),(13) = A3
111 + 3

2
C111 − 3

2
A111(B200 + B020 + B002)

Note that these invariants appear in many places in the literature, such as, for example,

in Kempe (1999).

The generator of degree 8 is D000 and the generator of degree 12 is

f7 := ∆
(
[11, 00]{00, 00} − [11, 00]{11, 11}

+ [11, 01]{00, 01} + [11, 10]{00, 10}
+ 2[11, 10]{01, 11} − 2[01, 00]{10, 00}
− [01, 00]{11, 01} − [10, 00]{11, 10}
− [10, 01]{00, 00} − [10, 01]{01, 01}
+ [10, 01]{10, 10} +[10, 01]{11, 11}

)2

where [i1i2, j1j2] = ai1i20aj1j21 − ai1i21aj1j20 and {i1i2, j1j2} = ai1i20aj1j21 + ai1i21aj1j20. With our

notation, we have

f7 = 1
2
D000

(
3
2
(B200 + B020 + B002) − A2

111

)
+ 2C2

111 − 4B200B020B002 + 1
8
F222.

Grassl et al. obtained (Grassl 2002) the Hilbert series using residue calculations in

Magma. We have been able to reproduce their results evaluating (23) using a very efficient

algorithm due to Guoce Xin (Xin 2004) in a Maple implementation. Summarising, we

have the following proposition.

Proposition 5.1. The algebra of local unitary invariant pure 3-qubit states is generated by

A111, B200, B020, B002, C111, D000 and F222. Its Hilbert series is

hLUT(3; z) =
1 − t24

(1 − t2)(1 − t4)3(1 − t6)(1 − t8)(1 − t12)
, (50)

where the numerator reflects the existence of a unique syzygy in degree 24.
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Table 1. SLOCC orbits of three qubit states.

B200 B020 B002 D000

|GHZ〉 × × × ×
|W 〉 × × × 0

|B1〉 = |001〉 + |010〉 × 0 0 0

|B2〉 = |001〉 + |100〉 0 × 0 0

|B3〉 = |010〉 + |100〉 0 0 × 0

|000〉 0 0 0 0

5.3. Classification of the orbits under SLOCC transformations

The normal forms of 3-qubit states under SLOCC transformations have been known since

1881 (Le Paige 1881). As shown in Table 1, the SLOCC orbits can be characterised by

the vanishing or non-vanishing of a set of four LU-invariants.

In the table, a × means the non-nullity of the invariant. Hence, (47) implies that in this

case, the ‘onion classification’ (Miyake 2003) can be described only in terms of proper

entanglement measures (entanglement monotones), see Figure 1.

5.4. LSUT-invariants for 3-qubits

Another result of Grassl (2002) can be recovered from (24) by means of Xin’s algorithm

(Xin 2004). It is the Hilbert series of the algebra of LSUT-invariants of three qubits,

z5z5 + z3z3 + z2z2 + 1

(1 − zz)(1 − z4)(1 − z2z2)2(1 − z4)(1 − zz3)(1 − z3z)
. (51)

This expression suggests that the algebra has a Cohen–Macaulay structure with 6 primary

invariants with bidegrees (1, 1), (0, 4), (2, 2), (2, 2), (4, 0), (1, 3) and (3, 1), and 3 secondary

Fig. 1. SLOCC orbit structure for 3-qubits
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Table 2. Random values of the aijk’s.

a000 a001 a010 a011 a100 a101 a110 a111

3 + 3i 3 + 3i 3 + 3i 2 + i 3 + 2i 1 + 2i 2 + 3i 3 + i

invariants of bidegree (2, 2), (3, 3) and (5, 5). The set of primary invariants is

P = {A111, f2, f3,∆,∆, s2 := 〈A,T 〉, s2}.

Computing the Jacobian of A111, f2, f3,∆,∆, s2, s2, a000, . . . , a111, a000 with the random nu-

merical values given in Table 2, we get

−53279560564736 − 243669580382208i = 0.

This implies that the polynomials A111, f2, f3,∆,∆, s2 and s2 are algebraically independent.

The set of secondary invariants is S = {f4, f5, f4f5}. The polynomials f4 and f5 are

linearly independent of all algebraic combinations of bidegree (2, 2) and (3, 3), respectively,

of elements of P. Furthermore, we have two syzygies involving f2
4 and f2

5 , which are

8f1f5 − 6f4f2 + 3f2
4 − 3|∆|2 + 3f2

2 − 6f4f3 + f4
1 + 3f2

3 − 6f3f2 − 12|s2|2 = 0 (52)

and

− 18f4f
4
1 − 18f3f

4
1 − 18f2f

4
1 + 11f6

1 + 18∆s22 − 36|s2|2f3 + 18∆s2
2

− 72f4f3f2 + 30f4f2f
2
1 + 30f4f3f

2
1 − 36|s2|2f2 + 60|s2|2f2

1 + 3f2
4f

2
1

+ 3f2
3f

2
1 + 30f3f2f

2
1 − 36|s2|2f4 + 3f2

2f
2
1 − 3|∆|2f2

1 + 16f2
5 = 0, (53)

respectively. This suggests the following property.

Conjecture 5.1. The algebra of LSUT invariants of three qubits is a free module over a

polynomial algebra (Cohen–Macaulay structure)

InvLSUT =
⊕
c∈S

� [P]c. (54)

M. Grassl (private communication) has recently obtained a complete proof of this property.

5.5. LUT invariants of four qubits

Again, we have computed the Hilbert series of LUT covariants of 4 qubits by means of

Xin’s algorithm. This has allowed us to reproduce another result of Grassl (2002):

hLUT(4; z) =
P (z)

Q(z)
(55)

with P (z) = 1 +
∑

ij aiz
izj where the ai are given in Table 3 and

Q(z) = (1 − z10)(1 − z8)4(1 − z6)6(1 − z4)7(1 − z2).
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Table 3. Hilbert series of LUT invariants for 4 qubits: values of the ai.

i ai i ai i ai i ai i ai i ai i ai

2 0 4 0 6 6 8 46 10 110 12 344 14 844

16 2154 18 4606 20 9397 22 16848 24 28747 26 44580 28 65366

30 88036 32 111909 34 131368 36 145676 38 149860 40 145676 42 131368

44 111909 46 88036 48 65366 50 44580 52 28747 54 16848 56 9397

58 4606 60 2154 62 844 64 344 66 110 68 46 70 6

72 0 74 0 76 1

This suggests that the algebra has a Cohen–Macaulay structure with 19 primary invariants

and 1449936 secondary invariants. A complete knowledge of the generators is undoubtedly

beyond reach, but one can compute the first primary invariants using the covariants

obtained in a previous paper (Briand et al. 2003). The simplest is the scalar square of the

ground form

A1111 = 〈f|f〉.
There are 6 bi-quadratic linear covariants of degree 2 and 1 invariant. This allows us to

construct unitary invariants of degree 4:

B2200 = 〈B2200|B2200〉
B2020 = 〈B2020|B2020〉
B2002 = 〈B2002|B2002〉
B0220 = 〈B0220|B0220〉
B0202 = 〈B0202|B0202〉
B0022 = 〈B0022|B0022〉

B = B0000B0000.

The polynomial 〈f2|f2〉 is algebraically dependent on the others:

〈f2|f2〉 = 16A2 − (B2200 + B2020 + B2002 + B0220 + B0220 + B0202 + B0022 + B) .

The space of linear covariants of degree 3 is spanned by two quadrilinear polynomials

C1
1111 = (f, B2200)

1100

C2
1111 = (f, B2020)

1010

and four cubico-trilinear covariants (Briand et al. 2003)

C3111 = (f, B2200)
0100

C1311 = (f, B2200)
1000

C1131 = (f, B2020)
1000

C1113 = (f, B2002)
1000.
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With these polynomials one can construct a set of twenty generators for the space of

unitary invariants of degree 6:

A3,

AB, AB2200, AB2020, AB2002, AB0220, AB0202, AB0022,

〈C1
1111, C

1
1111〉, 〈C1

1111, C
2
1111〉, 〈C1

1111, fB0000〉, 〈C2
1111, C

1
1111〉,

〈C2
1111, C

2
1111〉, 〈C2

1111, fB0000〉, 〈fB0000, C
1
1111〉, 〈fB0000, C

2
1111〉,

〈C3111, C3111〉, 〈C1311, C1311〉, 〈C1131, C1131〉, 〈C1113, C1113〉.

The series suggests that the algebra has a Cohen–Macaulay structure with 19 primary

invariants (one of degree 2, seven of degree 4, four of degree 8 and one of degree 10). The

polynomials

A1111,

B,B2200,B2020,B2002,B0220,B0202,B0022

〈C1
1111, C

1
1111〉, 〈C1

1111, AB〉, 〈C3111, C3111〉, 〈C1311, C1311〉, 〈C1131, C1131〉, 〈C1113, C1113〉
〈D4000, D4000〉, 〈D0400, D0400〉, 〈D0040, D0040〉, 〈D0004, D0004〉
〈E3111, E3111〉

where

D4000 = (A,C3111)
0111

D0400 = (A,C1311)
1011

D0040 = (A,C1131)
1101

D0004 = (A,C1113)
1110

D2200 = (A,C3111)
1011

E3111 = (A,D2200)
1100

are algebraically independent, and hence good candidates to be primary invariants.

5.6. LSUT invariants of 4 qubits

Finally, we can compute the Hilbert series of LSUT invariants of 4 qubits by the same

method, and again recover a result of Grassl (2002):

hLSUT(k; z, z) =
P (t)

Q(t)
(56)

with P (t) =
∑

ij aijz
izj , the aij being given in Table 4 and

Q(t) = (1 − zz)(1 − z2z2)4(1 − z3z3)(1 − z2)(1 − z4)2(1 − z6)

(1 − z2)(1 − z4)2(1 − z6)(1 − z3z)3(1 − zz3)3(1 − z2z4)

(1 − z4z2)(1 − zz5)(1 − z5z)).

6. Conclusion

We have proposed a new method for computing bases of the algebras of unitary invariants

of qubit systems. This method involves as an intermediate step the calculation of the
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Table 4. Hilbert series of LSU invariants for 4-qubits: values of the aij = aji.

(i, j) ai,j (i, j) ai,j (i, j) ai,j (i, j) ai,j (i, j) ai,j

(0, 0) 1 (1, 3) −1 (2, 2) 2 (2, 4) 6 (2, 6) 9

(2, 8) 4 (2, 10) 3 (3, 3) 7 (3, 5) 12 (3, 7) 12

(3, 9) 7 (3, 11) 2 (3, 13) −3 (4, 4) 28 (4, 6) 42

(4, 8) 52 (4, 10) 36 (4, 12) 12 (4, 16) 1 (5, 5) 43

(5, 7) 79 (5, 9) 92 (5, 11) 36 (5, 13) −1 (5, 15) −12

(5, 17) −6 (5, 19) −1 (6, 6) 132 (6, 8) 199 (6, 10) 161

(6, 12) 53 (6, 14) −9 (6, 16) −27 (6, 18) −10 (7, 7) 214

(7, 9) 236 (7, 11) 129 (7, 13) −12 (7, 15) −83 (7, 17) −63

(7, 19) −15 (7, 21) −2 (8, 8) 339 (8, 10) 289 (8, 12) 110

(8, 14) −115 (8, 16) −169 (8, 18) −82 (8, 20) −21 (8, 22) −3

(9, 9) 306 (9, 11) 160 (9, 13) −154 (9, 15) −363 (9, 17) −253

(9, 19) −82 (9, 21) −12 (9, 23) 3 (10, 10) 268 (10, 12) −96

(10, 14) −513 (10, 16) −510 (10, 18) −234 (10, 20) −37 (10, 22) 12

(10, 24) 3 (11, 11) −126 (11, 13) −676 (11, 15) −818 (11, 17) −465

(11, 19) −85 (11, 21) 76 (11, 23) 41 (11, 25) 4 (12, 12) −681

(12, 14) −1045 (12, 16) −763 (12, 18) −221 (12, 20) 133 (12, 22) 154

(12, 24) 36 (12, 26) 3 (13, 13) −1152 (13, 15) −985 (13, 17) −359

(13, 19) 265 (13, 21) 424 (13, 23) 216 (13, 25) 41 (13, 27) 3

(14, 14) −1094 (14, 16) −543 (14, 18) 245 (14, 20) 705 (14, 22) 496

(14, 24) 154 (14, 26) 12 (14, 28) −3 (15, 15) −569 (15, 17) 318

(15, 19) 1058 (15, 21) 992 (15, 23) 424 (15, 25) 76 (15, 27) −12

(15, 29) −2 (16, 16) 233 (16, 18) 1188 (16, 20) 1334 (16, 22) 705

(16, 24) 133 (16, 26) −37 (16, 28) −21 (17, 17) 1333 (17, 19) 1734

(17, 21) 1058 (17, 23) 265 (17, 25) −85 (17, 27) −82 (17, 29) −15

(17, 31) −1 (18, 18) 1736 (18, 20) 1188 (18, 22) 245 (18, 24) −221

(18, 26) −234 (18, 28) −82 (18, 30) −10 (19, 19) 1333 (19, 21) 318

(19, 23) −359 (19, 25) −465 (19, 27) −253 (19, 29) −63 (19, 31) −6

(20, 20) 233 (20, 22) −543 (20, 24) −763 (20, 26) −510 (20, 28) −169

(20, 30) −27 (20, 32) 1 (21, 21) −569 (21, 23) −985 (21, 25) −818

(21, 27) −363 (21, 29) −83 (21, 31) −12 (22, 22) −1094 (22, 24) −1045

(22, 26) −513 (22, 28) −115 (22, 30) −9 (23, 23) −1152 (23, 25) −676

(23, 27) −154 (23, 29) −12 (23, 31) −1 (23, 33) −3 (24, 24) −681

(24, 26) −96 (24, 28) 110 (24, 30) 53 (24, 32) 12 (25, 25) −126

(25, 27) 160 (25, 29) 129 (25, 31) 36 (25, 33) 2 (26, 26) 268

(26, 28) 289 (26, 30) 161 (26, 32) 36 (26, 34) 3 (27, 27) 306

(27, 29) 236 (27, 31) 92 (27, 33) 7 (28, 28) 339 (28, 30) 199

(28, 32) 52 (28, 34) 4 (29, 29) 214 (29, 31) 79 (29, 33) 12

(30, 30) 132 (30, 32) 42 (30, 34) 9 (31, 31) 43 (31, 33) 12

(32, 32) 28 (32, 34) 6 (33, 33) 7 (33, 35) −1 (34, 34) 2

(36, 36) 1

SLOCC covariants, which have a more transparent geometrical meaning (at least in small

degrees), and leads naturally to new bases in which the known entanglement measures

tend to admit rather simple expressions.

A complete description of the algebra of unitary invariants for pure k-qubits is definitely

beyond the reach of any computer system for k > 3. This impossibility means that such a

study is not physically relevant and that only a few invariants with interesting geometrical
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properties will be significant in the realm of quantum information theory. Finally, a natural

question is whether these constructions can be extended to mixed states.

References

Aspect, A., Grangier, P. and Roger, G. (1982) Experimental realization of Einstein–Podolsky–Rosen

gedankenexperiment; a new violation of Bell’s inequalities. Phys. Rev. Lett. 49 91–94.

Bell, J. S. (1966) On the problem of hidden variables in quantum mechanics. Rev. Modern Phys. 38

447–452.

Bennett, C.H. and Wiesner, S. J. (1992) Communication via one- and two-particle operators on

Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69 2881–2884.

Brennen, G.K. (2003) An observable measure of entanglement for pure states of multi-qubit systems.

Quantum. Inf. Comput. 3 619–626.

Briand, E., Luque, J.-G. and Thibon, J.-Y. (2003) A complete set of covariants of the four qubit

system. J. Phys. A: Mathematical and General 38 9915–9927.

Briand, E., Luque, J.-G., Thibon, J.-Y. and Verstraete, F. (2004) The moduli space of three-qutrit

states. J. Math. Phys. 45 4855–4867.

Brylinski, J.-L. (2002) Algebraic measures of entanglement. In: Brylinski, R.K. and Chen, G.

(eds.) Mathematics of quantum computation, Computational Mathematics Series 3, Chapman and

Hall/CRC 3–23.

Brylinski, J.-L. and Brylinski, R. (2002) Invariant polynomial functions on k qudits. In:

Brylinski, R.K. and Chen, G. (eds.) Mathematics of quantum computation, Computational

Mathematics Series 3, Chapman and Hall/CRC 277–286.

Clauser, J. F., Horne, M.A., Shimony, A. and Holt, R.A. (1969) Proposed Experiment to Test Local

Hidden-Variable Theories. Phys. Rev. Lett. 23 880–884.

Dür, W., Vidal, G. and Cirac, J. I. (2001) Three qubits can be entangled in two inequivalent ways.

Phys. Rev. A 62 062314.

Einstein, A., Podolsky, B. and Rosen, N. (1935) Can quantum-mechanical description of physical

reality be considered complete? Phys. Rev. 47 777–780.

Emary, C. (2004) A bipartite class of entanglement monotones for N-qubit pure states. J. Phys. A:

Mathematical and General 37 8293–8302.

Fry, E. S. and Thompson, R.C. (1976) Experimental Test of Local Hidden-Variable Theories. Phys.

Rev. Lett. 37 465–468.

Grassl, M. (2002) Entanglement and invariant theory. Transparencies of a talk reporting on joint
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