
TLP 16 (3): 269–295, 2016. C© Cambridge University Press 2016

doi:10.1017/S1471068416000041

269

Programming in logic without logic
programming

ROBERT KOWALSKI and FARIBA SADRI

Department of Computing, Imperial College London, London, United Kingdom

(e-mail: rak,fs@doc.ic.ac.uk)

submitted 27 December 2014; revised 27 November 2015; accepted 14 December 2015

Abstract

In previous work, we proposed a logic-based framework in which computation is the execution

of actions in an attempt to make reactive rules of the form if antecedent then consequent true

in a canonical model of a logic program determined by an initial state, sequence of events, and

the resulting sequence of subsequent states. In this model-theoretic semantics, reactive rules

are the driving force, and logic programs play only a supporting role. In the canonical model,

states, actions, and other events are represented with timestamps. But in the operational

semantics (OS), for the sake of efficiency, timestamps are omitted and only the current

state is maintained. State transitions are performed reactively by executing actions to make

the consequents of rules true whenever the antecedents become true. This OS is sound, but

incomplete. It cannot make reactive rules true by preventing their antecedents from becoming

true, or by proactively making their consequents true before their antecedents become true. In

this paper, we characterize the notion of reactive model, and prove that the OS can generate

all and only such models. In order to focus on the main issues, we omit the logic programming

component of the framework.

KEYWORDS: KELPS, LPS, Model generation, Reactive models, State transition systems

1 Introduction

State transition systems play an important role in many areas of Computing.

They underpin the operational semantics of imperative programming languages, the

dynamic behavior of database management systems, and many aspects of knowledge

representation in artificial intelligence. In many of these systems, state transitions

are performed by executing reactive rules of the form if antecedent then consequent,

which describe relationships between earlier and later states and events. Such reactive

rules occur explicitly as condition-action rules in production systems (PS), event-

condition-action rules in active databases, and transition rules in Abstract State

Machines (ASM) (Gurevich 2000). They are implicit in Statecharts (Harel 1987) and

BDI agent plans (Rao and Georgeff 1995). They are the core of Reaction RuleML

(Paschke et al. 2012).

Despite the apparently logical syntax of reactive rules in these systems, hardly

any of these systems give if-then rules a logical interpretation. In this paper, we

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

270 R. Kowalski and F. Sadri

Fig. 1. Example models of reactive rules in KELPS.

investigate the semantics of a logical language, KELPS, in which programs are

sets of reactive rules of the form ∀X [antecedent → ∃Y [consequent]] in classical,

first-order logic (FOL), and computation is understood as generating a sequence of

state transitions with the purpose of making the reactive rules true.

KELPS (Kowalski and Sadri 2012) is the reactive Kernel of LPS (Kowalski and

Sadri 2009, 2010, 2011, 2012, 2014, 2015), a Logic-based agent and Production

System language, which combines reactive rules and logic programs. KELPS is

obtained from LPS by dropping the logic programming component of LPS. It is

in this sense that KELPS is a language for programming in logic without logic

programming.

The OS of KELPS is similar to that of imperative reactive rule languages, which

maintain only a single current state, using destructive state transitions. However, the

model-theoretic semantics of KELPS combines all the states into a single model, by

associating time stamps with facts, actions and external events.

In (Kowalski and Sadri 2010, 2011, 2014, 2015), we showed that the OS of LPS

(and therefore of KELPS) is sound: Any sequence of states and events that the

OS recognizes as solving the computational task generates a model that makes

the reactive rules true. In this paper, we investigate the completeness of the OS

of KELPS, and show that the OS can generate all reactive models, in which the

consequents of reactive rules are made true after their antecedents become true.

However, the OS of KELPS (and therefore of LPS) is incomplete, because it can

generate only reactive models.

The OS of KELPS cannot generate models that proactively make consequents true

whether or not their antecedents become true; that preventively make antecedents

false to avoid making their consequents true; or that make their antecedents true,

and are then forced to make their consequents true. Moreover, it does not generate

models that contain actions that are irrelevant to the computational task.

Because the OS of KELPS is similar to that of imperative reactive rule languages,

the incompleteness of the KELPS OS shows that the operational semantics of

conventional reactive system languages are also incomplete, if their reactive rules

are read as logical implications.

LPS (and therefore KELPS) is a scaled-down and optimized version of abductive

logic programming (ALP) (Kakas et al. 1998). There exist proof procedures for ALP

that can generate proactive and preventative models, but avoid generating obviously

irrelevant actions. In Section 6.2, we discuss the relationship between KELPS/LPS

and ALP.

Figure 1 illustrates KELPS and some of the different kinds of models that are

allowed by the model-theoretic semantics of KELPs. There is a single reactive rule

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

Programming in logic without logic programming 271

∀

Fig. 2. Example models of reactive rules in KELPS.

stating that if you see a wolf at time T then you cry wolf at time T+1. An external

event, see-wolf, occurs at time 3. The reactive model includes all and only the external

events and the actions (here, the single action cry-wolf at time 4) that are motivated

by the reactive rule and triggered by the external events.

The example in Figure 2 is a variant of that in Figure 1. The reactive rule in

Figure 2 states that you cry wolf if you see a wolf and you are outside. The state

records whether or not the agent is outside. The causal theory updates the state as

a result of both external events and actions. The agent is initially outdoors. Both

models in Figure 2 include all the timestamped facts belonging to any state, all

the timestamped external events, and all the timestamped actions motivated by the

reactive rule. The non-reactive, preventative model includes an action of going inside,

which prevents the need for crying wolf. Of course, another non-reactive model can

include both actions.

In this paper, we characterize the reactive models I generated by the KELPS OS.

These models all have the property that every action in I is motivated by being an

instance of an action that occurs explicitly in the consequent of a rule whose earlier

conditions (in the antecedent or consequent of the rule) are already true.

In the remainder of the paper, we present KELPS, its model-theoretic and

operational semantics, the relationship between the two semantics, the relationship

with related work, and future work.

This paper extends an earlier paper (Kowalski and Sadri 2014) by including

proofs of all the theorems (in the Appendix), extending KELPS to allow more

general FOL conditions, simplifying many of the definitions, and including an

extensive comparison with related approaches.

2 KELPS

The example in Figure 3 illustrates additional features of the language. In this

example, the consequent of the rule consists of two alternative plans with deadlines:

When an order is received from a reliable customer, then the item needs to be

dispatched, and an invoice needs to be sent within three time units of receiving the

order. Alternatively, an apology needs to be sent within five time units. Temporal

constraints are defined by an auxiliary theory, which is not presented here. They are

solved by means of a constraint solver, as in constraint logic programming (Jaffar

and Lassez 1987).

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

272 R. Kowalski and F. Sadri

Fig. 3. An example with a complex consequent.

Actions in KELPS can be executed concurrently. Consistency is maintained by

monitoring the preconditions of sets of events. In this example, a precondition

ensures that the same item is not dispatched to two different customers at the same

time. We will see later that preconditions can also be used to prevent sending an

apology if the item has already been dispatched.

The semantics of KELPS is non-deterministic: It does not matter which alternative

plan is chosen. However in practice, some alternatives are better than others.

For example, it may be a good strategy to try first a plan with the earliest

deadline, and to try later an alternative plan with a later deadline if the earlier

plan has failed. Any actions performed in the earlier, partially executed plan

are committed choices, which cannot be undone by rolling back time. At best,

their effects can be undone only by performing compensating actions later in

time.

In a practical implementation, for most applications, it would be desirable to

provide a method to control the choice of alternatives. However, for lack of space,

we do not address such control issues in this paper.

The OS of KELPS maintains a single current state Si at time i. It reasons

with the reactive rules, to generate a set of actions actsi+1, which it combines

with a set of external events exti+1, to produce a consistent set of concurrent

events evi+1 =exti+1 ∪ actsi+1. The events evi+1 are used to update the current

state Si, generating the successor state Si+1 = succ(Si, evi+1) by deleting facts

that are terminated by the events evi+1 and adding facts that are initiated by

evi+1.

In KELPS, states are represented by sets of atomic sentences (also called ground

atoms, facts or fluents). Events are also represented by atomic sentences. Such sets of

atomic sentences can be understood either syntactically as theories or semantically

as model-theoretic structures. It is this second, model-theoretic interpretation that

underpins the logical semantics of KELPS.

States and events can be represented with or without timestamps. The repre-

sentation without timestamps (e.g. outdoors, reliable(bob)) facilitates destructive

updates, because if a fact is not terminated by a set of events then the fact without

timestamps simply persists from one state to the next. However, the representation

with timestamps (e.g. outdoors(0), reliable(bob, 0)) makes it possible to combine all

states and events into a single model-theoretic structure.

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

Programming in logic without logic programming 273

2.1 Vocabulary

KELPS is a first-order, sorted language, including a sort for time. In the version

of KELPS presented in this paper, we assume that time is linear and discrete, and

that the succession of timepoints is represented by the ticks of a logical clock, where

1, 2, . . . stand for s(0), s(s(0)), . . . , t+1 stands for s(t) and t+n stands for sn(t).

Thus Si represents the state at time i, and evi+1 represents the set of events taking

place in the transition from state Si to Si+1. Other representations of time are also

possible.

Predicates: The predicate symbols of the language are partitioned into sets

representing fluents, events, auxiliary predicates, and meta-predicates.

Fluent predicates represent facts in the states Si. The last argument i of a

timestamped fluent atom p(t1,. . . , tn, i) is a time parameter, representing the time

i � 0 of the state Si to which the fluent belongs. The unstamped fluent atom

p(t1,. . . , tn) is the same atom without this timestamp.

Event predicates represent events contributing to the transition from one state to

the next. The last argument of a timestamped event atom e(t1,. . . , tn, i) is a time

parameter, representing the time i � 1 of the successor state Si. The unstamped event

atom e(t1,. . . , tn) is the same atom without this time parameter. Event predicates are

partitioned into external event predicates and action predicates.

Fluent and event predicates can have time parameters, called reference times, that

are not timestamps. For example in deadline(Task, D, T), the time parameter D is

a reference time, which expresses that at time T the deadline for Task is D.

Auxiliary predicates are of two kinds: Time-independent predicates, for example

isa(book, item), do not include time parameters. Temporal constraint predicates,

including inequalities of the form T1 < T2 and T1 � T2 between timepoints, and

functional relationships among timepoints, such as max(T1, T2, T) and min(T1, T2,

T) have only time parameters.

In KELPS, temporal constraints constrain the timestamps of fluents and events.

As a consequence, every temporal constraint in a reactive rule contains at least one

time parameter that occurs as a timestamp in a fluent or event atom of the rule.

In LPS, auxiliary predicates are defined by logic programs. In KELPS, they are

defined more simply by a (possibly infinite) set Aux of atomic sentences. In the

case of auxiliary temporal constraint predicates, this assumption is equivalent to

the assumption made in the semantics of constraint logic programming (CLP). The

KELPS OS exploits this relationship with CLP by using a constraint solver to

simplify temporal constraints and to check them for satisfiability.

The meta-predicates consist of the two predicates initiates(events, fluent) and

terminates(events, fluent), which specify the post-conditions of events and perform

state transitions, as illustrated in Figure 2. The first argument is a set of events,

to cater for the case where two events together have different effects from the

individual events on their own (as when you buy two books and get the cheaper

one for half price; or when two people push a heavy object that cannot be moved

by one person alone). The second argument is a fluent without timestamps. In LPS,

these meta-predicates are defined by logic programs. In KELPS, they are defined

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

274 R. Kowalski and F. Sadri

by atomic sentences1 in a causal theory C , which also contains constraints on the

preconditions and co-occurrence of events.2

Notation

If Si is a set of fluents without timestamps, representing a single state, then S∗i
represents the same set of fluents with the same timestamp i. If eventsi is a set of

events without timestamps, all taking place in the transition from state Si-1 to state

Si, then events∗i represents the same set of events with the same timestamp i.

2.2 KELPS framework

Definition

A KELPS framework (or program) is a triple <R,Aux,C>, where R is a set of

reactive rules, Aux is a set of ground atoms defining auxiliary predicates, and C is

a causal theory.

Rules in R are constructed from formulas that represent complex patterns of states

and events, expressed as conjunctions of FOL conditions and temporal constraints.

Operationally, an FOL condition is a query to Aux ∪ S∗i ∪ ev∗i , which is the times-

tamped state at time i, augmented with the most recent set of events and the definition

of the time-independent auxiliary predicates. For example, the FOL condition:

∀Item ∀D [manages (M, D, T) ∧ item (Item, D)→ instock (Item, T)]

behaves as a query that returns managers M all of whose departments D have all of

their items Item in stock at time T . The variables Item and D are said to be bound

in the condition, and the variables M and T are unbound in the condition. We will

see later that, depending where the condition occurs in a reactive rule, the variables

M and T will be either universally or existential quantified in the rule.

Definition

An FOL condition is an FOL formula containing exactly one timestamp, which is

either a constant or a variable, whose atoms are either fluent atoms, event atoms or

time-independent auxiliary predicates. If the timestamp is a variable, then it is not

bound by any quantifier in the FOL condition.

Definition

A complex pattern of states and events (complex for short) is a possibly empty

conjunction of FOL conditions and temporal constraints. All time variables in

temporal constraints in the complex occur as time parameters in FOL conditions of

the complex or are functionally dependent on such time parameters.

1 In the examples, in Figure 3 and elsewhere in the paper, we use variables in the definitions of auxiliary
predicates as a shorthand for the set of all the well-sorted ground instances of the definitions.

2 In some earlier papers, this causal theory was called a “domain theory”.

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

Programming in logic without logic programming 275

For example, T3 is functionally dependent on T1 and T2 in max(T1, T2, T3),

and T2 is functionally dependent on T1 in plus(T1, 3, T2).

Definition

A reactive rule (or simply rule) is a sentence of the form:

∀X [antecedent→ ∃Y [consequent]] where,

• X is the set of all variables, including time variables, occurring in antecedent

and not bound in FOL conditions. Y is the set of all variables, including time

variables, occurring only in consequent and not bound in FOL conditions.

• consequent is a disjunction consequent1 ∨ . . . ∨ consequentn.

• antecedent and each antecedent ∧ consequenti is a complex.

• For every substitution σ that replaces the time variables in X and Y by ground

times and such that the temporal constraints in antecedent σ and consequent σ

are true in Aux, all timestamps in FOL conditions in consequent σ are later

than or equal to all timestamps in FOL conditions in antecedent σ.

• Every temporal constraint in consequenti contains at least one timestamp

variable that occurs in an FOL condition in consequenti or is functionally

dependent on such timestamp variables.

Intuitively, the next-to-last bullet restricts reactive rules to ones whose antecedent is a

conjunction of FOL conditions about the past or present and whose consequent is a

disjunction of conjunctions of FOL conditions about the present or future. The last

bullet prevents such rules as p(T1) → q(T2) ∧ T1<10 ∧ T1<T2, with a constraint

T1<10 in the consequent that only constrains a timestamp in the antecedent.

Because of the restrictions on quantifiers, and because of the logical equivalence

∃Y [p ∨ q] ⇔ ∃Y p ∨ ∃Z q, we can omit the quantifiers ∀X and ∃Y , and simply

write antecedent → consequent or antecedent→ consequent1 ∨... ∨ consequentn.

Variables that are unbound in an FOL condition become bound either universally

or existentially, depending on where the condition occurs in a rule. For example,

if the condition ∀Item ∀D [manages(M, D, T) ∧ item(Item, D) → instock(Item, T)]

occurs in the antecedent of a rule, then M and T are bound by the universal

quantifiers of the rule. If the condition occurs in the consequent of a rule, and M

and T do not occur in the antecedent of the rule, then M and T are bound by the

existential quantifiers of the consequent of the rule. To avoid ambiguity, if an FOL

condition is the consequent of a rule with an empty antecedent, then we write the

rule in the form true → consequent.

Note that, in the OS, all the components of an FOL condition are evaluated

together in Aux ∪ S∗i ∪ ev∗i . Several such FOL conditions can be evaluated at the

same time i, if their timestamps can all be unified to time i. Note also that, if

antecedent is empty, then antecedent is equivalent to true. If consequent is empty,

then consequent is equivalent to false.

An FOL condition that contains an action atom can be evaluated in Aux∪S∗i ∪ev∗i ,
like any other FOL condition. However, an action atom act that is a conjunct of an

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

276 R. Kowalski and F. Sadri

FOL condition of the form3 conjunct1 ∧ act ∧ conjunct2 in the consequent of a rule

can also be selected as a candidate for execution in the transition to the next state

Si+1. Such action atoms are called bare action atoms.

Definition

Let consequenti of a rule be of the form conjunct1∧ act∧ conjunct2 where act is an

action atom, then act is a bare action atom in consequenti.

State transitions are performed by means of a causal theory, which imposes

preconditions on sets of events and defines the post-conditions of sets of events.

Definition

A causal theory, C = Cpost ∪ Cpre, consists of two parts: Cpost is a set of atomic

sentences defining the predicates initiates and terminates. Cpre is a set of sentences of

the form current(T-1) ∧ events(T)→ false, where current(T-1) is a (possibly empty)

FOL condition with timestamp T-1, events(T) is a non-empty FOL condition with

timestamp T containing no fluents, and all variables not explicitly bound in FOL

conditions are implicitly universally quantified.

The syntax of Cpre allows the specification of such typical preconditions for the

execution of a single action as

¬ in-stock (Item, T -1) ∧ dispatch (C, Item, T)→ false

where in-stock(Item) is a fluent, initiated and terminated by such actions as

stock(Item) and dispatch(C, Item), respectively. The syntax of Cpre also allows the

prohibition of such concurrent sets of events as

dispatch (C1, Item, T) ∧ dispatch (C2, Item, T) ∧ C1 �= C2→ false

It is also possible to specify that certain actions must co-occur:

leave-house (T) ∧ ¬ take-keys (T)→ false

In the example of Figure 3, sending an apology if an item has already been

dispatched or is being dispatched can be prevented by means of the preconditions:

dispatched (C, Item, T) ∧ send-apology (C, Item, T)→ false

dispatch (C, Item, T) ∧ send-apology (C, Item, T)→ false

where dispatched(C, Item) is a fluent initiated by the action dispatch(C, Item).

The use of atomic sentences to define the predicates initiates and terminates is

similar to the use of add-lists and delete-lists in STRIPS (Fikes and Nilsson 1972).

However, it is more general, because the first argument of both predicates is a set

of events. Defining the fluents initiated and terminated by sets of concurrent events

explicitly by means of atomic sentences is not very practical, but it clarifies the

3 For simplicity we say that a formula has a particular form when we mean that the formula can be
rewritten into that form simply by reordering conjunctions and disjunctions, taking commutativity and
associativity into account.

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

Programming in logic without logic programming 277

model-theoretic semantics and simplifies the OS. Moreover, it paves the way for the

more practical representation in which initiates and terminates are defined by logic

programs in LPS.

3 The KELPS model-theoretic semantics

In the model-theoretic semantics of KELPS, the truth values of the rules R and the

preconditions Cpre are defined according to the standard, non-modal semantics of

classical first-order logic. This contrasts with the semantics of modal logics, in which

states are represented by possible worlds, linked by accessibility relations.

In the OS of KELPS, states are updated by adding and deleting fluents. Fluents

that are not affected by the update are left untouched:

Definition

If <R,Aux,C> is a KELPS framework, S is a set of unstamped fluents, representing

a single state, and ev is a set of unstamped events, representing concurrent events,

then the associated successor state is:

succ(S, ev) = (S − {p | terminates(ev, p) ∈ Cpost}) ∪ {p | initiates (ev, p) ∈ Cpost}.

In the model-theoretic semantics, fluents and events are all timestamped, so they

can be included in a single model-theoretic structure M = Aux ∪ S∗ ∪ ev∗.

Notation

If S0 is an initial state, ext1, . . . , exti,. . . , is a sequence of sets of external events and

acts1, . . . , actsi,. . . is a sequence of sets of actions, then,

S∗ = S∗0 ∪ . . . ∪ S∗i ∪ . . .where Si+1 = succ(Si, evi+1)

ev∗ = ev∗0 ∪ . . . ∪ ev∗i ∪ . . .where ev0 = {} and evi = exti ∪ actsi, for i � 1.

Computation in a conventional reactive system consists in generating a stream

act1,. . . , acti,. . . of actions in response to a stream ev0,. . . evi,. . . . of external events

and previously generated actions. Computation in KELPS is similar, but it has a

purpose, namely to make the reactive rules and the preconditions of actions true.

Definition

Given a KELPS framework < R,Aux,C > and initial state S0, the computational

task is, for every i � 0, and for every sequence ev0. . . evi of sets of external events and

previously generated actions, to generate a set actsi+1 of actions such that R ∪ Cpre

is true in the Herbrand interpretation M = Aux ∪ S∗ ∪ ev∗.

The definition of truth for reactive rules is the classic definition for sentences of

FOL. As a consequence, the computational task allows the generation of actions that

make the rules true by making their antecedents false, or by making their consequents

true whether their antecedents are true or false. It also allows the performance of

actions that are irrelevant to the task. These kinds of “preventative”, “proactive” or

“irrelevant” actions cannot be generated by conventional reactive systems. Nor can

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

278 R. Kowalski and F. Sadri

they be generated by KELPS. In this paper, we identify the kind of reactive models

that are generated by the KELPS OS.

Note that in KELPS the generated actions actsi+1 need not be a direct reaction

to the current situation S∗i ∪ ev∗i . They can be a partial response to earlier situations.

3.1 Herbrand interpretations

The semantics of Herbrand interpretations is a simplified version of the standard

semantics of first-order logic.

Definition

Given a sorted first-order language, the Herbrand universe U is the set of all well-

sorted ground (i.e variable-free) terms that can be constructed from the non-empty

set of constants and function symbols of the vocabulary. The Herbrand base is the set

of all well-sorted ground atoms that can be constructed from the predicate symbols

and the ground terms of the vocabulary. A Herbrand interpretation is a subset of

the Herbrand base. A Herbrand model M of a set S of sentences is a Herbrand

interpretation such that every sentence in S is true in M .

One difference from the standard definition of truth is the base case: If I is a

Herbrand interpretation, then a ground atom A is true in I if and only if A ∈ I . The

other difference is the definition of truth for universally and existentially quantified

sentences: A sentence of the form ∀X s(X) is true if and only if for all t ∈ U , where

t has the same sort as X, the sentence s(t) is true. Similarly, ∃X s(X) is true if and

only if for some t ∈ U , where t has the same sort as X, the sentence s(t) is true.

For this to be sensible, the Herbrand universe U needs to be non-empty, as in the

standard definition of truth.

Thus, a rule ∀X [antecedent → ∃Y [consequent1 ∨. . . ∨ consequentn]] is true in I

if and only if, for every ground instance antecedent σ that is true in I , there exists a

ground instance consequenti σ θ that is also true in I . Here the substitutions σ and θ

replace the variables X and Y , respectively, by terms of the appropriate sort in the

Herbrand universe U . For simplicity, we assume that, except for time parameters,

all fluents have the same ground instances over U in all states.

3.2 The temporal structure of KELPS interpretations

The timestamping of fluents and events, and the restrictions on the syntax of KELPS

provide Herbrand interpretations of KELPS programs with a rich structure of sub-

interpretations. This structure is captured by the following theorem, which is an

immediate consequence of the definition of truth.

Theorem 1.

Given a KELPS framework < R,Aux,C >, initial state S0, and sequence of sets of

events ev0. . . evi:

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

Programming in logic without logic programming 279

(1) If s is a conjunction of temporal constraints whose time parameters are all

ground, then s is true in Aux ∪ S∗ ∪ ev∗ if and only if s is true in Aux.

(2) If s is a conjunction of FOL conditions and temporal constraints whose time

parameters are all ground, then,

(a) If all the timestamps in s are the same time i, then s is true in Aux ∪ S∗ ∪ ev∗

if and only if s is true in Aux ∪ S∗i ∪ ev∗i .

(b) If i is the latest timestamp in s, then s is true in Aux ∪ S∗ ∪ ev∗ if and

only if s is true in Aux ∪ S∗0 ∪ . . . S∗i ∪ ev∗0 ∪ . . . ∪ ev∗i .

There is an obvious similarity with the possible world semantics of modal logic. Each

Aux ∪ S∗i is similar to a possible world, and the single interpretation Aux∪S∗∪ ev∗

is similar to a complete frame of possible worlds and accessibility relations. In the

possible world semantics, fluents belong to possible worlds, and events belong to

accessibility relations. But in KELPS, all fluents and events are timestamped and

contained in the single interpretation M = Aux ∪ S∗ ∪ ev∗.

3.3 Sequencing

The temporal constraints of a complex impose a partial order on the timestamps

of the FOL conditions in the complex. Although these timestamps are partially

ordered, the complex is used to recognize or generate linearly ordered sequences of

states satisfying the FOL conditions of the complex.

It is useful to have a notation in the meta-language that distinguishes between

the different sequences represented by the same complex. This notation is not part

of the KELPS object language, but is useful for defining reactive interpretations

and the OS of KELPS. Intuitively, a sequencing of the form earlier < later means

that the FOL conditions in earlier can be evaluated (recognized or generated) before

the FOL conditions in later.

Definition

Let earlier and earlier ∧ later be complexes.4 Then earlier ∧ later has a sequencing

of the form earlier < later (or of the form earlier � later) if and only if there exists

a substitution σ for all the time variables in earlier ∧ later such that

• all the temporal constraints in earlier σ ∧ later σ are true in Aux,

• all the timestamps in FOL conditions in earlier σ are earlier than (or earlier

than or equal to) all the timestamps in FOL conditions in later σ.

Notice that both p(T) < true and true < p(T) are allowed sequencings of p(T). For

example, the complex p(T1) ∧ q(T2) has the strict sequencings: p(T1) < q(T2),

q(T2) < p(T1), true < p(T1) ∧ q(T2) and p(T1) ∧ q(T2) < true.

In some of our earlier papers, we allowed actions selected for execution to contain

non-timestamp variables. These variables are instantiated, when they are successfully

4 It is not sufficient to require later to be a complex because we want to allow later to have temporal
constraints with time variables occurring in earlier.

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

280 R. Kowalski and F. Sadri

executed, as feedback from the environment. In this paper, we restrict the selection

of actions to ones that have no such variables. For this purpose, we require KELPS

frameworks to be range restricted.

Definition

A KELPS framework <R,Aux,C> is range restricted if and only if, for every bare

action atom act containing non-timestamp variables in a rule in R of the form

antecedent → [other ∨ [earlier ∧ act ∧ rest]], there is a sequencing antecedent

∧ earlier < act ∧ rest such that all the non-timestamp variables in act occur in

antecedent or earlier.

3.4 Reactive interpretations

Figures 1 and 2 exemplify different kinds of models of a KELPS program.

The following definition characterizes reactive interpretations and models. Loosely

speaking, an action occurs in a reactive interpretation if and only if it occurs as a

bare action atom in one of the alternative consequents of an instance of a reactive

rule, and all earlier FOL conditions in the antecedent and the alternative consequent

of the instance of the rule are already true in the interpretation before the time of

the action.

Definition

Given a range restricted KELPS framework <R,Aux,C>, initial state S0 and set

ev∗ of timestamped events, let Cpre be true in I = Aux ∪ S∗ ∪ ev∗, and let

ev∗ = ext∗ ∪ acts∗ be a partitioning of ev∗ into external events ext∗ and actions

acts∗. Then I is reactive if and only if, for every action action ∈ I , there exists a rule

r ∈ R of the form antecedent → [other ∨ [earlier ∧ act ∧ rest]], and there exists a

substitution σ such that r σ supports action, in the sense that

(a) action is act σ,

(b) antecedent σ ∧ earlier σ < act σ ∧ rest σ ,

(c) antecedent σ ∧ earlier σ ∧ act σ is true in I.

I is a reactive model of < R,Aux,C > if and only if I is a reactive interpretation

and R is true in I .

Note that condition (b) allows rest σ to be false in I .

4 The KELPS operational semantics

The OS exploits the internal structure of KELPS interpretations Aux ∪ S∗ ∪ ev∗ to

generate them by progressively extending a partial interpretation Aux ∪ S∗0 ∪ . . . S∗i
∪ ev∗0 ∪ . . . ev∗i one step at a time. Moreover, it does so by maintaining only

the unstamped current state Si and the events evi that gave rise to Si, without

remembering earlier states and events.

To recognize complex sequences of states and events in the antecedents of rules

without remembering past states and events, the OS maintains a current set of

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

Programming in logic without logic programming 281

partially evaluated rules Ri, which need to be monitored in the future. For example,

suppose that Ri contains the rule:

cry-wolf (T) ∧ ¬ help-arrives (T + 1)→ cry-wolf (T + 2)

and that ev∗i contains the event occurrence cry-wolf(i). Then the OS evaluates the

condition cry-wolf(T) in the augmented current state and adds to Ri the new rule:

¬ help-arrives (i + 1)→ cry-wolf (i + 2)

The OS also maintains a goal state Gi containing partially evaluated alternative

plans to be made true in the future. For example, if ev∗i+1 does not contain the

event occurrence help-arrives(i+1), then the OS evaluates ¬ help-arrives(i+1) in

the augmented current state to true, and adds to Gi+1 the new, top-level goal

cry-wolf(i+2).

Logically, a goal state Gi is a conjunction Gi1 ∧ . . . ∧ Gin, where each Gij is a

disjunction of partially evaluated alternative plans for making true the consequent of

an instance of a rule whose antecedent has already become true. To be more precise,

each disjunct in Gij is the instantiated remainder later σ of a rule antecedent →
[other ∨ [earlier ∧ later]] in R whose earlier part antecedent σ ∧ earlier σ is already

true in the partial interpretation Aux ∪ S∗0 ∪ . . . S∗i ∪ ev∗0 ∪ . . . ev∗i generated so

far. Because of their similarity to goal clauses in logic programming, such disjuncts

later σ are also called goal clauses in KELPS.

Operationally, the goal state Gi is a set (conjunction) of independent threads Gij ,

and each thread is a goal tree. The root node is the instantiated consequent of a rule

whose antecedent has already become true. The non-root nodes are goal clauses.

The goal tree representation helps to structure the search space of alternative

plans, and to guide the search for alternatives. If the goal trees are searched

in a depth-first fashion, then they can be implemented by stacks, as in Prolog.

Backtracking is possible, but previously generated actions and states cannot be

undone.

The following abstract specification of the OS ignores many optimizations that

can improve efficiency. These are described in (Kowalski and Sadri 2010, 2011, 2012,

2014). Some of these optimizations restrict the models that can be generated, and

hence affect the relationship between the interpretations generated by the OS and

the interpretations sanctioned by the definition of reactive interpretation.

In the following definition, the OS is presented as an agent cycle. At the end

of each cycle, external events are input and combined with selected actions. The

resulting combined set of events is used to update the current state. In other versions

of the OS, these updates were performed at the beginning of the cycle.

Definition (The OS Cycle)

Given a range restricted KELPS framework <R,Aux,C> and an initial state S0, let

ev0 = {}. Let G0 be the goal state obtained by creating, for every rule r in R of the

form true → consequent, a goal tree with consequent at the root, and adding each

disjunct of consequent whose constraints are satisfiable in Aux as a child of the root.

Let R0 be R without these rules.

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

282 R. Kowalski and F. Sadri

For i � 0, given Si, Ri, Gi and evi, the i-th cycle consists of the following steps:

Step 1. Evaluate antecedents. (a) For every sequencing current θ < later θ of the

antecedent of an instance rθ of a rule r of the form current ∧ later → consequent

in Ri, where current is a non-empty complex, add later θ → consequent θ as a new

reactive rule to Ri, if

(1) current θ is true in Aux ∪ S∗i ∪ ev∗i ,

(2) θ instantiates all and only the variables in current,

(3) θ instantiates all the variable timestamps in FOL conditions in current to i,

(4) current contains all the temporal constraints in the antecedent of r that become

true in Aux as the result of evaluating the FOL conditions in current.

(b) If later θ is empty (equivalent to true) then delete later θ → consequent θ from

Ri and start a new thread in Gi with consequent θ at the root. Add each disjunct of

consequent θ whose constraints are satisfiable in Aux as a child of the root.

Step 2. Evaluate goal clauses. Choose a set of sequencings current θ < later θ of

instances Cθ of goal clauses C , where current is a non-empty complex, from one or

more threads in Gi. For each such choice, add later θ to Gi as a child of C , if

(1) current θ is true in Aux ∪ S∗i ∪ ev∗i ,

(2) θ instantiates all and only the variables in current,

(3) θ instantiates all the variable timestamps in FOL conditions in current to i,

(4) current contains all the temporal constraints in C that become true in Aux as

the result of evaluating the FOL conditions in current.

Step 3. Choose candidate actions. Choose a set of sequencings actions τ � rest τ of

instances Cτ of goal clauses C from one or more threads in Gi, where τ instantiates all

and only the timestamp variables in actions to i+1, and actions τ is the conjunction

of all the ground bare action atoms in Cτ that have the timestamp i+1. Let

candidate-actsi+1 be the set of all the action atoms in all such actions τ.

Step 4. Update Si, Gi, Ri. Choose5 a subset acts∗i+1 ⊆ candidate-actsi+1 such that

Cpre is true in Aux ∪ S∗i ∪ ev∗i ∪ ev∗i+1, where ev∗i+1 = ext∗i+1 ∪ acts∗i+1 and the external

events ext∗i+1 are given. Let Si+1 = succ(Si, evi+1), Gi+1 = Gi and Ri+1 = Ri.

Note that the OS can attempt to make an instance of a consequent of a reactive

rule true even though the same instance of the consequent has already been made

true. This can be avoided easily in the OS, by adding an extra case (b) to step 2,

analogous to case (b) of step 1, but would make the corresponding definition of reac-

tive interpretations more complex. However, there are other optimizations that can

be made to the OS, without affecting the definition of reactive interpretation. These

optimizations include removing from Ri rules whose antecedents are timed out, and

removing from Gi goal clauses containing a fluent or event atom that is timed out.

5 Note that if an action act in a goal clause C is selected in step 3 and is successfully executed in step 4,
then C is a candidate to be selected in step 2 of the next cycle, and act is a candidate to be selected for
evaluation to true in C . Moreover, other occurrences of act in other goal clauses can be evaluated to
true in the same cycle, even if they were not selected in step 3 of the previous cycle.

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

Programming in logic without logic programming 283

5 Relationships between the model-theoretic and the operational semantics

The proof of soundness for the OS of LPS (Kowalski and Sadri 2010, 2011, 2014),

also applies to KELPS, and details of the proof are given in the appendix.

Theorem 2 (Soundness)

Given a KELPS framework <R,Aux,C>, initial state S0 and sequence ext1, . . . ,

exti, . . . of sets of external events, suppose that the OS generates the sequences of

sets acts1, . . . , actsi,. . . of actions and S1, . . . , Si, . . . of states. Then R ∪ Cpre is true in

I = Aux ∪ S∗ ∪ ev∗ if, for every goal tree that is added to a goal state Gi, i � 0, the

goal clause true is added to the same goal tree in some goal state Gj, j � i.

The following theorem characterizes the interpretations generated by the OS.

It is a correctness result for reactive interpretations. The detailed proof is in the

appendix.

Theorem 3 (Every interpretation generated by the OS is reactive)

Given a range restricted KELPS framework <R,Aux,C>, initial state S0 and set

of external events ext∗, let acts∗ be the set of actions generated by the OS, and

ev∗ = ext∗ ∪ acts∗. Then I = Aux ∪ S∗ ∪ ev∗ is a reactive interpretation.

Proof Sketch

Here is a sketch of the proof for the case where all variables in X and Y in rules

∀X [antecedent→ ∃Y [consequent]] have been replaced by all their ground instances,

and all the resulting ground temporal constraints have been evaluated, so that the

resulting rules no longer contain any temporal constraints.

To show that any action generated by the OS is supported, we show more generally

that, if a goal clause C is in a goal state Gi, where i � 0, then there exists a rule

in R of the form antecedent → [other ∨ [earlier ∧ C]] such that earlier < C and

antecedent and earlier are true in Aux ∪ S∗0 ∪ . . . ∪ S∗i ∪ ev∗0 . . . ∪ ev∗i .

If an action act is generated by the OS, then it belongs to some actsi+1, i � 0, and

act is selected as a candidate in step 3 at time i from a goal clause in Gi that has a

sequencing act � rest. It follows that r supports act, and I is supported.

The following theorem is a kind of completeness result for reactive interpretations.

The detailed proof is in the appendix.

Theorem 4 (Every reactive interpretation can be generated by the OS)

Given a range restricted KELPS framework < R,Aux,C >, initial state S0 and

external events ext∗, let acts∗ be a set of actions such that I = Aux∪S∗ ∪ ev∗, where

ev∗ = ext∗ ∪ acts∗, is a reactive interpretation. Then there exist choices in steps 2, 3

and 4 such that the OS generates acts∗ (and therefore generates I).

Proof Sketch

Here is a sketch for the case where all the variables X and Y in rules

∀X [antecedent → ∃Y [consequent]] are replaced by their ground instances, and

all temporal constraints have been evaluated.

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

284 R. Kowalski and F. Sadri

Let acti ∈ acts∗ be an action at time i supported by a rule r ∈ R. Then r has the

form antecedent → [other ∨ [early ∧ acti ∧ rest]], where antecedent ∧ early is true in

Aux∪ S∗0 ∪ . . .∪ S∗i-1 ∪ ev∗0 . . .∪ ev∗i-1. It suffices to show that Gi contains a goal clause

of the form acti ∧ rest, because then the OS can choose candidate actions in step 3

and a combination ev∗i = ext∗i ∪ acts∗i , of external events and candidate actions in

step 4, such that acts∗i is the set of all such actions acti.

To show that Gi contains a goal clause of the form acti ∧ rest, we show more

generally that for all times k � i, and for all r ∈ R that support an action in acts∗i
there exist choices in steps 2, 3 and 4 such that either

• r has the form antecedent → [other ∨ [early ∧ late]] where late is in Gk and

antecedent ∧ early is true in Aux ∪ S∗0 ∪ . . . ∪ S∗k-1 ∪ ev∗0 . . . ∪ ev∗k-1 or

• r has the form earlier ∧ later → consequent, where later → consequent is in Rk

and earlier is true in Aux ∪ S∗0 ∪ . . . ∪ S∗k-1 ∪ ev∗0 . . . ∪ ev∗k-1.

Frame axioms. Most logic-based causal theories in AI employ frame axioms to

represent and reason about change of state. These frame axioms represent the

property that a fluent persists from one state to the next, unless it is terminated

by the events that give rise to the state transition. They are used either to reason

forwards to copy fluents unchanged from one state to the next, or to reason

backwards to determine whether a fluent holds in a state by determining whether

holds in the previous state. The use of destructive assignment in LPS and KELPS

avoids these computationally expensive forms of reasoning.

In (Kowalski and Sadri 2015), we show that frame axioms are an emergent

property of the LPS OS. This is analogous to showing, for example, that associativity

of addition is an emergent property of a program that computes addition. The proof

for LPS also applies to KELPS. In fact, the proof does not depend on the OS, but

only on the definition of succ(Si, evi+1).

Theorem 5 (Frame axioms are an emergent property)

Given definitions Cpost of the predicates initiates and terminates, initial state S0 and

sequence of sets of concurrent events ev1, . . . , evi, ..., let I = Cpost ∪ S∗ ∪ ev∗, where

S∗ = S∗0 ∪ . . . ∪ S∗i ∪ . . . where Si+1 = succ(Si, evi+1) and ev∗ = ev∗1 ∪ . . . ∪ ev∗i ∪

Then for all evi+1, i � 0 and fluents p, the following sentence is true in I :

[initiates(evi+1, p)→ p(i + 1)] ∧
[p(i) ∧ ¬ terminates(evi+1, p)→ p(i + 1)]

6 Related work

The development of KELPS/LPS has been influenced by work in many different

areas of computing, including programming, databases and artificial intelligence.

To make the task of comparison with related work more manageable, we focus

primarily on comparing KELPS/LPS with other approaches that attempt to give

a logical semantics to rule-based systems. Our earlier papers (Kowalski and Sadri

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

Programming in logic without logic programming 285

2009, 2010, 2011, 2012, 2014, 2015) include extensive comparisons between LPS and

many of these systems. In this paper, we relate the earlier comparisons with KELPS,

and include other related work.

6.1 LPS

First, we need to clarify the relationship between KELPS and LPS. Consider, for

example, a reactive rule in LPS, which expresses a robot’s goal of replying with a

sentence to any sentence said by an agent called “turing”

sentence(turing, T1, T2)→ sentence(robot, T3, T4) ∧ T2 < T3 < T2 + 3sec

Here the predicate sentence represents a composite event or action with its start

and end times. In LPS, the predicate can be defined by a logic program, which

can be used both to recognize and to generate sentences. The logic program could

include, among other clauses defining the predicates np and vp, such clauses as

sentence (Agent, T1, T3)← np (Agent, T1, T2) ∧ vp (Agent, T2, T3)

adj (Agent, T , T+1)← say (Agent, human, T , T+1)

noun (Agent, T , T+1)← say (Agent, human, T , T+1)

Here say represents a primitive event with its start and end times, In KELPS,

such a primitive event is represented more simply with only its end time.

In KELPS, it is possible to get a similar effect to LPS, by replacing the one rule

by infinitely many rules, including for example the rule:

say (turing, i, 2) ∧ say (turing, am, 3) ∧ say (turing, human, 4)

→ say (robot, you, 6) ∧ say (robot, are, 7) ∧ say(robot, intelligent, 8)

This is neither practical nor desirable, which is why LPS has both reactive rules and

logic programs. As far as we know, other than CHR (Section 6.4), there is no other

language not derived from ALP that combines reactive rules and logic programs,

but retains their separate character. Most languages that have only reactive rules

simulate logic programs by treating goals as facts. Most approaches that give a

logical semantics to reactive rules translate them into logic programs.

In this paper, we have restricted our attention to reactive rules in KELPS only

because it simplifies and clarifies the investigation of completeness.

6.2 Abductive logic programming (ALP) and the event calculus

LPS (and therefore KELPS) originated in our earlier work on ALP (Fung and

Kowalski 1997; Kakas et al. 1998) and ALP agents (Kowalski and Sadri 1999, 2009;

Kowalski 2011). ALP extends logic programming by allowing certain predicates

(called abducible or open predicates) to be assumed in order to solve a problem.

These assumptions are restricted by means of integrity constraints. In ALP agents,

the abducible predicates represent actions, and the integrity constraints include

reactive rules. The main difference is that KELPS/LPS uses destructive updates for

state transitions, whereas ALP agents use the event calculus (Kowalski and Sergot

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

286 R. Kowalski and F. Sadri

1986). Although the event calculus has been viewed as solving the frame problem

(Shanahan 1997), we believe that it cannot compete for practical applications with

destructive change of state. However, destructive change of state does not have an

obvious logical semantics. In particular, if states are axiomatic theories, which are

syntactic objects, then destructive change of state is problematic, because it is not

possible to change the axioms during the course of trying to prove a theorem.

KELPS/LPS retains the ontology of the event calculus but replaces explicit

reasoning with event calculus axioms by implicit construction of timestamped

Herbrand interpretations. As a consequence, KELPS/LPS can generate only reactive

models. In contrast, the use of the event calculus in ALP agents can also generate

preventative and proactive models.

LPS inherits from ALP the property that models can contain irrelevant actions.

In ALP, irrelevant actions can be avoided by minimizing the set of actions contained

in a model. In LPS, the generation of irrelevant actions is reduced by generating

only reactive interpretations, which contain only actions that are instances of action

atoms that occur explicitly in the consequents of reactive rules.

6.3 MetateM

To the best of our knowledge, MetateM (Barringer et al. 1996) is the only other

framework not based on ALP that describes state transitions by reactive rules in

logical form and that treats computation as model generation. Programs in MetateM

consist of sentences in modal temporal logic of the form:

“past and present formula” implies “present or future formula”

Computation consists in generating a model in which all such sentences are true.

MetateM does not formally distinguish between events and fluents, and does not

have an explicit causal theory, but frame axioms and other logic programs are

written, as needed, in the form of reactive rules.

Like KELPS, MetateM lacks the logic programs of LPS. The main differences

are that, in KELPS, time is represented explicitly, models are classical rather than

modal, and models are constructed by means of destructive updates. In LPS, there

is the further difference that logic programs are separate from and additional to

reactive rules.

(Barringer et al. 1996) presents an OS for propositional MetateM without external

events. Despite the claim (on page 148) that the MetateM OS is complete, our

examples of non-reactive models for KELPS can be translated into MetateM, and

show that the MetateM OS can generate only reactive models, and therefore is

incomplete.

6.4 Constraint handling rules (CHR)

Closer to LPS in syntactic structure and expressive power is the language CHR

(Frühwirth 1998, 2009). As in LPS, there are two kinds of rules: equivalences and

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

Programming in logic without logic programming 287

propagation rules. Equivalences can be used like ordinary logic programs, but can

also be used for simplification. Propagation rules are logical implications, which are

used to reason forward, like reactive rules in KELPS. CHR∨ (Abdennadher and

Schütz 1998) extends CHR to include disjunctions in the consequents of propagation

rules, more like reactive rules in KELPS.

The OS of propagation rules in CHR∨ is similar to that of KELPS, and the OS

of propagation rules and equivalences is similar to that of LPS. CHR has a classical

logic semantics, in which computation is interpreted as theorem-proving, similar to

that of the IFF proof-procedure (Fung and Kowalski 1997). This semantics does

not justify destructive updates. But CHR also has a translation into linear logic

(Betz and Frühwirth 2005), which justifies destructive updates in the style of LPS,

but without the use of timestamps.

The linear logic semantics of CHR is very different from the model-theoretic

semantics of KELPS/LPS, in which time is represented explicitly, and state tran-

sitions are performed by means of a causal theory. Although propagation rules

are similar to reactive rules, it is not clear how the completeness and incom-

pleteness of the KELPS/LPS OS relate to the completeness results for CHR/

CHR∨.

6.5 Production systems (PS)

Production systems are computer languages in which programs are sets of sentences

of the form if conditions then actions. State transitions are performed by evaluating

the conditions in the current state and executing the corresponding actions, perform-

ing “conflict resolution” to choose between conflicting actions. The chosen actions

destructively update the current state.

It was the attempt to understand the logic of PS and their relationship with

logic programs that led to the development of LPS (which explains the PS in

LPS). Several other authors have also attempted to provide production rules with

a logical semantics, mostly by mapping them into logic programs. Raschid (1994),

in particular, transforms production rules into logic programs, and uses the fixed

point semantics of logic programming to perform forward chaining. Baral and Lobo

(1995), on the other hand, translate production rules into the situation calculus

represented as a logic program with the stable model semantics (Gelfond and

Lifschitz 1988).

More recently, Damásio et al. 2010) use incremental Answer Set Programming

(ASP) to realize different conflict resolution strategies for the RIF-PRD production

system dialect. Eiter et al. (2012) simulate PS in ASP with an interface to an

external environment, performing state changes by updating and accessing the

environment via action atoms and external atoms. Gebser et al. (2011) use disjunctive

logic programs (but without existential quantifiers) to represent reactive rules in

ASP, for “reasoning about real-time dynamic systems running online in changing

environments”.

To the best of our knowledge, none of these mappings into logic programs perform

destructive updates in the manner of PS and KELPS/LPS.

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

288 R. Kowalski and F. Sadri

In contrast with these approaches, KELPS/LPS reformulates production rules as

reactive rules, and not as logic programs. In LPS, logic programs are like “deductive”

databases, and reactive rules are like database integrity constraints.

6.6 Integrity constraints

The model-theoretic semantics of KELPS, which is fundamental to the investigation

of completeness in this paper, is based upon the model-theoretic semantics of

integrity constraints in deductive databases and ALP. However, from a historical

perspective (Kowalski 2014), the model-theoretic semantics is only one of two main

alternatives. The other alternative is the theorem-hood view, in which integrity

constraints (and queries) are meant to be theorems that are a logical consequence

of the database regarded as a theory.

In the parallel world of logic programming, there has been a shift away from the

theorem-proving view of computation to a model-generation view. Our own work

on the semantics of KELPS/LPS has followed this shift from theorem-proving to

model-generation. In LPS, the semantics of logic programs (Kowalski and Sadri

2015) is in the spirit of the well-founded semantics (Van Gelder et al. 1991). But

in the case of KELPS, the role of logic programs is played more simply by sets of

ground atoms, which are equivalent to relational databases.

Reactive rules in KLEPS/LPS are similar in syntax to integrity constraints in the

form of disjunctive tuple-generating dependencies in relational databases (Wang et al.

2001). But, whereas in relational databases the main focus has been on the problem

of deciding whether a given set of tuple-generating dependencies logically implies

another dependency, in KELPS/LPS the focus is on generating a model that makes

integrity constraints in the form of reactive rules R and preconditions Cpre true.

In recent years, most of the activity in deductive databases has become associated

with Datalog, in which databases are logic programs without function symbols.

Datalog± (Calı̀ et al. 2009) extends Datalog with existential rules, which are similar

in syntax to reactive rules in KELPS/LPS (but without disjunctive consequents), and

which can similarly be viewed as integrity constraints. However, whereas reactive

rules and logic programs are separate components of LPS, in Datalog± logic

programs are a special case of existential rules. So in effect, Datalog± does not

distinguish between the database and integrity constraints. Moreover, it deals only

with one database state at a time, and does not deal with database updates.

Datalog± generates answers to queries by using a bottom-up procedure, called

the chase (Maier et al. 1979), which is also used in (Wang et al. 2001). Gavanelli

et al. (2015) map Datalog± into ALP, and show how the SCIFF proof procedure

(Alberti et al. 2008), which extends the IFF proof procedure of (Fung and Kowalski

1997) generates the same answers as the chase procedure. The IFF proof procedure,

in turn, is one of the progenitors of the KELPS/LPS OS.

The IFF proof procedure, in turn, is similar to the SATCHMO proof procedure

(Manthey and Bry 1988) for the full clausal form of first-order logic. SATCHMO is

a bottom-up procedure, which can be viewed both as a resolution-based theorem-

prover and as a model-generator.

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

Programming in logic without logic programming 289

6.7 Transaction logic

Transaction Logic (TR) (Bonner and Kifer 1993) is a logic-based formalism for

defining transactions, which are similar to complex plans in KELPS/LPS, and

which similarly update states of a logic program or database. Transactions in TR

have a logical, model-theoretic semantics, which, like the possible world semantics

of modal logic, is based on sets of possible worlds (or states). But unlike modal

logic, the truth value of a transaction is defined along a path of states, starting with

the state at the beginning of the transaction and ending with the state at the end

of the transaction. As in KELPS/LPS, state transitions are performed by means of

destructive updates. Although there is no direct analogue of the reactive rules of

KELPS/LPS, they can be simulated by transactions. Rezk and Kifer (2012) use

such a simulation to give a logic-based semantics to a production system language.

KELPS shares with TR the view of computation as making a goal true by

generating a sequence of destructively updated states. Moreover, the inclusion of

FOL conditions in KELPS/LPS was largely inspired by similar FOL conditions

in TR transactions. The main differences are that, in KELPS, transactions are the

consequents of reactive rules that are triggered when the antecedents become true,

time is represented explicitly, and all states, actions and events are combined into a

single model-theoretic structure.

TRev (Gomes and Alferes 2014) extends TR by combining the generation of

complex transactions with the recognition of complex events. As a consequence, its

expressive power is similar to KELPS, but it represents complex events and complex

transactions separately, without combining them into reactive rules that are logical

implications.

6.8 Active databases

A number of researchers have attempted to develop logic-based semantics for active

databases. The majority of these approaches map reactive rules in the form of event-

condition-action (ECA) rules into logic programs. For example, both Zaniolo (1993)

and Lausen et al. (1998) use frame axioms similar to those in Theorem 5, and reduce

ECA rules to logic programs such as action(T+1) ← condition(T) ∧ event(T+1).

Fernandes et al. (1997) give separate logical formalizations of events, conditions and

actions, but without combining them into reactive rules that are logical implications.

Like PS, and unlike KELPS/LPS, active databases are restricted to rules whose

antecedents query the current state, and whose consequents update the current state.

6.9 Agent languages

Bailey et al. (1995) argue that, although they differ in their intended applications

and research communities, many agent languages developed in AI are similar to

active database systems. In particular, agent plans in BDI agents are similar to ECA

rules in active databases. Moreover, both BDI agents and active databases maintain

a destructively updated database state, and lack a declarative semantics.

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

290 R. Kowalski and F. Sadri

LPS is a direct descendant of ALP agents, which embed ALP in the thinking

component of a BDI-like agent cycle. In ALP agents, a logic program represents

the agent’s beliefs, and initial goals and integrity constraints represent the agent’s

goals (or desires). The database is updated by using the event calculus, using frame

axioms. The ALP agent approach was developed further in the KGP agent model

(Kakas et al. 2004; Mancarella et al. 2009). In contrast, the OS of LPS employs a

destructively updated database, which represents the current state.

The destructive updates of LPS were inspired in part by their use in BDI-agent

languages such as AgentSpeak (Rao 1996). Programs in AgentSpeak are collections

of statements of the form:

event E : conditions C ⇐ goals G and actions A.

The event E can be the addition or deletion of a belief literal or a goal atom,

stored in a database. The conditions C query the database, and the goals G and

actions A update the database by adding or deleting goals and beliefs. As a result,

plans combine some of the functionality of both reactive rules and logic programs

in LPS. However, they do not allow complex events in the event or conditions part

of plans, and they do not include temporal constraints. Moreover, they do not have

a logical semantics. In fact, when E is the addition of a belief literal, the arrow ⇐
is opposite to the arrow of logical implication in KELPS/LPS.

A number of authors have also developed agent languages and systems in a logic

programming context. For example in DALI (Costantini and Tocchio 2014) and

EVOLP (Brogi et al. 2002) events transform an initial agent logic program into a

sequence of logic programs. ERA (Alferes et al. 2006) extends EVOLP with complex

events, complex actions, and event-condition-action rules. The semantics of the

evolutionary sequence of logic programs in DALI, EVOLP and ERA is given by an

associated sequence of models. In ERA, ECA rules are translated into logic programs

of the form action ← condition ∧ event. In contrast, KELPS/LPS distinguishes

between the semantics of logic programs and reactive rules, and combines the

sequence of states and events into a single model using timestamps.

FLUX (Thielscher 2005) is a constraint logic programming language for imple-

menting intelligent agents using the fluent calculus. One of the objectives of the

fluent calculus is to avoid the computational inefficiency of reasoning with frame

axioms, by reifying states as lists of fluents. However, the list representation requires

the explicit use of recursion both to query whether a fluent is a member of a

list representing a state, and to delete a fluent if it is terminated by an action.

Arguably, this is nearly as inefficient as reasoning with explicit frame axioms. In

contrast, in KELPS/LPS, states are not represented explicitly in the language, but are

represented implicitly by sets of fluents, and membership and deletion are performed

by associative look-up. In FLUX, states can be updated by sensing actions, but there

seems to be no analogue of the reactive rules of KELPS/LPS.

In Governatori and Rotolo (2013), the authors present an efficient algorithm

for computing argumentation-style extensions in temporal defeasible logic (TDL).

Programs in TDL are logical implications with time stamps, similar to reactive rules

in KELPS. The time complexity of the algorithm is proportional to the size of

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

Programming in logic without logic programming 291

the rules, which is much more efficient than explicit reasoning with event calculus

style frame axioms. However, because the algorithm is not described in terms of

destructive updates, it is difficult to compare it directly with the OS of KELPS.

Most of these approaches focus on the internal reasoning of individual agents,

treating other agents as part of the external environment. In contrast, SCIFF

(Alberti et al. 2008) focuses directly on the specification and verification of multi-

agent systems, abstracting away from the internal structure of individual agents. It

uses ALP to represent the expected behavior of agents and a variant of the IFF

proof procedure (Fung and Kowalski 1997), to verify that actual behavior conforms

to expectations. Integrity constraints in SCIFF resemble ECA rules, but are used to

specify the occurrence of events, and not to generate them. Events are timestamped,

but are not related to fluents by a causal theory.

6.10 Reactive systems programming languages

Although LPS has its origins in logic programming, which is Turing complete, the

kernel of LPS is its reactive rules. This shift from logic programs to reactive rules

reflects our better appreciation of the fundamental role of state transition systems

in all areas of computing, including reactive systems programming languages.

As David Harel (1987) puts it: “Much of the literature also seems to be in

agreement that states and events are a piori a rather natural medium for describing

the dynamic behavior of a complex system.... A basic fragment of such a description

is a state transition, which takes the general form when event Y occurs in state A,

if condition C is true at the time, the system transfers to state B”. Harel contrasts

such reactive systems with “transformational systems”, which transform inputs into

outputs in a purely declarative manner. Arguably, LPS reconciles Harel’s two kinds

of computational systems, with reactive rules providing the reactive part, and logic

programs providing structure for the “transformational” part.

In contrast, Shapiro (1989) argues that concurrent logic programming languages

are well suited for specifying reactive systems. In these languages, the state of a

computation consists of a goal, which is a sequence of atoms and an assignment of

values to variables in the goals. Programs are guarded Horn clauses, which have the

form head ← guard | body. Goal atoms that match the head and satisfy the guard

are reduced to the goal atoms in the body.

Each goal atom is viewed as a process, and the goal as a whole is viewed as a

network of concurrent processes. Processes communicate by instantiating shared

logical variables. The external environment is represented by a process whose

behavior is specified by another concurrent logic program.

This approach to reactive systems is very different from that of KELPS/LPS, in

which states are sets of time-stamped atoms. Operationally, KELPS/LPS is closer

to coordination languages, such as Linda (Carriero and Gelernter 1989), in which

processes interact through the medium of a shared state.

Whereas Harel sees the need for both transformational and reactive systems, and

Shapiro reduces both kinds of systems to logic programs, Gurevich (2000) models

all varieties of computation by abstract state machines (ASM), programmed by rules

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

292 R. Kowalski and F. Sadri

of the form if guard then assignments. States are abstract, model-theoretic structures

consisting of objects and functions. State transitions are performed by evaluating all

the guards of rules if guard then assignments that are true in the current state and

executing all of the corresponding assignments destructively and in parallel. Rules

in ASM are similar to condition-action rules in PS and to reactive rules in KELPS.

However, ASM rules are more restricted than KELP/LPS rules, whose antecedents

and consequents can involve an entire complex of temporally constrained FOL

conditions. Compared with LPS, in which all states are combined in a single model,

only the individual states in ASM are model-theoretic in character. Moreover, the

if-then syntax of guarded assignments in ASM does not mean logical implication.

7 Conclusions and future work

This paper makes a contribution to analyzing the relationship between the opera-

tional and model-theoretic semantics of KELPS. In the future, it would be useful to

extend the results to LPS. It would also be interesting to extend the OS to capture

more of the non-reactive interpretations that satisfy the model-theoretic semantics.

On the practical side, it would be useful to extend reactive rules to allow more

complex event conditions. This extension would not affect the model-theoretic

semantics, and can be implemented, for example, by storing a window of past

events. It is also important to explore the treatment of concurrency in greater depth,

especially in the context of multi-agent systems, in which the external events of a

single agent include actions generated by other agents.

There are a number of implementations of LPS. Making some of these available

for wider use is a major priority for future work.

Acknowledgements

We are grateful to the anonymous referees for their careful reading of our earlier

submission, and for their many helpful comments.

Supplementary material

To view supplementary material for this article, please visit http://dx.doi.org/

10.1017/S1471068415000041.

References

Abdennadher, S. and Schütz, H. 1998. CHR∨: A flexible query language. In Flexible Query

Answering Systems, T. Andreasen, H. Christiansen and H. Larsen, Eds. Springer, Berlin

Heidelberg, 1–14.

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P. and Torroni, P. 2008.

Verifiable agent interaction in abductive logic programming: The SCIFF framework. ACM

Transactions on Computational Logic (TOCL) 9(4), 691–750.

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

Programming in logic without logic programming 293

Alferes, J. J., Banti, F. and Brogi, A. 2006. An event-condition-action logic programming

language. In Logics in Artificial Intelligence. JELIA 06, vol. 4160, M. Fisher, W. van der

Hoek, B. Konev and A. Lisitsa, Eds. LNIA, Springer, Berlin Heidelberg, 29–42.

Bailey, J., Georgeff, M., Kemp, D., Kinny, D. and Ramamohanarao, K. 1995. Active

databases and agent systems—a comparison. In Rules in Database Systems, T. Sellis, Ed.

Springer, Berlin Heidelberg, 342–356.

Baral, C. and Lobo, J. 1995. Characterizing production systems using logic programming

and situation calculus. http://www.cs.utep.edu/baral/papers/char-prod-systems.ps.

Barringer, H., Fisher, M., Gabbay, D., Owens, R. and Reynolds, M. 1996. The Imperative

Future: Principles of Executable Temporal Logic. John Wiley & Sons, Inc, New York, NY.

Betz, H. and Frühwirth, T. 2005. A linear-logic semantics for constraint handling rules. In

Principles and Practice of Constraint Programming - CP 2005, vol. 3709, P. van Beek, Ed.

LINCS, Springer, Berlin Heidelberg, 137–151.

Bonner, A. and Kifer, M. 1993. Transaction logic programming. In Proc. of the International

Conference on Logic Programming, D. S. Warren, Ed. 257–279.

Brogi, A., Leite, J. A. and Pereira, L. M. 2002. Evolving logic programs. In Proc. of the 8th

European Conference on Logics in Artificial Intelligence (JELIA’02), S. Flesca, S. Greco, N.

Leone and G. Ianni, Eds. Lecture Notes in Computer Science, vol. 2424. Springer-Verlag,

Berlin, 50–61.

Calı̀, A., Gottlob, G. and Lukasiewicz, T. 2009. Datalog±: A unified approach to ontologies

and integrity constraints. In Proc. of the 12th International Conference on Database Theory,

R. Fagin, Ed. ACM, New York, NY, 14–30.

Carriero, N. and Gelernter, D. 1989. Linda in context. Communications of the ACM 32(4),

444–458.

Costantini, S. and Tocchio, A. 2004. The DALI logic programming agent-oriented language.

In Proc. of the JELIA 2004, J. J. Alferes and J. Leite, Eds. Lecture Notes in Computer

Science (LNAI), vol. 3229, Springer, Heidelberg, 685–688.

Damásio, C. V., Alferes, J. J. and Leite, J. 2010. Declarative semantics for the rule interchange

format production rule dialect. In Proc. of Semantic Web–ISWC 2010, P. Patel-Schneider,

Ed. Springer, Berlin Heidelberg, 798–813.

Eiter, T., Feier, C. and Fink, M. 2012. Simulating production rules using ACTHEX. In

Correct Reasoning, E. Erdem, Ed. LINCS, vol. 7265, Springer, Berlin Heidelberg, 211–228.

Fernandes, A. A. A., Williams, M. H. and Paton, N. 1997. A logic-based integration of

active and deductive databases. New Generation Computing 15 (2), 205–244.

Fikes, R. E. and Nilsson, N. J. 1972. STRIPS: A new approach to the application of theorem

proving to problem solving. Artificial Intelligence 2(3), 189–208.

Frühwirth, T. 1998. Theory and practice of constraint handling rules. The Journal of Logic

Programming 37(1-3), 95–138.

Frühwirth, T. 2009. Constraint Handling Rules. Cambridge University Press, Cambridge,

UK.

Fung, T. H. and Kowalski, R. 1997. The IFF proof procedure for abductive logic

programming. The Journal of Logic Programming 33(2), 151–165.

Gavanelli, M., Lamma, E., Riguzzi, F., Bellodi, E., Zese, R. and Cota, G. 2015. Abductive

logic programming for datalog± ontologies. In Proc. of the Technical Communications of

the 31st International Conference on Logic Programming (ICLP 2015), M. De Vos, T. Eiter,

Y. Lierler and F. Toni, Eds. Vol. 1433, CEUR, ONLINE: http://ceur-ws.org/Vol-1433/.

Gebser, M., Grote, T., Kaminski, R. and Schaub, T. 2011. Reactive answer set programming.

In Logic Programming and Nonmonotonic Reasoning, J. Delgrande and W. Faber, Eds. LNAI,

vol. 6645, Springer, Berlin, Heidelberg, 54–66.

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

294 R. Kowalski and F. Sadri

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In

ICLP/SLP, vol. 88, 1070–1080.

Gomes, A. S. and Alferes, J. J. 2014. Transaction Logic with (Complex) Events.arXiv preprint

arXiv:1405.3790.

Governatori, G. and Rotolo, A. 2013. Computing temporal defeasible logic. RuleML 2013,

114–128.

Gurevich, Y. 2000. Sequential abstract-state machines capture sequential algorithms. ACM

Transactions on Computational Logic (TOCL) 1(1), 77–111.

Harel, D. 1987. Statecharts: A visual formalism for complex systems. Science of Computer

Programming 8, 231–274.

Jaffar, J. and Lassez, J. L. 1987. Constraint logic programming. In Proc. of the 14th ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Languages, ACM, New York

NY, 111–119.

Kakas, A. C., Kowalski, R. and Toni, F. 1998. The role of logic programming in abduction.

In Handbook of Logic in Artificial Intelligence and Programming, Vol. 5, D. Gabbay, C. J.

Hogger and J. A. Robinson, Eds. Oxford University Press, Oxford, 235–324.

Kakas, A. C., Mancarella, P., Sadri, F., Stathis, K. and Toni, F. 2004. The KGP model of

agency. In Proc. ECAI-2004.

Kowalski, R. 2011. Computational Logic and Human Thinking: How to be Artificially

Intelligent. Cambridge University Press, Cambridge, UK.

Kowalski, R. 2014. Logic for Problem Solving, Revisited. Thom Fr¨uhwirth, Ed., Herstellung

und Verlag, Books on Demand GmbH, Norderstedt.

Kowalski, R. and Sadri, F. 1999. From logic programming towards multi-agent systems.

Annals of Mathematics and Artificial Intelligence 25, 391–419.

Kowalski, R. and Sadri, F. 2009. Integrating logic programming and production systems in

abductive logic programming agents. In Proc. of the 3rd International Conference on Web

Reasoning and Rule Systems, A. Polleres and T. Swift, Eds. LNCS, vol. 5837, Springer,

Berlin Heidelberg, 1–23.

Kowalski, R. and Sadri, F. 2010. An agent language with destructive assignment and model-

theoretic semantics. In Proc. of the 11th International Workshop on Computational Logic in

Multi-Agent Systems (CLIMA), J. Dix, J. Leite, G. Governatori and W. Jamroga, Eds.

LNAI, vol. 6245, Springer, Berlin Heidelberg, 200–218.

Kowalski, R. and Sadri, F. 2011. Abductive logic programming agents with destructive

databases. Annals of Mathematics and Artificial Intelligence 62(1), 129–158 Cambridge, UK.

Kowalski, R. and Sadri, F. 2012. A logic-based framework for reactive systems. In Rules

on the Web: Research and Applications, 2012 – RuleML 2012, vol. 7438, A. Bikakis and A.

Giurca, Eds. Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1–15.

Kowalski, R. and Sadri, F. 2014. A logical characterization of a reactive system language. In

RuleML 2014, vol. 8620, A. Bikakis et al., Eds. RuleML 2014, Lecture Notes in Computer

Science, Springer International Publishing, Switzerland, 22–36

Kowalski, R. and Sadri, F. 2015. Model-theoretic and operational semantics for reactive

computing. New Generation Computing 33(1), 33–67.

Kowalski, R. and Sergot, M. 1986. A logic-based calculus of events. New Generation

Computing 4 (1), 67–95.

Lausen, G., Ludäscher, B. and May, W. 1998. On active deductive databases: The statelog

approach. In Proc. of the Transactions and Change in Logic Databases, H. Decker, B. Freitag,

M. Kifer and A. Voronkov, Eds. LNCS, vol. 1472, Springer, Berlin Heidelberg, 69–106.

Maier, D., Mendelzon, A. and Sagiv, Y. 1979. Testing implications of data dependencies.

ACM Transactions on Database Systems 4(4), 455–469.

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

Programming in logic without logic programming 295

Mancarella, P., Terreni, G., Sadri, F., Toni, F. and Endriss, U. 2009.The CIFF proof

procedure for abductive logic programming with constraints: Theory, implementation and

experiments. Theory and Practice of Logic Programming 9 (06), 691–750.

Manthey, R. and Bry, F. 1988. January. SATCHMO: A theorem prover implemented in

prolog. In Proc. of the Conference on Automated Deduction, LNCS, vol. 310, E. Lusk and

R. Overbeek, Eds. Springer, Berlin Heidelberg, 415–434.

Paschke, A., Boley, H., Zhao, Z., Teymourian, K. and Athan, T. 2012. Reaction RuleML

1.0: Standardized semantic reaction rules. In Rules on the Web: Research and Applications,

A. Bikakis and A. Eds. LNCS, vol. 7438, Springer, Berlin Heidelberg, 100–119.

Rao, A. S. and Georgeff, M. P. 1995. BDI agents: From theory to practice. In Proc. of the

International Conference on Multiagent Systems - ICMAS, V. Lesser and L. Gasser, Eds.

The MIT Press, Cambridge, MA, 312–319.

Rao, A. 1996. AgentSpeak (L): BDI agents speak out in a logical computable language. In

Agents Breaking Away, 42–55.

Raschid, L. 1994. A semantics for a class of stratified production system programs. The

Journal of Logic Programming 21(1), 31–57.

Rezk, M. and Kifer, M. 2012. Formalizing production systems with rule-based ontologies.

In Foundations of Information and Knowledge Systems, T. Lukasiewicz and A. Sali, Eds.

LNCS, vol. 7153, Springer, Berlin Heidelberg, 332–351.

Shanahan, M. 1997. Solving the Frame Problem: A Mathematical Investigation of the Common

Sense Law of Inertia. MIT Press, Cambridge, MA and London, England.

Shapiro, E. (1989). The family of concurrent logic programming languages. ACM Computing

Surveys (CSUR) 21(3), 413–510.

Thielscher, M. 2005. FLUX: A logic programming method for reasoning agents. Theory and

Practice of Logic Programming 5(4-5), 533–565.

Van Gelder, A., Ross, K. A. and Schlipf, J. S. 1991. The well-founded semantics for general

logic programs. Journal of the ACM (JACM) 38(3), 619–649.

Wang, J., Topor, R. and Maher, M 2001. Reasoning with disjunctive constrained tuple-

generating dependencies. In Database and Expert Systems Applications, H. Mayr, J.

Lazansky, G. Quirchmayr and P. Vogel, Eds. LNCS, vol. 2113, Springer, Berlin Heidelberg,

963–973

Zaniolo, C. 1993. On the unification of active databases and deductive databases. In Advances

in Databases, M. Worboys and A. Grundy, Eds. LNCS, Springer, Berlin Heidelberg, 23–39.

https://doi.org/10.1017/S1471068416000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000041

