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A cladogram is a tree with labelled leaves and unlabelled degree-3 branchpoints. A certain

Markov chain on the set of n-leaf cladograms consists of removing a random leaf (and its

incident edge) and re-attaching it to a random edge. We show that the mixing time (time

to approach the uniform stationary distribution) for this chain is at least O(n2) and at most

O(n3).

1. Introduction

By cladogram we mean an unrooted tree with n > 4 leaves (degree-1 vertices) labelled

{1, 2, . . . , n} and with n − 2 unlabelled internal vertices (branchpoints) of degree 3: see

Figure 2 (ignore arrows for now). The name comes from biological systematics [14]

where a cladogram represents the evolutionary relationship between n species. (A more

common though less precise phrase is phylogenetic tree, but we use this phrase to denote

a cladogram in which edge-lengths are positive real numbers: Section 2.1. The term

semi-labelled tree is also used.) Reconstructing phylogenetic trees from DNA data is of

major biological interest: Holmes [16] gives a recent survey for statisticians. Some current

work in the area [18, 19] uses Markov chain Monte Carlo. That is, one starts with a

‘base chain’ on tree-space, and then seeks to sample from a complicated data-dependent

distribution on tree-space by accepting or rejecting moves proposed by the base chain.

As with other applications of Markov chain Monte Carlo [15], theoretical analysis of

running times of such algorithms (the central issue being to estimate a mixing time) in

the context of genuine data seems intractable. Nevertheless one can hope to gain insight

by studying simple base chains on the set Tn of n-leaf cladograms. In this paper we
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Figure 1

study what is perhaps the conceptually simplest chain, informally ‘move a random leaf

to a random position’. In practice biologists typically use more complicated ‘branch-

swapping’ base chains, though Susan Holmes reports that the chain studied here is used

in a program LVB [6]. A different chain is mentioned by Diaconis and Holmes [11] using

an isomorphism between Tn and the set of matchings of {1, 2, . . . , 2n}. An introductory

presentation of tree space can be found in [8].

1.1. Model and results

Figure 1 illustrates one step of our chain. Start with a tree t, partly shown on the left

side of Figure 1. Remove some leaf i. Precisely, i is attached by some edge e1 to some

branchpoint b where two other edges e2, e3 are incident; delete edge e1 and branchpoint

b, merging the two edges e2, e3 into a single edge e. The resulting tree has 2n − 5 edges.

Choose some edge f, and re-attach leaf i to edge f. Precisely, create a branchpoint b′
which splits edge f into two edges f2, f3 and attach leaf i to branchpoint b′ via a new

edge f1. This creates a new tree t′.
Write t′ ∼ t if t′ can be obtained in this way from t, using some choice of (i, f), and if

t′ 6= t. It is easy to check that all the n(2n− 6) choices of (i, f) with f 6= e give trees which

are distinct from each other and from t; of course the n choices with f = e give back the

original tree t. Thus we can define our Tn-valued chain (Xs, s = 0, 1, 2, . . .) verbally by

pick uniformly at random a leaf i to remove, then pick uniformly at random an edge f and re-attach

i to f

and its transition matrix is

Pn(t, t
′) =

1

n(2n− 5)
if t′ ∼ t (1.1)

=
n

n(2n− 5)
if t′ = t.
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It is easy to see that the chain is symmetric, aperiodic and irreducible. Classical theory

(e.g., [13, Theorem 5.5.5]) of finite Markov chains implies

dn(s) := max
t∈Tn

max
A⊂Tn

|P (Xs ∈ A|X0 = t)− πn(A)| → 0 as s→∞ (1.2)

where πn is the uniform distribution on Tn. Modern theory [5, 21] gives various formal-

izations of the notion of the time to approach stationarity. Define the (total variation)

mixing time

τn := min{s : dn(s) 6 1/4}, (1.3)

so that by general submultiplicativity arguments [5]

dn(jτn) 6 2−j , j = 1, 2, 3, . . . .

Define the relaxation time as ‘1/spectral gap’:

τrel
n := 1/(1− λn,2)

where 1 = λn,1 > λn,2 are the largest eigenvalues of the transition matrix Pn. The purpose

of this paper is to prove the following theorem.

Theorem 1.1. There exist 0 < c1 and c2 < ∞ such that, for all large n,

(a) τrel
n > c1n

2,

(b) τn 6 c2n
3.

In general ([1], [5, Chapter 4]) we have τrel
n = O(τn), so Theorem 1.1 sandwiches both

parameters between order n2 and order n3. We conjecture that in fact both are order n2:

see Section 4, where we point out an analogy with the voter model on the complete graph.

The elementary fact that the cardinality of Tn is (2n−5)!! := (2n−5)(2n−7) · ·3 suggests

a loose analogy between Markov chains on Tn and Markov chains on the permutation

group of {1, . . . , n}. The latter, visualized as card-shuffling schemes, have been studied in

some detail [4, 7, 9, 10] and suggest techniques for the tree-valued setting. But Theorem 1.1

may be surprising to those familiar with the card-shuffling literature. Our chain is loosely

analogous to the shuffle ‘pick a card at random and move it to a random position’ for

which the mixing time can be shown to be order n log n, the time until each card has

been moved (cf. [9]). So one might expect our mixing times to be order n log n also, since

‘each leaf has been moved to a random position’. However, although the leaf labels get

randomized in order n log n steps, the ‘global shape’ of the tree takes order n2 steps to

become randomized. See Section 4 for further discussion.

Our proof of Theorem 1.1 involves several ingredients.

• The extremal characterization of spectral gap (Section 2).

• Coupling and marking constructions, loosely analogous to some used in analysis of

card-shuffling chains (Section 3.1).

• Hitting times for birth-and-death chains (Section 3.2).

• n→∞ distributional asymptotics for the uniform distribution on Tn (Section 2.1).
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2. The lower bound

Applying to our chain the well-known extremal characterization (e.g., [12]) of the eigen-

value λn,2 (and hence of the relaxation time) gives

τrel
n = sup

fn:Tn→R
2 varπn fn∑

t1

∑
t2
πn(t1)Pn(t1, t2)(fn(t2)− fn(t1))2

, (2.1)

where Pn is the transition matrix and the numerator is the variance of fn(Un) when Un
has distribution πn. We get a lower bound by considering a specific function of our choice.

Given a branchpoint v of a tree t ∈ Tn, each of the three branches at v contains some

number of leaves (these three numbers summing to n); write mt(v) for the maximum of

these three numbers. Consider

fn(t) := min{mt(v) : v branchpoint in t}. (2.2)

It is straightforward to check that, because only one leaf is moved in a step of the chain,

if Pn(t1, t2) > 0 then fn(t2) 6 fn(t1) + 1.

By symmetry we also have fn(t1) 6 fn(t2) + 1. So the denominator of (2.1) is at most 1.

We shall show in Section 2.1, as a corollary of known results, that

πn

{
t :

1

n
fn(t) 6 x

}
→ P (A 6 x) (2.3)

where the limit distribution is non-degenerate on [1/3, 1/2], and in fact has density

d

dx
P (A 6 x) =

3x− 1

πx2(1− x)2(1− 2x)1/2
, 1/3 < x < 1/2. (2.4)

It then follows from (2.1) that

τrel
n > (2 var A − o(1)) n2,

establishing part (a) of Theorem 1.1.

2.1. Asymptotics for random trees

Formula (2.4) appears in [3, equation (16)] as the density of the mass A of the largest

branch from the centroid of the continuum random tree (CRT). We now describe briefly

how (2.3) arises. Take a uniform random n-leaf cladogram, and assign random lengths

(Le) to the 2n− 3 edges e according to the density

P (Le ∈ [le, le + dle] ∀e) = se−s2/2 dl1 . . . dl2n−3, where s =
∑
e

le.

This gives a random phylogenetic treeTn. As described in [2], the family (Tn, 3 6 n < ∞)

is consistent in the sense that for m < n the subtree of Tn spanned by leaves {1, 2, . . . , m}
is distributed asTm. Now a realization of the CRTT∞ supports a mass measure of total

mass one, and the subtree of the CRT spanned by n vertices chosen i.i.d. from the mass

measure is distributed as Tn. So, by constructing (Tn, 3 6 n < ∞) simultaneously from a

realization of T∞ and i.i.d. sampled vertices, a Glivenko–Cantelli argument shows

An
d→ A, (2.5)
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where An is the proportion of the n leaves of Tn in the largest branch from a centroid

of Tn, where a centroid is a branchpoint for which each of the three leaf-proportions is

at most 1/2. But An is distributed as n−1fn(t) for a uniform random cladogram t, so (2.5)

implies (2.3).

3. The upper bound

We prove the upper bound in Theorem 1.1 via a coupling argument. That is, we construct

two dependent versions ((X1
s , X

2
s ), s = 0, 1, 2, . . .) of the chain with arbitrary initial states,

show that X1
s = X2

s ∀s > U for some random time U, and then upper bound U. The

construction is given in Section 3.1 and the upper bound is derived in Section 3.3.

3.1. The coupling

Figure 2 illustrates a typical state (t1, t2) of the coupled process. As part of the construction

certain edges in each tree are marked, indicated by arrows on edges. The following two

properties (a),(b) will be maintained inductively.

(a) In each tree, the unmarked edges form a subtree.

In each tree, the marked edges automatically form a forest consisting of tree-components.

(b) There is a one-to-one correspondence (a matching) between marked edges of t1 and

marked edges of t2, which maps tree-components to isomorphic tree-components and

preserves leaf labels.

Thus, in Figure 2 the tree-components of marked edges contain leaves {3, 7, 13, 14}, {6, 10},
{1}, {8}, {9}.

Initially no edges are marked, so (a),(b) hold trivially. We now specify a step of the

coupled chain, starting from (t1, t2), together with marking and unmarking rules. Pick

uniformly at random i ∈ {1, 2, . . . , n} and remove the edge eu1 at leaf i from each tree tu

(u = 1, 2), leaving the branchpoint bu as a degree-2 vertex (we are using the labelling of

Figure 1). By (b), the edges at i in t1 and t2 were either both marked or both unmarked,

so the matching of marked edges extends to the resulting trees. Next, the edges (eu2, e
u
3)

at bu are made into one edge eu, deleting the vertex bu, and eu is marked or not marked

according to the rule:

(α) eu is marked if and only if both eu2 and eu3 were marked.

Note that this rule by itself would not preserve the matching. In Figure 2, suppose leaf

11 were removed; then in the second tree the marked-edge component containing leaves

{6, 10} would be reduced to 2 edges, whereas in the first tree it would still have 3 edges.

Thus we need to add the rule:

(β) if exactly one of the edges (eu2, e
u
3) were marked, then the matched edge in the other

tree becomes unmarked.

With this rule, the two resulting trees t̂1, t̂2 have a matching of marked edges preserving

properties (a),(b). We now re-attach leaf i to t̂1 by choosing uniformly at random an edge

f1 of t̂1, making a branchpoint b̂1 in that edge, thereby splitting it into two edges f1
2 , f

1
3 ,

and attaching a new edge f1
1 from b̂1 to leaf i. The corresponding edge f2 of the second
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tree is chosen by the rule:

if f1 is marked, then let f2 be the matching edge of t̂2; if f1 is unmarked then let f2

be a uniform random choice from the unmarked edges of t̂2.

Then, in the second tree, leaf i is re-attached to a new branchpoint in the middle of

edge f2.

This procedure specifies a coupling of the chains. That is, each chain evolves according

to the transition matrix (1.1). The marking rule for the re-attachment stage is:

(γ) if f1 (and hence f2) were marked then f1
2 , f

1
3 , f

2
2 , f

2
3 are marked; if f1 (and hence f2)

were unmarked then f1
2 , f

1
3 , f

2
2 , f

2
3 are unmarked; in either case the newly added edges

f1
1 and f2

1 are marked.

It is easy to check that properties (a),(b) are preserved. This completes the specification

of one step of the coupled chain starting from (t1, t2).

By property (b), when every edge is marked the two processes are identical. We want

to upper bound how long this takes. Unfortunately it is difficult to analyse directly the

process ‘number of marked edges after s steps’, since this process is neither Markov nor

monotone. We take an indirect approach which will involve comparisons with a certain

birth-and-death chain, which we now discuss.

3.2. A birth-and-death chain

For each large n we consider the birth-and-death chain on states {1, 2, . . . , n − 1} with

transition probabilities

p1,2 = 1, (3.1)

px,x−1 =
x

n

(
1− 2x− 4

2n− 5

)
, 2 6 x 6 n− 1, (3.2)

px,x+1 =

(
1− x

n

)
2x− 2

2n− 5
, 2 6 x 6 n− 2, (3.3)

with px,x = 1− px,x+1 − px,x−1. Write ExTy for the mean hitting times for this chain (this

notation suppresses the dependence on n).

Lemma 3.1. As n→∞,

(a) E2Tn−1 = O(n3),

(b) E2(number of visits to 1 before Tn−1) = O(n2).

Proof. Calculations like this fit into the classical elementary theory of Markov chains

[17], but are more simple using the modern analogy with electrical networks. The point

is that there is a simple formula for the end-to-end mean commute time:

E1Tn−1 + En−1T1 =

n−2∑
x=1

1

θxpx,x+1
, (3.4)

where θ is the stationary distribution. See, for instance, [20]. The standard formula ([13,

Section 5.4]) for the stationary distribution of a birth-and-death chain can be written as
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θx = ρx/
∑

y ρy where ρ1 > 0 is arbitrary and

ρx = ρ1

x−1∏
y=1

py,y+1

py+1,y
, 2 6 x 6 n− 1. (3.5)

So we may rewrite (3.4) as

E1Tn−1 + En−1T1 =

(
n−1∑
x=1

ρx

)(
n−2∑
x=1

1

ρxpx,x+1

)
. (3.6)

It is convenient to choose ρ1 = 1/n, and then

ρ2 = ρ1p1,2/p2,1 = (1/n)/(2/n) = 1/2.

For 2 6 x 6 n− 2 we calculate

px,x+1

px+1,x
=

(x− 1)(n− x)

(x+ 1)(n− x− 3
2
)

and then (3.5) gives

ρx =
1

x(x− 1)

x−1∏
y=2

n− y
n− y − 3

2

, 4 6 x 6 n− 1.

Recall that an = Ω(bn) means bn = O(an). From the formula above it is not hard to check

that, as n→∞,

ρx = O

(
x−2

(
n

n− x
)3/2)

= Ω

(
x−2

(
n

n− x
)3/2)

(3.7)

uniformly in 4 6 x 6 n − 1, and a separate argument for x = 2, 3 verifies uniformity in

2 6 x 6 n− 1. It follows that∑
26x6n/2

ρx = O

( ∑
26x6n/2

1

x2

)
= O(1),

∑
n/26x6n−1

ρx = O

(
1

n2

∑
26y6n/2

(n/y)3/2

)
= O(n−1/2),

and so
n−1∑
x=1

ρx = O(1). (3.8)

For 2 6 x 6 n/2 we have px,x+1 = Ω(x/n) and so by (3.7)

ρxpx,x+1 = Ω

(
1

x2

x

n

)
= Ω(1/n2).

For n/2 6 x 6 n− 1 we have px,x+1 = Ω( n−x
n

) and so by (3.7)

ρxpx,x+1 = Ω

(
1

n2

(
n

n− x
)3/2

n− x
n

)
= Ω(1/n2).
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Then
n−2∑
x=1

1

ρxpx,x+1
= O(n3).

Combining with (3.8) and (3.6) shows

E1Tn−1 + En−1T1 = O(n3). (3.9)

Since E1Tn−1 = 1 + E2Tn−1, this establishes assertion (a).

To establish (b), let ξ be the time of the first visit to state 1 after the first visit to state

n− 1. By the ergodic theorem for Markov chains and the reward renewal theorem,

E1(number of visits to 1 before time ξ)/Eξ = π1

because both sides equal the asymptotic proportion of time the chain spends in state 1.

But, since ρ1 = 1/n and ρ2 = 1/2, we have π1 = O(1/n). And (3.9) says Eξ = O(n3). So

E1(number of visits to 1 before time ξ) = O(n2)

and the left side is an upper bound for the quantity in (b).

3.3. Bounding the coupling time

To outline the argument, consider one chain in a coupled pair of chains. Wait until we

see a subtree consisting of two marked leaf-incident edges. That subtree will ultimately

dissipate or grow to become the whole tree. In the latter (‘success’) case we argue that

the two chains will have coupled; in the former (‘failure’) case we erase marks and repeat

the procedure until some success. The precise definition of the evolving subtree we are

watching is complicated; below we define the number Zu of leaves in the subtree.

To start the argument, consider the chain (Xs, s = 0, 1, 2, . . .) started from state t. Let

S(t) be the first time s such that the leaf (say i; note i is not prespecified) moved on the

sth step is attached to some edge e incident to some leaf (say j), where j was moved at

some time s′ < s and where the edge e has remained present during time [s′, s− 1]. Let b

be the branchpoint created at time S = S(t), and let e1 and e2 be the edges from b to the

two adjacent leaves. See Figure 3.

Note that if our chain (Xs) is one of a pair of coupled chains, then by the marking

rules, at time S the three edges e1, e2, e3 are marked. The following bound is a variation

of the classical birthday problem – we leave the details to the reader.

Lemma 3.2. maxt∈Tn
ES(t) = O(n1/2).

https://doi.org/10.1017/S096354830000417X Published online by Cambridge University Press

https://doi.org/10.1017/S096354830000417X


200 D. J. Aldous

e2e3

e1

b

k

|
|

−−

time S + ∆− 1 time S + ∆

�
�
��

@
@
@@

b∗

e∗1

e∗2

− −

− −

|
|

|
|

�
Z∆−1 leaves

�
Z∆ leaves

e∗3
|
|

−− �
�
��

@
@
@@

b∗

e∗1

e∗2

− −

− −

|
|

|
|

Figure 4

Now consider the chain (XS+u, u > 0). For as long as the branchpoint b exists, we can

maintain a labelling of its incident edges as e1, e2, e3 in the natural way: if e2 (say) is split

into two edges by insertion of a new leaf then the new edge incident at b is called e2;

conversely if e2 becomes part of a new edge by removal of an edge incident to the other

end of e2 then the new edge is labelled e2.

Define a process (Zu, u = 0, 1, 2, . . . , ζ) with Z0 = 2 as follows. For as long as the

branchpoint b exists, define Zu to be the number of leaves of the tree XS+u such that

the path from b to the leaf goes via e1 or e2. When the branchpoint disappears, at time

S + ∆ say, we either stop or continue the process Z , depending on which of three cases

holds. One case is that one of the edges {e1, e2}, say e1, is incident with some leaf k at

time S + ∆− 1, and this leaf is moved at time S + ∆. If the other edge e2 is also incident

with some leaf, then we stop the process, that is, we set ζ = ∆, and declare Zζ = 1.

If instead the other edge e2 is incident with some other branchpoint b∗ at time S+∆−1,

as illustrated in Figure 4, then when leaf k is moved and branchpoint b disappears, the

edges e3 and e2 merge into one edge e∗3, and the branchpoint b∗ is incident to three edges

e∗1, e∗2, e∗3. For u > ∆ we then redefine Zu to be the number of leaves of the tree XS+u such

that the path from b∗ to the leaf goes via e∗1 or e∗2. Continue with this definition until

branchpoint b∗ disappears, and then continue inductively. The final possibility is that b

disappears by virtue of the third edge e3 disappearing. But this can only happen if e3 is

incident with some leaf, that is, if Z = n−1, and we pre-empt this possibility by declaring

that the process (Zu) stops (at time S + ζ) if it reaches the value n− 1.

The upshot is that we have defined a process (Zu, u = 0, 1, 2, . . . , ζ) with Z0 = 2 and

ζ = min{u : Zu = 1 or n − 1}. We shall now show that, until ζ, this process is the

birth-and-death process of Section 3.2. Given Z = x there are exactly 2x − 2 edges in

the subtree consisting of the branches at b through e1 and e2. With chance 1 − x
n
, a leaf

outside this subtree is picked to be moved. Since the resulting tree has 2n− 5 edges, when

the leaf is re-attached there is chance 2x−2
2n−5

that it is re-attached to the subtree, causing
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a transition x → x + 1. On the other hand, with chance x/n a leaf inside this subtree is

picked to be moved, leaving 2x− 4 edges in the subtree: note this is true even in the case

(Figure 4) where the removed edge is incident at b and the process (Zu) is redefined in

terms of b∗. Since the resulting tree has 2n− 5 edges, when the leaf is re-attached there is

chance 1− 2x−4
2n−5

that it is re-attached outside the subtree, causing a transition x→ x− 1.

This establishes formulas (3.2), (3.3). Note that in the case where there are two leaves

adjacent to b, the chance that one is removed (making Z = 1 by convention above) equals

2/n, in accordance with formula (3.2) for the transition 2→ 1.

Now suppose (Xs, s = 0, 1, 2, . . .) is one of a pair (Xs,X
′
s) of coupled processes, as in

Section 3.1. We claim

if Zζ = n− 1 then XS+ζ = X ′S+ζ . (3.10)

Recall from Section 3.1 the marking rule for edges of Xs. At time S the two edges e1 and

e2 are marked. At times S + u the process Zu counts leaves in some subset Au of the tree

XS+u, the subset being determined by the current branchpoint. One can check inductively

on u that all the edges in Au remain marked. So if Zζ = n− 1 then there is a matching of

(n− 1)-leaf subtrees, implying the trees are identical, which is assertion (3.10).

We may think of the path segment (Xs, 0 6 s 6 S + ζ) as a trial which is successful if

Zζ = n− 1. If unsuccessful, we erase all marks and start another trial, continuing until we

achieve success. (One might try to improve the argument at this step by seeking to follow

some other subtree of marked edges: see remark 2 in Section 4.) We formalize the idea of

repeated trials as follows. The definitions of S and (Zu) are as functionals of the process

(Xs), so we can write

S = S̄(Xs, 0 6 s < ∞),

(Zu, 0 6 u 6 ζ) = Z̄(Xs, 0 6 s < ∞).

In terms of the process (Xs, s = 0, 1, 2, . . .) define 0 < S1 < S1 + ζ1 < S2 < S2 + ζ2 < S3 . . .

where S1 = S , ζ1 = ζ,

Sm = Sm−1 + ζm−1 + S̄(XSm−1+ζm−1+u, 0 6 u < ∞),

(Zm
u , 0 6 u 6 ζm) = Z̄(XSm+u, 0 6 u < ∞).

So the time period Sm−1 +ζm−1 < s 6 Sm+ζm is the period of the mth trial. So the number

of trials until success is

M := min{m : Zm
ζm

= n− 1}
and the time of success is

U := SM + ζM.

If (Xs) is one component of coupled processes (Xs,X
′
s), then by applying (3.10) to Zm we

have ZU = Z ′U . By taking (X ′s) to be the stationary process we have, by the usual coupling

inequality,

max
A⊂Tn

|P (Xs ∈ A|X0 = t)− πn(A)| 6 P (U > s|X0 = t).

It follows that

τn 6 4 max
t∈Tn

E(U|X0 = t). (3.11)
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Recall we showed that the chain (Zu, 0 6 u 6 ζ) was the birth-and-death chain of

Section 3.2, run until hitting 1 or n− 1. Now let (Z∗u , 0 6 u 6 Q) be the concatenation of

the processes (Zm
u , 0 6 u 6 ζm) for 1 6 m 6M. That is,

Z∗ζ1+...ζm−1+(m−1)+u = Zm
u , 0 6 u 6 ζm, 1 6 m 6M.

Then the process (Z∗u , 0 6 u 6 Q) is exactly the chain of Section 3.2 run until time Tn−1.

(By construction, Zm−1
ζm−1

= 1 and Zm
0 = 2, giving the deterministic step 1→ 2 corresponding

to (3.1).) So Lemma 3.1(a) implies

E

M∑
m=1

ζm = O(n3). (3.12)

We can write

U =

M∑
m=1

(Dm + ζm), (3.13)

where

Dm = S̄(XSm−1+ζm−1+u, 0 6 u < ∞).

Now

E
(
Dm|Xu, u 6 Sm−1 + ζm−1, XSm−1+ζm−1

= t
)

= ES(t)

and the usual martingale analogue of Wald’s equation gives

E

(
M∑
m=1

Dm|X0 = t

)
6 EM ×max

t∈Tn

ES(t). (3.14)

But M is distributed as the number of visits of the birth-and-death chain to state 1 before

time Tn−1, and so by Lemma 3.1(b) and Lemma 3.2 the right side of (3.14) is O(n5/2).

Combining with (3.12), we see from (3.13) that maxt∈Tn
E(U|X0 = t) = O(n3). Then (3.11)

implies Theorem 1.1(b).

4. Remarks

1. Though our proofs are ad hoc, there are tantalizing analogies between our chain and

well-studied interacting particle processes. Consider first the following process. There are

n balls. Initially each is a different colour. At each step, two balls are picked at random,

and the first ball is re-coloured to have the same colour as the second ball. Eventually

all balls are the same colour: this takes Vn steps, say. This process is a re-phrasing of the

voter model on the complete graph, and well-known results for the voter model imply

that EVn is order n2. Now a fuzzy mental outline of the argument in Section 3.3 is as

follows.

Take each edge of the initial tree to have a different colour. When a leaf is moved, give it the colour

of the edge to which it is re-attached. When all edges have the same colour, the chain has coupled

with a companion chain.

So by analogy with the voter model, it should take only O(n2) steps to couple. The

difficulty with formalizing this outline is that, when branchpoints disappear, adjacent
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edges with different colours may merge, so we cannot identify an edge at time s as a

‘descendant’ of a unique edge at time 0. The possibility of such mergers causes a slight

negative drift in the birth-and-death chain of Section 3.2, making the mean hitting time

O(n3) instead of the O(n2) for the driftless chain.

2. Note that our Section 3.3 argument is plainly inefficient in that (in the jargon of

‘colours’ above) we track just one colour at a time to see if it takes over or goes extinct;

and in the latter case we repeat with another colour. It would be better to track all colours

simultaneously, but the usual analysis of the voter model (using duality with coalescing

random walk, here Kingman’s coalescent) seems hard to adapt to our setting.

3. A different approach to the analysis of our chain is via weak convergence. As n → ∞
the uniform random n-cladogram, with rescaled edge-lengths, converges weakly to the

continuum random tree of [2]. It is plausible that our chain, with time rescaled by a

factor n2, will converge to some diffusion process on the space of continuum trees. We

may pursue this approach elsewhere.

Note added in proof

Jason Schweinsberg (personal communication) has proved the conjecture, stated below

Theorem 1.1, that τrel
n = O(n2).
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