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This paper describes a statistical method for learning and estimating the risk posed by other
craft in the vicinity of a vessel and an overview of its possible spatial application, simulating
how professional mariners perceive and assess such risk and using navigational data obtained
from a standard integrated bridge. We propose a non-linear model for risk estimation which
attempts to capture mariners’ judgement. Questionnaire data has been collected that captures
and quantifies mariners’ judgements of risk for craft in the vicinity, where each craft is
described by measurements that can be obtained easily from the data already present in the
ship’s navigational equipment. The dataset has then been used for analysis, training and val-
idating Ordered Probit models in order to obtain a computationally efficient data driven
model for estimating the risk probability vector posed by other craft. Finally, we discuss
how this risk model can be incorporated into decision making and path finding algorithms.
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1. INTRODUCTION. There is an extensive existing body of research in the field
of collision avoidance as an aid for navigators in manned craft and also for use in au-
tonomous unmanned craft (Belkhouche and Bendjilali, 2013; Lambert et al., 2008,
Plamen Angelov et al., 2008). Among this research there is a broad consensus concern-
ing the need to acquire a precise representation of the environment surrounding the
craft and, most importantly, of processing the acquired data for assessing risk of col-
lision before any decision can be made. Some deterministic approaches compute the
risk of collision as the rate of change of the relative bearing to craft in the vicinity,
either indirectly, by considering the Distance at Closest Point of Approach (DCPA)
and Time to Closest Point of Approach (TCPA) as in the appraisal index proposed
by Kearon (1977), or by directly computing the derivative of the relative bearing to
the craft, e.g. Plamen Angelov et al. (2008).
This is also the approach recommended by the International Regulations for

Prevention of Collisions at Sea (COLREGS) (International Maritime Organization
(IMO), 1972), which in rule 7, part D, defines risk of collision as a function of time
and bearing as follows:
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“In determining if risk of collision exists the following considerations shall be among those
taken into account:
(i) such risk shall be deemed to exist if the compass bearing of an approaching vessel does not
appreciably change;
(ii) such risk may sometimes exist even when an appreciable bearing change is evident, particu-
larly when approaching a very large vessel or a tow or when approaching a vessel at close
range.”

Current industry standards use a DCPA-TCPA concrete relationship alarm system
in line with the above where arbitrary minimum thresholds are set for DCPA and
TCPA. Should a target’s DCPA and TCPA trespass such limits, an alarm will be
given (IMO, 2004).
Hilgert and Baldauf (1997) proposed a rule-based concrete model to standardise the

meaning of risk given by the COLREG using data provided by Automatic Radar
Plotting Aid (ARPA) and defining four crisp risk classes. Alternatively, numerous pro-
posals to add a layer of fuzzy logic to the risk model and or actions to avoid collisions
have been suggested. For example, Bukhari et al. (2013) proposed a fuzzy model to
capture the relationship between DCPA, TCPA and change in bearing in order to
assist Vessel Traffic Service (VTS) centres in making decisions. In addition, Perera
et al. (2012) applied both fuzzy inference and Bayesian methods in order to assess
the risk of collision and to take evasive action and Goerland et al. (2015) presented
a comprehensive rule-based expert system with fuzzy inference where the knowledge
domain has been defined by consultation with professional mariners. Furthermore,
a number of probabilistic approaches have been proposed that take account of
unknown factors in order to predict risk and possible trajectories; see Belkhouche
and Bendjilali (2013) or Lambert et al. (2008) and Simsir et al. (2014) for the applica-
tion of Artificial Neural Networks for predicting positions of vessels in a collision alert
system. These methods add a layer of sophistication to the geometric approach. Chin
and Debnath (2009) describe an ordinal model of risk based on data from a survey of
pilots, again taking account of the relationship between DCPA and TCPA and incorp-
orating day or night navigation and ship tonnage as an indicator of manoeuvrability.
Common to all these studies is the direct association of risk with the spatial possi-

bility of a collision or the conceptualisation of risk as a consequence of collision
only. For these methods, a craft that is navigating in parallel to the observing vessel
would not account for risk, as for instance in a traffic separation scheme as defined
by the International Maritime Organization (IMO, 2013). However, the navigator’s
judgement of the risk posed by a neighbouring craft seems to involve factors other
than just the geometric calculation of trajectories (Goerlandt and Montewka, 2015;
Curtis, 1986). Furthermore, in “many to many” scenarios, where many craft are at
risk of colliding with one another, perception of risk seems to become even more
complex and depends on how different craft interact with each another and on their
particular idiosyncrasies. Hence, craft can be perceived as posing a risk for the
mariner even when a collision is not imminent or even when it is impossible.
In this paper, we present a machine learning approach to assessing inherent risk for

craft in the vicinity of a vessel. This approach will infer a model deriving from human
judgement and experience, which provides a distribution of risk levels for a given
context that can be incorporated as a cost function in navigation or avoidance algo-
rithms. This work is a part of a larger research project in collision avoidance in
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which it is a key part of the intelligent risk assessment in navigation and collision avoid-
ance algorithms.
To elicit information on the mariners’ judgement of risk, a questionnaire has been

designed to record data on a number of scenarios. The questionnaire was completed
by 425 professional marine navigators, who were asked to assess the risk of individual
craft in different scenarios with one or many craft and used an ordinal ranking scale
from one to five to quantify their perceived level of risk. A non-linear regression
model, Ordered Probit, has then been used to learn and to estimate risk for craft in
new scenarios based on a number of attributes. The resulting estimation has the
form of a probability vector for a distribution of risk over the values one to five.
The objective is not to find an exact value for risk of collision but to learn an operation-
al model of the inherent risk of a neighbouring craft in a given scenario based on the
experience of the professional mariner.
An outline of the remainder of the paper is as follows: Section 2 describes in detail

the method chosen to elicit the data necessary to define and train our model. The
model is then presented and explained in Section 3. Section 4 discusses the perform-
ance of the model in comparison with a Naïve-Bayes classifier and proposes a possible
application of the resulting estimation. Finally, the conclusions, Section 5, briefly
discuss the limitations of our model and suggest directions for further research.

2. QUESTIONNAIRE DESIGN AND DATA COLLECTION. A professional
mariner’s judgement of risk develops through training and through experience
gained in many different encounters with other craft during navigation. This implicit
knowledge of good seamanship can only be acquired by training, practice and
actual experience. With the objective of capturing the mariner’s judgement of neigh-
bouring craft’s risk, a questionnaire was designed so as to provide a craft’s risk
ranking on a scale from one, very low, to five, very high, for different scenarios. The
questionnaire was composed of two parts. The first part presented single craft situa-
tions, one-on-one encounters between the mariner’s vessel and a neighbour craft,
and described them textually with the following characteristics being provided:
Closest Point of Approach (CPA), Time to Closest Point of Approach (TCPA),
Relative Situation, Colour, and Trajectory Variability (see Figure 1). For this first
part, no graphical representation was presented.
The set of variables was selected through consultation with professional mariners.

DCPA, presented to the mariner as CPA, and TCPA are spacio-temporal relational
values between a given craft and the vessel being navigated by the mariner and are
functions of bearing, range, speed and course of the two craft involved; DCPA
being the closest distance between two objects should the trajectories not change
and TCPA the time to reach such a point. Relative Situation can take any of the
values defined by the COLREGS (International Maritime Organization (IMO),
1972): Head on, crossing, overtaking and/or overtaken. Colour can be either green,
red or undefined when it is not clear or cannot be determined, and is the method
used by mariners to relatively position themselves with respect to another craft’s
side; either on the starboard or port side of the reference craft respectively. The
Trajectory Variability of a craft indicates the confidence in the prediction of its
future positions, thus affecting the certainty in DCPA and TCPA. The professional
mariner does this intuitively by observing how erratic a craft’s trajectory is. The
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questionnaire simplifies this to a Boolean variable i.e. erratic or not erratic. In a later
application of this research, Kalman filters are used to process the positional data of
craft to predict trajectories, and a threshold on the resulting error covariance matrix
of the state estimate is used to determine the value of this Boolean variable in real
time. Particularities of the individual craft were not presented in this questionnaire,
hence variables like tonnage or manoeuvrability, that have been considered in other
works, are not contemplated.
The set of variables are deemed to be inherent to the craft and not dependent on the

environment. Accordingly, the questionnaire did not include geographical features,
visibility constraints - it was assumed to occur in good visibility- or weather conditions,
for example, as these were presumed to be common to all nearby craft in a scenario and
are hence assumed constants. How these variables would affect the absolute risk is
beyond the scope of this paper. The COLREGS convention is a fundamental pillar
of maritime training and as such is always part of any assessment made in collision
avoidance at sea. Ideally, we would have liked our data to have been independent of
this set of rules, for our wish is to learn inherent risk of craft which we could then
use to apply any set of rules, and we made this clear when the questionnaire was pre-
sented to the mariners. But our results suggest that COLREGS may still have influ-
enced the participants’ judgement of risk, for example in their different assessments
of a green or red craft in most cases. The model presented in this paper aims to
learn about inherent risk of other craft that could then be used as a variable to
account when applying the COLREGS at a higher layer.
This first part of the questionnaire consisted of 100 different scenarios from which

20 were randomly selected and presented to each participant. This approach allowed
us to collect data on a wider range of scenarios while at the same time limiting the
length of the sessions.
The second part of the questionnaire was comprised of simple graphical representa-

tions of scenarios, including single craft, one-on-one, and multi-craft, many-on-many
situations. The questions were accompanied by a concise supporting text with the ob-
jective of eliminating possible ambiguity resulting from the simplicity of the graphics.
The graphical scenarios were depicted as a simple polar coordinate representation of

Figure 1. Presentation of textual questions.
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Radio Detection And Ranging (RADAR) or Electronic Chart Display and
Information System (ECDIS) screens, showing neighbouring craft with vectors for
speed and course and a tracked trajectory. It was not explicitly specified if the
course and speed vectors were true or relative (see Figure 2), however, the responses
show a unimodal distribution with low variance suggesting that a common interpret-
ation has been adopted across the participants. We note that a number of the scenarios
presented in this part of the questionnaire corresponded to the graphical representa-
tion of some of the text-based questions included in the first section.
In total there were 50 different graphical scenarios, from which a subset of ten were

randomly selected to present to each participant for assessment. They were then asked
to evaluate the risk for each craft represented and the overall risk for the scenario itself.
Other works present a textual representation of risk in line with the International
Maritime Organization recommendations for alerts in Integrated Navigaton Sytems
(IMO, 2007); see Hilgert and Baldauf (1997), Goerlandt et al. (2015) and Chin and
Debnath (2009) for examples. However, in our work the participants had to respond
to the questions using a numerical scale ranging from one to five, rating the risk
posed by each craft. This scale and range gave adequate resolution and at the same
time helped the participants to identify an appropriate risk level with equally spaced
categories. Also, it avoided any semantic confusion associated with the use of labels
and their interpretation; see Wildt and Mazis (1978) for a discussion on the latter,

Figure 2. Presentation of graphical questions.
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Schwarz et al. (1991) for a study on how interactions between labels and rating scales
modify the meaning and Preston and Colman (2000) for a study in optimal number of
categories.
The questionnaire was distributed online and it was accessible anonymously through

the University of Bristol website. The server’s software stored the responses directly
into a database and logged them with a random session identification number. The
participants were recruited mainly through maritime organisations, shipping compan-
ies and training centres, providing over 8000 observations over the period during which
the questionnaire was active. The sample size for each question/scenario varies but on
average is 39, with a minimum of 24 and a maximum of 65 participants.

3. DATA ANALYSIS. As expected, there is variation between the participants
regarding their judgement of the risk posed by the craft in a given scenario. This
may be due to differences in experience or understanding or may simply be natural
variation between individuals. After a first analysis of the data, we observed an under-
lying normal distribution to the responses to the questions and since neither of the con-
tinuous independent variables used satisfies the properties of superposition for the
dependent variable, risk, this suggests that there is a non-linear relationship between
them and a normally distributed error. This, added to the ordered scale proposed
for the responses, suggested the use of an Ordered Probit.

3.1. Use of Ordered Probit Model. The Ordered Probit Model has its roots in bio-
statistics (Aitchison and Silvey, 1957) and was introduced into the social sciences by
McKelvey and Zavoina (1975). It has often been used since for the analysis and pre-
diction of dependent ordered variables with an underlying, continuous and nonlinear
metric. Indeed, there are many applications of the Ordered Probit model, ranging from
accident injury prediction (O’Donnell and Connor, 1996) to estimation of customer’s
enjoyment of films by the Netflix Prize’s winner (Koren, 2009; Andreas Toscher, 2009;
Piotte and Chabbert, 2009) and has previously been used by Chin and Debnath (2009)
to model risk of collision in port water navigation. The model assumes an underlying
linear relationship characterised by

Y ¼ Xβþ ε ð1Þ
whereY is the continuous latent unobserved variable, X is a vector of independent vari-
ables defining the data, β is an unknown coefficient for x and ɛ is a random disturbance
term which is assumed to be normally distributed according to ∼N(0, 1).
The central idea is that a latent real variable is underlying the ordinal set of

responses and that we observe these responses instead of the latent variable. The
real line is then divided into variable regions that represent the ordinal categories; in
our case five regions. The observed ordinal variable Z takes the values 1, …, 5 corre-
sponding to the set of risk categories z∈ {1, …, 5}.

Z ¼ z , μz�1 < Y � μz ð2Þ
where μ are the bounds of the regions on Y which define the values of Z as intervals of
the real line. The probability of observing a particular ordinal outcome in an Ordered
Probit model is therefore given by:

P½Z ¼ z� ¼ Φ μz � Xβ
� �� Φ μz�1 � Xβ

� � ð3Þ
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where Φ is the cumulative normal distribution and z= 1, …, 4 and, for z = 5, as ɛ is
assumed to be multivariate normal with σ2 = 1, then:

P Z ¼ 5½ � ¼ 1� Φ μ4 � Xβ
� � ð4Þ

The β parameters and the μ bounds of the model are estimated by means of
Maximum Likelihood Estimation (MLE), normally using the Newton-Raphson
method on the log-likelihood function, which for the Ordered Probit model is:

logðLÞ ¼
XN
i¼1

log Φ μz � xiβ
� ��Φ μz�1 � xiβ

� �� � ð5Þ

where x is the value of vector X in the sample i, for a sample of size N.
For further details regarding this method see McKelvey and Zavoina (1975) or

Becker and Kennedy (1992).
3.2. Independent Variables for estimating risk. Let Z be the perceived risk, which

has the format of an ordinal polychotomous variable taking on values from one to five.
For each craft, there will be a probability that its perceived risk takes each of the values
from one to five. Let Ri be the vector of probabilities of perceived risk for the given i’th
craft defined by the vector of independent variables Xi:

Ri ¼ 〈P Z ¼ 1jXið Þ;P Z ¼ 2jXið Þ; . . . ;P Z ¼ 5jXið Þ〉 ð6Þ

The selection of independent variables for the model is intended to isolate the craft
from the environment and only those descriptive of the craft’s relations with other craft
in the neighbourhood are considered. Also, particulars of the craft such as size, type of
vessel or navigational circumstances, such as method of propulsion, are not contem-
plated for this research. Each craft is assumed to be a two dimensional point in the
Euclidean plane. The initial set of independent variables was chosen in consultation
with professional mariners as described in Table 1.
We have compared a number of different models using diverse selections of variables

from the list in Table 1 in terms of the Schwarz Bayesian Information Criterion (SBIC)
(Schwarz, 1978) and by calculating Average Marginal Effects of each variable for each
value from the possible outcome scale. As a result of this process we selected a final
model which has the continuous variables DCPA and TCPA and the discrete (dichot-
omous) variables Red, Green, Course Erratic, Head on, Crossing, Overtaking. This
model offers a balance between goodness of fit and economy of calculation for real
time applications.
The results in Table 2 show that DCPA has a large effect on the perceived risk, which

concurs with the established methods for assessing risk of collision. However, TCPA on
its own seems to have little impact on the risk assessments of the navigators in our
study. This will be discussed in more detail in the next section of this paper.

3.3. Parameter estimates. Maximum likelihood estimates of the structural para-
meters β and the bounds μ on Yare shown in Table 2. Average Marginal effects of the
independent variables, the discrete change in probability for each of the values of a
given ith variable averaged across the observed values of the rest of the variables in
the model (Bartus, 2005), are shown in Table 3 for all possible outcomes of our risk
scale. Note that Average Marginal Effects in non-linear models are not constant
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and should only be taken into consideration as an indicator and not an estimator (Ai
and Norton, 2003, Greene, 2010).
Some of our previous assumptions are supported by the estimation of the β para-

meters but there are also surprises, as in the case of the low absolute value of the par-
ameter for variable TCPA.

Table 1. Initial set of independent variables.

Variable Description

Continuous variables
DCPA Closest Point of Approach
TCPA Time to Closest Point of Approach
DCPA|TCPA Interaction between DCPA and TCPA
Speed True speed of the craft in knots
Relative Speed Relative speed of the craft in knots
Relative Course Relative course of the craft in degrees
Range Range to the craft
Bearing Bearing to the craft
Aspect The aspect of the craft in degrees
Estimated position
error

The error of the craft’s Kalman filters estimation. Used for real time application.

Discrete variables (dichotomous)
Red 1 if the aspect of craft is red; 0 otherwise
Green 1 if the aspect of craft is green; 0 otherwise
Course Erratic 1 if the craft’s track is erratic; 0 otherwise
Course Variable 1 if the craft’s track is not steady; 0 otherwise
Altering course 1 if there is a broad alteration of course; 0 otherwise
Head On 1 if the encounter situation is ‘head on’ as defined by the COLREGS; 0 otherwise
Crossing 1 if the encounter situation is ‘crossing’ as defined by the COLREGS; 0 otherwise
Overtaking 1 if the encounter situation is ‘overtaking’ as defined by the COLREGS; 0

otherwise
Trajectory Variability 1 if the craft’s trajectory is erratic; 0 otherwise

Table 2. Parameter estimation for the independent variables and μ bounds on Y.

VARIABLES Parameter Estimate β

Continuous Variables
DCPA −0·395***, (0·00855)
TCPA −0·0249***, (0·00166)
Discrete variables (dichotomous)
Red 0·555***, (0·128)
Green 0·445***, (0·132)
Course Erratic 0·522***, (0·0253)
Head On 0·269***, (0·0449)
Crossing −0·337**, (0·132)
Overtaking −0·0654, (0·0437)
μ Bounds −
μ1 −1·273***, (0·0361)
μ2 −0·622***, (0·0348)
μ3 −0·0292, (0·0342)
μ4 0·493***, (0·0345)

Standard errors in parentheses
*** p < 0·01, ** p < 0·05, * p < 0·1
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As expected, DCPA has a significant effect on the perceived risk; the large negative
parameter estimate indicates a significant increase of perceived risk as the value of
DCPA decreases, which is consistent with the message that a value 0 for a craft’s
DCPA anticipates a collision. As mentioned, this is also the approach of well-estab-
lished methods for assessing risk of collision i.e. a DCPA with value 0 is equivalent
to a steady bearing with a craft. However, our data and the TCPA’s parameter estimate
gives us a different insight. One might intuitively think that a smaller TCPAwould also
have a significant effect, increasing significantly the perceived risk, but this is not clear
from its estimated parameter value. The low absolute value of the latter suggests that
only a slight increase in perceived risk results from a decrease in TCPA.
Another parameter that has a large effect on the perceived risk is the steadiness or

uncertainty of the trajectory of the craft, included in our model as a discrete dichotom-
ous variable. For an erratic course, the perceived risk increases notably as indicated by
the high estimated parameter value.
Furthermore, Table 2 gives a relatively high absolute value to the Head On variable,

suggesting that head on encounters are judged to have more risk than crossing or over-
taking encounters. In this case, it is possible that the COLREGS are affecting the re-
sponse and this situation creates more uncertainty in the mariner than the others, for
there is not a ‘stand on’ or ‘give way’ vessel defined in the rules or a clear Colour of the
craft. This contrasts with the other two situations where it is made clear in the
COLREGS which vessel must ‘give way’ in relation to their Colours; the ‘head on’ situ-
ation requires an avoiding action from the two craft involved. Red aspect craft, those
on the starboard bow of the craft observing, are also perceived as carrying more risk.
Again, this may be the effect of the COLREGS on the mariners’ judgement as the rules
will always give them ‘stand on’ rights in normal visibility situations. This seems to

Table 3. Average Marginal Effects of variables for different outcomes.

Average Marginal Effects

Variables Risk = 1 Risk = 2 Risk = 3 Risk = 4 Risk = 5

Continuous Variables
DCPA 0·0878*** 0·0338*** 0·00684*** −0·0199*** −0·109***

(0·00163) (0·00109) (0·000836) (0·000827) (0·00234)
TCPA 0·00553*** 0·00213*** 0·000431*** −0·00125*** −0·00684***

(0·000368) (0·000146) (5·84e-05) (9·45e-05) (0·000454)
Dummy variables (dichotomous)
Red Color −0·123*** −0·0475*** −0·00961*** 0·0279*** 0·152***

(0·0284) (0·0109) (0·00240) (0·00655) (0·0349)
Green Color −0·0988*** −0·0381*** −0·00770*** 0·0224*** 0·122***

(0·0294) (0·0113) (0·00240) (0·00674) (0·0362)
Erratic Course −0·116*** −0·0446*** −0·00903*** 0·0263*** 0·143***

(0·00566) (0·00228) (0·00108) (0·00161) (0·00672)
Head On −0·0598*** −0·0230*** −0·00466*** 0·0135*** 0·0739***

(0·00999) (0·00385) (0·000934) (0·00231) (0·0123)
Crossing 0·0750** 0·0289** 0·00584** −0·0170** −0·0927**

(0·0293) (0·0113) (0·00234) (0·00670) (0·0362)
Overtaking 0·0145 0·00560 0·00113 −0·00329 −0·0180

(0·00969) (0·00375) (0·000773) (0·00220) (0·0120)

Standard errors in parentheses
*** p < 0·01, ** p < 0·05, * p < 0·1
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leave the burden for action on the mariner and a judgement of risk is perhaps asso-
ciated with this responsibility.

4. RESULTS. The performance of the model has been evaluated using ten-fold
cross validation (Kohavi, 1995) over the original questionnaire’s responses data set
and has been compared against the well-known Gaussian Naïve-Bayes classifier
(Hand and Yu, 2001).

4.1. Benchmarking with Naïve-Bayes. Naïve-Bayes classifiers are a popular class
of probabilistic classifiers that make use of Bayes’ theorem with strong assumptions of
independence between the variables used, see Hand and Yu (2001) for an interesting
description of its effectiveness or Rish (2001) for an empirical perspective. It is import-
ant to note that we are using Gaussian Naïve-Bayes as a probability estimator and not
as a classifier. There is evidence in the literature (Lowd and Domingos, 2005) to
suggest that Naïve-Bayes is in general a reasonably accurate and efficient general ap-
proach and hence provides a good benchmark for our proposed model.
We use the Kullback-Liebler divergence (Kullback and Leibler, 1951) between

observed and predicted distributions as a measure to compare the performance of
the models and also a simple Euclidean distance between the predicted data during
cross-validation and observed data. The Kullback-Leibler divergence, or relative
entropy, is a non-symmetrical measure of the difference between two probability dis-
tributions expressed by:

DKL PjjQð Þ ¼
X
i

ln
P ið Þ
Q ið Þ

� �
P ið Þ ð7Þ

This metric is widely used in Information Theory since its results can be interpreted
as the average number of extra units of information required to encode data generated
by one distribution, P, using coding from a different distribution, Q.
Figure 3 shows the results of this test with the valuesDKL in the Yaxis and the scen-

ario in the X axis. It can be clearly seen that the Ordered Probit model significantly
outperforms the Gaussian Naïve-Bayes model on predicting risk for new craft using
our dataset. The values DKL, in Nats, for every scenario depicted in the questionnaire
are better (lower values better) in almost every case and in providing consistent and
homogeneous results.
Figure 4 and Figure 5 show the Euclidean distance between the observed data and

the predictions obtained during the cross validation process for Ordered Probit model
and for the Gaussian Naïve-Bayes model respectively. It is clear that there is a larger
dispersion for the Gaussian Naïve-Bayes model. The line x= y would represent a
perfect fit of a model.

4.2. Apply the Risk Model. Using the presented model as a risk estimator pro-
vides a vector of probabilities representing the inherent risk distribution of any given
craft. We propose a method to embed such a vector of risk in the navigation space
where applicable. The resulting estimation can be converted into a spacio-temporal
risk cost function by means of nested areas representing different risk levels for a
given craft. This cost function can then be employed to define risk-shaped pseudo-
static ‘obstacles’ incorporated into all sorts of path finding algorithms. We present a
three dimensional example of this application where the radius of such areas is set
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Figure 3. Nats for each scenario for O Probit and Naïve-Bayes.

Figure 4. Cross validation dispersion for Ordered Probit model.
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to a constant and their height is defined by the predicted probability for the level of
risk. Note that it could also be possible to work with two dimensional areas of variable
radius defined by the risk.
Let the craft Tg have a circular domain of an arbitrary diameter at time cero t0.With a

simple projection of the craft’s domain to a possible point of collision given Tg’s vector
and our own craft’s (my Object) speed, we can calculate a likely area in a time interval
during which our craft could potentially be invading Tg’s domain if a course betweenV1

and V2 where taken (see Figure 6). Course Vc would invariably lead to a collision at a
future time should the course and speed of both, craft Tg and my Object, not change.
At t0, the craft’s estimated risk is mapped concentrically at equal distances, being risk

one at the centre and risk five at the periphery. The risk acquired when crossing a risk
interval for a given craft can be easily calculated in the actual related craft’s domain.
Thus, the trajectory that receives the higher risk is the one that would collide with the
target, which crosses the five zones at its maximum chord or its diameter.
The height, value of risk, of each one of our stacked zones is defined as:

H ¼ Di

Tg
⇀

�V
⇀

c

����
����

� �
P pRijXð Þ

i ¼ 1; . . . ; 5ð Þ ð8Þ

Figure 5. Cross validation dispersion for Gaussian Naïve-Bayes model.
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where Di is the diameter of the given zone, ðjTg⇀V
⇀jÞ is the relative vector magnitude for

a collision and P pRijXð Þ the probability for the given estimated risk value.
The cost function to find the risk that a trajectory is acquiring, aR, when crossing a

risk interval of a given craft:

aR ¼
X5
i¼1

2 sin
θi
2

� �
Hi ð9Þ

where θ is the angle between the two radius defined by the centre and the intersections
of the relative trajectory at each risk map into Tg’s domain.
Thus, given a risk vector 〈0·21, 0·18, 0·23, 0·18, 0·20〉 for Tg, the zones would look as

in Figure 7.
The above spacio-temporal risk cost function provides a framework that can be

employed into path finding and optimisation algorithms to avoid the projected
risk interval pyramids and to find efficient and safe navigation routes between
traffic.

Figure 6. Projection of a given craft’s domain to a collision time.
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5. CONCLUSIONS. Avoiding collisions is ultimately the objective of assessing
risk for a given craft and it can be achieved by any of the established methods for
determining risk of collision. However, we claim that a method which considers all
neighbouring craft, not only those with low DCPA values, and that provides a
probabilistic model of risk can help the mariner to improve their decision
making. In particular, it can potentially allow for the optimisation of routes
taking account of potential risk, especially in situations in which prioritising
between neighbouring vessels is required, uncertainty is present or where some
risk must be accepted and managed in order to successfully navigate through
them. We show a simple example of application for mapping the obtained risk
vector to the space-time and a cost function to be used in path finding and opti-
misation algorithms.
Humanlike understanding of a craft’s risk in its complexity, including quantifying

uncertainty, offers a powerful tool for Intelligent Navigation Systems. The analysis
in this paper is obviously limited to the training dataset collected and further develop-
ment, including a continuous learning capability, would be necessary for real world
applications. This first approach offers a rather simple model which should be
expanded to include possible interactions between neighbouring craft, their explicit
changes in speed or course, i.e. somehow contemplated in trajectory variability, size
of craft and rate of turn i.e. implying manoeuvrability, for instance.
The dataset obtained in our questionnaire can potentially offer responses to

some of these variables, interactions for instance, but does not contain enough in-
formation to be able to learn from craft’s size or manoeuvrability. Eliciting new
data with a new questionnaire would be desirable to further advance in learning
and modelling risk.

Figure 7. Projection of a given craft’s domain to a collision time with embedded risk.
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