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This paper proposes a consistent test for the goodness-of-fit of parametric regres-
sion models that overcomes two important problems of the existing tests, namely,
the poor empirical power and size performance of the tests due to the curse of
dimensionality and the subjective choice of parameters such as bandwidths, ker-
nels, and integrating measures+ We overcome these problems by using a residual
marked empirical process based on projections ~RMPP!+We study the asymptotic
null distribution of the test statistic, and we show that our test is able to detect
local alternatives converging to the null at the parametric rate+ It turns out that
the asymptotic null distribution of the test statistic depends on the data generating
process, and so a bootstrap procedure is considered+ Our bootstrap test is robust
to higher order dependence, in particular to conditional heteroskedasticity+ For
completeness, we propose a new minimum distance estimator constructed through
the same RMPP as in the testing procedure+ Therefore, the new estimator inherits
all the good properties of the new test+ We establish the consistency and asymp-
totic normality of the new minimum distance estimator+ Finally, we present some
Monte Carlo evidence that our testing procedure can play a valuable role in econo-
metric regression modeling+

1. INTRODUCTION

The purpose of the present paper is to develop a consistent, powerful, and
simple diagnostic test for testing the adequacy of a parametric regression model
with the property of being free of any user-chosen parameter ~e+g+, band-
width! and, at the same time, being suitable for cases in which the covariate is
of high or moderate finite dimension+ Most consistent tests proposed in the
literature give misleading results for this latter empirically relevant case+ This
problem is intrinsic and is often referred to as the “curse of dimensionality” in
the regression literature; see Section 7+1 of Fan and Gijbels ~1996! for some
discussion on this problem+ More precisely, let ~Y, X '!' be a random vector in
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a ~d � 1!-dimensional Euclidean space, where Y represents the real-valued
dependent ~or response! variable, X is the d-dimensional explanatory variable,
d � N, and A' denotes the matrix transpose of A+ Under E6Y 6 � `, it is well
known that the regression function m~x! � E @Y 6X � x# is well defined+ If in
addition E6Y 62 � `, then m~X ! represents almost surely ~a+s+! the “best” pre-
diction of Y given X, in a mean square sense+ Then, it is common in regres-
sion modeling to consider the following tautological expression:

Y � m~X !� «,

where «� Y � E @Y 6X # is, by construction, the unpredictable part ~in mean! of
Y given X+

Much of the existing literature is concerned with parametric modeling in
that m is assumed to belong to a given parametric family M � $ f ~{,u! : u �
Q � R

p% and, by analogy, one considers the following parametric regression
model:

Y � f ~X,u!� e~u!, (1)

with f ~X,u! a parametric specification for the regression function m~X ! and
with e~u! a random variable ~r+v+!, disturbance of the model+ Parametric regres-
sion models continue to be attractive to practitioners because these models have
the appealing property that the parameter u together with the functional form
f ~{,{! describes, in a very concise way, the relation between the response Y and
the explanatory variable X+ Because we do not know in advance the true regres-
sion model, to prevent wrong conclusions, every statistical inference that is based
on model f should be accompanied by a proper model check+ As a matter of
fact, a correct specification of m is important in model-based economic deci-
sions and0or to interpret parameters correctly+

Note that m � M is tantamount to

E @e~u0 !6X # � 0 a+s+, for some u0 � Q � R
p+ (2)

There is a vast amount of literature on testing consistently the correct specifi-
cation of a parametric regression model+Although the idea of the proposed con-
sistent tests is similar in all cases, namely, comparing a parametric and a ~semi-!
nonparametric estimation of a functional of the conditional mean in ~2!, they
can be divided into two classes of tests+ The first class of tests uses nonpara-
metric smoothing estimators of E @e~u0!6X # + We call this approach the “local
approach”; see Eubank and Spiegelman ~1990!, Eubank and Hart ~1992!,Wool-
dridge ~1992!, Yatchew ~1992!, Gozalo ~1993!, Härdle and Mammen ~1993!,
Horowitz and Härdle ~1994!, Hong and White ~1995!, Zheng ~1996!, Li ~1999!,
Horowitz and Spokoiny ~2001!, Koul and Ni ~2004!, and Guerre and Lavergne
~2005! for some examples+ A methodology related to the local approach is that
of empirical likelihood procedures as proposed in Chen, Härdle, and Li ~2003!
and Tripathi and Kitamura ~2003!+ The local approach requires smoothing of
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the data in addition to the estimation of the finite-dimensional parameter vector
and leads to less precise fits+ Tests based on the local approach have standard
asymptotic null distributions, but their finite-sample distributions depend on
the choice of a bandwidth ~or similar! of the nonparametric estimator, which
affects the inference procedures+

The second class of tests avoids smoothing estimation by means of reducing
the conditional mean independence in ~2! to an infinite ~but parametric! num-
ber of unconditional orthogonality restrictions, i+e+,

E @e~u0 !6X # � 0 a+s+m E @e~u0 !w~X, x!#� 0, ∀x � P, (3)

where P is a properly chosen space and the parametric family w~{, x! is such
that the equivalence ~3! holds; see Bierens and Ploberger ~1997!, Stinchcombe
and White ~1998!, and Escanciano ~2006! for primitive conditions on the fam-
ily w~{, x! to satisfy this equivalence+We call the approach based on ~3! the “inte-
grated approach” because it uses the integrated ~cumulative! measures of
dependence E @e~u0!w~X, x!# + In the literature the most frequently used weight-
ing functions have been the exponential function, e+g+, w~X, x! � exp~ix 'X !
in Bierens ~1982, 1990!, where i � M�1 denotes the imaginary unit and the
indicator function w~X, x! � 1~X � x!; see, e+g+, Stute ~1997!, Koul and Stute
~1999!,Whang ~2000!, and Li, Hsiao, and Zinn ~2003!, among many others+ Dif-
ferent families w deliver different power properties of the integrated-approach-
based tests+ Most tests based on the integrated approach have nonstandard
asymptotic null distributions, but they can be well approximated by bootstrap
methods; see, e+g+, Stute, Gonzalez-Manteiga, and Presedo-Quindimil ~1998!+

An important problem with the local approach arises when the dimension of
the explanatory variable X is high or even moderate+ The sparseness of the data
in high-dimensional spaces leads most local-based test statistics to suffer a con-
siderable bias, even for large sample sizes+ This is an important practical limi-
tation for most tests considered in the literature, because it is not uncommon in
econometric modeling to have high-order models+ Some statistical theories have
been developed to overcome this problem; cf+ generalized linear models ~GLM!
~see, e+g+,McCullagh and Nelder, 1989! or single-index models ~see, e+g+, Pow-
ell, Stock, and Stoker, 1989!+ However, these theories are semiparametric and,
therefore, need smoothing techniques+ In addition, they do not cover all possi-
ble models+

Here, we propose a new consistent test within the integrated framework that
compares very well to indicator- and exponential-based tests+ The new test is
simple to compute, does not need user-chosen parameters or high-dimensional
numerical integration, is robust to higher order dependence ~in particular to
conditional heteroskedasticity!, and presents excellent empirical power proper-
ties in finite samples; see Section 4+ Furthermore, our test procedure provides a
formalization of some well-known traditional exploratory tools based on residual-
fitted values plots+
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The organization of the paper is as follows+ In Section 2 we define the resid-
ual marked process based on projections ~RMPP! as the basis for our test sta-
tistic+ In Section 3 we study the asymptotic null distribution and the behavior
against Pitman‘s local alternatives of the new test statistic+ For completeness of
exposition, we consider in this section a new minimum distance estimator for
the regression parameter based on the RMPP, and we show its consistency and
asymptotic normality under similar assumptions as in the testing procedure+Also,
because the asymptotic null distribution depends on the data generating pro-
cess ~DGP!, a bootstrap procedure to approximate the asymptotic critical val-
ues of the test statistic is considered+ In Section 4 we conduct a simulation
exercise comparing the new proposed test with some competing tests consid-
ered in the literature+ This Monte Carlo experiment shows that our new test can
play a valuable role in parametric regression modeling+ Proofs of the main results
are deferred to Appendix A+ Appendix B contains a simple algorithm to com-
pute the new test statistic+

2. THE RESIDUAL MARKED PROCESS BASED ON PROJECTIONS

Let $Zi � ~Yi , Xi
'!' %i�1

n be a sequence of independent and identically distributed
~i+i+d+! ~d � 1!-dimensional r+v+s defined on the probability space ~V,A,P ! and
with the same distribution as Z � ~Y, X '!' , with 0 � E6Y 6 � `+ The main goal
in this paper is to test the null hypothesis ~2!, i+e+,

H0 : E @Y 6X # � f ~X,u0 ! a+s+ for some u0 � Q � R
p,

against the alternative

HA : P~E @Y 6X #� f ~X,u!! � 0, for all u � Q � R
p+

As argued before, one way to characterize H0 is by the infinite number of para-
metric unconditional moment restrictions

E @e~u0 !w~X, x!# � 0, ∀x � P, (4)

where the parametric family w~{, x! is such that the equivalence in ~3! holds+
Examples of such families are w~X, x! � 1~X � x!, w~X, x! � exp~ix 'X !,
w~X, x! � sin~x 'X !, and w~X, x! � 10~1 � exp~c � x 'X !! with c � 0; see the
aforementioned references for many other families+

In view of a sample $Zi %i�1
n , define the marked empirical process

Rn,w~x,u! � n�102(
i�1

n

ei ~u!w~Xi , x!+ (5)

Define also Rn,w
1 ~{! [ Rn,w~{,un!, where un is an Mn -consistent estimator of u0+

The marks in Rn,w
1 are given by the classical residuals; therefore, we call Rn,w

1 a
residual marked empirical process+
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Because of the equivalence ~3!, it is natural to base the tests on a distance
from Rn,w

1 to zero, i+e+, on a norm G~Rn,w
1 !, say+ The most used norms are the

Cramér–von Mises ~CvM! and Kolmogorov–Smirnov ~KS! functionals:

CvMn,w ��
P

6Rn,w
1 ~x!62C~dx!,

KSn,w � sup
x�P
6Rn,w

1 ~x!6,
(6)

respectively, where C~x! is an integrating function satisfying some mild con-
ditions; see A4 in Section 3+ Other functionals are possible+ Then, tests in the
integrated approach reject the null hypothesis ~2! for “large” values of G~Rn,w

1 !+
The first consistent integrated test proposed in the literature was that of Bie-

rens ~1982! based on the exponential weighting family, i+e+, using the residual
marked process

Rn,exp
1 ~x! � n�102(

i�1

n

ei ~un !exp~ix 'F~Xi !!,

where F~{! is a bounded one-to-one Borel measurable mapping from R
d to R

d +
Bierens ~1982! considered a CvM norm with integrating measures C~dx! �
Y~x! dx, with Y~x! � 1~x � Pl�1

d @�«l ,«l # !, where «l � 0, l � 1, + + + ,d, are
arbitrarily chosen numbers ~Bierens, 1982, p+ 109!, and Y~x! equals a d-variate
normal density function ~Bierens, 1982, p+ 111!+

On the other hand, Stute ~1997! used the indicator family w~X, x!� 1~X � x!
in the residual marked process+ The main advantage of the indicator weighting
function over the exponential function is that it avoids the choice of an arbi-
trary integrating function C, because in the indicator case this is given by the
natural empirical distribution function of $Xi %i�1

n + On the contrary, the indicator
weight has the drawback of being more sensitive to the dimension d than the
exponential weight, which is based on one-dimensional projections ~see Escan-
ciano, 2006!+

In this paper we propose a test based on a new family $w,C% of weighting
and integrating functions that possesses the good properties of the exponential-
and indicator-based tests and at the same time prevents their deficiencies+ The
new test avoids the arbitrary choice of the integrating function or numerical
integration in high-dimensional spaces and is less sensitive to the dimension d
than indicator-based tests because it is based on one-dimensional projections+
The CvM test based on this new family presents an excellent performance in
finite samples and is very simple to compute+ In addition, the new family w
formalizes some traditional model diagnostic tools based on residual-fitted val-
ues plots for linear models+

Our first aim is to avoid the problem of the curse of dimensionality+ The
following result can be viewed as a particularization of the Cramér–Wold prin-
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ciple to our main concern, the goodness-of-fit of the regression function+ The
term 6A6 denotes the Euclidean norm of A+

LEMMA 1+ A necessary and sufficient condition for (2) to hold is that for
any vector b � R

d with 6b 6 � 1,

E @e~u0 !6b 'X # � 0 a+s+, for some u0 � Q � R
p+

Lemma 1 yields that consistent tests for H0 can be based on one-dimensional
projections+ In particular, we have the characterization of the null hypothesis
H0:

H0m E @e~u0 !1~b
'X � u!#� 0

almost everywhere ~a+e+! ~b,u! � P, for some u0 � Q � R
p, (7)

where from now on P� Sd � @�`,`# is the nuisance parameter space with Sd

the unit ball in R
d, i+e+, Sd � $b � R

d : 6b 6 � 1% + Therefore, the test we con-
sider here rejects the null hypothesis for “large” values of the standardized sam-
ple analogue of E @e~u0!1~b 'X � u!# +

An approach related to ours is that of Stute and Zhu ~2002!, who consid-
ered the weighting family $1~b0

' X � u!% for model checks of GLM in an i+i+d+
framework+ However, note that they fix the direction to b0, the direction
involved in the GLM, and so their approach is clearly different from that con-
sidered here, because we consider all the directions b in Sd simultaneously+
As a consequence, our test will be consistent against all alternatives, whereas
in our present framework the Stute and Zhu ~2002! test is only consistent against
alternatives satisfying that E @e~u* !1~b*

' X � u!# � 0 in a set with positive
Lebesgue measure in R, where u* and b* are the probabilistic limits under the
alternative of the estimators of u0 and b0, respectively+

The family 1~b 'X � u! yields the RMPP

Rn
1~b,u! � n�102(

i�1

n

ei ~un !1~b
'Xi � u!+

The marks of Rn
1 are given by the classical residuals and the “jumps” by the

projected regressors+ Note that for a fixed direction b, Rn
1 is uniquely deter-

mined by the residuals and the projected variables $b 'Xi %i�1
n and vice versa+ As

in the usual residual-regressors plot, we can plot the path of Rn
1 for different

directions b as an exploratory diagnostic tool+ In particular, in the linear model,
the plot of the path of Rn

1~bn ,u!, with bn the least squares estimator, resembles
the usual residual-fitted values plot+ Therefore, tests based on Rn

1~bn ,u! pro-
vide a formalization of such traditional well-known exploratory tools+

To measure the distance from Rn
1 to zero a norm has to be chosen+ From

computational considerations a CvM norm is very convenient in our context+
Two facts motivate our choice of the integrating measure in the CvM norm+
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First, note that once the direction b is fixed, u lives in the projected regressor
variable’s space, and second, in principle, all the directions are equally impor-
tant; cf+ Lemma 1+ To define our CvM test we need some notation+ Let Fn,b~u!
be the empirical distribution function of the projected regressors $b 'Xi %i�1

n and
db the uniform density on the unit sphere+ Also let Fb~u! be the true cumula-
tive probability distribution function ~c+d+f+! of b 'X+ Then, we define the new
CvM test as

PCvMn ��
P

~Rn
1~b,u!!2Fn,b~du! db+ (8)

Therefore, we reject the null hypothesis H0 for large values of PCvMn+ See
Appendix B for a simple algorithm to compute PCvMn from a given data set
$Zi %i�1

n + The next section justifies inference for PCvMn based on the asymptotic
theory+

Our test statistic PCvMn avoids the deficiencies of the Bierens ~1982! and
Stute ~1997! tests, namely, the arbitrary choice of the integrating function or
numerical integration in high-dimensional spaces and the low power perfor-
mance when the dimension d is large, respectively+ However, it is worthwhile
to mention that our test is not necessarily better than the Bierens ~1982! and
Stute ~1997! tests+ In fact, using the results of Bierens and Ploberger ~1997! it
can be shown that all these tests are asymptotically admissible, and therefore
none of them is strictly better than the others uniformly over the space of alter-
natives+ However, in our simulations that follow we show that for the alterna-
tives considered our test is the best or comparable to the best test+ A simple
intuition as to why our test performs so well with the alternatives considered is
as follows+ Under the alternative it can be shown that, uniformly in x � P,

n�102Rn,w
1 ~x! P *

&& E @e~u1!w~X, x!# ,

where u1 is the probabilistic limit of un under the alternative HA+ On the other
hand, under the normalization E @m2~X,u1!# � 1, where m~{,u1! � E @e~u1!6
X � {# , it holds that the optimization problem

max
w,E @w 2~It�1!#�1

6E @et ~u1!w~It�1!#62

attains its optimum at w *~{!� m~{,u1!+ Therefore, as w~{,{! is closer to m~{,{!,
the test based on w is expected to have better power properties+ It seems that
for the models considered in Section 4 m~{,u1! can be “well approximated” by
our weight function 1~b 'X � u!, and this might explain the good power prop-
erties of our test procedure+

During the revision process of the paper one of the referees suggested a mod-
ification of our test that might have better finite-sample performance+ Based on
the inequality

1036 J. CARLOS ESCANCIANO

https://doi.org/10.1017/S0266466606060506 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060506


�
�`

`

~E @«1~b 'X � u!# !2Fb~du!� ~E @«M1 � Fb~b
'X !# !2,

which follows from simple algebra, the modified test statistic is

�
Sd

� 1

Mn
(
i�1

n

ei ~un !M1 � Fn,b~b
'Xi !�2

db+

However, contrary to PCvMn the latter test statistic involves numerical integra-
tion and is much more difficult to compute+ Therefore, we do not study this
modified test statistic further in the paper+ On the contrary, the next section
studies the asymptotic distribution theory for PCvMn+

3. ASYMPTOTIC THEORY

Now, we establish the limit distribution of Rn
1 under the null hypothesis H0+ For

the asymptotic theory, note that Rn
1 can be viewed as a mapping from ~V,A,P !

with values in �`~P!, the space of all real-valued functions that are uniformly
bounded on P+ Let n denote weak convergence on �`~P! and P *

&& denote
convergence in outer probability; see Definitions 1+3+3 and 1+9+1, respectively,
in van der Vaart and Wellner ~1996!+ Also, d

&& stands for convergence in distri-
bution of real r+v+s+ To derive asymptotic results we consider the following
assumptions+ First, let us denote by FY~{! and FX~{! the marginal c+d+f+ of Y and
X, respectively+ Also let Cp~{! be the product measure of Fb~{! and the uniform
distribution on Sd , i+e+, Cp~db,du! � Fb~du! db+ In the discussion that follows
C is a generic constant that may change from one expression to another+

Assumption A1+

A1~a! $Zi � ~Yi , Xi
'!' %i�1

n is a sequence of i+i+d+ random vectors with 0 �
E6Yi 6 � `+

A1~b! E6« 62 � C+

Assumption A2+ f ~{,u! is twice continuously differentiable in a neighbor-
hood Q0 of u0, Q0 � Q+ The score g~X,u! � ~]0]u '! f ~X,u! verifies that there
exists a FX~{!-integrable function M~{! with supu�Q0

6g~{,u!6 � M~{!+

Assumption A3+

A3~a! The parametric space Q is compact in R
p+ The true parameter

u0 belongs to the interior of Q+ There exists a u1 � Q such that
6un � u16 � oP~1!+

A3~b! The estimator un satisfies the following asymptotic expansion under
H0:
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Mn ~un � u0 ! �
1

Mn
(
i�1

n

l~Yi , Xi ,u0 !� oP~1!,

where l~{! is such that E @l~Y, X,u0!# � 0 and L~u0! � E @l~Y, X,u0! l '~Y, X,u0!#
exists and is positive definite+

Assumption A4+ Cp~{! is absolutely continuous with respect to Lebesgue mea-
sure on P+

Assumptions A1 and A2 are standard in the model checks literature; see, e+g+,
Bierens ~1990! and Stute ~1997!+ Assumption A3 is satisfied, e+g+, for the non-
linear least squares estimator and ~under further regularity assumptions! its robust
modifications; see, e+g+, Chapters 5 and 7 in Koul ~2002!+ Note that A3~a! and
A3~b! imply that u0 � u1 under the null H0, but they are not necessarily equal
under the alternative+We shall show subsequently that A3 is also satisfied for a
new minimum distance estimator+ Assumption A4 is only necessary for consis-
tency of the test+

Under A1 and ~2!, using a classical central limit theorem ~CLT! for i+i+d+
sequences, we have that the finite-dimensional distributions of Rn, where Rn is
the process defined in ~5! with u � u0 and w~X, x! � 1~b 'X � u!, converge to
those of a multivariate normal distribution with a zero mean vector and variance-
covariance matrix given by the covariance function

K~x1, x2 ! � E @«21~b1
' X � u1!1~b2

' X � u2 !# , (9)

where x1 � ~b1
' ,u1!

' and x2 � ~b2
' ,u2 !

'+ The next result is an extension of this
convergence to weak convergence in the space �`~P!+ Throughout the paper
x � ~b ',u!' will denote the nuisance parameter, and we interchange the nota-
tion x and ~b ',u!' whenever this does not create confusion+

THEOREM 1+ Under the null hypothesis H0 and Assumption A1

Rnn R`,

where R`~{! is a Gaussian process with zero mean and covariance function
given by (9).

In practice u0 is unknown and has to be estimated from a sample $Zi %i�1
n by

an estimator un, say+ The next result shows the effect of the parameter uncer-
tainty on the asymptotic null distribution of Rn

1+ To this end, let us define the
function G~x,u0!� G~x!� E @g~X,u0!1~b 'X � u!# and let V be a normal ran-
dom vector with zero mean and variance-covariance matrix given by L~u0! as
defined in A3~b!+

THEOREM 2+ Under the null hypothesis H0 and Assumptions A1–A3

Rn
1~{!n R`~{!� G '~{!V[ R`

1 ~{!,
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where R` is the same process as in Theorem 1 and

cov~R`~x!,V ! � E @«l~Y, X,u0 !1~b 'X � u!# +

Theorem 2 and the continuous mapping theorem ~CMT! ~see, e+g+, van der
Vaart and Wellner, 1996, Thm+ 1+3+6! yield the asymptotic null distribution of
the functional PCvMn+

COROLLARY 1+ Under the assumptions of Theorem 2, for any continuous
functional (with respect to the supremum norm) G~{! ,

G~Rn
1! d
&& G~R`,w

1 !+

Furthermore,

PCvMn
d
&& PCVM`��

P

~R`
1 ~b,u!!2Cp~db,du!+

Note that the integrating measure in PCvMn is a random measure, but Cor-
ollary 1 shows that the asymptotic theory is not affected by this fact+ Also note
that the asymptotic null distribution of PCvMn depends in a complex way on
the DGP and the specification under the null, and so critical values have to be
tabulated for each model and each DGP, making the application of these asymp-
totic results difficult in practice+ To overcome this problem we approximate the
asymptotic null distribution of continuous functionals of Rn

1 by a bootstrap pro-
cedure given subsequently+

In Assumption A3 we require that the estimator of u0 admits an asymptotic
linear representation+ For completeness of the presentation we give some mild
sufficient conditions under which a minimum distance estimator ~see Koul, 2002,
Ch+ 5 and references therein!, is asymptotically linear+Motivated from Lemma 1,
we have that under the null

u0 � arg min
u�Q

�
P

6E @e~u!1~b 'X � u!#62Cp~db,du! (10)

and u0 is the unique value that satisfies ~10!+ Then, we propose estimating u0 by
the sample analogue of ~10!, i+e+,

un � arg min
u�Q

�
P

n�1 6Rn
1~b,u,u!62Fn,b~du! db+ (11)

This estimator is a minimum distance estimator and extends in some sense the
generalized method of moments ~GMM! estimator, frequently used in econo-
metric and statistical applications+ This kind of generalization of GMM was
considered first in Carrasco and Florens ~2000! for univariate problems+ Recently,
and for w~X, x!� 1~X � x!, Dominguez and Lobato ~2004! have considered an
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estimator similar to ~11! for a conditional moment restriction under time series+
Also using this principle, Koul and Ni ~2004! have proposed a minimum dis-
tance estimation for u0 using an L2-distance similar to that used in Härdle and
Mammen ~1993! in the “local approach+” Our estimator un has the advantage of
being free of any user-chosen parameter ~bandwidth, kernel, or integrating mea-
sure! and is expected to be more robust to the problem of the curse of dimen-
sionality than the estimating procedures based on 1~X � x! or local approaches+
Now, we shall show that un in ~11! satisfies Assumption A3+ The following
matrices are involved in the asymptotic variance-covariance matrix of the
estimator:

C ��
P

G~b,u!G '~b,u!Cp~db,du!,

D ��
P�P

G~x!G '~x!K~x, y!Cp~dx!Cp~dy!+

For the consistency and asymptotic normality of the estimator we need an addi-
tional assumption+

Assumption A1'+ The regression function f ~{,u! satisfies that there exists an
FX~{!-integrable function Kf ~{! with supu�Q6 f ~{,u!6 � Kf ~{!+

THEOREM 3+ Under H0 and Assumptions A1, A2, and A1'

(i) the estimator given in (11) is consistent, i.e., un r u0 a.s.;
(ii) if in addition, the matrix C is nonsingular, then

Mn ~un � u0 !
d
&& N~0,C�1DC�1 !+

From Theorem 3 we have immediately the asymptotic linear expansion required
in A3~b!:

Mn ~un � u0 ! �
1

Mn
(
i�1

n

l~Yi , Xi ,u0 !� oP~1!,

where now

l~Yi , Xi ,u0 ! � �C�1$Yi � f ~Xi ,u0 !%�
P

G~b,u!1~b 'Xi � u!Cp~db,du!+

Note that in general the estimator given in ~11! is not asymptotically efficient+
An asymptotically efficient estimator based on the same minimum distance prin-
ciple can be constructed following the ideas of Carrasco and Florens ~2000!+
This optimal estimator will require the choice of a regularization parameter
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needed to invert a covariance operator; see Carrasco and Florens ~2000! for
more details+

Now we study the asymptotic distribution of Rn
1 under a sequence of local

alternatives converging to null at a parametric rate n�102+ We consider the local
alternatives

HA, n : Yi, n � f ~Xi ,u0 !�
a~Xi !

n102 � «i , a+s+, 1 � i � n, (12)

where the random variable a~X ! is FX -integrable with zero mean and satisfies
P~a~X !� 0! � 1+ To derive the next result we need the following assumption+

Assumption A3'+ The estimator un satisfies the following asymptotic expan-
sion under HA, n:

Mn ~un � u0 ! � ja �
1

Mn
(
i�1

n

l~Yi , Xi ,u0 !� oP~1!,

where the function l~{! is as in Assumption A3 and ja is a vector in R
p+

Remark 1+ It is not difficult to show that un in ~11! satisfies Assumption A3'

under Assumptions A1, A2, and A1' with

ja � C�1�
P

E @a~X !1~b 'X � u!#G~b,u!Cp~db,du!+

THEOREM 4+ Under the local alternatives (12) and Assumptions A1, A2,
and A3'

Rn
1n R`

1 � Da ,

where R`
1 is the process defined in Theorem 2 and the function Da~{! is the

determinist function

Da~b,u! � E @a~X !1~b 'X � u!#� G '~b,u!ja +

For some estimators, Da has an intuitive geometric interpretation+ For instance,
for the new minimum distance estimator ~11! the shift function is given by

Da~b,u! � E @a~X !1~b 'X � u!#

� G '~b,u!C�1�
P

E @a~X !1~b 'X � u!#G~b,u!Cp~db,du!

and represents the orthogonal projection in L2~P,Cp!, the Hilbert space of all
real-valued and Cp-square-integrable functions on P, of E @a~X !1~b 'X � u!#
parallel to G~b,u!+ The next corollary is a consequence of the CMT and
Theorem 4+
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COROLLARY 2+ Under the local alternatives (12) and Assumptions A1, A2,
and A3', for any continuous functional G~{!

G~Rn
1! d
&& G~R`

1 � Da !+

Furthermore,

�
P

6Rn
1~b,u!62Fn,b~du! db d

&& �
P

6R`
1 ~b,u!� Da~b,u!62Cp~db,du!+

Note that because of Lemma 1, we have that

Da � 0m a~X !� ja
' g~X,u0 ! a+s+

Therefore, from this result it is not difficult to show that the test based on PCvMn

is able to detect asymptotically any local alternative a~{! that is not parallel to
g~{,u0!+ This result is not attainable for tests based on the local approach, e+g+,
the Härdle and Mammen ~1993! test+

We have seen before that the asymptotic null distribution of continuous func-
tionals of Rn

1 depends in a complicated way on the DGP and the specification
under the null+ Therefore, critical values for the test statistics cannot be tabu-
lated for general cases+ Here we propose to implement the test with the assis-
tance of a bootstrap procedure+ Resampling methods have been extensively used
in the model checks literature of regression models; see, e+g+, Stute et al+ ~1998!
or more recently Li et al+ ~2003!+ It is shown in these papers that the most
relevant bootstrap method for regression problems is the wild bootstrap ~WB!
introduced in Wu ~1986!+ We approximate the asymptotic null distribution of
Rn

1 by that of

Rn
*~x! � n�102(

i�1

n

ei
*~un
*!1~b 'Xi � u! x � ~b ',u!' � P,

where the sequence $ei
*~un
*!%i�1

n are the fixed design wild bootstrap ~FDWB!
residuals computed from et

*~un
*! � Yi

* � f ~Xi ,un*!, where Yi
* � f ~Xi ,un! �

ei~un!Vi , un* is the bootstrap estimator calculated from the data $~Yi
*, Xi

'!' %i�1
n ,

and $Vi %i�1
n is a sequence of i+i+d+ random variables with zero mean, unit vari-

ance, and bounded support and also independent of the sequence $Zi %i�1
n +

Examples of $Vi %i�1
n sequences are i+i+d+ Bernoulli variates with

P~Vi � a1!� p1 P~Vi � a2 !� 1 � p1, (13)

where a1 � 0+5~1 � M5!, a2 � 0+5~1 � M5!, and p1 � ~1 � M5!02M5, used in,
e+g+, Li et al+ ~2003!+ For other sequences see Mammen ~1993!+ The reader is
referred to Stute et al+ ~1998! for the theoretical justification of this bootstrap
approximation and the assumptions needed+ The results of these authors jointly
with those proved here ensure that the proposed bootstrap test has a correct

1042 J. CARLOS ESCANCIANO

https://doi.org/10.1017/S0266466606060506 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060506


asymptotic level, is consistent, and is able to detect alternatives tending to the
null at the parametric rate n�102+ The next section shows that this bootstrap
procedure provides good approximations in finite samples+

4. MONTE CARLO EVIDENCE

In this section we compare the new CvM test with some competing integrated-
approach-based tests proposed in the literature+ This study complements others
considered in the literature; see, e+g+,Miles and Mora ~2003!+We briefly describe
our simulation setup+ We denote by PCvMn the new CvM test defined in ~8!+
For the explicit computation of PCvMn see Appendix B+

Bierens ~1982, p+ 111! proposed the CvM test statistic based on the exponen-
tial weight function w~X, x!� exp~ix 'X ! and the d-variate normal density func-
tion as the integration function, i+e+,

CvMn,exp � n�1(
i�1

n

(
s�1

n

ei ~un !es~un !exp��
1

2
6Xi � Xs 62�+

We also consider here the CvM and KS statistics defined in Stute ~1997!, which
are given by

CvMn �
1

n2 (
j�1

n �(
i�1

n

ei ~un !1~Xi � Xj !�2

and

KSn � max
1�j�n �

1

Mn
(
i�1

n

ei ~un !1~Xi � Xj !�,
respectively+ Note that CvMn and PCvMn are the same test statistics when d �1,
by definition+

Recently, Stute and Zhu ~2002! have considered an innovation process trans-
formation of Rn

1~bn ,u! for testing the correct specification of GLM models,
where bn is a suitable estimator of the GLM parameter, say, b0+ More con-
cretely, their test statistic is the CvM test

SZn �
1

cn,bn

2 ~x0 !
�

�`

x0

6Tn Rn
1~bn ,u!62sn,bn

2 ~u!Fn,bn
~du!,

where

Tn f ~u! � f ~u!��
�`

u

an,bn

' ~v!An
�1~v!�

v

`

an,bn
~ y!sn,bn

�2 ~ y! f ~dy!Fn,bn
~dv!,

An~u! ��
u

`

an,bn
~v!an,bn

' ~v!sn,bn

�2 ~v!Fn,bn
~dv!,
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an,bn
~u! and sn,bn

2 ~u! are Nadaraya–Watson estimators of ab0
~u! �

E @g~X,u0 !0b0
' X � u# and sb0

2 ~u! � E @«2 6b0
' X � u# , respectively, cn,bn

~u! �
n�1(i�1

n ei
2~un !1~bn

' Xi � u!, and x0 is the 99% quantile of Fn,bn
+ Under

the correct specification of the GLM and some additional assumptions

SZn
d
&& �

0

1

B2~u! du,

where B~{! denotes a standard Brownian motion on @0,1# ; see Stute and Zhu
~2002! for further details+ For the nonparametric estimators we have chosen a
Gaussian kernel with bandwidth h � 0+5n�102 as in Stute and Zhu ~2002!+

We consider the same FDWB for the version of the exponential Bierens test
and for the Stute ~1997! test as for our CvM test PCvMn+ For SZn we consider
empirical critical values based on 10,000 simulations on the first null model in
each block of models+ In the discussion that follows, «i ; iid N~0,1! and ni ;
iid exp~1! are standard Gaussian and centered exponential noises, respectively+
We consider in the simulations two blocks of models+ In the first block the null
model is

Yi � a � bX1i � cX2i � «i ,

where X1i � ~Wi � W1i !02 and X2i � ~Wi � W2i !02, and Wi , W1i , and W2i are
i+i+d+ U @0,2p# , independent of «i , 1 � i � n+ We examine the adequacy of this
model under the following DGPs:

1+ DGP1: Yi � 1 � X1i � X2i � «i [ Xi
'a0 � «i +

2+ DGP1-EXP: Yi � 1 � X1i � X2i � ni � Xi
'a0 � ni +

3+ DGP2: Yi � Xi
'a0 � 0+1~W1i � p!~W2i � p! � «i +

4+ DGP3: Yi � Xi
'a0 � Xi

'a0 exp $�0+01~Xi
'a0 !

2 % � «i +
5+ DGP4: Yi � Xi

'a0 � cos~0+6pXi
'a0 ! � «i +

DGP1 and DGP2 are considered in Hong and White ~1995!+ DGP3 here is sim-
ilar to their DGP3; see also Koul and Stute ~1999!+ DGP4 is similar to that
considered in Eubank and Hart ~1992!+ DGP1-EXP is considered here to show
the robustness of the tests against fatter tailed error distributions+ For the first
block of models we consider a sample size of n � 50, 100, and 300+ The num-
ber of Monte Carlo experiments is 1,000, and the number of bootstrap replica-
tions is B � 500+ For the bootstrap approximation we employ the sequence
$Vi %i�1

n of i+i+d+ Bernoulli variates given in ~13!+We estimate the null model by
the usual least squares estimator+ The nominal levels are 10%, 5%, and 1%+

In Table 1 we show the empirical rejection probabilities ~RP! associated with
models DGP1 and DGP1-EXP+ The empirical levels of the test statistics are
close to the nominal level, even for sample sizes as small as 50+ The empirical
levels for DGP1-EXP are less accurate than for DGP1 but are reasonable, show-
ing that the tests are robust to fat-tailed error distributions+
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In Table 2 we report the empirical power against the DGP2+ It increases with
the sample size n for all test statistics, as expected+ It is shown that the new
CvM test PCvMn has the best empirical power in all cases+ The empirical power
for CvMn,exp is reasonable and greater than or equal to CvMn and KSn for n � 50,
but better for n � 100 and 300+ The Stute and Zhu ~2002! test, SZn, is the worst
against this alternative+ The rejection probabilities of PCvMn are comparable to
the best test in Hong and White ~1995! against this alternative+ In Table 3 we
show the RP for DGP3+ For this alternative SZn and our test statistic, PCvMn,
have generally the best empirical powers, SZn performing slightly better than
PCvMn+ Bierens’ test CVMn,exp has good power properties for this alternative+
Stute’s test CvMn performs similarly to CVMn,exp, whereas KSn presents the worst
results, with a moderate power+ For DGP4 ~Table 4!, PCvMn and CVMn,exp have
excellent empirical powers+ Stute’s tests, CvMn and KSn, and the Stute and Zhu
~2002! test, SZn, have low power against this “high-frequency” alternative+

Table 1. Empirical size of tests

n � 50 n � 100 n � 300

DGP1 10% 5% 1% 10% 5% 1% 10% 5% 1%
PCvMn 9+3 5+2 0+8 10+8 5+7 1+1 10+1 5+7 1+0
CvMn,exp 9+5 4+8 0+8 9+8 5+5 1+0 10+5 5+3 1+2
CvMn 11+0 5+3 0+8 10+8 5+1 1+3 9+8 5+0 1+1
KSn 11+5 6+0 1+3 12+1 6+3 1+5 10+8 5+9 1+0
SZn 10+3 6+2 0+9 9+5 4+5 0+7 11+2 5+0 0+8

DGP1-EXP
PCvMn 10+1 5+1 0+7 8+6 3+7 0+5 9+0 4+3 0+9
CvMn,exp 11+5 5+8 0+8 9+4 4+2 0+7 8+3 4+4 0+6
CvMn 9+4 4+7 0+7 9+0 3+7 0+4 8+9 4+2 0+9
KSn 11+5 5+4 0+8 9+0 3+7 0+5 9+2 4+4 1+2
SZn 9+1 4+7 1+4 10+1 4+3 2+0 10+3 5+4 1+4

Table 2. Empirical power of tests

n � 50 n � 100 n � 300

DGP2 10% 5% 1% 10% 5% 1% 10% 5% 1%
PCvMn 23+3 13+0 3+0 43+2 28+7 7+0 91+3 83+6 53+7
CvMn,exp 21+1 11+5 2+9 39+2 26+1 5+9 89+2 79+4 47+8
CvMn 20+7 11+1 2+6 33+3 21+7 7+0 79+3 65+2 32+2
KSn 18+4 11+5 2+5 29+3 18+4 5+3 62+5 47+7 23+0
SZn 13+5 5+2 1+7 18+8 12+4 3+5 34+2 24+5 10+7
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The second block of models is taken from Zhu ~2003!+ The null model is

Yi � Xi
'g0 � «i ,

whereas the DGPs considered are

Yi � Xi
'g0 � b~Xi

'b0 !
2 � «i ,

where Xi
' is a random d-dimensional covariate with i+i+d+ U @0,2p# marginal

components, d � 3 and 6+ When d � 3, g0 � ~1,1,2!' and b0 � ~2,1,1!' , and
when d � 6, g0 � ~1,2,3,4,5,6!' and b0 � ~6,5,4,3,2,1!' + Furthermore, set b �
0+01, 0+02, + + + ,0+1 when d � 3 and b � 0+001, 0+002, + + + ,0+01 when d � 6+ This
experiment provides us with evidence of the power performance of the tests
under local alternatives ~b � 0 corresponds to the null hypothesis!+ The sample
size is n � 25; the rest of the Monte Carlo parameters are as before+

We show the RP for these models in Figure 1+ We see that in both cases,
d � 3 and 6, our new test statistic PCvMn and SZn have the best empirical
powers for all values of b+ None of them is superior to the other for all values
of b and for both models+ For d � 3, SZn performs slightly better than PCvMn+
They are followed by CvMn,exp+ For d � 6, PCvMn has the best power for b �
0+006, whereas SZn is the best for b � 0+006; CvMn,exp, CvMn, and KSn have
very low empirical power against this alternative+

Table 3. Empirical power of tests

n � 50 n � 100 n � 300

DGP3 10% 5% 1% 10% 5% 1% 10% 5% 1%
PCvMn 72+7 61+8 32+6 94+8 92+0 77+5 100+0 100+0 100+0
CvMn,exp 68+4 56+6 27+3 93+8 89+8 71+5 100+0 100+0 100+0
CvMn 66+7 52+0 26+9 93+5 90+6 72+3 100+0 100+0 100+0
KSn 43+0 27+1 8+2 80+1 68+9 37+3 100+0 99+9 98+5
SZn 72+4 56+4 35+1 97+1 93+9 82+9 100+0 100+0 100+0

Table 4. Empirical power of tests

n � 50 n � 100 n � 300

DGP4 10% 5% 1% 10% 5% 1% 10% 5% 1%
PCvMn 24+1 13+6 2+5 48+3 29+7 6+9 99+9 98+9 71+1
CvMn,exp 24+6 13+3 2+7 51+2 29+3 8+1 99+8 97+9 76+5
CvMn 11+1 5+5 1+0 14+8 8+1 2+0 41+7 25+3 5+1
KSn 9+6 4+8 0+4 15+7 8+5 2+0 39+5 25+4 9+2
SZn 12+5 5+4 1+1 16+6 9+4 1+8 33+6 16+5 3+8
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Summarizing, these two Monte Carlo experiments show that our test pos-
sesses an excellent power performance in finite samples for the alternatives
considered+ In all cases, our test has the best empirical power or it is compara-
ble to the best test among the tests proposed by Bierens ~1982!, Stute ~1997!,
and Stute and Zhu ~2002!+ In our Monte Carlo experiments we have focused on
the integrated-approach-based tests+ Miles and Mora ~2003! have compared
through simulations some local-based and integrated-based tests+ These authors
conclude that for one-dimensional regressors, the integrated-approach-based
tests perform slightly better than the smoothing-based ones, especially Bierens’
statistic+When the number of regressors is greater than one, some of the smooth-
ing tests considered by these authors perform better+ Therefore, it is important
to compare our new test with the smoothing-based tests considered by these
authors, especially for the case of multivariate regressors+ This study is beyond
the scope of this paper and is deferred for future research+ Our test has the
advantage that no bandwidth selection is required, though its implementation
requires the use of a bootstrap procedure+ Our Monte Carlo experiments

Figure 1. Rejection probabilities plots for d � 3 and 6+ The solid, solid-star, dot, dash,
and dash-dot lines are, respectively, for the empirical power of PCvMn, SZn, CvMn,exp,
CvMn, and KSn+
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show that our test should be considered a reasonably competent test to the best
local-approach-based test and a valuable diagnostic procedure for regression
modeling+
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APPENDIX A: Proofs

Proof of Lemma 1. This follows easily from Part I of Theorem 1 in Bierens ~1982!+
�

Proof of Theorem 1. By a classical CLT we can show that the finite-dimensional
distributions of Rn converge to those of the Gaussian process R`+ The asymptotic equi-
continuity of Rn follows by a direct application of Theorem 2+5+2 in van der Vaart and
Wellner ~1996!; see also their Problem 14 on p+ 152+ �

Proof of Theorem 2. Applying the classical mean value theorem argument we have

Rn
1~x! � Rn~x!� n�102(

i�1

n

$ f ~Xi ,un !� f ~Xi ,u0 !%1~b 'Xi � u!

� Rn~x!� I � II � III,
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where

I � n102~un � u0 !
1

n (i�1

n

$g~Xi , Dun !� g~Xi ,u0 !%1~b 'Xi � u!,

II � n102~un � u0 !
1

n (i�1

n

@g~Xi ,u0 !1~b 'Xi � u!� G~x,u0 !# ,

and

III � n102~un � u0 !G~x,u0 !

and where Dun satisfies 6 Dun � u06 � 6un � u06 a+s+ By Assumptions A1–A3, the general-
ization by Wolfowitz ~1954! of the Glivenko–Cantelli theorem, and the uniform law
of large numbers ~ULLN! of Jennrich ~1969!, it is easy to show that I � oP~1! and
II � oP~1! uniformly in x � P+ Thus the theorem follows from Theorem 1 and Assump-
tion A3+ �

Proof of Corollary 1. For a nonrandom continuous functional, the result follows
from the CMT and Theorem 2+ For PCvMn the result follows because under the condi-
tions of Theorem 2 we have that Rn

1 is asymptotically tight and hence Lemma 3+1 in
Chang ~1990! applies+ �

Proof of Theorem 3. The proof follows exactly the same steps as the proof of Theo-
rems 1 and 2 in Dominguez and Lobato ~2004!, and thus it is omitted+ �

Proof of Theorem 4. Under the local alternatives ~12! write

Rn
1~x! � n�102(

i�1

n � f ~Xi ,u0 !�
a~Xi !

n102 � «i � f ~Xi ,un !� 1~b 'Xi � u!

� Rn~x!� A1 � A2 , (A.1)

with

A1 � n�102(
i�1

n

$ f ~Xi ,u0 !� f ~Xi ,un !%1~b 'Xi � u!

and

A2 � n�1(
i�1

n

a~Xi !1~b
'Xi � u!+

Using A3' as in Theorem 2, we obtain

6A1 � n102~un � u0 !G~x,u0 !6 � oP~1!
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uniformly in x � P+ On the other hand, using the results of Wolfowitz ~1954!, we have
uniformly in x � P

6A2 � E @a~X !1~b 'X � u!#6� oP~1!+

Using the preceding equations and ~A+1!, the theorem holds from Theorem 1 and
Assumption A3'+ �

APPENDIX B: Computation of the Test Statistic

By simple algebra

PCvMn ��
P

6Rn
1~b,u!62Fn,b~du! db

� n�1(
i�1

n

(
j�1

n

ei ~un !ej ~un !�
P

1~b 'Xi � u!1~b 'Xj � u!Fn,b~du! db

� n�2(
i�1

n

(
j�1

n

(
r�1

n

ei ~un !ej ~un !�
Sd

1~b 'Xi � b 'Xr !1~b
'Xj � b 'Xr ! db

� n�2(
i�1

n

(
j�1

n

(
r�1

n

ei ~un !ej ~un !Aijr +

For d � 1, note that the integral Aijr is proportional to the volume of a spherical wedge
and hence we can compute them from the formula

Aijr � Aijr
~0! p

~d02!�1

G�d

2
� 1� ,

where Aijr
~0! is the complementary angle between the vectors ~Xi � Xr ! and ~Xj � Xr !

measured in radians and G~{! is the gamma function+ Thus, Aijr
~0! is given by

Aijr
~0! � �p� ar cos� ~Xi � Xr !

'~Xj � Xr !

6~Xi � Xr !6 6~Xj � Xr !6
��+

Hence, the computation of these integrals is simple+ In addition, there are some restric-
tions on the integrals Aijr that make the computation simpler, e+g+, if Xi � Xj and
Xi � Xr then Aijr

~0! � p, whereas if Xi � Xj and Xi � Xr then Aijr
~0! � 2p+ If Xi � Xj and

Xi � Xr or Xj � Xr , we have that Aijr
~0! � p+ Also, the symmetric property Aijr � Ajir

holds+
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