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We investigate the evolution of spherical clouds of charged particles that migrate
under the action of a uniform external electrostatic field. Hydrodynamic interactions
are modelled by Oseen equations and the Coulomb repulsion is calculated through
pairwise summation. It is shown that strong long-range Coulomb repulsion can prevent
the breakup of the clouds covering a wide range of particle Reynolds number Rep and
cloud-to-particle size ratio R0/rp. A dimensionless charge parameter κq is constructed
to quantify the effect of the repulsion, and a critical value κq,t is deduced, which
successfully captures the transition of a cloud from hydrodynamically controlled
regime to repulsion-controlled regime. Our results also reveal that, with sufficiently
strong repulsion, the cloud undergoes a universal self-similar expansion. Scaling laws
of cloud radius Rcl and particle number density n are obtained by solving a continuum
convection equation.

Key words: multiphase flow, particle/fluid flow, suspensions

1. Introduction

The migration of charged particles in an electrostatic field is ubiquitous in a variety
of fields, such as aerosol removal in an electrostatic precipitator (Marshall & Li
2014), fabrication of functional films using electrophoretic deposition (Cordelair &
Greil 2004) and dust devils in the Martian atmosphere (Matthews, Shotorban & Truell
2013; Izvekova & Popel 2016), where both long-range hydrodynamic and electrostatic
interactions among particles result in complex collective dynamics. In most of these
processes, particle sizes are around a micrometre and the relevant Reynolds number
can be very small; thus the hydrodynamic interaction can be simulated by solving
the Stokes/Oseen equations: the disturbance of every particle on the flow field can be
linearly summed to obtain the flow field at the positions of other particles (Guazzelli
& Morris 2011).

Earlier studies of sedimenting clouds have been carried out in the absence of
electrostatic interactions. A common feature therein is that, while settling down, most
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FIGURE 1. (Colour online) Regimes of evolution for a migrating cloud characterized by
particle Reynolds number Rep and cloud-to-particle size ratio R0/rp. The points are the
specific cases studied in this paper.

particles tend to stay as a cohesive blob, resulting in a mean settling velocity that
can be several times larger than the Stokes velocity of an isolated particle.

The settling velocity and the shape of a particle cloud during gravity settling are
first studied in conditions where inertia is negligible (Nitsche & Batchelor 1997;
Metzger, Nicolas & Guazzelli 2007). An initially spherical cloud is found to evolve
into a torus shape and eventually to break up into two secondary subclouds, each of
which will further break again. In conditions with small but finite Reynolds number,
the inflow at the rear of the cloud plays a key role in the cloud’s evolution into
a torus shape, and the deformation is accelerated as inertia is increased (Pignatel,
Nicolas & Guazzelli 2011). Subramanian & Koch (2008) were one of the first to
consider inertial clouds and organized their behaviour into different regimes (see
figure 1). They also presented a theoretical prediction of the long-time dynamics of a
sedimenting cloud, wherein a settling cloud is characterized by a number density field
n and a corresponding induced velocity field ur (only the radial component appears
due to symmetry). According to their prediction, for both planar axisymmetric clouds
and spherical clouds, the evolution equation admits a self-similar expansion.

Recently, Chraibi & Amarouchene (2013) and Yang, Li & Marshall (2015)
performed ‘Oseenlet’ simulations of spherical or cylindrical clouds to study the
effects of fluid inertia and cloud shape, in which an analytical solution for zero-time
cloud settling velocity is proposed. Tao, Guo & Wang (2017) studied the effect of
surface slip on the sedimentation process and found that slippery particles inside the
particle cloud generally increase the fluctuations in vertical velocity and position in
the accelerated falling stage.

In the absence of electrostatic interactions, a cloud containing a sufficiently large
number of particles is quite unstable. The instability and breakup phenomena are
found to be sensitive to the polydispersity (size or density) of the particles: a greater
degree of polydispersity tends to cause the cloud to persist as a cohesive entity for
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a shorter period of time (Faletra et al. 2015; Ho, Phan-Thien & Khoo 2016). High
instability poses huge challenges in predicting long-time dynamics of a migrating
cloud. Therefore, theoretical predictions of evolution can be made only for isotropic
clouds with sufficiently low number density: particles in the cloud are outside the
wake of any other particle, and the evolution of the cloud is governed by repulsive
source–field interactions (Subramanian & Koch 2008).

If particles are unipolarly charged, the Coulomb repulsion will act against the
hydrodynamic stress and tend to separate particles. This long-range repulsion has
been found to have significant effects on particle packing structure (Chen et al.
2016a; Schella, Herminghaus & Schröter 2017), clustering of particles in turbulence
(Lu et al. 2010), shear-induced ordering in suspensions (Nazockdast & Morris 2012)
and clogging/non-clogging transition in colloids and aerosols (Agbangla, Bacchin &
Climent 2014; Chen, Liu & Li 2016b). However, the migration behaviour of particle
clouds with a coupling effect of both hydrodynamic and electrostatic interactions
is still less investigated. In this paper, we incorporate electrostatic interactions in a
rigorous manner and perform Oseenlet simulations of migrating clouds in a wide
range of particle Reynolds number Rep and cloud-to-particle size ratio R0/rp to show
how the Coulomb repulsion affects the evolution of a migrating cloud.

2. Formulation of the problem
We consider a spherical cloud with initial radius R0 containing N unipolarly charged

non-Brownian particles (with charge number q0). The particles are randomly seeded
in the cloud with an initial volume fraction φ = 2 × 10−6 and are assumed to be
neutrally buoyant to avoid a gravity effect. In such dilute condition, particle–particle
collisions can be prevented, and higher-order multipoles, e.g. dipoles or quadrupoles,
which decay sufficiently fast with distance, can be ignored. The cloud is immersed
in unbounded stationary fluid and migrates under the action of a uniform electric
field E0 (in the vertical x direction). The hydrodynamic interactions among particles
are modelled by Oseen equations, and we simultaneously consider the long-rang
electrostatic forces: a uniform external electrostatic force (E0q0) and a pairwise
Coulomb repulsion (q2

0/4πεf r2
ij), where εf = 8.85× 10−12 F m−1 is the permittivity of

the fluid and rij = |ri − rj| is the distance from the centroid of a source particle to
that of a target particle.

A phase diagram, adapted from Subramanian & Koch (2008), is presented in
figure 1 to show different regimes of evolution for a settling cloud of particles. In
figure 1, all the physical quantities that influence the properties of a migrating cloud,
including the particle radius rp and density ρp, the fluid viscosity µf and density ρf ,
as well as the cloud radius R0, can be grouped into two dimensionless parameters:
one is particle Reynolds number Rep, which is related to the driving force by Rep =

E0q0ρf /6πµ2
f ; the other is cloud-to-particle size ratio R0/rp. Since we have fixed the

volume fraction φ, parameters like particle number N = φ(R0/rp)
3 and dimensionless

inertial length l∗ = (rp/R0)/Rep can be directly derived from Rep and R0/rp. It is
noted that the Stokes number St = (2/9)(ρp/ρf )Rep, which is kept in the range of
10−4–10−2, does not play a key role here. We pick out nine points located in four
different regimes in the phase diagram (Rep = 2.54 × 10−4, 1.27 × 10−3, 2.03 × 10−2

and R0/rp = 400, 800, 1600) and systematically perform particle dynamic simulations
by changing the strength of long-range Coulomb repulsion.

The equation of motion for ith particle can be written as

ui = uf ,i + us,i =
∑
j6=i

Wijus,j +
1

6πµf rp

(
E0q0 +

∑
j6=i

q2
0rij

4πεf r3
ij

)
. (2.1)
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Here, uf ,i is the fluid velocity at the centre of particle i and us,i is the particle slip
velocity. Since the Stokes number is sufficiently small, the particle inertia is negligible,
and us can be directly calculated from the external force acting on the particle through
us =Fext/6πµf rp. Vector rij = ri − rj is that from source point j to target point i. The
interaction kernel Wij=W(ri, rj) is a function of the positions of particles and can be
obtained based on the Oseen solution for the flow around a particle:

ur,Oseen =
usr2

p

r2

{
−

rp cos θ
2r

−
3(1− cos θ)r

4rp
exp

(
−

Resr(1+ cos θ)
2rp

)
+

3
2Res

[
1− exp

(
−

Resr(1+ cos θ)
2rp

)]}
, (2.2)

uθ,Oseen =−
usrp

r
sin θ

[
r2

p

4r2
+

3
4

exp
(
−

Resr(1+ cos θ)
2rp

)]
, (2.3)

with the polar axis (θ = 0) coincident with the direction of particle motion. Finally,
ReS = 2rpusρf /µf is the instantaneous particle Reynolds number based on its slip
velocity us.

Normalizing the velocity by the migrating velocity of an isolated particle U0 =

E0q0/6πµf rp and the length by the initial radius of the cloud R0, (2.1) becomes

ûp,i =
∑
j6=i

Ŵijûs,j + ex + κqΦi. (2.4)

Here, Φi = (1/N)
∑

j6=i (r̂ij/r̂3
ij) is a function of the position vectors (r̂1, r̂2, . . . , r̂N) of

the particles. A dimensionless charge parameter is indicated as

κq =
q0N

4πεf E0R2
0
, (2.5)

which is interpreted as the ratio of the velocity caused by particle–particle Coulomb
repulsion to the velocity driven by the external field. The 3N coupled equations
of motion of the particles (2.4) are solved by the Adams–Bashforth method with
sufficiently small time steps. The information of all the particles is simultaneously
recorded and thus the temporal evolution of the migrating cloud can be easily
captured.

Before presenting the results from particle dynamics simulations, we introduce a
continuum description of cloud expansion in terms of number density field n(r̂, t̂)
and induced velocity field û(r̂, t̂). A continuity equation can be built based on the
conservation of particle number (Subramanian & Koch 2008):

∂

∂t
n(r̂, t̂)+∇ · (û(r̂, t̂)n(r̂, t̂))= 0. (2.6)

A similarity solution of (2.6) for a spherical cloud settling under gravity was given
in the condition of a sufficiently low number density (N/R0 � U0/νf , νf = µf /ρf ).
Under such a constraint, most particles in the cloud are outside the wake of any
other particle, and the evolution of the cloud is governed by repulsive source–field
interactions uf ,r = 3νf rp/(2r2) (Batchelor 2000). Under such conditions, the expansion
rate ûr(R̂cl, t̂) and the relative increase of the migrating velocity 1Û = (U − U0)/U0
(U is defined as the average velocity of all particles) of the cloud can be estimated
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(a) (b)

FIGURE 2. (Colour online) Typical evolution of clouds in the Stokes regime with
Rep = 2.54× 10−4, R0/rp = 800, and with (a) κq = 0 and (b) κq = 1.0.

as ûr(R̂cl, t̂) = 3rpNνf /(2R2
0U0) � 1 and 1Û = (6/5)N(rp/R0)3/(3+ RepR0/rp) ≈

18rpNνf /(5R2
0U0)� 1, respectively (Yang et al. 2015). It indicates an extremely weak

hydrodynamic interaction between particles and the particles behave like isolated
ones.

3. Results
3.1. Effect of Coulomb repulsion on Stokes clouds

We first consider two migrating clouds in the Stokes regime (Rep= 2.54× 10−4) with
the same R0/rp and initial cloud configuration (r̂1, r̂2, . . . , r̂N). In the first case, we set
the interparticle Coulomb repulsion to zero, whereas a strong repulsion is employed
in the second case. The typical evolution of the two clouds is displayed in figure 2.
The cloud with κq = 0 is seen to flatten and to expand in the horizontal direction. A
circulation of the particles inside the cloud is also observed, which can be regarded
as a typical feature for Stokes clouds or drops (Yang et al. 2015). (The circulation
is more clear in figure 5(a).) At the same time, a leakage of particles occurs at
the rear of the cloud (figure 2a). The flat cloud further expands and breaks up into
two subclouds, each of which further breaks again. All these features qualitatively
resemble the numerical and experimental results of Stokes cloud settling under
gravity (Metzger et al. 2007; Pignatel et al. 2011), indicating that, with extremely
weak Coulomb repulsion (κq → 0), the effect of external electrostatic field (E0) is
similar to that of gravity. In the presence of strong Coulomb repulsion (figure 2b),
the cloud undergoes an expansion without breakup during a long-term observation
(t̂∼ 100). After a compression in the vertical direction in the initial stage, the cloud
then undergoes a self-similar expansion with size increased and geometrical shape
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FIGURE 3. (Colour online) Scatter plots of particle dispersion in migrating clouds with
Rep= 2.54× 10−4, R0/rp= 800, and with (a) κq= 0 and (b) κq= 1.0. The particle position
relative to the centre of mass of the cloud with their local volume fraction is plotted at
t̂ = 60. Top and bottom panels correspond to top views and side views of the clouds,
respectively.

unchanged. Figure 3 clearly shows the distribution of particles in the two clouds.
In the case without Coulomb repulsion, two distinct subclouds with high local
volume fraction are displayed. Both subclouds have rugged surfaces, which may lead
to further destabilization. However, with strong repulsion, the cloud has relatively
smooth boundary, with particles uniformly distributed.

In figure 4, the evolution of horizontal-to-vertical aspect ratio γ =Rh/Rv for clouds
with different repulsion is shown. The horizontal radius Rh is defined as the average of
the maximum distances from the centre of mass over four quadrants in the horizontal
plane. And the vertical radius Rv is defined as the distance from the front leading
particle to the centre of mass of the cloud. It can be seen that aspect ratio increases
in all cases due to the expansion in the horizontal direction. Obvious fluctuations
appear in the case with κq= 0, which is a result of the coupling between the toroidal
circulation of the cloud and the expansion in the horizontal direction (Metzger et al.
2007). When the cloud breaks up, particles in the subclouds that have a relatively
higher particle concentration migrate faster than those out of the subclouds. It leads
to a stretch of the cloud in the vertical direction, and thus γ drops remarkably at
t̂≈ 30. In cases with strong Coulomb repulsions, the fluctuation in γ is significantly
inhibited, and the growth rate of γ decreases as κq increases. When a sufficiently large
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FIGURE 4. (Colour online) Evolution of the aspect ratio of clouds in the Stokes regime
with Rep = 2.54 × 10−4 and R0/rp = 800. We show results with four different strengths
of Coulomb repulsion: κq = 0 (circles), κq = 0.11 (upward-pointing triangles), κq = 1.0
(squares) and κq = 11 (right-pointing triangles).

repulsion is imposed, γ stays close to unity, indicating that the cloud can keep its
spherical shape.

3.2. Effect of fluid inertia
Here, we also simulate clouds with distinct particle Reynolds numbers to elucidate
the effect of fluid inertia. According to figure 1, when inertia increases, a cloud first
transits from the Stokes drop-like regime into the regime dominated by microscale
inertia (R0/rp ∼ (Reφ)−1/3), and then enters into the Oseen interactions-dominant
regime (R0/rp ∼ Re−1). In our simulation, Oseen solution is adopted and is valid in
all these regimes.

In figure 5, we plot the velocities of particles in clouds with the same configuration
but different Rep and κq. When the Coulomb repulsion is extremely weak (κq = 0.01
in figure 5a–c), we found the following characteristics that are qualitatively similar
to clouds settling under gravity: (1) a conspicuous circulation in a toroidal vortex is
observed in the Stokes drop-like cloud; and (2) as the inertia increases, the inflow
at the rear of the cloud becomes stronger and drastically diminishes the particle
leakage (Bosse et al. 2005; Pignatel et al. 2011). With a sufficiently strong repulsion
(κq = 5.0), the velocities of particles become radial. With such a high κq, the direct
Coulomb interaction term (κqΦi) becomes dominant and the evolution of clouds is
no longer affected by fluid inertia (see figure 5g–i). We check all the simulation runs
with different R0/rp and Rep and find that, when a sufficiently large κq is given, the
clouds always remain in a stable shape.

It is worth noting that the velocity vectors in figure 5( f ) have a pattern that is
closer to an isotropic form than those in figure 5(d). It indicates that the cloud with
higher Rep transits from the hydrodynamically controlled regime to the isotropic
expansion regime at relatively lower κq. This effect of fluid inertia can be understood
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FIGURE 5. (Colour online) Velocity vectors of particles in clouds with the same
configuration but different Reynolds number (Rep) and repulsion (κq). Each column has
the same Rep, with Rep = 2.54 × 10−4, 1.27 × 10−3 and 2.03 × 10−2 from left to right;
and each row has the same κq, with κq = 0.01, 1.0 and 5.0 from top to bottom. The
cloud-to-particle size ratio is fixed as R0/rp= 800. For clarity, only 300 particles near the
plane of ẑ= 0 are drawn for each case.

at a first level by considering the hydrodynamic interaction between two identical
particles. Figure 6(a) shows a simple case where particle i has a unit slip velocity
and generates induced velocity at the location of particle j. According to the Oseen
solution in (2.2) and (2.3), the induced velocity is a function of the ratio between
the distance and the particle radius r/rp, the angle θ between the direction of slip
velocity and the vector from particle i to particle j, and the particle Reynolds number
Rep. Here r/rp is fixed as 10 and the magnitude of velocities in the radial direction
(|ûr,Oseen| in figure 6b) and tangential velocity (|ûθ,Oseen| in figure 6c) at different
θ are plotted for four distinct Rep (0.001, 0.01, 0.1 and 0.5). It is evident that
|ûr,Oseen| (|ûθ,Oseen|) reaches its maximum at θ = π (θ = π/2). The induced velocities
in both radial and tangential directions decrease with increasing Rep (except at θ =π).
Given the same κq, clouds with higher Rep will have relatively weaker hydrodynamic
interaction (i.e. smaller

∑
j6=i Ŵijûs,j in (2.4)). This result confirms the findings in

figure 5 that clouds with higher Rep transit into the isotropic expansion regime at a
relatively lower κq.

In the following section, we will focus on the effect of Coulomb repulsion and try
to answer the questions: how to characterize the transition from unstable migrating
cloud to the stable cloud without breakup, and what rules the stable cloud would
follow during its evolution.
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0 0

(a) (b) (c)

j

0.15 0.08

FIGURE 6. (Colour online) (a) Alignment of two particles and the magnitude of velocities
in the radial direction (b) and tangential direction (c) at the location of particle j induced
by the slip velocity of particle i. In (b) and (c) θ stands for the angle between the direction
of slip velocity and the vector from particle i to particle j. Results for four different
particle Reynolds numbers are presented: Rep = 0.001 (blue solid lines), Rep = 0.01 (red
dashed lines), Rep = 0.1 (yellow dotted lines) and Rep = 0.5 (green dash-dotted lines).

3.3. Scaling analysis and continuum description
To answer the questions above, the influence of Coulomb repulsion is evaluated by a
scaling analysis of the particles’ equation of motion (2.4). The simplest term in (2.4)
is the mobility caused by the external field (ex), which has no effect on the evolution
of the cloud shape. Here we compare the contribution from the remaining two terms:
the mobility due to Coulomb repulsion from other particles ((κq/N)

∑
j6=i (r̂ij/r̂3

ij)) and
the fluid velocity induced by the slip velocities of other particles (

∑
j6=i Ŵijûs,j). In the

second term, ûs,j can be calculated from the external force and the repulsive forces on
particle j. It thus can be regarded as an indirect effect of the imposed external field
and the interparticle electrostatic repulsions.

The relative magnitudes of these two terms can be estimated as:

Ψi =

∣∣∣∣∣∑
j6=i

Ŵijûs,j

∣∣∣∣∣∣∣∣∣∣κq

N

∑
j6=i

r̂ij

r̂3
ij

∣∣∣∣∣
=

∣∣∣∣∣∑
j 6=i

Ŵij

(
ex +

κq

N

∑
k 6=j

r̂jk

r̂3
jk

)∣∣∣∣∣∣∣∣∣∣κq

N

∑
j6=i

r̂ij

r̂3
ij

∣∣∣∣∣
=Ψi,ext +Ψi,Coul. (3.1)

Here, Ψi,ext is the ratio of the velocity caused by the indirect effect of the imposed
external field to the mobility caused by the direct Coulomb repulsion, and Ψi,Coul

is the ratio between the velocities from the indirect and direct effects of Coulomb
repulsion. Note that the only anisotropic term (ex) is included in Ψi,ext, and thus the
clouds will undergo an isotropic expansion if Ψi,ext � 1. If Ψi,Coul � 1 as well, the
isotropic expansion will be determined by the direct repulsive interaction. Scaling
analysis shows that Ψi,ext ∼ (1/κq)Nr̂pR̂cl and Ψi,Coul ∼ Nr̂pR̂cl (see appendix A). It is
natural to see whether a cloud will undergo an isotropic expansion based on its initial
configuration. Substituting R̂cl with its initial value 1 into the direct-repulsion-dominant
condition (Ψi,ext � 1 and Ψi,Coul � 1), a new regime of isotropic expansion is
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identified as

κq�

(
R0

rp

)2

φ ≡ κq,t and κq,t� 1. (3.2a,b)

A migrating cloud in this regime will undergo an isotropic expansion before its radius
reaches a critical value R̂cl,crit (see appendix A). Equation (2.4) (in a reference frame
moving with velocity U0) is simply reduced to ûp,i≈ κqΦi, which can be transformed
into a continuous form:

û(r̂, t̂)=
κq

N

∫
Vcl

r̂− r̂′

|r̂− r̂′|3
n(r̂′, t̂) dV ′(r̂′). (3.3)

It gives the induced velocity in (2.6). Then, for a spherical cloud with initial density
field independent of angular coordinates, (2.6) and (3.3) take the forms

∂n
∂ t̂
+

1
r̂2

∂

∂ r̂
[ûr(r̂, t̂)r̂2n] = 0, (3.4)

ûr(r̂, t̂)=
κq

N

∫ R̂cl

0

∫ π

0

(r̂− r̂′ cos β)n(r̂′, t̂)
(r̂2 + r̂′2 − 2r̂r̂′ cos β)3/2

sin β dβ r̂′2 dr̂′, (3.5)

where β is the azimuthal angle between r̂ and r̂′.
We then extend the derivation of Subramanian & Koch (2008) to obtain the solution

that includes the influence of Coulomb repulsion for the number density field and the
cloud radius (see appendix B):

n(r̂, t̂)=
N

4πκq t̂
, (3.6)

R̂cl(t̂)= (3κq t̂)1/3. (3.7)

Applying (3.6) and (3.7) in (3.5), the induced velocity field reduces to

ûr(r̂, t̂)=
( κq

9t̂2

)1/3 r̂

R̂cl

. (3.8)

In this sense, the isotropic expansion can be well described by the charge parameter κq.
In figure 7, we plot the induced velocity (in radial direction) in clouds with weak

(κq = 0.01κq,t) and strong (κq = 5.2κq,t) repulsions and the corresponding particle
density profiles. The coloured scatterplots and lines are the results from particle
dynamic simulations, and the black solid lines are the scaling laws in (3.8) and (3.6).
An evident result is that the normalized induced velocities ûr t̂2/3/κ̂1/3

q for clouds with
strong repulsion all collapse onto a single universal curve (figure 7b) formulated by
(3.8). The corresponding number density profiles, plotted in a rescaled form n3κq t̂, at
different times also collapse (figure 7d). The number density almost remains constant
across the entire cloud, and its value can be simply derived from the initial condition
of number density n0 through n(t̂)= n0/R̂3

cl(t̂). These results indicate that a cloud with
strong repulsion undergoes a self-similar expansion, which is well predicted by our
scalings.

When the repulsion interaction is weak (κq � κq,t), the scaling may break down.
This is because, in such circumstances, the particles’ motion is dominated by
hydrodynamic interaction. Particles are circulating in the clouds, which results in a
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FIGURE 7. (Colour online) Normalized velocity ûr t̂2/3/κ1/3
q as a function of r̂/Rcl for

a cloud with (a) κq = 0.01κq,t and (b) κq = 5.2κq,t; (c) and (d) are the corresponding
rescaled density field 3nκq t̂. Colour code spans from blue to yellow with increasing time
(from t̂ = 20 to t̂ = 90) and black solid lines are theoretical predictions given by (3.8)
and (3.6).
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FIGURE 8. (Colour online) Evolution of (a) cloud radius R̂cl and (b) migrating velocity
Ûcl with κq = 0.01κq,t, κq = 0.1κq,t and κq = 5.2κq,t. The particle Reynolds number is
Rep= 2.54× 10−4 and cloud-to-particle size ratio is R0/rp= 800. Red lines are theoretical
predictions of (3.7) and (3.9).

significant scatter of the data points in figure 7(a). The cloud will break into subclouds
with a local high particle concentration (as shown in figure 3a), corresponding to
peaks in density profile in figure 7(c).

Figure 8(a) shows how the cloud radius R̂cl evolves as t̂ increases for different
κq/κq,t. The analytical solution (3.7) can well predict the evolution of the radius for a
cloud with κq/κq,t=5.2, whereas it underestimates the radius for a cloud with κq/κq,t=

0.01, where the separation between subclouds becomes the main cause of the increase
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FIGURE 9. (Colour online) Scaled cloud radius R̂cl/(t̂κq,t)
1/3 and migrating velocity Û∗cl=

5(Ûcl− 1)(t̂κq,t)
1/3/(6Nf (R∗)r̂p) as functions of κq/κq,t at t̂= 10. The scatters are results of

Oseenlet simulations and the black lines are corresponding theoretical prediction. Legend
is the same as in figure 1.

of the cloud radius. Besides the cloud radius, the cloud migrating velocity Ûcl is also
of great significance for the design of industrial units. For neutral clouds, one can only
predict the velocity at a very early stage before breakup occurs. With strong repulsion,
the formation of relatively stable configurations enables us to predict long-term
evolution of Ûcl. Based on the analytical expression for cloud settling velocity under
gravity in our earlier study (Yang et al. 2015) and the prediction of cloud radius R̂cl
in (3.7), we construct a new formula for the migrating velocity of a cloud of charged
particles in repulsion-dominant regime:

Ûcl(t̂)=
6
5

Nf (R∗)
r̂p

(3κq t̂)1/3
+ 1. (3.9)

Here R∗ = RepRcl/rp = 1/l∗ is the instantaneous system inertia scale and f (R∗) =
3/(3 + R∗) is the correction factor for fluid inertia. Figure 8(b) shows that the
simulation results nicely collapse onto the theoretical line (3.9) in the condition of
strong repulsion.

To generalize these results, we run a large number of simulations for clouds
with different particle Reynolds number Rep and cloud-to-particle size ratio R0/rp
(as shown in figure 1) with κq/κq,t ranging from 10−3 to 101. We rewrite (3.7) as
R̂cl/(t̂κq,t)

1/3
= (3κq/κq,t)

1/3 and (3.9) as 5(Ûcl− 1)(t̂κq,t)
1/3/(6Nf (R∗)r̂p)= (3κq/κq,t)

−1/3,
and plot all the simulation results at t̂= 10 as a function of κq/κq,t in figure 9. It can
be seen that, for κq/κq,t� 1, the scatters in the data are large; whereas, for κq/κq,t > 1,
the scaled cloud radius and migrating velocity both fall into a narrow range around
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the theoretical curves. Figure 9 also displays snapshots of clouds at different Rep.
We observe that, for κq/κq,t < 1, the clouds are compressed into different shapes,
while the clouds with κq/κq,t > 1 stay spherical. Therefore, combining our results for
R̂cl(t̂) and Ûcl(t̂) highlights a Coulomb-repulsion-controlled regime characterized by
the dimensionless ratio κq/κq,t.

4. Discussion
By imposing electrostatic interactions into Oseenlet simulations, we have been able

to study the behaviour of a migrating cloud of charged particles. We have shown that
strong long-range Coulomb repulsion can prevent the breakup of the clouds covering a
wide range of particle Reynolds number Rep and cloud-to-particle size ratio R0/rp. The
simulated results with strong repulsion can be described with a continuum convection
equation, which predicts the evolution of the density field, the radius and the migrating
velocity of the cloud. A dimensionless charge parameter κq is proposed to quantify
the effect of the repulsion, and the ratio κq/κq,t successfully captures the transition
from hydrodynamically controlled regime κq/κq,t < 1 to repulsion-controlled regime
κq/κq,t > 1.

Indeed, Subramanian & Koch (2008) have presented a theoretical analysis of the
long-time dynamics of sedimenting neutral clouds, wherein particle interactions were
dominated by the source–field interaction. Owing to the high instability of neutral
clouds, their analysis may be valid only for clouds with extremely low particle volume
fraction. Introducing a strong Coulomb repulsion makes the cloud more stable and
extends the continuum description to a wider regime, which is the key difference
between our study and the previous works. Our Oseenlet simulation not only, for the
first time, provides a direct support for the utility of the continuum description, but
also extended it to include long-range Coulomb interaction.

For the dilute clouds considered here, the isotropic expansion condition can also
be understood at a first level by the force balance between the hydrodynamic drag
6πµf rp1ur,Oseen and the pairwise Coulomb repulsion (1/(6πµf rp))(

∑
j6=i q2

0rij/(4πεf r3
ij)).

Substituting 1ur,Oseen with maximum inward flow velocity at the rear boundary of the
cloud (E0q/(6πµf rp))6Nrp/(5R0) (Yang et al. 2015), we can reproduce (3.2) as κq,t∼

(R0/rp)
2φ. A balance length scale can be calculated as l̂∗q ∼ q0/(4πεf E0rpN1/3), and

the isotropic condition will be satisfied if the typical distance between neighbouring
particles l is smaller than l̂∗q. It is straightforward to see from (3.7) that l̂ increases with
time as l̂∼ t̂1/3. Therefore, an initially isotropic expanding cloud will evolve into the
hydrodynamically controlled regime after a sufficiently long time. We have simulated
some cases to observe this transition and find that an expanding cloud will finally
resemble the behaviour of a neutral cloud settling under gravity. The subsequent
evolution is then determined by the instant cloud radius R(t), the cloud-to-particle size
ratio R(t)/rp, the volume fraction φ and the particle Reynolds number Rep. Recall
that the condition of a sufficiently low number density (N/R0 � U0/νf ) indicates
another length scale l̂∗f ∼N2/3rp/(RepR0). If the transition happens at l̂� l̂∗f , the wake
interactions remain negligible, and the hydrodynamics is continuously controlled by
O(1/r2) type interaction. Then the clouds dynamics, such as the temporal evolution
of cloud radius R̂cl(t̂), when presented in a log–log plot, only has a change in the
intercept (see appendix C).

It should be noted that, owing to the low particle volume fraction in our simulation,
it is reasonable to consider a particle as a point when calculating electrostatic and
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hydrodynamic interactions. However, for a sufficiently dense cloud, the finite size of
the particles substantially affects the interactions between particles: (1) higher-order
multipoles in electrostatic interaction, e.g. dipoles or quadrupoles, cannot be neglected;
and (2) higher-order moments of the traction taken over the particle surface should be
considered. A reasonable estimation of the volume fraction over which the point force
condition is valid can be obtained by comparing the relative magnitude of: (1) the
interaction between point charged particles (FCoul) versus that between induced dipoles
(Fdipole); and (2) the flow field induced by point force (UPF) versus that induced by
the degenerate quadrupole (UDQ) (finite size term). These conditions can be written as

q2
0

4πεf l2︸ ︷︷ ︸
FCoul

�
3p2

2πεf l4︸ ︷︷ ︸
Fdipole

and
Fext

4πµf l︸ ︷︷ ︸
UPF

�
r2

pFext

12πµf l3︸ ︷︷ ︸
UDQ

. (4.1a,b)

Here, p= 4πεf Kr3
pE0 is the dipole moment of a particle induced by the external field

(Jones 2005), and the Clausius–Mossotti factor K = (εp − εf )/(εp + 2εf ) is a function
of particle permittivity εp and fluid permittivity εf ; and l is the typical distance
between two neighbouring particles, which scales as l= φ−1/3rp. Therefore, the point
force simplification is valid when the volume fraction satisfies

φ�

(
q0

10πεf Kr2
pE0

)3

and φ�
1
3
. (4.2a,b)

Particularly, it would be of great interest to compare the present study with
Wigner glass transition in colloidal suspension. In a Wigner glass, electrostatic
repulsion among charged particles becomes the dominant interaction. The long-range
electrostatic repulsion effectively holds the particles away from each other. Thus,
a stabilized glass phase can be formed at a very low density (Lindsay & Chaikin
1982; Klix, Royall & Tanaka 2010; Ruzicka & Zaccarelli 2011). Our system has
the following characteristics in common with a Wigner glass: (1) the dynamics is
driven by the long-ranged electrostatic repulsion; and (2) a homogeneous and stable
configuration can be obtained with strong repulsive interactions. The glassy properties
have also been found in clogging transitions: when charged particles accumulate near
a microchannel bottleneck, a force network is built up and the electrostatic repulsion
keeps the particles apart, prohibiting further collisions or depositions of the particles
(Agbangla et al. 2014; Chen et al. 2016a; Sendekie & Bacchin 2016). This kind
of force network may help the migrating cloud hold its shape and keep a uniform
density profile.

Several avenues for future investigation have also been indicated based on our
results. First, it still remains a real challenge to extend the continuum theory to
predict the behaviour of a sufficiently dense migrating cloud, where the effect of
higher-order multipoles should be included. Moreover, the current work focuses
on the cloud migrating in infinite space. A hindering effect – migrating velocity
decreases with the increase of particle concentration – is found in the sedimentation
of uniform suspensions with periodic boundary condition (Brady & Bossis 1988;
Hamid, Molina & Yamamoto 2013). Thus, it is of interest to simulate migrating
of electrically charged uniform suspensions, where the typical distance between
neighbouring particles remains unchanged, to find out how the presence of long-range
repulsion influences the distribution of particles and whether a ‘Wigner glass’ can be
formed.
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Appendix A. Scaling analysis of (3.1)
According to (3.1), Ψi,ext and Ψi,Coul can be written as

Ψi,ext =
1
κq

∣∣∣∣∣∑
j 6=i

Ŵijex

∣∣∣∣∣
|Φi|

and Ψi,Coul =

∣∣∣∣∣∑
j6=i

ŴijΦj

∣∣∣∣∣
|Φi|

. (A 1a,b)

Here, Φi = (1/N)
∑

j6=i (r̂ij/r̂3
ij) is a function only of the particles’ positions. For

simplicity, we ignore the effect of fluid inertia here, so that Ŵij is also determined by
the particles’ positions. According to (2.2), (2.3) and figure 6, the maximum induced
radial velocity ûr,Oseen at the position of particle i due to particle j (at θ = π) scales
as O(r̂p/r̂ij); and the maximum of ûθ,Oseen (at θ = π/2) also scales as O(r̂p/r̂ij). Thus∑

j6=i Ŵij can be estimated as
∑

j6=i (r̂pr̂ij)/r̂2
ij. Here, we assume that the target particle

i is located close to the boundary of the cloud and use integration to approximate
the summation. Then |Φi| and |

∑
j6=i Ŵij| can be estimated as

|Φi| =

∣∣∣∣∣ 1
N

∑
j 6=i

r̂ij

r̂3
ij

∣∣∣∣∣∼
∣∣∣∣ 1

V̂cl

∫
V̂cl

r̂i − r̂′

|r̂i − r̂′|3
dV̂ ′(r̂′)

∣∣∣∣∼O(R̂−2
cl ), (A 2)∣∣∣∣∣∑

j 6=i

Ŵij

∣∣∣∣∣≈
∣∣∣∣∣∑

j6=i

r̂pr̂ij

r̂2
ij

∣∣∣∣∣∼
∣∣∣∣Nr̂p

V̂cl

∫
V̂cl

r̂i − r̂′

|r̂i − r̂′|2
dV̂ ′(r̂′)

∣∣∣∣∼O(Nr̂pR̂−1
cl ). (A 3)

Here, R̂cl = R(t)/R0 and R(t) is the cloud radius at time t. Then (A 1) take the form

Ψi,ext ∼
1
κq

Nr̂pR̂cl ∝ R(t) and Ψi,Coul ∼Nr̂pR̂cl ∝ R(t). (A 4a,b)

It is straightforward that the condition Ψi,ext � 1 can always be met through
increasing κq. However, Ψi,Coul is independent of κq, so that the relative magnitude of
the direct and indirect contributions of the Coulomb repulsion is determined only by
the cloud configuration. Both Ψi,ext and Ψi,Coul are proportional to cloud radius R(t),
indicating that a repulsion-dominant cloud will evolve into the hydrodynamically
controlled regime (with either Ψi,ext ∼ 1 or Ψi,Coul ∼ 1) when its radius reaches a
critical value R̂cl,crit ∼min{(Nr̂p)

−1, κq(Nr̂p)
−1
}.

Appendix B. Similarity solution of (3.4)
Here, we briefly introduce the standard similarity solution of (3.4) including the

influence of Coulomb repulsion. A similarity formulation is employed as n= f (t̂)ĝ(η̄)
with the similarity variable η̄= r̂/t̂γ . Transforming (3.4), we obtain

d f (t̂)
dt̂

ĝ− γ η̄
f (t̂)

t̂
∂ ĝ
∂η̄
=−f 2(t̂)

4πκq

η̄2N
∂

∂η̄

[
ĝ(η̄)

∫ η̄

0
ĝ(η̄′)η̄′2 dη̄′

]
. (B 1)
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FIGURE 10. (Colour online) Long-time evolution of cloud radius R̂cl. The solid line is the
theoretical prediction for electrostatic-interaction-dominant expansion (3.7) and the dashed
line is the theoretical prediction (C 1) of Subramanian & Koch (2008) for a neutral cloud
with O(1/r2) type source interactions.

There should be no explicit time dependence in (B 1) to ensure the work of the
similarity solution, implying that f (t̂) ∼ 1/t̂. The integral constraint of a constant
total number of particles in a cloud gives γ = 1/3. Then another non-dimensional
similarity variable, defined as η = η̄/(4πκq/N)1/3 = r̂/(4πκq t̂/N)1/3 is used to form a
dimensionless number density, given by g(η)= 4πĝκq/N, and (B 1) takes the form

d
dη
(gη3)= 3

d
dη

[
g
∫ η

0
g(η′)η′2 dη′

]
. (B 2)

Integrating (B 2) and taking the limit η→∞ to determine an integration constant, we
can obtain an integral equation for g(η),

3
∫ η

0
gη′2 dη′ = η3 (η6 ηm), (B 3)

where ηm is the radial dimension of the cloud in similarity coordinates. The solution of
(B 3), g= 1, is straightforward. Thus, the number density field (3.6) for an isotropic
expanding spherical cloud is n(r̂, t̂) = N/(4πκq t̂) and the cloud radius (3.7) can be
easily obtained using the condition of constant number of particles.

Appendix C. Transition from the repulsion-controlled to the hydrodynamically
controlled regime

In this section, we consider the transition from the repulsion-controlled to the
hydrodynamically controlled regime that happens at l̂� N2/3rp/(RepR0). The further
evolution will still be controlled by O(1/r2) type source interaction uf ,r = 3νf rp/(2r2)

(Batchelor 2000). Then evolution of the cloud radius R̂cl is given as (Subramanian &
Koch 2008)

R̂cl(t̂)=
(

3NQ
4πU0R2

0
t̂
)1/3

, (C 1)
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with Q=6πνf rp. In figure 10, we present a typical case of a long-time evolution of the
cloud radius R̂cl to show the transition. The evolution only has a change in intercept
when presented in log–log coordinates.
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