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We consider a storage allocation model with a finite number of storage spaces. There are

m primary spaces that are ranked {1, 2, . . . , m} and R secondary spaces ranked {m + 1, m +

2, . . . , m + R}. Items arrive according to a Poisson process, occupy a space for a random

exponentially distributed time, and an arriving item takes the lowest ranked available space.

Letting N1 and N2 denote the numbers of occupied primary and secondary spaces, we study

the joint distribution Prob[N1 = k,N2 = r] in the steady state. The joint process (N1, N2)

behaves as a random walk in a lattice rectangle. We shall obtain explicit expressions for

the distribution of (N1, N2), as well as the marginal distribution of N2. We also give some

numerical studies to illustrate the qualitative behaviors of the distribution(s). The main

contribution is to study the effects of a finite secondary capacity R, whereas previous studies

had R = ∞.

Key words: dynamic storage allocation, finite capacity, Poisson process, random walk, steady-

state joint distribution, wasted space, Erlang loss model, maximum occupied space

1 Introduction

We consider the following storage allocation model. There are a total of m primary and R

secondary storage spaces. The spaces are numbered and ranked, with the primary spaces

numbered {1, 2, . . . , m} and the secondary ones {m+1, m+2, . . . , m+R}. Customers arrive

according to a Poisson process of rate λ, and each customer occupies a storage space

for an exponentially distributed amount of time, with the mean occupation time being

denoted by 1/μ. A new arrival takes the lowest ranked available space, which will be a

primary space if one of these is available. If all m+R spaces are filled, then a new arrival

is turned away and lost. The policy of taking the lowest ranked space is called “first-fit

allocation”.

We can view the storage spaces (or servers) as representing parking spaces near a

restaurant, with the primary spaces being in a lot right next to the restaurant, and the

secondary spaces being located somewhere further away. Higher ranked spaces will be

further from the restaurant so it is natural that a customer would use the first-fit policy.

Since spaces are sometimes occupied and sometimes not, models of this type are referred
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to as dynamic storage allocation. Design and analysis of algorithms for dynamic storage

allocation is a fundamental part of computer science, as discussed in the classic book of

Knuth [7]. In such applications, the stored items (or customers) correspond to records,

files or lists, and the storage device is usually a set of consecutive locations or addresses,

but it can also be a magnetic tape or disc. As time evolves, items are inserted and deleted,

and the storage device, which is a linear array of “cells”, will have regions of occupied cells

alternating with interior holes. This is referred to as memory fragmentation in computers,

and collapsing the holes corresponds to running a defragmentation program. Worst case

studies of dynamic storage allocation date back to the 1960’s (see [2,7,13]), while average

case studies are more recent, from the mid-1980’s.

In the language of queueing theory, the model described above with R = ∞, i.e., with

infinitely many secondary storage spaces, can be called an M/M/∞ queue with ranked

servers. If R is finite the model may be called the M/M/(m+R)/(m+R) queue (which is

the Erlang loss model) with ranked servers.

In the memory fragmentation applications, it is certainly reasonable to assume a finite

memory, but there we would not distinguish between primary and secondary spaces. But

it was shown in [3] that distinguishing between primary and secondary spaces leads to a

two-dimensional Markov chain whose solution allows for the computation of important

quantities, such as wasted space and rank of the maximum occupied cell, associated with

the fragmentation model. To be more precise, we let S be the set of occupied spaces, so

if spaces 1, 3, 4, 7 and 8 are occupied we have S = {1, 3, 4, 7, 8}. Then, max(S) will be the

random variable denoting the rank of the highest occupied space, and W = max(S) − |S |
will be called the “wasted space” (max(S) = 8, W = 8 − 5 = 3 for the example). These

definitions apply equally to the model with finite or infinite storage capacity, but we note

that if the total number of storage spaces was 10 (= m + R), then the unoccupied spaces

ranked 9 and 10 would not be considered as wasted. In Section 2, we discuss in more

detail how to calculate the distributions of max(S) and W from the present model.

We let N1 and N2 be the numbers of occupied primary and secondary spaces, and we

will focus on the joint distribution of N1 and N2, in the steady state. The distributions

of both N1 and N1 + N2 are readily computed, as these processes behave as Erlang loss

models, with m and m + R servers, respectively. Thus, their steady state distributions are

truncated Poisson distributions. However, the joint distribution and the distribution of

the number N2 of occupied secondary spaces are much more complicated.

There has been much past work on the model with an infinite (secondary) storage

capacity (R = ∞), dating back at least to Kosten [8] in 1937. Various aspects of the

solution with R = ∞ were also studied in [1, 3, 9] and [10]. In [3] generating functions

and analyticity arguments were used to determine E[zN1

1 zN2

2 ], but the solution is in a

complicated form, that is difficult to evaluate asymptotically, say for ρ = λ/μ → ∞,

due to the presence of an alternating sum. The entire monograph of Newell [9] studies

this particular model, and probabilistic arguments are used to analyze various limiting

cases. Aldous [1] also used probabilistic arguments and in particular showed that the

mean wasted space behaves as E[W ] ∼
√

2ρ log log ρ, ρ → ∞. Preater [10] re-examines

the model and gives a new probabilistic derivation of the distribution of max(S), by

reducing the problem to the solution of a random difference equation. In [12] we gave

a new derivation of the joint steady state distribution of the (N1, N2) process, where
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instead of using generating functions we used a discrete version of the classic method of

separation of variables, to obtain the solution as a contour integral that involves certain

polynomials related to hypergeometric functions. From such representations it is possible

to obtain a complete set of asymptotic results, and in [4] we studied the distribution of

max(S), in [11] the distribution of the wasted space W , and in [5,6] the joint distribution

Prob[N1 = k,N2 = r]. In each case, the asymptotics were for ρ → ∞ with various

assumptions on m, the number of primary storage spaces. Whereas in [6] the asymptotics

were obtained starting from a contour integral representation of the solution, which was

expanded by a combination of the saddle point method, singularity analysis and special

function asymptotics, in [5] we showed how to obtain as complete a set of asymptotic

results by using only the basic difference equation(s) (forward Kolmogorov equation(s))

satisfied by π(k, r) = Prob[N1 = k,N2 = r]. This analysis involved singular perturbation

methods, such as the ray method and asymptotic matching.

The main contribution here is to study the effects of the finite secondary storage

capacity (R < ∞). Our numerical and analytic studies show that the effects of finite R can

be non-trivial and strong. The remainder of the paper is organized as follows. In Section 2,

we state the basic equations and summarize our main results. The proofs and detailed

calculations are given in Section 3, while Section 4 contains some numerical results. We

include a brief discussion of possible future research in Section 5.

2 Statement of the problem and summary of results

We let

ρ =
λ

μ
, (2.1)

denote the traffic intensity, which is a dimensionless parameter. We assume that time has

been scaled so that μ = 1 and thus ρ = λ. The joint process (N1, N2) corresponds to a

continuous time random walk in a lattice rectangle, whose transition rates are indicated

in Figure 1. The steady state distribution

π(k, r) = π(k, r; m,R, ρ) (2.2)

= lim
t→∞

Prob
[
N1(t)=k,N2(t)=r |N1(0)=k(0), N2(0)=r(0)

]
,

exists and is independent of the initial values N1(0) and N2(0). At times, it will be

important to consider the dependence of π(k, r) on the capacities m and R.

The balance equations satisfied by π(·, ·) can be easily obtained as

(ρ + k + r)π(k, r) = (r + 1)π(k, r + 1) + (k + 1)π(k + 1, r) + ρπ(k − 1, r); (2.3)

1 � k � m − 1, 0 � r � R − 1

(ρ + m + r)π(m, r) = (r + 1)π(m, r + 1) + ρπ(m − 1, r) + ρπ(m, r − 1), (2.4)

1 � r � R − 1
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Figure 1. A sketch of the transition rates for the random walk.

(ρ + k + R)π(k, R) = (k + 1)π(k + 1, R) + ρπ(k − 1, R), (2.5)

1 � k � m − 1

(ρ + r)π(0, r) = (r + 1)π(0, r + 1) + π(1, r), 0 � r � R − 1 (2.6)

(ρ + R)π(0, R) = π(1, R) (2.7)

(ρ + m)π(m, 0) = ρπ(m − 1, 0) + π(m, 1) (2.8)

(m + R)π(m,R) = ρπ(m,R − 1) + ρπ(m − 1, R). (2.9)

The main balance equation is (2.3), which applies in the interior of the lattice rectangle,

(2.4)–(2.6) correspond to boundary conditions along three of the four boundaries of the

rectangle, and (2.7)–(2.9) are corner conditions. Note that (2.3) applies along r = 0 so

the fourth boundary does not lead to a separate boundary condition. Also, (2.6) applies

at r = 0 so the corner equation at (0, 0) is ρπ(0, 0) = π(0, 1) + π(1, 0). We also have the

normalization condition
m∑

k=0

R∑
r=0

π(k, r) = 1. (2.10)

If we view the process N1 by itself it behaves precisely as the Erlang loss model, or

M/M/m/m queue, with m servers. This is well known to have, in the steady state, a

truncated Poisson distribution, hence

R∑
r=0

π(k, r) =
ρke−ρ/k!
m∑

k=0

ρke−ρ/k!

, 0 � k � m. (2.11)
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The total number, N1 + N2, of occupied servers or stored items also follows a truncated

Poisson distribution, with now

∑
k+r=L

π(k, r) =

min{m,L}∑
k=max{0,L−R}

π(k, L − k) =
ρLe−ρ/L!

m+R∑
�=0

ρ�e−ρ/�!

, (2.12)

0 � L � m + R.

The marginal of N2 will be denoted by

P(r) =

m∑
k=0

π(k, r). (2.13)

We next discuss the applications of this model to the memory fragmentation model that

we described in the introduction. Here, we let N = m + R be the total number of storage

cells, no longer distinguishing primary and secondary ones, and consider the maximum

occupied cell max(S) and the wasted space W = max(S) − |S |. The total number |S |
of occupied cells follows the truncated Poisson distribution in (2.12). Writing the joint

distribution as π(k, r) = π(k, r;m,R, ρ) to emphasize again its dependence on the numbers

m and R of storage cells, we consider m + R ≡ N as fixed. Then, from π we can compute

the distribution of max(S) via

Prob [max(S) � m] =

m∑
k=0

π(k, 0;m,N − m, ρ), 0 � m � N, (2.14)

where max(S) = 0 corresponds to the system being empty. Thus, our results can be used

to evaluate max(S), but we must vary the number m of primary cells.

The wasted space W can be computed using the joint distribution by setting r = 0 and

evaluating the sum

Prob[W � L] =

N−L−1∑
j=0

π(j, 0; L + j, N − L − j, ρ) +

N∑
j=N−L

π(j, 0;N, 0, ρ). (2.15)

The second sum in (2.15) is known explicitly, since

π(j, 0;N, 0, ρ) =
e−ρρj

j!

/ N∑
j=0

e−ρρj

j!
, (2.16)

as R = 0 implies that r = 0. Note that the wasted space can be at most N − 1, and indeed

(2.15) does imply that Prob[W = N] = 0.

Below we summarize our main results, which will be in terms of the functions F(J)
k =

F(J)
k (ρ), where

F(J)
k =

1

2πi

∮
eρz

(1 − z)J+1zk+1
dz =

k∑
i=0

ρi

i!

(
k − i + J

J

)
, (2.17)
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and the contour integral is a small loop about z = 0. We thus have

F(−1)
k =

ρk

k!
, F(0)

k =

k∑
i=0

ρi

i!
. (2.18)

It is possible to express F(J)
k in terms of generalized hypergeometric functions, but this

does not yield any further insight.

Theorem 1 The distribution in (2.2) is given by

π(k, r) =

R∑
J=r

(−1)J−r

(
J

r

)
CJF(J−1)

k ; 0 � k � m, 0 � r � R (2.19)

where F is in (2.17) and

CJ =
ρJBJ

J!F(J)
m F(J−1)

m

, 0 � J � R (2.20)

with

BJ =
ρm

m!
− ρm

(m + R)!F(0)
m+R

⎡
⎣ J∑

j=1

(
R

j

)
j!ρR+1−jF(j−1)

m

R + 1 − j

⎤
⎦ (2.21)

=
ρmR!

(m + R)!F(0)
m+R

[
R−J∑
l=0

ρl

l!
F(R−l)

m

]
, 0 � J � R.

In particular, we have

B0 =
ρm

m!
, C0 =

[
m∑
l=0

ρl

l!

]−1

, (2.22)

BR =
ρmR!F(R)

m

(m + R)!

[
m+R∑
l=0

ρl

l!

]−1

, (2.23)

CR =
ρm+R

(m + R)!F(R−1)
m

[
m+R∑
l=0

ρl

l!

]−1

(2.24)

and

π(k, R) =
F(R−1)

k

F(R−1)
m

ρm+R

(m + R)!

[
m+R∑
l=0

ρl

l!

]−1

, 0 � k � m. (2.25)

We note that (2.25) gives the probabilities that all R secondary spaces are occupied. The

constants BJ and CJ depend also on m, R, and ρ, while F(J)
k depends on ρ but not on

the storage capacities m and R. In the limit R → ∞ the first expression in (2.21) shows
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that BJ → ρm/m! and then π(k, r;m,R, ρ) tends to the limit

π(k, r;m,∞, ρ) =

∞∑
J=r

(
J

r

)
(−1)J+rρm+J

m!J!

F(J−1)
k

F(J)
m F(J−1)

m

. (2.26)

This expression was previously obtained in [6] and also follows from the generating

function results in [3]. Alternate forms of π(k, r;m,∞, ρ), in the form(s) of contour

integrals, appear in [6].

From Theorem 1, we can obtain the marginal distribution of N2 in (2.13) as follows:

Corollary 1 The distribution of N2 is given by

P(r) =

R∑
J=r

ρJ

J!
(−1)J−r

(
J

r

)
BJ

F(J−1)
m

(2.27)

=
ρmR!

(m + R)!F(0)
m+R

R∑
J=r

R−J∑
l=0

ρJ+l

J!l!
(−1)J−r

(
J

r

)
F(R−l)

m

F(J−1)
m

.

From (2.17) we have

m∑
k=0

F(J−1)
k =

1

2πi

∮
eρz

(1 − z)J

[
1

z
+

1

z2
+ · · · +

1

zm+1

]
dz (2.28)

=
1

2πi

∮
eρz

(1 − z)J+1

[
1

zm+1
− 1

]
dz = F(J)

m ,

and thus (2.27) follows simply by summing (2.19) over k and using (2.20). The distributions

of max(S) and W follow by using Theorem 1 to calculate (2.14) and (2.15), and here, we

must consider the dependence of BJ and CJ on m and R, as these vary within (2.14) and

(2.15). While this leads to closed-form expressions for these distributions, as triple finite

sums, they are not particularly insightful and should be viewed primarily as numerical

algorithms for computing the various distributions (cf. Section 4).

3 Analysis

We establish Theorem 1, by first considering the simple cases R = 1 and R = 2, where

there are only one or two secondary spaces. This will indicate how to treat the case of

general R.

3.1 The cases R = 1 and R = 2

First, we take R = 1, in which case (2.5) and (2.3) lead to

(ρ + k + 1)π(k, 1) = (k + 1)π(k + 1, 1) + ρπ(k − 1, 1), (3.1)

and

(ρ + k)π(k, 0) = π(k, 1) + (k + 1)π(k + 1, 0) + ρπ(k − 1, 0). (3.2)
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In addition, we have four “corner equations”

(ρ + 1)π(0, 1) =π(1, 1), (3.3)

ρπ(0, 0) =π(0, 1) + π(1, 0), (3.4)

(ρ + m)π(m, 0) =ρπ(m − 1, 0) + π(m, 1), (3.5)

(m + 1)π(m, 1) =ρπ(m, 0) + ρπ(m − 1, 1), (3.6)

and these correspond, respectively, to (2.7) with R = 1, (2.6) with r = 0, (2.8), and (2.9).

Let us define Ak = π(k, 0) and Bk = π(k, 1), for 0 � k � m.

First, we note that (3.1) does not involve Ak = π(k, 0), and is a simple second order

difference equation for Bk , with two independent solutions. The boundary condition (3.3)

eliminates one of these solutions and we thus conclude that

Bk =
B0

2πi

∮
eρz

1 − z

1

zk+1
dz = B0

k∑
l=0

ρl

l!
, (3.7)

and then (1 + ρ)B0 = B1, so (3.3) holds. With (3.7), (3.2) becomes the inhomogeneous

difference equation

(ρ + k)Ak − (k + 1)Ak+1 − ρAk−1 = Bk, 1 � k � m − 1, (3.8)

while (3.4) leads to ρA0 − A1 = B0. In view of (3.1) with π(k, 1) = Bk we see that a

particular solution to (3.8) is AP
k = −Bk and this particular solution will also satisfy

(3.4). To this particular solution we must add a homogeneous solution, which will satisfy

(ρ+ k)AH
k = (k + 1)AH

k + ρAH
k−1 and ρAH

0 = AH
1 . But then AH

k must be proportional to the

Poisson distribution ρk/k!, and hence the most general solution to (3.8) and (3.4) is

Ak = −Bk +
ρk

k!
(A0 + B0). (3.9)

It remains only to determine A0 and B0. From (3.5) and (3.6) we have

(ρ + m)Am = ρAm−1 + Bm and (m + 1)Bm = ρAm + ρBm−1. (3.10)

The first equation in (3.10), along with (3.7) and (3.9), leads to

ρm+1

m!
(A0 + B0) = (m + 1)B0

m+1∑
l=0

ρl

l!
, (3.11)

and then the second equation in (3.10) holds automatically. Then, the normalization

condition
∑m

k=0(Ak +Bk) = 1 leads to (A0 +B0) =
[∑m

k=0 ρ
k/k!

]−1
. Thus, when R = 1 the
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final results are

π(k, 0) =
ρk

k!

[
m∑
l=0

ρl

l!

]−1

− ρm+1

(m + 1)!

k∑
l=0

ρl

l!

[
m∑
l=0

ρl

l!

]−1 [
m+1∑
l=0

ρl

l!

]−1

(3.12)

π(k, 1) =
ρm+1

(m + 1)!

k∑
l=0

ρl

l!

[
m∑
l=0

ρl

l!

]−1 [
m+1∑
l=0

ρl

l!

]−1

. (3.13)

From (3.12) and (3.13) we can easily verify the truncated Poisson distribution for N1 in

(2.11), and, with a little more work, also that for N1 + N2 in (2.12). The latter requires

separating the cases L = 0, 1 � L � m, and L = m + 1 (= m + R).

When R = 2 for convenience, we set Ak = π(k, 0) and Bk = π(k, 1) as before, and also

let Dk = π(k, 2). We first consider r = 2 and then decrement r by 1. Now (2.5) leads to

(ρ + k + 2)Dk = (k + 1)Dk+1 + ρDk−1, (3.14)

while (2.7) becomes (ρ + 2)D0 = D1. This is again a simple difference equation and

boundary condition that may be easily solved using, e.g., generating functions, to give

π(k, 2) = Dk = C2

k∑
l=0

ρl

l!
(k + 1 − l) = C2F(1)

k , (3.15)

where C2 = D0 is a constant, which will depend only on m and ρ. Using r = 1 in (2.3)

leads to

(ρ + k + 1)Bk − ρBk−1 − (k + 1)Bk+1 = 2C2F(1)
k , 1 � k � m − 1, (3.16)

while (2.6) with r = 1 gives (ρ + 1)B0 = 2D0 + B1 = 2C2F(1)
0 + B1. Thus, a particular

solution to (3.16) is BP
k = −2C2F(1)

k and the general solution to (3.16) and (2.6) (with

r = 1) is

π(k, 1) = Bk = C1F(0)
k − 2C2F(1)

k , (3.17)

where C1 is another constant. Then, by examining (2.3) with r = 0 and imposing the

boundary condition ρA0 = A1 + B0 we ultimately obtain

π(k, 0) = Ak = C0
ρk

k!
− C1F(0)

k + C2F(1)
k . (3.18)

It remains to fix the three constants C0, C1, and C2. From (3.15), (3.17), and (3.18) we

have π(k, 0) + π(k, 1) + π(k, 2) = C0ρ
k/k!, and thus by normalization (2.10),

C0 =
1

F(0)
m

=

[
m∑
l=0

ρl

l!

]−1

. (3.19)

The remaining two constants are obtained by applying the boundary condition along

k = m in (2.4) with r = 1, along with the corner conditions in (2.9) (r = 2 = R) and (2.8)
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(r = 0). This yields three equations but if any two hold the third is automatically satisfied.

The final results for C1 and C2 are

C1 =
ρm+2

(m + 2)!F(0)
m+2F(1)

m

+

[
ρm+2

(m + 2)!
+

ρm+1

(m + 1)!

]
l

F(0)
m F(0)

m+2

(3.20)

C2 =
ρm+2

(m + 2)!F(0)
m+2F(1)

m

. (3.21)

Thus, (3.15) and (3.17)–(3.21) summarize π(k, r) for 0 � k � m and 0 � r � 2. We can

easily show that C1 in (3.20) agrees with (2.20) (with (2.21)) when R = 2. Also, with some

calculation we can verify that (2.12) holds for R = 2 and all 0 � L � m + 2.

3.2 General R

First, consider the boundary equation (2.5) and the corner condition in (2.7). The most

general solution to these is π(k, R) = CRF(R−1)
k , where CR is a constant. Then by examining

(2.3) with r = R−1 we conclude that π(k, R−1) = CR−1F(R−2)
k −RCRF(R−1)

k , where CR−1

is another constant. Proceeding by decreasing r we are led to

π(k, r) =

R∑
J=r

(−1)J−r

(
J

r

)
CJF(J−1)

k . (3.22)

The expression in (3.22) satisfies the main interior equation in (2.3), since every term in

the sum does. Also, (3.22) holds along r = R as well as r = 0, and the boundary condition

in (2.6) holds, since F(J−1)
0 = 1, F(J−1)

1 = J + ρ, and

(ρ+r)

R∑
J=r

(−1)J−r

(
J

r

)
CJ = (r+1)

R∑
J=r+1

(−1)J−r−1

(
J

r + 1

)
CJ+

R∑
J=r

(−1)J−r(J+ρ)

(
J

r

)
CJ .

The last equality follows from (r − J)
(
J
r

)
= −(r + 1)

(
J

r+1

)
. Thus, (3.22) satisfies (2.3) and

(2.5)–(2.7), and it remains only to satisfy the boundary equation in (2.4) along k = m, the

two corner conditions in (2.8) and (2.9), and the normalization condition (2.10). There

are R + 1 unknown constants, CJ for 0 � J � R, and (2.4) with (2.8) and (2.9) yields

R − 1+2 = R+1 homogeneous equations, but one of these must be redundant, since one

constant will be determined by normalization.

Noting that, for 0 � J � R,

R∑
r=0

(−1)J−r

(
J

r

)
=

J∑
r=0

(−1)J−r

(
J

r

)
= δ0J =

{
1, J = 0

0, J � 0
, (3.23)

we obtain from (3.22)

R∑
r=0

π(k, r) = C0F(−1)
k = C0

ρk

k!
. (3.24)

https://doi.org/10.1017/S0956792516000048 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000048


748 E. Sohn and C. Knessl

This verifies the Poisson marginal distribution of N1 and determines C0 as 1/F(0)
m , as in

(2.22).

To determine CJ for 1 � J � R we apply (2.4). The corner condition (2.9) and (3.22)

imply that [
(m + R)F(R−1)

m + ρRF(R−1)
m − ρF(R−1)

m−1

]
CR = ρF(R−2)

m CR−1. (3.25)

From (2.17) we can easily establish the following recurrence relations

(k + 1)F(J−1)
k+1 = ρF(J−1)

k + JF(J)
k (3.26)

(J + k)F(J−1)
k = JF(J)

k + ρF(J−1)
k−1 (3.27)

F(J−1)
k = F(J)

k − F(J)
k−1. (3.28)

For example, (3.26) follows from

(k + 1)F(J−1)
k+1 − ρF(J−1)

k =
1

2πi

∮
eρz

[
k + 1

zk+2(1 − z)J
− ρ

zk+1(1 − z)J

]
dz

= − 1

2πi

∮
1

(1 − z)J
d

dz

(
eρz

zk+1

)
dz

=
1

2πi

∮
Jeρz

(1 − z)J+1zk+1
dz = JF(J)

k ,

where we integrated by parts. We have already used a summed version of (3.28) (cf.

(2.28)) in calculating the marginal of N2.

For 1 � r � R − 1, (2.4) may be replaced by the “artificial” boundary equation

(m + 1)π(m + 1, r) = ρπ(m, r − 1), 1 � r � R − 1, (3.29)

where π(m + 1, ·) is defined from (2.3), by assuming that (2.3) holds also at k = m. Using

(3.29) instead of (2.4) will simplify some of the calculations, but it is important to note

that (3.29) does not hold when r = R. Using (3.22) and (3.29) leads to

(m + 1)

R∑
J=r

(−1)J−r

(
J

r

)
CJF(J−1)

m+1 = ρ

R∑
J=r−1

(−1)J−r+1

(
J

r − 1

)
CJF(J−1)

m . (3.30)

Shifting the summation index in the last sum from J → J − 1, using the binomial identity(
J

r − 1

)
=

(
J + 1

r

)
−

(
J

r

)
,

and some rearranging of (3.30) lead to

R∑
J=r

(−1)J−r

(
J

r

) [
(m + 1)CJF(J−1)

m+1 − ρCJF(J−1)
m − ρCJ−1F(J−2)

m

]

= ρ(−1)R+1−r

(
R + 1

r

)
CRF(R−1)

m , (3.31)
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and this equation holds for r = 1, 2, . . . , R − 1. By using (3.27) with J = R and k = m,

(3.25) is equivalent to [
RF(R)

m + ρRF(R−1)
m

]
CR = ρF(R−2)

m CR−1. (3.32)

If we introduce BJ as in (2.20) then (3.31) becomes

R∑
J=r

(−1)J−r

(
J

r

)
ρJ

(J − 1)!

BJ − BJ−1

F(J−1)
m

=
ρR+1

R!
(−1)R+1−r

(
R + 1

r

)
BR

F(R)
m

. (3.33)

Now suppose the sequences {fJ} and {gJ} are related by

R∑
J=r

(−1)J−r

(
J

r

)
fJ = gr, 1 � r � R − 1. (3.34)

Then inverting (3.34) leads to

fJ =

(
R

R − J

)
fR +

R−1∑
l=J

(
l

J

)
gl , 1 � J � R. (3.35)

By applying (3.34) and (3.35) to (3.33) we obtain the difference BJ − BJ−1 explicitly in

terms of BR , as

ρJ

(J − 1)!

BJ − BJ−1

F(J−1)
m

=

(
R

R − J

)
ρR

(R − 1)!

BR − BR−1

F(R−1)
m

+
ρR+1

R!

BR

F(R)
m

R−1∑
l=J

(−1)R+1−l

(
l

J

)(
R + 1

l

)
. (3.36)

The sum in (3.36) can be explicitly evaluated as

R−1∑
l=J

(−1)R+1−l

(
l

J

)(
R + 1

l

)
=

(R + 1)(R − J)

R + 1 − J

(
R

J

)
. (3.37)

Using (3.32) and (2.20) (with J = R and J = R − 1) we find that

BR−1

BR

= 1 + ρ
F(R−1)

m

F(R)
m

. (3.38)

Using (3.36)–(3.38) gives

BJ − BJ−1 = − ρR+1−J

R + 1 − J

J!

R!

(
R

J

)
F(J−1)

m

F(R)
m

BR. (3.39)

Since C0 = 1/F(0)
m we have B0 = ρm/m! by (2.20), and then summing (3.39) leads to

BJ =
ρm

m!
−

⎡
⎣ J∑

j=1

ρR+1−j

(R + 1 − j)!
F(j−1)

m

⎤
⎦ BR

F(R)
m

. (3.40)
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Below (3.43) we shall show that

(
m + R

m

)
F(0)

m+R =

R+1∑
j=1

ρR+1−jF(j−1)
m

(R + 1 − j)!
. (3.41)

Then (3.40) with J = R becomes

⎡
⎣R+1∑

j=1

ρR+1−jF(j−1)
m

(R + 1 − j)!

⎤
⎦ BR

F(R)
m

=
ρm

m!
, (3.42)

and using (3.41) to evaluate the sum in (3.42) leads to the expression for BR in (2.23).

From (2.23) and (2.20) we conclude that

π(m,R) =
ρm+R

(m + R)!F(0)
m+R

, (3.43)

which gives the probability that all spaces are occupied, and this agrees with (2.12) if

L = m + R.

To prove (3.41) we use (2.17) with J = 0 and k = m + R. Then, we have

F(0)
m+R =

1

2πi

∮
eρz

(1 − z)zm+R+1
dz (3.44)

=
m!

(m + R)!

(−1)R

2πi

∮
eρz

1 − z

dR

dzR

(
1

zm+1

)
dz

=
m!

(m + R)!

1

2πi

∮
1

zm+1

dR

dzR

(
eρz

1 − z

)
dz

=
m!

(m + R)!

1

2πi

∮ ⎡
⎣ R∑

j=0

dR−j

dzR−j
(eρz)

dj

dzj

(
1

1 − z

) (
R

j

)⎤
⎦ dz

zm+1

=
m!

(m + R)!

R∑
j=0

(
R

j

)
ρR−j

[
1

2πi

∮
j! eρz

(1 − z)j+1zm+1
dz

]

=
m!R!

(m + R)!

R∑
j=0

ρR−jF(j)
m

(R − j)!
.

Here, we integrated by parts R times to get the third equality in (3.44), and used the

Leibniz rule for computing the R−fold derivative of the product of eρz and (1 − z)−1.

Shifting the index in (3.41) from j → j + 1 we conclude that (3.41) is equivalent to (3.44).

We comment that we have also verified analytically after a lengthy calculation, that

π(0, 0) = 1/F(0)
m+R , so that (2.12) holds if L = 0. We have also done extensive numerical

verifications of (2.12) for 1 � L � m + R − 1.
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Figure 2. A sketch of the distribution of N2.

4 Numerical studies

We evaluate the distributions in (2.19), (2.27) and (2.14)–(2.16), in order to better under-

stand the effects of the finiteness of the number of storage spaces. We take m = R = 20 so

that the total number of storage spaces is N = m+R = 40, and consider various values of

ρ. At times we shall discuss the numerical data in terms of the asymptotic results for the

infinite capacity model (where R = N = ∞), for ρ → ∞, which appear in [4, 6, 11], as for

sufficiently large values of N (relative to ρ) the effects of finite capacity will be quite small.

In Figure 2, we plot the distribution P(r) of the number N2 of secondary spaces, for

0 � r � R = 20 and for the values ρ = 15, 20, 30, 40, 50. Note that for large ρ and m

we would expect that E[N1] ≈ min{ρ, m} and then, since E[N1 + N2] ≈ min{ρ, m + R}
by (2.12), we have E[N2] ≈ 0 for 0 < ρ < m, E[N2] ≈ ρ − m for m < ρ < m + R and

E[N2] ≈ R for ρ > m + R. The three cases of E[N2] correspond to not needing the

secondary storage spaces, needing all primary and some secondary ones, and needing all

primary and secondary spaces. Figure 2 shows that for ρ = 15 and ρ = 20 the distribution

P(r) is maximal at r = 0, becoming less concentrated for the larger value of ρ. When

ρ = 30 the distribution has a peak at r = 10, while for ρ = 40 and ρ = 50 the distribution

is peaked at r = R, becoming more concentrated with increasing ρ. For the model with

R = ∞ we obtained in [6] various limit laws for P(r) as ρ → ∞. In particular, we showed

that for m and ρ large with ρ/m < 1, we have P(r) → δ0r , where δ0r = 0 if r � 1 and

δ00 = 1, for ρ/m = 1 + O(ρ−1/2) we get a complicated limiting distribution that involves
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Figure 3. A sketch of the distribution of max(S ).

the parabolic cylinder functions, while for ρ/m > 1 we get a Gaussian limit law, with now

P(r) concentrated on the scale r = ρ − m + O(
√
ρ). Figure 2 suggests that the limit laws

for R = ∞ may still provide good approximations for ρ = 15, 20, 30 but not for ρ = 40, 50.

When ρ exceeds m+R = 40 the effects of the finite capacity become significant, and then

presumably new asymptotic limit laws would apply. The graph with ρ = 50 suggests that

for (m + R)/ρ < 1 the mass in P(r) may concentrate near r = R, on the discrete scale

r = R − O(1).

In Figure 3, we plot the distribution of max(S), which we computed using (2.19) with

r = 0 to evaluate numerically the sum in (2.14). This distribution, Prob[max(S) = M], has

support over 0 � M � N = 40 and we consider ρ = 10, 20, 25, 30, 35, 40, 50. Figure 3 shows

that when ρ = 10 and ρ = 20, this distribution has a single peak (local maximum) in the

interior of [0, 40], but when ρ = 25 it becomes bimodal, with a secondary peak forming at

M = 40. When ρ increases to 30 the interior peak has disappeared, though the distribution

still has two inflection points. Further studies show that for N = 40 and integer values of

ρ the bimodal behavior occurs for 25 � ρ � 29. As ρ increases past 30 the distribution is

again unimodal with a peak at M = N, and becomes more concentrated with increasing

ρ. For the model with R = ∞ we showed in [4] that Prob[max(S) = M] is concentrated

roughly near M = ρ + O(
√
ρ) and with β ≡ (M − ρ)/

√
ρ we obtained an approximation

to the distribution in terms of the maximal root z0(β) of the parabolic cylinder function

Dz(−β). In [1] and [4] it was also shown that E[max(S)] = ρ+
√

2ρ log log ρ [1+o(1)]. The

present numerical studies suggest that the large ρ asymptotics for the model with R = ∞

https://doi.org/10.1017/S0956792516000048 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000048


Finite capacity in a storage allocation model 753

Figure 4. A sketch of the distribution of the wasted space W .

may still provide an adequate description when ρ = 10, 20 but not for ρ � 25. To describe

the evolution into bimodality and the ultimate concentration near M = N would require

entirely different asymptotic analyses. The curve with ρ = 30 suggests that comparable

mass may be accumulating on two different spatial scales, say M = N − O(
√
ρ) and

M = N − O(1), while for sufficiently large ρ/N (say ρ/N > 1) the latter scale dominates.

Certainly considering the limits of ρ and N simultaneously large with either ρ/N ∼ 1

or ρ/N > 1 should lead to some interesting asymptotic results and limit laws for

Prob[max(S) = M], which will be quite different from those in [4].

In Figure 4, we plot the distribution of the wasted space W , Prob[W = L], for N = 40

and various ρ. We consider only 0 � L � 25 (= 5N/8), since for L > 25 we are

always well into the (right) tail of the distribution. Figure 4 shows that for ρ = 10 the

distribution is maximal at L = 0, for ρ = 20 and ρ = 30 there is an interior peak, and

for ρ = 40 and ρ = 50 the distribution is again maximal at L = 0, becoming more

concentrated with further increasing ρ. In [11] we obtained for R = ∞ a Gaussian limit

law for Prob[W = L], for ρ → ∞ with the scaling L =
√

2ρ log log ρ+O(
√
ρ). This may

still provide a reasonable approximation to the finite R model if ρ = 20 and ρ = 30, and

perhaps ρ = 10 is too small to see the asymptotic limit law, but it again seems that for

ρ/N ∼ 1 and ρ/N > 1 entirely different asymptotics are needed. The numerical studies

suggest that for ρ/N > 1 the mass concentrates on the scale L = O(1). The results also

suggest that for a fixed large N and increasing ρ (starting with a reasonably large ρ so

the Gaussian peak is evident) the Gaussian peak at L =
√

2ρ log log ρ should reach some

maximum value of L, and then further increases of ρ will cause the peak to travel to
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the left, eventually disappearing into L = 0. We would again guess that this maximum

excursion value of the peak, or that of E[L] = E[L](ρ,N), can be characterized using

asymptotic analysis.

The numerical studies show that the finiteness of R and N = m + R can significantly

affect the distributions, and they also point the way toward possible new asymptotic limit

laws, which would hold for ρ,N → ∞ and either ρ/N ∼ 1 or ρ/N > 1.

5 Discussion

To summarize we have obtained an explicit, albeit complicated, solution for a storage

allocation model with two sets of storage spaces. Distinguishing between primary and

secondary spaces allows for the calculation of the wasted space in the corresponding

memory fragmentation model. The numerical studies in Section 4 show that with increasing

load ρ, the finiteness of the number R of secondary spaces (or m + R of total spaces)

significantly affects the distributions of N2, max(S) and W . For larger values of ρ, N2

becomes concentrated near N2 = R, max(S) concentrates near N = m + R, while the

wasted space W concentrates more near W = 0, as all the available spaces will tend to

be occupied.

In view of the complexity of (2.19)–(2.21) and (2.27) it would also be useful to examine

some limiting cases. Here, we only considered the limit R → ∞ (with fixed m and ρ). But

an interesting asymptotic limit would have ρ → ∞, with the storage capacities scaled to be

commensurately large, with m and R of the order O(ρ). For the model with R = ∞, we had

previously obtained detailed asymptotic results for the joint distribution of (N1, N2) and

marginal of N2 [5,6], the distribution of max(S) [4], and that of the wasted space W [11],

all in the limit of ρ → ∞. Once the asymptotics of (N1, N2) are fully understood, those of

max(S) and W may be obtained from (2.14) and (2.15), by evaluating asymptotically the

sums that appear. When R = ∞ we obtained the asymptotics of π(k, r) = π(k, r;m,∞, ρ) by

either the saddle point method [6] or singular perturbation techniques [5]. It is difficult to

asymptotically evaluate (2.26) directly, in view of the alternating sum, as this causes a lot of

cancellation. In [6] we represented the sum as an integral, using a Watson transformation,

and then the integral could be evaluated by the saddle point method and/or singularity

analysis. The model with R < ∞ is more complicated in that the solution in (2.19) (with

(2.20) and (2.21)) involves a double sum. Thus, in order to examine the limit ρ → ∞ we

would likely need at least a double contour integral, and these are notoriously difficult

to expand asymptotically. Alternately, we could try analyzing this limit by approximating

the basic balance equations (2.3)–(2.9), using singular perturbation methods, as we did

in [5] for the model with R = ∞. We are presently examining the large ρ asymptotics of

this model, which should ultimately provide some simpler and more insightful expressions

for π(k, r) and P(r).
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