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This paper deals with the influence of the Hardy potential in a semilinear heat
equation. Precisely, we consider the problem

ut − ∆u = λ
u

|x|2
+ up + f, u � 0 in Ω × (0, T ),

u(x, t) = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

where Ω ⊂ R
N , N � 3, is a bounded regular domain such that 0 ∈ Ω, p > 1, and

u0 � 0, f � 0 are in a suitable class of functions.
There is a great difference between this result and the heat equation (λ = 0);

indeed, if λ > 0, there exists a critical exponent p+(λ) such that for p � p+(λ) there
is no solution for any non-trivial initial datum.

The Cauchy problem, Ω = R
N , is also analysed for 1 < p < p+(λ). We find the

same phenomenon about the critical power p+(λ) as above. Moreover, there exists a
Fujita-type exponent, F (λ), in the sense that, independently of the initial datum, for
1 < p < F (λ), any solution blows up in a finite time. Moreover, F (λ) > 1 + 2/N ,
which is the Fujita exponent for the heat equation (λ = 0).

1. Introduction

We will study the following problem:

ut − ∆u = λ
u

|x|2 + up + f in ΩT ≡ Ω × (0, T ),

u(x, t) > 0 in ΩT ,

u(x, t) = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) if x ∈ Ω,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.1)

where Ω is either an open bounded domain in RN such that 0 ∈ Ω, or Ω = RN ,
N � 3, p > 1 and λ > 0. We assume that f and u0 are non-negative measurable
functions under some summability hypotheses that will be made precise in each
case.
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There exists a large literature dealing with the case λ = 0 (see, for example,
[10,16,19,22] and the references therein). In such a case, existence and uniqueness
of the local-in-time solution is well known for all p > 1, at least for regular initial
data, and this solution is bounded for small time.

On the other hand, Fujita [10] found an, in some way, surprising result. Indeed,
for 1 < p � 1 + 2/N , any positive solution to the semilinear heat equation ((1.1)
with λ = 0) blows up in a finite time in the L∞(RN )-norm.

The case when λ > 0 is quite different.

• It is not difficult to show that any positive solution of (1.1) is unbounded
(see § 2.1).

• Some restrictions on p are needed to ensure the existence of the solution even
in the weakest sense. More precisely, there exists a critical exponent, p+(λ),
such that for p � p+(λ) there is no distributional solution. Hereafter, we
will say that problem (1.1) blows up completely and instantaneously if the
solutions to the truncated problems (with the weight λ/|x|2 + 1/n instead of
λ/|x|2) converge to ∞ for every (x, t) ∈ ΩT as n → ∞. We will see that this
is the case if p � p+(λ).

• There exists a Fujita-type exponent, F (λ), i.e. for all 1 < p < F (λ) and for
all non-negative initial data the solution blows up in a finite time, and F (λ)
is optimal with this property.

Therefore, the main objective of this work is to explain the influence of the Hardy
term on the existence or non-existence of solutions and to get the threshold exponent
p+(λ) to have a complete and instantaneous blow-up phenomenon if p � p+(λ).
The associated elliptic case was studied in [7], where the authors show the existence
of a critical exponent p+(λ) > 1 such that the problem has no local distributional
solution for all p � p+(λ).

The paper is organized as follows. In § 2 we give a precise description of the
functional framework and the concepts of solution that will be used in the paper.
Section 2.1 is devoted to the study of some lower local estimates for supersolutions.
In § 2.2 we analyse some existence results under the hypothesis of existence of a
very weak supersolution. In § 3 we calculate the critical power p+(λ) for the elliptic
case which was found in [7]. We prove that the same value p+(λ) is critical for the
parabolic case. In this sense, we prove that if p � p+(λ), there is no very weak
supersolution in the sense of definition 2.1. The classical Hardy inequality, i.e.∫

RN

|∇u|2 dx � ΛN

∫
RN

u2

|x|2 dx for all u ∈ C∞
0 (RN ), N � 3, (1.2)

where ΛN = ((N − 2)/2)2, plays an important role in the analysis of the prob-
lem (1.1). It is well known that ΛN is optimal and is not attained in W 1,2

0 (RN ).
Moreover, if Ω ⊂ RN with 0 ∈ Ω and N � 3, then the constant for the Hardy
inequality in C∞

0 (Ω) is the same as above and is not attained in W 1,2
0 (Ω) (see, for

example, [13]). The non-existence proof is divided into four parts:

(i) λ > ΛN ;

(ii) p > p+(λ) and λ � ΛN ;
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(iii) p = p+(λ) and λ < ΛN (which is more involved);

(iv) p = p+(ΛN ).

As a consequence of the non-existence results, blow-up results are proved in § 4.
The blow-up is proved in two cases:

(a) by proving that the solutions to truncated problems (4.1) converge to infinity
as n → ∞ in any point (x, t) ∈ Ω × (0, T ) and

(b) blow up for pn ↗ p+(λ).

Section 5 deals with the optimality of the power p+(λ), that is, the existence of
a solution to problem (1.1) if p < p+(λ) and under some additional conditions
on the data (conditions that are far from being optimal). In § 6 we analyse the
Cauchy problem (6.2), namely Ω = RN , with p < p+(λ). In § 6.1 we find a family
of subsolutions to (6.2) blowing up in a finite time for 1 < p < F (λ) = 1 + 2/(N −
α1) < p+(λ). In § 6.2 we find for F (λ) < p < p+(λ), a family of supersolutions to
problem (6.2) defined for all time t > 0.

As a consequence of the results of previous sections, it is natural to conjecture that
F (λ) is really the Fujita exponent for problem (6.2). To prove that the conjecture
is true, we proceed as follows. In § 6.3 we prove a local-in-time existence theorem,
for a suitable class of initial data and 1 < p < p+(λ). In § 6.4, by using the global
supersolutions found in § 6.2, we obtain that for small initial data and F (λ) < p <
p+(λ) there exist global solutions. In § 6.5 we prove a blow-up result for all positive
solutions and for 1 < p < F (λ). The last three steps show that F (λ) is the Fujita
exponent for (6.2).

Finally, the appendix is devoted to the proof that p = F (λ) has the same blow-up
behaviour as p < F (λ).

2. Preliminaries and tools

We start with the concept of the solutions that will be used in the paper, namely,
the very weak solution and the solution obtained as a limit of approximations,
respectively.

Definition 2.1. We say that u ∈ C([0, T ); L1
loc(Ω)) is a very weak supersolution

(subsolution) to the semilinear equation in problem (1.1) if u/|x|2 ∈ L1
loc(ΩT ),

up ∈ L1
loc(ΩT ), f ∈ L1

loc(ΩT ) and, for all φ ∈ C∞
0 (ΩT ) such that φ � 0, we have

that ∫ T

0

∫
Ω

(−φt − ∆φ)u dxdt � (�)
∫ T

0

∫
Ω

(
λ

u

|x|2 + up + f

)
φ dxdt. (2.1)

If u is a very weak super and subsolution, then we say that u is a very weak solution.
In particular, if u is a very weak solution to (1.1), then u ∈ C([0, T ); L1

loc(Ω)) ∩
Lp((0, T ); Lp

loc(Ω)).

The previous definition is local in nature: for instance, no reference to the bound-
ary data appears, and it is just the regularity which is needed to give distributional
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sense to the equation. We will use the general framework given in definition 2.1 to
prove non-existence with local arguments.

To prove existence with L1 data, we will consider solutions obtained as limit
of approximations [9, 18], which for the heat equation coincides with the sense of
renormalized solutions [6]. For the convenience of the reader, we reformulate the
existence and regularity theory with positive L1 data for the heat equation. We
define by

Tn(s) =

{
s, |s| � n,

n sgn(s), |s| � n,

the usual truncation operator. Consider f ∈ L1((0, T ) × Ω), f � 0, and let {fn} be
a sequence of bounded functions such that

(i) fn(x, t) � f(x, t), (x, t) ∈ (0, T ) × Ω, and

(ii) fn → f in L1((0, T ) × Ω).

In a similar way for u0 ∈ L1(Ω), u0 � 0, let u0,n be a sequence of bounded functions
such that,

(i) u0,n(x) � u0(x), x ∈ Ω and

(ii) u0,n → u0 in L1(Ω).

Let un be the classical solution to the problem

unt − ∆un = fn in ΩT ≡ Ω × (0, T ),
un(x, t) > 0 in ΩT ,

un(x, t) = 0 on ∂Ω × (0, T ),
un(x, 0) = u0,n(x) if x ∈ Ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

Then

(a) un ∈ L2((0, T ); W 2
0 (Ω)) ∩ C([0, T ];L2(Ω)) and unt ∈ L2((0, T ); W−1,2(Ω)),

(b) un verifies∫ T

0
〈unt, φ〉 dt +

∫ T

0

∫
Ω

〈∇un,∇φ〉 dxdt =
∫ T

0

∫
Ω

fnφ dxdt

for all φ ∈ L2((0, T ); W 2
0 (Ω)),

(c) {un} is bounded in Lq((0, T ); W 1,q
0 (Ω)) for all 1 � q < (N + 2)/(N + 1), and

for all k > 0 {Tk(un)} is bounded in L2((0, T ); W 1,2
0 (Ω)).

As a consequence, up to a subsequence, there exists u ∈ Lq((0, T ); W 1,q
0 (Ω)) for all

1 � q < (N + 2)/(N + 1) such that

un ⇀ u weakly in Lq((0, T ); W 1,q
0 (Ω)) for all q ∈

[
1,

N + 2
N + 1

)
.
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With the previous properties one can prove that

∇un → ∇u almost everywhere.

Therefore, by Fatou’s and Vitali’s theorems, it follows that

un → u strongly in Lq((0, T ); W 1,q
0 (Ω)) for all q ∈

[
1,

N + 2
N + 1

)

and

Tk(un) → Tk(u) strongly in L2((0, T ); W 1,2
0 (Ω)) for all k > 0.

Hence, u is a solution to the problem

ut − ∆u = f in ΩT ≡ Ω × (0, T ),
u(x, t) > 0 in ΩT ,

u(x, t) = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) if x ∈ Ω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.3)

(see, for instance, [18] for the details of this approach, even for a more general
setting).

By the strong maximum principle for the truncated problems, (2.2), we find that,
for f � 0, u0 � 0, we have u > 0 in Ω × (0, T ). Also it is very easy to check a
strong comparison principle for solutions obtained as the limit of approximations.
In [2], even for a more general setting, it is proved that the solutions obtained as
the limit of approximations for the heat equations coincide with the distributional
solutions and that problem (2.3) has a unique distributional solution. Therefore,
in the process of construction of a solution as a limit of approximations, every
subsequence of {un} converges to u.

2.1. Local behaviour of supersolutions

The behaviour of any positive supersolution in the neighbourhood of the origin
is obtained via the following computations. Denote by

α1 =
N − 2

2
−

√(
N − 2

2

)2

− λ, α2 =
N − 2

2
+

√(
N − 2

2

)2

− λ, (2.4)

the roots of α2 − (N − 2)α + λ = 0. Such roots give the radial solutions |x|−α1 ,
|x|−α2 to the homogeneous problem

−∆w − λ
w

|x|2 = 0. (2.5)

First, we find a self-invariant solution to the homogeneous linear equation

vt − ∆v − λ
v

|x|2 = 0 in RN . (2.6)
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More precisely, we look for a solution to (2.6) of the form v(r, t) = t−µφ(r/tν).
Therefore, by setting s = r/tν and taking ν = 1

2 , we find the equation

0 = vt − v′′ −
(

N − 1
r

)
v′ − λ

v

r2

≡ (−t−(µ+1))
(

φ′′(s) +
(

N − 1
s

+
s

2

)
φ′(s) +

(
µ +

λ

s2

)
φ(s)

)
. (2.7)

We set φ(s) = s−αe−βsγ

. Then

φ′(s) =
(

−α

s
− γβsγ−1

)
φ(s),

φ′′(s) =
(

α

s2 − βγ(γ − 1)sγ−2 +
(

α

s
+ βγsγ−1

)2)
φ(s).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.8)

From (2.7) and (2.8) it is sufficient to choose α = α1, β = 1
4 , γ = 2 and µ =

1
2 (N − α1) to verify

vt − v′′ −
(

N − 1
r

)
v′ − λ

v

r2 = 0.

We find v(x, t) = t−(N/2)+α1r−α1e−|x|2/4t and then it is easy to check that∫
RN

|x|−α1v(x, t) dx = C.

The unboundedness of any very weak supersolution is obtained in the following
result, which also gives quantitative information.

Lemma 2.2. Assume that u is a non-negative function defined in Ω such that u �≡ 0,
u ∈ L1

loc(ΩT ) and u/|x|2 ∈ L1
loc(ΩT ). If u satisfies ut −∆u−λu/|x|2 � 0 in D′(ΩT )

with λ � ΛN and Br1(0) ⊂⊂ Ω, then there exists a constant C = C(N, r1, t1, t2)
such that, for each cylinder Br(0) × (t1, t2) ⊂⊂ ΩT , 0 < r < r1,

u � C|x|−α1 in Br(0) × (t1, t2),

where α1 is given in (2.4). In particular, for r conveniently small we can assume
that u > 1 in Br(0) × (t1, t2).

Proof. Since u �≡ 0, it follows, using the strong maximum principle for the heat
equation, that for any cylinder Br1(0) × (T1, T2) there exists η > 0 such that
u � η > 0 in Br1(0) × (T1, T2).

Let w ∈ L2((T1, T2); W 1,2(Br1(0))) be the unique positive solution to the problem

wt − ∆w − λ
w

|x|2 = 0 in Br1(0) × (T1, T2),

w = η on ∂Br1(0) × (T1, T2),

w(x, T1) = 0 in Br1(0).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.9)

It is clear that w > 0 in Br1(0) × (T1, T2). We will prove that

w(x, t) � C|x|−α1 in Br(0) × (t1, t2) ⊂⊂ Br1(0) × (T1, T2).
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Indeed, define v(x, t) = |x|α1w(x, t). Since w ∈ L2((T1, T2); W 1,2(Br1(0))), we have

v ∈ L2(T1, T2); W 1,2
α1

(Br1(0)) ∩ C((T1, T2); L2
α1

(Br1(0))),

where L2
α1

(Br1(0)) and W 1,2
α1

(Br1(0)) are the weighted Lebesgue and Sobolev spaces
defined as the complection of C∞

0 (Br1(0)) endowed with the norms

‖φ‖2
L2

α1
=

∫
Br1 (0)

|φ|2|x|−2α1 dx,

‖φ‖2
W 1,2

α1
=

∫
Br1 (0)

|φ|2|x|−2α1 dx +
∫

Br1 (0)
|∇φ|2|x|−2α1 dx,

respectively. Moreover, v solves the following problem:

|x|−2α1vt − div(|x|−2α1∇v) = 0 in Br1(0) × (T1, T2),
v = ηrα1

1 on ∂Br1(0) × (T1, T2),
v(x, T1) = 0 in Br1(0).

⎫⎪⎬
⎪⎭ (2.10)

Since v is in the corresponding energy space and the weight |x|−2α1 is in the Mucken-
houpt class, we can apply the Harnack inequality obtained in [15] (see also [2, 8])
and we conclude that v � C in Br(0) × (t1, t2) ⊂⊂ Br1(0) × (T1, T2). Hence,
w(x, t) � C|x|−α1 in Br(0) × (t1, t2).

Finally, since u is a supersolution to problem (2.9), by using the weak comparison
principle we conclude that u � w in Br(0)× (T1, T2); thus, u � C|x|−α1 in Br(0)×
(t1, t2) and the result follows.

2.2. Some existence results

Notice that direct use of the very weak supersolutions presents serious difficulties.
For this reason, the following result is an important tool for the proof of the non-
existence result. Roughly speaking, given a very weak supersolution, we will show
that there exists a minimal solution to (1.1), at least defined in a subcylinder,
which is obtained as a limit of solutions to some approximated problems in the
sense stated at the beginning of this section. For such a class of solutions, the
flexibility of calculus is bigger and allows us to compare and to obtain a priori
estimates.

Lemma 2.3. If ū ∈ C([0, T ); L1
loc(Ω̃)) is a very weak supersolution to the equation

in (1.1) with λ � ΛN , f ∈ L1(ΩT ) and Ω̃ ⊃⊃ Ω, then there exists a minimal
solution to problem (1.1) obtained as a limit of approximations.

Proof. If ū is a supersolution to (1.1) with λ � ΛN , we construct a sequence

{vn} ∈ C([0, T ); L1(Ω)) ∩ Lp([0, T ); Lp(Ω)),

starting with
v0t − ∆v0 = f in Ω × (0, T ),

v0(x, 0) = T1(ū(x, 0)) if x ∈ Ω,

v0(x, t) = 0 on ∂Ω × (0, T ).

⎫⎪⎬
⎪⎭ (2.11)
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Then, by the comparison principle for the heat equation, it follows that v0 � ū in
Ω × (0, T ). By iteration we define

vnt − ∆vn = λ
vn−1

|x|2 + (1/n)
+ vp

n−1 + f in Ω × (0, T ),

vn(x, 0) = Tn(ū(x, 0)) if x ∈ Ω,

vn(x, t) = 0 on ∂Ω × (0, T ).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.12)

As above, it follows that v0 � · · · � vn−1 � vn � ū in Ω × (0, T ), so we obtain the
pointwise limit v = lim vn that verifies v � ū and

vt − ∆v = λ
v

|x|2 + vp + f in Ω × (0, T ),

v(x, t) = 0 on ∂Ω × (0, T ),
v(x, 0) = ū(x, 0) if x ∈ Ω,

⎫⎪⎪⎬
⎪⎪⎭ (2.13)

in the weak sense. Moreover, according to the estimates for the sequence {vn},
and using the techniques in [5, 9], it is easy to check that v has the regularity of a
solution obtained as limit of approximations to (1.1) in Ω × (0, T ).

Remark 2.4. Notice that if w is a very weak positive supersolution to problem

wt − ∆w − λ
w

|x|2 = g, (2.14)

then g must satisfy ∫ T

0

∫
Br(0)

|x|−α1g dx < ∞.

It is sufficient to consider as a test function in (2.14) a truncation of ϕ, the solu-
tion to the equation ϕt − ∆ϕ − λϕ/|x|2 = 1, and the result follows. Since we are
considering positive solutions to problem (1.1), by setting g = up + f we obtain
that ∫ t2

t1

∫
Br(0)

|x|−α1(up + f) dxdt < ∞ for all Br(0) × (t1, t2) ⊂⊂ ΩT .

This necessary condition will be useful in the forthcoming arguments.

3. Non-existence results: p � p+(λ)

For the reader’s convenience we find the threshold power in the stationary case by
repeating the calculation in [7]. We first find a solution u = Ar−β of the associated
radial elliptic problem

−urr − N − 1
r

ur − λ
u

r2 = up in Br(0). (3.1)

Hence, by a direct computation, we obtain that β = 2/(p − 1) and Ap−1 = −β2 +
(N − 2)β − λ. It is clear that −β2 + (N − 2)β − λ > 0 if and only if α1 < β < α2,
which means that p−(λ) < p < p+(λ) with p+(λ) = 1+2/α1 and p−(λ) = 1+2/α2.
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λ

λp−(   )

p+(   )

λ
NΛ

Figure 1. Critical powers as functions of λ.

We will see that, for the heat equation perturbed with the Hardy potential, the
critical power is also p+(λ). Some properties of p−(λ) and p+(λ) are

p+(λ) → 2∗ − 1 =
N + 2
N − 2

as λ → ΛN , p+(λ) → ∞ as λ → 0,

p−(λ) → 2∗ − 1 =
N + 2
N − 2

as λ → ΛN , p−(λ) → N

N − 2
as λ → 0.

It is clear (see figure 1) that p+(λ) and p−(λ) are respectively decreasing and
increasing functions on λ, and then

1 < p−(λ) � 2∗ − 1 � p+(λ).

Theorem 3.1. If p � p+(λ), then problem (1.1) has no positive very weak super-
solution. In the case where f ≡ 0, the unique non-negative very weak supersolution
is u ≡ 0.

Proof. Without loss of generality, we can assume that f ∈ L∞(ΩT ). We argue by
contradiction. Assume that ũ is a very weak supersolution.

If λ > ΛN = ( 1
2 (N − 2))2, then it is sufficient to consider ũ as a very weak

supersolution to the problem

vt − ∆v = λ
v

|x|2 + f1 in Ω × (0, T ),

v > 0 in Ω × (0, T ),
v = 0 on ∂Ω × (0, T ),

⎫⎪⎪⎬
⎪⎪⎭ (3.2)

where f1(x) = vp + f . Hence, the non-existence result follows using [2, 4].
Consider the case λ � ΛN . Again we argue by contradiction. If ũ is a very weak

supersolution to (1.1), then ũt − ∆ũ − λũ/|x|2 � 0 in D′(ΩT ).
Since ũ is also a very weak supersolution in any BR(0) × (T1, T2) ⊂⊂ ΩT , then

by lemma 2.3, the problem

ut − ∆u = λ
u

|x|2 + up + f in BR(0) × (T1, T2),

u(x, t) > 0 in BR(0) × (T1, T2),
u(x, t) = 0 on ∂BR(0) × (T1, T2),

u(x, t1) = ũ(x, T1) if x ∈ BR(0),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.3)
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has a minimal solution u obtained by approximation of truncated problems in
BR(0) × (T1, T2). In particular u = lim vn, with vn ∈ L∞(BR(0) × (T1, T2)) and vn

solution to (2.12) in BR(0) × (T1, T2).
Notice that, since ut − ∆u − λu/|x|2 � 0 in D′(Br1(0) × (T1, T2)), and by using

lemma 2.2, there exists a cylinder Br(0) × (t1, t2), with 0 < r < r1 < R, 0 <
T1 < t1 < t2 < T2 � T and there exists a constant C = C(N, r1, t1, t2) such that
u � C|x|−α1 and u > 1 in Br(0) × (T1, T2). In particular, since u ∈ L1

loc(ΩT ), we
have log(u) ∈ Lp(Br(0) × (t1, t2)) for all p ∈ [1,∞). By a suitable scaling, we can
assume that the cylinder is Br(0) × (0, τ).

We divide the proof in three cases.

Case 1 (p > p+(λ)). Consider φ ∈ C∞
0 (Br(0)). Taking |φ|2/vn as a test function

in problems (2.12), and applying the Picone inequality (see, for example, [1]), we
obtain∫ τ

0

∫
Br(0)

vp−1
n φ2 dxdt �

∫ τ

0

∫
Br(0)

|φ|2
vn

vnt dxdt +
∫ τ

0

∫
Br(0)

(−∆vn)
|φ|2
vn

dxdt

�
∫

Br(0)
| log vn(x, τ)|φ2 dx +

∫ τ

0

∫
Br(0)

|∇φ|2 dxdt.

Therefore, passing to the limit as n → ∞, and due to lemma 2.2, we have∫
Br(0)

| log u(x, τ)|φ2 dx +
∫ τ

0

∫
Br(0)

|∇φ|2 dxdt �
∫ τ

0

∫
Br(0)

up−1φ2 dxdt

� C

∫ τ

0

∫
Br(0)

φ2

|x|(p−1)α1
dxdt.

Using Hölder and Sobolev inequalities, it follows that∫
Br(0)

| log(u(x, τ))||φ|2 dx �
( ∫

Br(0)
|φ|2∗

dx

)2/2∗( ∫
Br(0)

| log u(x, τ)|N/2 dx

)2/N

�
( ∫

Br(0)
| log u(x, τ)|N/2 dx

)2/N

S−1
∫

Br(0)
|∇φ|2 dx,

where S is the optimal constant in the Sobolev embedding. Thus, we have

[
1 +

( ∫
Br(0)

| log u(x, τ)|N/2 dx

)2/N

S−1
] ∫

Br(0)
|∇φ|2 dxdt

� C

∫
Br(0)

φ2

|x|(p−1)α1
dxdt.

Since p > p+(λ), we have (p − 1)α1 > 2 and obtain a contradiction with the Hardy
inequality.

Case 2 (p = p+(λ) and λ < ΛN ). Fixing the cylinder Bη(0)× (0, τ) as above, con-
sider

w(x, t) = |x|−α1

(
t2

(
log

(
1
|x|

))β

+ 1
)
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defined for (x, t) ∈ Bη(0) × (0, τ), with β > 0 that will be chosen below. Since
λ < ΛN , we have w ∈ C([0, τ ], L2(Bη(0))) ∩ L2((0, τ), W 1,2(Bη(0))). By a direct
computation we get

wt − ∆w − λ
w

|x|2

=
t

|x|2+α1

{
2|x|2

(
log

(
1
|x|

))β

+ β(t)
(

log
(

1
|x|

))β−1[
(N − 2 − 2α1) + (1 − β)

(
log

(
1
|x|

))−1]}
.

Notice that

wp+(λ) = |x|−(2+α1)
[(

t2
(

log
(

1
|x|

))β)
+ 1

]p+(λ)

.

We set

h(x, t) =
[
t2

(
log

(
1
|x|

))β

+ 1
]1−p+(λ)

.

Then

wp+(λ)h(x, t) = |x|−(2+α1)
[
t2

(
log

(
1
|x|

))β

+ 1
]
.

Hence, there exists t̄2 ∈ (0, τ) such that

wt − ∆w − λ
w

|x|2 � βh(x, t)wp+(λ) in Bη(0) × (0, t̄2).

Denote u1 = c1u. Then

u1t − ∆u1 − λ
u1

|x|2 � c
1−p+(λ)
1 u

p+(λ)
1 .

Consider c0 > 0 in the same way as C in lemma 2.2 after a scaling. For fixed c1 > 0
such that c1c0 � 1 and for a suitable small β we have

c
1−p+(λ)
1 � β‖h‖L∞ .

Since c1c0 � 1, we have u1 � w(x, t) on ∂Bη(0) × (0, τ), u1(x, 0) � w(x, 0) for
x ∈ Bη(0) and

u1t − ∆u1 − λ
u1

|x|2 � βh(x, t)up+(λ)
1 .

We claim that u1 � w in Bη(0) × (0, t̄2). Let us consider v = w − u1. Then

vt − ∆v − λ
v

|x|2 � βh(x, t)(wp+(λ) − u
p+(λ)
1 ).

Hence, using Kato’s inequality [17], we obtain the estimate

(v+)t − ∆v+ − λ
v+

|x|2 � pβh(x, t)wp+−1v+ � pβ|x|−2v+. (3.4)
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Since v2
+/|x|2 ∈ L1(Bη(0)), using an approximation argument we can prove that

v+ ∈ L2((0, t̄2), W
1,2
0 (Bη(0))). Therefore, choosing β small enough such that λ +

pβ < ΛN , and using v+ as a test function in (3.4), we deduce that v+ ≡ 0 and the
claim is proved.

To finish the proof in this case, we use the same argument as in the first case,
namely, for all φ ∈ C∞

0 (Bη(0)) we arrive at the inequality

c2

∫ τ

0

∫
Bη(0)

up−1|φ|2 dx �
∫ τ

0

∫
Bη(0)

|∇φ|2 dx = τ

∫
Bη(0)

|∇φ|2 dx, (3.5)

where c2 > 0 is independent of φ. Using the result of the claim we obtain that, for
r � η,

c3

∫
Br(0)

|φ|2
|x|2

(
log

(
1
|x|

))β(p−1)

dx �
∫

Br(0)
|∇φ|2 dx,

a contradiction with the Hardy inequality. Hence, the result follows.

Case 3 (p = p+(λ) and λ = ΛN ). In this case we have that α1 = 1
2 (N − 2) and

p+(ΛN ) = 2∗ − 1. If ũ is a supersolution to (1.1), then due to lemma 2.2 and
remark 2.4 it follows that

τCp

∫
Br(0)

|x|−α1(p+1) dx �
∫ τ

0

∫
Br(0)

|x|−α1up dxdt < ∞.

Since α1(p+(ΛN ) + 1) = N , we reach a contradiction and the result follows.

Remark 3.2. Note that, for λ = 0, p+(λ) = ∞ and we obtain the existence of
a local solution for the heat equation for all p > 1, at least for a suitable initial
datum.

4. Instantaneous and complete blow up results

The non-existence result obtained above for p � p+(λ) is very strong in the sense
that a complete and instantaneous blow-up phenomenon occurs in two different
senses.

(a) If un is the solution to problem (1.1) where the Hardy potential is substituted
by the bounded weight |x|2 + (1/n), then un(x, t) → ∞ as n → ∞.

(b) If un is the solution to problem (1.1) with p = pn < p+(λ) and pn → p+(λ)
as n → ∞, then un(x, t) → ∞ as n → ∞.

In both cases, (x, t) is an arbitrary point in Ω × (0, T ).

4.1. Blow-up for the approximated problems when p � p+(λ)

We get a blow-up behaviour for the following approximated problems.
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Theorem 4.1. Let un ∈ C((0, T ); L1(Ω)) ∩ Lp((0, T ); Lp(Ω)) be a solution to the
problem

unt − ∆un =
up

n

1 + (1/n)up
n

+ λan(x)un + cf in ΩT ≡ Ω × (0, T ),

un(x, t) = 0 on ∂Ω × (0, T ),
un(x, 0) = 0 if x ∈ Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

with f �= 0, an(x) = 1/(|x|2 + (1/n)) and p � p+(λ). Then un(x0, t0) → ∞ for all
(x0, t0) ∈ Ω × (0, T ).

Proof. Without loss of generality, we can assume that f ∈ L∞(ΩT ) and λ � ΛN .
The existence of a positive solution to problem (4.1) follows using classical sub-
and supersolution arguments. By using the monotonicity of the nonlinear term and
the coefficient an, we can assume the existence of minimal solution un such that
un � un+1 for all n � 1. Therefore, to get the blow-up result we merely have to
show the complete blow-up for the family of minimal solutions denoted by un.

Suppose by contradiction that there exists (x0, t0) ∈ ΩT such that

un(x0, t0) → C0 < ∞ as n → ∞.

By using the classical Harnack inequality, there exists s > 0 and a positive constant
C = C(N, s, t0, β) such that∫∫

R−
un(x, t) dxdt � C ess inf

R+
un,

where R− = Bs(x0)× (t0 − 3
4β, t0 − 1

4β) and R+ = Bs(x0) × (t0 − 1
2β, t0 + 1

2β). We
can suppose that 0 ∈ Bs(x0), since, on the contrary, we consider Bδ(y) ⊂ Bs(x0),
with y ∈ Bs(x0) such that∫∫

R−
y

un(x, t) dxdt �
∫∫

R−
un(x, t) dxdt � C ess inf

R+
un � C ess inf

R+
y

un,

with R−
y = Bδ(y) × (t0 − 3

4β, t0 − 1
4β) and R+

y = Bδ(y) × (t0 − 1
2β, t0 + 1

2β). In a
recurrent way, we get∫∫

R−
un(x, t) dxdt � C ess inf

R+
un � Cun(x0, t0) � C ′,

with R− = Br(0) × (t1, t2) and R+ = Br(0) × (t3, t4), t0 ∈ (t3, t4).
Therefore, by the monotone convergence theorem, there exists u � 0 such that

un ↑ u strongly in L1(Br(0) × (t1, t2)).
Let ϕ̄ be the solution to the problem

ϕ̄t − ∆ϕ̄ = χBr(0)×[T−t2,T−t1] in ΩT ,

ϕ̄(x, t) = 0 on ∂Ω × (0, T ),
ϕ̄(x, 0) = 0 in Ω,
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and consider the translation in time ϕ(x, t) = ϕ̄(T − t, x) in such a way that

−ϕt − ∆ϕ = χBr(0)×[t1,t2] in ΩT ,

ϕ(x, t) = 0 on ∂Ω × (0, T ),
ϕ(x, T ) = 0 in Ω.

Take ϕ as a test function in (4.1). Then we have

C ′ �
∫ t2

t1

∫
Br(0)

un(x, t) dxdt

=
∫ T

0

∫
Ω

up
n

1 + (1/n)up
n
ϕ dxdt + λ

∫ T

0

∫
Ω

an(x)unϕ dxdt + c

∫ T

0

∫
Ω

fϕ dxdt.

By the monotone convergence theorem, as n → ∞,

up
n

1 + (1/n)up
n

→ up in L1
loc(Br(0) × (t1, t2)),

an(x)un ↗ u

|x|2 in L1
loc(Br(0) × (t1, t2)).

Thus, it follows that u is a very weak supersolution to (4.1) in Br1(0) × (t̄1, t̄2) ⊂⊂
Br(0) × (t1, t2): a contradiction of theorem 3.1.

4.2. Blow-up when pn → p+(λ)

We now prove another strong blow-up result when the power pn ↑ p+(λ).

Theorem 4.2. Assume that pn satisfies pn < p+(λ) and pn → p+(λ) as n → ∞
and f � 0. Let un ∈ C([0, T ); L1

loc(Ω)) be a very weak supersolution to the problem

unt − ∆un � λ
un

|x|2 + upn
n + f in ΩT ,

un(x, t) = 0 on ∂Ω × (0, T ),
un(x, 0) = 0 in Ω.

⎫⎪⎪⎬
⎪⎪⎭ (4.2)

Then un(x0, t0) → ∞ for all (x0, t0) ∈ Ω × (0, T ).

Proof. Without loss of generality we can assume that f ∈ L∞(ΩT ). Suppose by
contradiction that there exists a subsequence denoted pn and a supersolution un

such that for some point (x0, t0) ∈ ΩT we have un(x0, t0) → C0 < ∞ for all n ∈ N.
Without loss of generality we can assume that pn(λ) = 1 + (2/α1 + (1/n)). Thanks
to the classical Harnack inequality, there exists s > 0 and a positive constant
C = C(N, s, t0, β) such that∫∫

R−
un(x, t) dxdt � C ess inf

R+
un � CC0,

where R− = Bs(x0)× (t0 − 3
4β, t0 − 1

4β) and R+ = Bs(x0) × (t0 − 1
2β, t0 + 1

2β). As
in the discussion of the proof of theorem 4.1, we can suppose that 0 ∈ Bs(x0).

If un ∈ C([0, T ); L1
loc(Ω)) is a very weak supersolution to problem (4.2), then

there exists a minimal solution to (4.2) in Ω1 × (t1, t2) ⊂⊂ ΩT with 0 ∈ Ω1 ⊂⊂ Ω
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obtained by approximation. Denote this minimal solution by vn � un. Then vn

solves
vnt − ∆vn = λ

vn

|x|2 + vpn
n + f in Ω1 × (t1, t2),

vn(x, t) = 0 on ∂Ω1 × (t1, t2),
vn(x, t1) = 0 in Ω1.

⎫⎪⎪⎬
⎪⎪⎭ (4.3)

Let φ be the solution to the problem

−φt − ∆φ = 1 in Ω1 × (t1, t2),
φ = 0 on ∂Ω1 × (t1, t2),

φ(x, t1) = 0 in Ω1.

Using φ as a test function in (4.3) and since vn � un, we obtain

C �
∫ t2

t1

∫
Ω1

vn(x, s) dxds =
∫ t2

t1

∫
Ω1

gn(x, s)φ dxds,

where gn(x, t) = λ(vn/|x|2) + vpn
n + f . Thus,

∫ t2

t1

∫
Ω1

gnφ dxds � C for all n.

Hence, it follows that gn is uniformly bounded in L1
loc(Ω1×(t1, t2)) and then gn ⇀ µ

in the sense of measures.
Let ϕ ∈ C∞

0 (Ω1), taking Tk(vn) · ϕ as a test function in (4.3) and using the
previous boundedness, we get

∫
Ω1

Θk(vn(x, t2))ϕ dx +
∫ t2

t1

∫
Ω1

|∇Tk(vn)|2ϕ dxds +
∫ t2

t1

∫
Ω1

Θk(vn)(−∆ϕ) dxds

=
∫ t2

t1

∫
Ω1

gn(x, s)ϕTk(vn) dxds,

where

Θk(s) =
∫ s

0
Tk(σ) dσ.

Thus, ∫
Ω1

Θk(vn(x, t2))ϕ dx +
∫ t2

t1

∫
Ω1

|∇Tk(vn)|2ϕ dxds

� c

∫ t2

t1

∫
Ω1

Θk(vn) dxds + k

∫ t2

t1

∫
Ω1

gn(x, s)ϕ dxds

� C.

Hence, there exists a non-negative function v such that Tk(vn) ⇀ Tk(v) weakly in
L2

loc((t1, t2), W
1,2
loc (Ω1)). Moreover, using the renormalized theory, we can prove that

https://doi.org/10.1017/S0308210508000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210508000152


912 B. Abdellaoui, I. Peral and A. Primo

vn → v strongly in Lq
loc((t1, t2), L

q
loc(Ω1)), q < N/(N − 2). Let ψ ∈ C∞

0 (Br(0) ×
(t1, t2)) be a non-negative function. By the Fatou lemma it follows that

lim
n→∞

∫ t2

t1

∫
Br(0)

gn(x, s)ψ dxds �
∫ t2

t1

∫
Br(0)

vp+(λ)ψ dxds

+ λ

∫ t2

t1

∫
Br(0)

vψ

|x|2 dxds +
∫ t2

t1

∫
Br(0)

fψ dxds.

Therefore, using ψ as a test function in (4.3) and passing to the limit as n → ∞, it
follows that

−
∫ t2

t1

∫
Br(0)

vψt dxds +
∫ t2

t1

∫
Br(0)

v(−∆ψ) dxds

�
∫ t2

t1

∫
Br(0)

vp+(λ)ψ dxds + λ

∫ t2

t1

∫
Br(0)

vψ

|x|2 dxds +
∫ t2

t1

∫
Br(0)

fψ dxds.

Hence, v is a very weak supersolution to (1.1) obtained by approximation and then
we reach a contradiction.

5. Existence of solutions: p < p+(λ)

The goal of this section is to consider the complementary interval of powers, namely,
1 < p < p+(λ), and to prove that, under some suitable hypotheses on f and u0,
problem (1.1) has a positive solution. For the existence result we will consider the
case when f ≡ 0. For the case when f �≡ 0, see remark 5.4.

First, note that if 0 < λ � ΛN and 1 < p < p+(λ), the stationary problem

−∆u = λ
u

|x|2 + up in Ω, u = 0 on ∂Ω, (5.1)

has a positive very weak supersolution w in the following cases:

(i) 0 < λ < ΛN .

(a) If 1 < p < (N + 2)/(N − 2) and Ω is a bounded domain, there exists
a positive solution to problem (5.1) using the classical mountain-pass
theorem in the Sobolev space W 1,2

0 (Ω) [7].
(b) If (N + 2)/(N − 2) < p < p+(λ), there exists a positive solution in RN ,

as found in [7]. For the reader’s convenience we repeat the computation
in [7]. By setting w(x) = A|x|−β with β = 2/(p − 1) and Ap−1 = β(N −
β−2)−λ, we have that w is a supersolution to (5.1) in any domain Ω. It is
clear that −β2+(N−2)β−λ > 0 if and only if α1 < β < α2, which means
that p−(λ) < p < p+(λ). Notice that w ∈ Lp

loc(R
N ), w/|x|2 ∈ L1

loc(R
N )

and the equation is verified in distributional sense. This is the way in
which the critical powers p−(λ) and p+(λ) appear.

(ii) If λ = ΛN , then p+(ΛN ) = (N + 2)/(N − 2) = p−(ΛN ). Define the Hilbert
space H(Ω) as the completion of C∞

0 (Ω) with respect to the norm

‖φ‖2 =
∫

Ω

(
|∇φ|2 − ΛN

φ2

|x|2

)
dx.
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Using the improved Hardy–Sobolev inequality as in [21] (see also [3] for a
direct proof) it is not difficult to prove that H(Ω) ⊂⊂ W 1,q

0 (Ω) for all q < 2.
Since p < (N + 2)/(N − 2) = 2∗ − 1, classical variational methods in the
space H(Ω) allow us to prove the existence of a positive solution w to the
stationary problem (5.1) (for details see [14]).

Theorem 5.1. Assume that 0 < λ � ΛN and 1 < p < p+(λ). Suppose that u0(x) �
w̄, where w̄ is a supersolution to the stationary problem

−∆u = λ
u

|x|2 + up in Ω, u(x) = 0 on ∂Ω.

Then, for all T > 0, the problem

ut − ∆u = λ
u

|x|2 + up in ΩT ≡ Ω × (0, T ),

u(x, t) = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) if x ∈ Ω,

⎫⎪⎪⎬
⎪⎪⎭ (5.2)

has a global solution.

Proof. The proof uses the classical sub–supersolution argument (see lemma 2.3).

Remark 5.2. With the results above we find the optimality of the power p+(λ),
which is our main objective. Nevertheless, it will be interesting to know the optimal
class of data for which there exists a solution and the regularity of such solutions
according to the regularity of the data. It is also interesting to know the asymptotic
behaviour as t → ∞ of such solutions.

Towards this aim we have the following necessary condition.

Proposition 5.3. Assume that λ � ΛN . If problem (1.1) has a very weak super-
solution, then there exists r > 0 such that the initial value verifies∫

Br(0)
|x|−α1u0(x) dx < ∞, where α1 is defined in (2.4).

Proof. We argue by contradiction. Suppose that u is a very weak supersolution
to (1.1) with u(x, 0) = u0(x) in Ω such that, for all r > 0,∫

Br(0)
|x|−α1u0(x) dx = ∞.

We consider the sequence {un} of minimal solutions to the problems

unt − ∆un = λ
un

|x|2 + (1/n)
+ up

n in Ω × (0, T ),

un(x, t) = 0 on ∂Ω × (0, T ),
un(x, 0) = Tn(u0(x)) in Ω,

⎫⎪⎪⎬
⎪⎪⎭ (5.3)

https://doi.org/10.1017/S0308210508000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210508000152


914 B. Abdellaoui, I. Peral and A. Primo

with 1 < p < p+(λ) and T depending only on the supersolution. For every n, let us
consider the positive eigenfunction ϕn to the associated problem,

−∆ϕn − λϕn

|x|2 + (1/n)
= cnϕn with

∫
Br(0)

ϕ2
n dx = 1.

Up to a subsequence we find that ϕn → ϕ in Ls(Ω), s < 2N/(N − 2) and cn → c
with −∆ϕ − (λϕ/|x|2) = cϕ, ∫

Br(0)
ϕ2 dx = 1

and ϕ � C|x|−α1 in a neighbourhood of the origin. Define ψn = ϕn/‖ϕn‖1. Then
ψn → ψ = ϕ/‖ϕ‖1 in L1(Ω). Taking ψn as a test function in (5.3), we get

d
dt

∫
Br(0)

ψnun(x, t) dx + cn

∫
Br(0)

un(x, t)ψn dx �
∫

Br(0)
up

nψn dx.

Since p > 1, we can apply Jensen’s inequality and conclude that

∂

∂t

∫
Br(0)

ψnun(x, t) dx + cn

∫
Br(0)

ψnun(x, t) dx �
( ∫

Br(0)
ψnun(x, t) dxdt

)p

.

Noting that

Yn(t) =
∫

Br(0)
ψnun(x, t) dx,

we have Y ′
n(t) + cYn(t) � [Yn(t)]p.

Using the hypothesis on u0 and the definition of ψn it follows that

lim
n→∞

Yn(0) = ∞.

We set Zn(t) = ectYn(t). Then Z ′
n(t) � e−c(p−1)tZp

n(t). Thus, Zn(t) is an increasing
function and therefore

Zn(t) � Zn(0) = Yn(0) → ∞ as n → ∞ uniformly in t ∈ (0, T ).

Integrating the differential equation of Zn, it follows that

1
p − 1

(
1

Zp−1
n (0)

− 1
Zp−1

n (t)

)
� 1

c(p − 1)
(1 − e−c(p−1)t), t > 0.

Hence, we conclude that

Y p−1
n (0) = Zp−1

n (0) � c

1 − e−c(p−1)t < ∞ for all t > 0,

a contradiction of the hypothesis on the initial datum. Hence, the result follows.

Whether the previous necessary condition is also sufficient for local existence
remains an open question.

Remark 5.4. In the presence of a source term f � 0, if f(x, t) � c0(t)/|x|2 with
c0(t) bounded and sufficiently small, then the above computation allows us to prove
the existence of a supersolution. Then the existence of a minimal solution to prob-
lem (1.1) follows for all p < p+(λ).
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non-existenceblow-up in a finite time

for small data

for large data
global existence
non-global existence

1 + 2
N N −   1

F = 1 +
α

2 p−(   )λ p+(   )λ2* − 1

Figure 2. Fujita exponent for the heat equation with Hardy potential.

6. Cauchy problem

In [10], Fujita considered the initial-value problem

ut = ∆u + up, x ∈ RN , t > 0,

u(x, 0) = u0(x) � 0, x ∈ RN ,

}
(6.1)

where 1 < p < ∞. He showed that if 1 < p < 1+2/N , then there exists T > 0 such
that the solution to problem (6.1) satisfies ‖u(·, tn)‖∞ → ∞ as tn → T . However,
if p > 1 + 2/N , then there are both global solutions (for small data) and non-
global solutions (for large data). The number F (0) = 1 + 2/N is often called the
critical Fujita blow-up exponent for the heat equation. Moreover, it is proved that
for p = 1 + 2/N a suitable norm of the solution tends to ∞ in a finite time. We
refer the reader to [22] for a simple proof of the latter.

In this section we explore the Fujita exponent for the Cauchy problem with
the Hardy potential, and we also study the behaviour of the solutions (figure 2).
Consider

ut − ∆u = λ
u

|x|2 + up in RN , u(x, 0) = u0(x) in RN , (6.2)

with 1 < p < p+(λ). It is clear that u /∈ L∞. Then in our case the blow-up will be
obtained in a suitable Lebesgue space with a weight.

We found in § 2.1 that v(r, t) = t−N/2+α1r−α1e−r2/4t is a self-invariant solution
to the homogeneous linear equation (2.6), that is,

vt − ∆v − λ
v

|x|2 = 0 in RN .

Moreover, ∫
RN

|x|−α1v(x, t) dx = C.

In particular, for λ = 0 (equivalently α1 = 0), we obtain the fundamental solution
of the heat equation.

6.1. A class of subsolutions to (6.2) for small p: blow-up in a finite time

Note that L∞-blow-up is instantaneous and is obtained for free in problem (6.2)
because the solutions are unbounded.

According to the behaviour of the self-similar solution v to (2.6) and since any
positive solution to (6.2) is a supersolution to (2.6), it is natural to make the
following definition.
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Definition 6.1. Consider u(x, t) a positive solution to (6.2), then we say that u
blows up in a finite time if there exists T ∗ < ∞ such that

lim
t→T ∗

∫
Br(0)

|x|−α1u(x, t) dx = ∞

for any ball Br(0).

In order to find a Fujita-type exponent for (6.2) where the blow-up phenomenon
occurs in the sense of definition 6.1, we follow closely the argument used in [11].
More precisely, for r = |x|, we look for a family of subsolutions to problem (6.2) in
the form

w(r, t, T ) = (T − t)−θζ

(
r

(T − t)β

)
,

with θ, β > 0 to be chosen and ζ > 0 a smooth function. Defining s = r/(T − t)β ,
it follows that

wt = (T − t)−θ−1
(

θζ +
βr

(T − t)β
ζ ′(s)

)
,

wr(r, t) = (T − t)−θ−βζ ′(s),

wrr(r, t) = (T − t)−θ−2βζ ′′(s).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.3)

We need to have
wt − wrr − N − 1

r
wr − λ

w

r2 � wp. (6.4)

By setting θ = 1/(p − 1), β = 1
2 and replacing these values in (6.3), the expres-

sion (6.4) becomes

−ζ ′′(s) −
(

N − 1
s

− s

2

)
ζ ′(s) −

(
λ

s2 − θ

)
ζ(s) � ζp(s).

Assume that ζ(s) = Aφ(cs) with φ(s) = s−α1e−s2/4, A > 0, c > 0. Since α2
1 − (N −

2)α1 + λ = 0, we need to satisfy

− (cs)2
(

c2

4
+

1
4

)
+

c2

2
− c2α1 − α1

2
+

c2(N − 1)
2

+
1

p − 1

� Ap−1(cs)−α1(p−1) exp
{

−(cs)2(p − 1)
4

}
.

Fix c = 1. Then there exists s0 such that, for s � s0,

γ1(s) ≡ −s2( 1
4 + 1

4 ) + 1
2 − c2α1 − α1

2
+

N − 1
2

+
1

p − 1
� 0.

Let be M = max{γ1(s) | 0 � s � s0}; for A large enough we conclude that

M < Ap−1s−α1(p−1)e−s2(p−1)/4 if 0 � s � s0.

Then, for such an A,

γ1(s) � Ap−1s−α1(p−1)e−s2(p−1)/4.
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That is, we find a family of subsolutions to (6.2) given by

w(r, t, T ) = A(T − t)−1/(p−1)
(

r

(T − t)1/2

)−α1

exp
{

−1
4

r2

T − t

}
. (6.5)

Let Br(0) be a ball in RN . Since∫
Br(0)

|x|−α1w(|x|, t, T ) dx

= C(T − t)−1/(p−1)+N/2−α1/2
∫ r/(T−t)1/2

0
φ(s)sN−α1−1 ds,

and p < 1 + 2/(N − α1), we have

− 1
p − 1

+
N

2
− α1

2
< 0.

Therefore,

lim
t→T

∫
Br(0)

|x|−α1w(|x|, t, T ) dx = ∞.

Hence, a candidate for the Fujita exponent for problem (6.2) is

F (λ) = 1 +
2

N − α1
.

It is clear that if 0 < λ � ΛN , then

1 < 1 +
2
N

< F (λ) < p−(λ) � N + 2
N − 2

� p+(λ) < ∞.

6.2. Global supersolutions for F (λ) < p < p+(λ)

The main goal of this subsection is to obtain a family of global supersolutions to
problem (6.2) for F (λ) < p < p+(λ), where F (λ) = 1 + 2/(N − α1), as above. We
look for a family of radial supersolutions, and then we find w such that

wt − wrr − N − 1
r

wr − λ
w

r2 � wp. (6.6)

Assume that

w(r, t, T ) = (T + t)−θg

(
r

(T + t)β

)

(see [10, 12]), with θ, β > 0 to be given and where g is a smooth bounded positive
function. Setting s = r/(T + t)β , it follows that

wt = −(T + t)−θ−1
(

θg +
βr

(T + t)β
g′(s)

)
,

wr(r, t) = (T + t)−θ−βg′(s),

wrr(r, t) = (T + t)−θ−2βg′′(s).
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In order to achieve homogeneity in the equation, it is sufficient to choose θ =
1/(p − 1) and β = 1

2 . Therefore, (6.6) gives

g′′(s) +
(

N − 1
s

+
s

2

)
g′(s) +

(
λ

s2 + θ

)
g(s) + gp(s) � 0.

Consider α1 < γ < 2/(p − 1). If we take g(s) = Aφ(cs) with φ(s) = s−γe−s2/4,
A > 0, c > 0, then we need to satisfy

c2[γ2 − (N − 2)γ + λ]
(cs)2

+ (cs)2
[
c2

4
− 1

4

]
+ c2γ − c2

2
− c2(N − 1)

2

− γ

2
+

1
p − 1

+ Ap−1(cs)−(p−1)γ exp
{

− (cs)2

4
(p − 1)

}
� 0.

Let G(c, s) be defined by

G(c, s) = c2
(

s − N

2

)
− s

2
+

1
p − 1

.

Since p > F (λ), we have

G(1, α1) = −N − α1

2
+

1
p − 1

< 0;

hence, by continuity there exist c < 1 and α1 < γ < 2/(p−1) such that G(c, γ) < 0.
As c < 1, we obtain (cs)2[ 14c2 − 1

4 ] � 0. Moreover, since γ < 2/(p − 1), and
c2[γ2 − (N − 2)γ + λ] � 0, choosing A small enough, it follows that

c2[γ2 − (N − 2)γ + λ]
(cs)2

+ Ap−1(cs)−(p−1)γe−(cs)2/4 � 0.

Therefore, we have found a family of supersolutions w defined by

w(r, t, T ) = Ac−γ(T + t)γ/2−1/(p−1)r−γ exp
{

− c2 r2

4(T + t)

}
. (6.7)

Notice that w(x, 0, T ) = AT−1/(p−1)a−γ |x|−γe−a2|x|2/4, where a = c/T 1/2 < 1.

6.3. Local existence results for 1 < p < p+(λ)

We prove that problem (6.2) has a local positive solution for a class of suitable
initial data. The main result is the following theorem.

Theorem 6.2. Assume that 1 < p < p+(λ) and

u0(x) � T−θ|x|−β , with T > 0, α1 < β < α2 such that β + α1 < N.

Then problem (6.2) has a local positive solution u ∈ L2(0, T ; W 1,2
loc (RN )).

Proof. Let

w(x, t) =
1

(T − t)θ
|x|−β
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with α1 < β < α2 and (β + α1) < N . It follows that β(N − 1) − β(β + 1) − λ > 0.
Since p < p+(λ), we have β < pβ < β + 2. Hence, for T > 1, choosing θ large,
we easily obtain that w is a supersolution to (6.2) in RN × (0, T ). It is clear by
hypothesis on u0 that u0(x) � w(x, 0).

To prove the existence of a solution u we follow the approximation method. Let
Bn be the ball in RN with radius n and centred at the origin. We consider

vn ∈ L2((0, T ), W 1,2
0 (Bn+1)) for all T > 0,

the weak solutions to the following approximated problems:

vnt − ∆vn = λ
1

|x|2 + (1/n)
ṽn−1 + ṽp

n−1 in Bn+1,

vn(x, 0) = u0(x) in Bn+1,

vn(x, t) = 0 on ∂Bn+1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

t > 0, (6.8)

with

v0t − ∆v0 = 0 in B1,

v0(x, 0) = u0(x) in B1,

v0(x, t) = 0 on ∂B1,

for t > 0, and ṽn−1 = vn−1 in Bn, ṽn−1 = 0 in RN \ Bn. Applying the classical
comparison principle, we conclude that 0 < v0 � v1 � · · · � vn−1 � vn � w
in Bn+1 × (0, T1) with T1 < T . Hence, there exists u ∈ L2(0, T1, L

2
loc(R

N )) such
that vn ↑ u strongly in L2((0, T1), L2

loc(R
N )) and u � w. Using the monotonicity

of vn and the dominated convergence theorem, it follows that vn → u strongly
Lp(K × (0, T1)) for all compact sets K ⊂ RN . Take φ ∈ C∞

0 (RN × (0, T1)). Then,
using φ as a test function in (6.8) and by letting n → ∞, we easily obtain that u
solves problem (6.2) with u(x, 0) = u0(x). It is clear that u ∈ L2(0, T1; W

1,2
loc (RN )).

6.4. Global existence for F (λ) < p < p+(λ) and small data

In this subsection we consider the class of initial data

FD = {u0 : RN → R | 0 � u0(x) � A|x|−α1e−D2|x|2/4}.

Let w(r, t, T ) be the family of supersolutions founded in (6.7). Choosing D such
that (

2(γ − α)
D2 − a2

)(γ−α1)/2

e−(γ−α1)/2 � AT−1/(p−1)a−γ ,

we get u0(x) � w(|x|, 0, T ). Thus, w is a supersolution to (6.2). It is clear that
w ∈ L2(0, T ; W 1,2(RN )) for all T > 0. Hence, using an iteration argument as in
§ 6.3 we obtain the existence of a global solution u to problem (6.2) with u � w.
It is clear that u ∈ L2(0, T ; W 1,2(RN )) for all T > 0 and u(x, t) → 0 as t → ∞ at
least almost everywhere. Therefore, we obtain the following result.
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Theorem 6.3. Assume that u0 ∈ FD. Then for F (λ) < p < p+(λ), problem (6.2)
has a minimal positive global energy solution u ∈ L2(0, T ; W 1,2(RN )) for all T > 0
such that u(x, t) → 0 for t → ∞.

Remark 6.4. It would be interesting to look for a general class of initial data such
that problem (6.2) has a global solution. The imposed condition in theorem 6.3 is
far from being optimal.

6.5. Blow-up result for p < F (λ)

We shall prove in this subsection that F (λ) behaves like a Fujita-type exponent.
Namely, we prove that, for p < F (λ), any solution to (6.2) blows up in a finite time
in an appropriate sense and for any initial datum.

Let us begin by analysing the properties of the subsolutions w(r, t, T ) defined
in (6.5).

(i) By construction, w(r, t, T ) blows up in a finite time in the sense of the local
weighted L1 norm.

(ii) Assume that p < F (λ) = 1+2/(N −α1). Denote by ū(x, t) a time translation
of a solution to (6.2); namely, if u(x, t) is a solution to (6.2), then ū(x, t) =
u(x, t+T ). Since ū(x, t) is a supersolution to the homogeneous equation (2.6)
with the same initial values, it is sufficient to check that v(x, T ) � w(r, 0, T ),
in order to obtain ū(x, 0) � w(r, 0, T ). This immediately follows because
p < F (λ) = 1 + 2/(N − α1).

(iii) ū(x, t) � w(x, t) for all t < T . Set h(x, t) = w(x, t) − ū(x, t). It is easy to
check that ht − ∆h � λ(h/|x|2) + wp − ūp. Applying Kato’s inequality [17],
it follows that

h+
t − ∆h+ � λ

h+

|x|2 + pwp−1h+ in RN , t ∈ (0, T1), T1 < T,

h+(x, 0) = 0.

⎫⎬
⎭ (6.9)

Notice that h+ � w. Since λ(w2/|x|2) + pwp+1 ∈ L1(RN × (0, T1)), we have
λ(h2

+/|x|2) + pwp−1h2
+ ∈ L1(RN × (0, T1)). Therefore, using Tk(h+) as a test

function in (6.9), it follows that∫
RN

Θk(h+)(x, T1) +
∫ T1

0

∫
RN

|∇Tk(h+)|2 dxdt

�
∫ T1

0

∫
RN

(
λ

h2
+

|x|2 + pwp−1h2
+

)
dxdt

� C

for all k > 0. Hence, letting k → ∞, we obtain that h+ ∈ L2(0, T1, W
1,2(RN )).

Since p < 1 + 2/(N − α1), we have that α1(p − 1) < 2 and then there exists
C(T, T1) such that for all ε > 0, wp−1 � (ε/|x|2) + C(T, T1). Taking h+ as a
test function in (6.9), we get

∂

∂t

∫
RN

h2
+(x, t) dx � C(T )

∫
RN

h2
+(x, t) dx.
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Applying Gronwall’s inequality, we immediately deduce that h+ ≡ 0 and then
ū(x, t) � w(x, t) for all t < T .

Since we have found a family of subsolutions that has finite blow-up, we can
deduce that, for p < F (λ) = 1 + 2/(N − α1), the solutions to (6.2) blow up in a
finite time.

Hence, we have shown the following result.

Theorem 6.5. Assume that p � F (λ) = 1 + 2/(N − α1). Then u blows up in a
finite time in the sense of definition 6.1.

The critical case p = F (λ) is considered in the appendix.
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Appendix A. The case when p = F (λ)

We consider the borderline case p = F (λ). The argument will be different and
technically more complicated than in the subcritical case. We follow some technical
ideas used in [20]. We argue by contradiction. Assume that u is a global solution
to problem (6.2) in such a way that, for some ball Br(0),∫

Br(0)
|x|−α1u(x, t) dx < ∞ for all t > 0.

We set v(x, t) = |x|α1u(x, t). Therefore, v satisfies

|x|−2α1vt − div(|x|−2α1∇v) = |x|−α1(p+1)vp, (A 1)

with ∫
Br(0)

|x|−2α1v(x, t) dx < ∞ for all t > 0. (A 2)

Choose θ such that 1/p < θ < 1. Let ψ ∈ C2(RN ) be a cut-off function such that

(i) ψ = 1 in B1(0), ψ = 0 in RN \ B2(0) and 0 � ψ � 1.

(ii) |∆ψ| � C(θ)ψθ.

For each l ∈ N, consider the scaled cut-off function ψl(x) = ψ(x/l). By using ψl as
a test function in (A 1), it follows that

d
dt

∫
RN

|x|−2α1vψl dx = −
∫

RN

v div(|x|−2α1∇ψl) dx +
∫

RN

|x|−α1(p+1)vpψl dx.

(A 3)
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In the following we denote by C any positive constant that is independent of v and
l ∈ N. By using the Hölder inequality, we easily find that∫

RN

v| div(|x|−2α1∇ψl)| dx

�
( ∫

RN

|x|−α1(p+1)vpψl dx

)1/p

×
( ∫

l�|x|�2l

|x|((p+1)/(p−1))α1
| div(|x|−2α1∇ψl)|p

′

ψ
1/(p−1)
l

dx

)1/p′

� Cl(N−α1)/p′−2
( ∫

RN

|x|−α1(p+1)vpψl dx

)1/p

,

where in the last estimate we have used the fact that, for 1 � l � |x| � 2l,

| div(|x|−2α1∇ψl)|p
′

ψ
1/(p−1)
l

=
(

| div(|x|−2α1∇ψl)|
ψθ

l

)p′

ψ
θp′−1/(p−1)
l

� C(θ)|x|−2p′α1 l−2p′ � C(θ)l−2p′(α1+1).

Notice that, since 1/p < θ < 1, we have θp′ − 1/(p − 1) > 0. We define

wl(t) =
∫

RN

|x|−2α1vψl dx.

Then

d
dt

wl(t) �
( ∫

RN

|x|−α1(p+1)vpψl dx

)1/p

×
[

− Cl(N−α1)/p′−2 +
( ∫

RN

|x|−α1(p+1)vpψl dx

)(p−1)/p]
. (A 4)

Using the Hölder inequality again, it follows that∫
RN

|x|−α1(p+1)vpψl dx � C0w
p
l (t)l−(p−1)(N−α1). (A 5)

We finally obtain

d
dt

wl(t) � Cwl(t)l−(N−α1)/p′
[−Cl(N−α1)/p′−2 + wp−1

l (t)l−((p−1)/p′)(N−α1)].

Since p = 1 + 2/(N − α1), we have

N − α1

p′ − 2 = −p − 1
p′ (N − α1);

hence,
d
dt

wl(t) � C1wl(t)l−2(−C2 + wp−1
l (t)). (A 6)

https://doi.org/10.1017/S0308210508000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210508000152


Hardy potential and semilinear heat equations 923

Notice that wl is an increasing function in l. Under the hypothesis that u is a global
solution, from (A 6) we necessarily have

wp−1
l (t) � C2 for all t > 0 and l > 0.

In fact, by contradiction, if for some ε > 0 there exist t0 > 0, l0 > 0 such that
wp−1

l0
(t0) � C2 + ε, then for any l � l0 we have dwl/dt > 0 at the time in which wl

is defined. Consider now the solution to the initial-value problem

y′(t) = C1y(t)l−2(−C2 + yp−1(t)), y(t0) = (C2 + ε)1/(p−1).

Since the solution blows up in an explicit finite time, T , obtained by elementary
integration and by classical comparison arguments, we conclude that there exists
T ∗ � T , such that

wl(t) ↑ ∞ as t ↑ T ∗.

But this is a contradiction of (A 2), which proves the uniform estimate for wl.
Moreover, since C2 is independent of l, by letting l → ∞ we obtain that∫

RN

|x|−2α1v(x, t) dx � C2 for all t > 0. (A 7)

Also, we have∫
RN

v| div(|x|−2α1∇ψl)| dx �
∫

l�|x|�2l

v
| div(|x|−2α1∇ψl)|

ψθ
l

ψθ
l dx

� C(θ)
l2

∫
RN

|x|−2α1v(x, t) dx � Cl−2.

Hence, from (A 3), by letting l → ∞ we conclude that

d
dt

∫
RN

|x|−2α1v(x, t) dx � 1
2

∫
RN

|x|−α1(p+1)vp(x, t) dx (A 8)

in the distributional sense.
For τ ∈ (0, 1), we write (A 6) as

dwl

dt
� C1w

1−τ l−2(−C2w
τ
l + w

p−(1−τ)
l ) (A 9)

in the distributional sense.
Next, consider φl(x) = 1 − ψl(x) and a cut-off function, ξ ∈ C∞

0 (RN ), such that
0 � ξ � 1, ξ(x) = 1 for |x| � 2 and ξ(x) = 0 if |x| � 3. Define ξk(x) = ξ(x/k).

Using φlξk as a test function in (A 1), it follows that

d
dt

∫
RN

|x|−2α1vφlξk dx

�
∫

RN

v| div(|x|−2α1∇(φlξk))| dx +
∫

RN

|x|−α1(p+1)vpφlξk dx

�
∫

RN

v| div(|x|−2α1∇φl)| dx +
∫

RN

v| div(|x|−2α1∇ξk)| dx

+
∫

RN

|x|−α1(p+1)vpφlξk dx.
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Since ∇φl = −∇ψl, by methods similar to those above, we obtain that

∫
RN

v| div(|x|−2α1∇φl)| dx � Cl−2+(N−α1)/p′
( ∫

RN

|x|−α1(p+1)vp dx

)1/p

.

Now for k � l we have∫
RN

v| div(|x|−2α1∇ξk)| dx � Ck−2
∫

RN

|x|−2α1vφl dx.

Thus, we have

d
dt

∫
RN

|x|−2α1vφlξk dx

� Cl−2+(N−α1)/p′
( ∫

RN

vp

|x|α1(p+1) dx

)1/p

+ Ck−2
∫

RN

vφl

|x|2α1
dx

+
∫

RN

|x|−α1(p+1)vpφlξk dx.

Therefore, by letting k → ∞ and by using Young’s inequality, we have that

d
dt

∫
RN

|x|−2α1vφl dx � 2
∫

RN

|x|−α1(p+1)vp dx + C3l
−2p′+N−α1 . (A 10)

Consider

A = sup
t>0,l>0

wl(t) = sup
t>0

∫
RN

|x|−2α1v(x, t) dx.

Then, using (A 7) and since u is a global solution, we obtain that 0 < A < ∞.
Since wl is increasing in l, for all ε > 0 there exist t0 � 0 and l0 � 2 such that
wl0/2(t0) � A − ε.

From (A 8) and by integrating in time, we obtain that

1
2

∫ ∞

t0

∫
RN

|x|−α1(p+1)vp dxdt � sup
t>0

∫
RN

|x|−2α1v(x, t) dx − wl0/2(t0) � ε.

Let s � t0. From (A 10), a direct computation provides∫
RN

|x|−2α1v(x, s)φl0/2(x) dx

� 2
∫ s

t0

∫
RN

|x|−α1(p+1)vp dx + C4

(
l0
2

)−2p′+N−α1

(s − t0)

+
∫

RN

|x|−2α1v(x, s)φl0/2(x) dx

� 3ε + C4

(
l0
2

)−2p′+N−α1

(s − t0).
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Now setting l = l0 in (A 9) it follows that

dwl0

dt
� C1w

1−τ l−2
0

(
− C2

( ∫
l0�|x|�2l0

|x|−2α1v dx

)τ

+ w
p−(1−τ)
l0

)

� C1w
1−τ l−2

0

(
− C2

(
3ε + C4

(
l0
2

)−2p′+N−α1

(s − t0)
)τ

+ w
p−(1−τ)
l0

)

in (t0,∞) in the distributional sense. Fix ε0 ∈ (0, A) and M > 0 such that
C2(3ε + M)τ � 1

2 (A − ε0)p−(1−τ). Then, by setting

t1 = t0 +
M

C4

(
l0
2

)2p′−(N−α1)

,

it follows that
dwl0(t)

dt
� 1

2Cl−2
0 wp

l0
(t) for all t ∈ (t0, t1)

in the distributional sense. By integration in time and using the fact that wl0(t) is
increasing for t ∈ (t0, t1), we have

wl0(t1) � wl0(t0) + 1
2Cl−2

0 (A − ε0)p(t1 − t0)

� wl0(t0) + 1
2Cl−2

0 (A − ε0)p M

C3

(
l0
2

)2p′−(N−α1)

.

Since p = 1 + 2/(N − α1), we have 2p′ − (N − α1) = 2. Therefore,

wl0(t1) � wl0(t0) + 1
2C(A − ε0)p M

C3
2−2p′+(N−α1).

We set � = 1
2C(A − ε0)p(M/C3)2−2p′+(N−α1). Then

wl0(t1) � wl0(t0) + � � A − ε0 + �.

As wl is an increasing function in l, then, using the same argument as above, we
find

w2l0(t2) � w2l0(t1) + � � A − ε0 + 2�,

where
t2 = t1 +

M

C4
l
2p′−(N−α1)
0 .

Hence, by an iteration argument it follows that

w2i−1l0(ti) � w2i−1l0(t1) + i� � A − ε0 + i�, i ∈ N,

where
ti = ti−1 +

M

C4
(2i−2l0)2p′−(N−α1).

Finally, we conclude that

sup
t>0

∫
RN

|x|−2α1v(x, t) dx � w2i−1l0(ti) � i� → ∞ as i → ∞,

a contradiction of (A 7).
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Therefore, for all initial data u0(x) � 0, u0(x) �≡ 0, there exists T < ∞ such that

lim
t↑T

∫
Br(0)

|x|−α1u(x, t) dx = +∞.

References

1 B. Abdellaoui and I. Peral. Existence and non-existence results for quasilinear elliptic equa-
tions involving the p-Laplacian with a critical potential. Annali Mat. Pura Appl. 182 (2003),
247–270.

2 B. Abdellaoui, E. Colorado and I. Peral. Existence and non-existence results for a class
of linear and semilinear parabolic equations related to some Caffarelli–Kohn–Nirenberg
inequalities. J. Eur. Math. Soc. 6 (2004), 119–148.

3 B. Abdellaoui, E. Colorado and I. Peral. Some improved Caffarelli–Kohn–Nirenberg inequal-
ities. Calc. Var. PDEs 23 (2005), 327–345.

4 P. Baras and J. Goldstein. The heat equation with singular potential. Trans. Am. Math.
Soc. 294 (1984), 121–139.

5 D. Blanchard. Truncation and monotonicity methods for parabolic equations. Nonlin.
Analysis TMA 21 (1993), 725–743.

6 D. Blanchard and F. Murat. Renormalised solutions of nonlinear parabolic problems with
L1 data: existence and uniqueness. Proc. R. Soc. Edinb. A127 (1997), 1137–1152.
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