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Abstract We investigate the special fibres of Siegel modular varieties with Iwahori level structure. On
these spaces, we have the Newton stratification, and the Kottwitz–Rapoport (KR) stratification; one
would like to understand how these stratifications are related to each other. We give a simple description
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Lusztig varieties. We also give an explicit numerical description of the KR stratification in terms of
abelian varieties.
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1. Introduction

Fix a prime number p and an integer g � 1. The moduli space Ag of principally polarized
abelian varieties is an important variety which has received a lot of attention over the
last decades. In this paper we are mainly concerned with a variant, the Siegel modular
variety Ag,I (which we usually abbreviate to AI) with Iwahori level structure at p (studied
in [8] when g = 2), which is much less understood. By definition, AI is the moduli space
of the isomorphism classes of chains of abelian varieties

(A0 → A1 → · · · → Ag, λ0, λg, η),

where the Ai are abelian varieties of dimension g, the maps Ai → Ai+1 are isogenies
of degree p, λ0 and λg are principal polarizations of A0 and Ag, respectively, such that
the pull-back of λg is pλ0, and η is a level structure away from p. See § 2 for the precise
definition. We often denote a chain of abelian varieties or even a datum as above by A•.
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We consider these spaces exclusively in positive characteristic, i.e. over Fp or an alge-
braic closure k ⊃ Fp. The same definition makes sense over the ring Zp of p-adic integers,
and in particular in characteristic zero. In fact, the motivation to study these spaces
in positive characteristic is to obtain arithmetic properties of the corresponding spaces
over Q.

We consider the following two stratifications of the space AI . The Newton stratification
is given by the isogeny type of the underlying p-divisible groups of the abelian varieties
in a chain as above. We are particularly interested in the supersingular locus, i.e. the
closed subset of points (A•, λ0, λg, η), where all the elements Ai of the chain A• are
supersingular. Although for a general Newton stratum there is little hope to achieve an
explicit geometric description, in the case of the supersingular locus one can be more
optimistic. Note that here we use the term ‘stratification’ in the very loose sense that AI

is the disjoint union of locally closed subsets; it is not true in general that the closure of
a stratum is a union of strata.

Similarly, one has the Newton stratification of the space Ag. In this case, the closure of
each stratum is a union of strata. There are a number of results describing the geometry
of the supersingular locus in Ag. For instance, it was proved by Li and Oort [32] that
the dimension of the supersingular locus is [g2/4]. There is also a formula for the number
of irreducible components, in terms of a certain class number. As further references,
besides [32] and the references given there, we mention the articles [30] by Koblitz
and [43] by the second author.

On the other hand, in the Iwahori case, which is the case considered here, currently
very little is known. Even the dimension of the supersingular locus is known only for
g � 3 (but our results in this paper and in [16] prove that for even g it is g2/2). Note
that the situation here is definitely more complicated than in the case of good reduction;
as an example, in the case g = 2, the supersingular locus coincides with the p-rank
0 locus, but it is not contained in the closure of the p-rank 1 locus. In addition, it is
not equidimensional (see [44, Proposition 6.3]). Nevertheless, a better understanding of
the geometric structure of the supersingular locus seems within reach, and is clearly an
interesting goal.

The second stratification is the Kottwitz–Rapoport stratification (KR stratification)

AI =
∐

x∈AdmI(µ)

AI,x

by locally closed subsets, which should be thought of as a stratification by singularities
(see Remark 2.3). It corresponds to the stratification by Schubert cells of the associated
local model. In terms of abelian varieties, we can express this as follows: the strata are
the loci where the relative position of the chain of de Rham cohomology groups H1

DR(A•)
and the chain of Hodge filtrations ω(A•) ⊂ H1

DR(A•) is constant. The KR stratification
on the space Ag consists of only one stratum, and hence does not provide any interesting
information. See § 2 for a reminder on the definition of the KR stratification and on
the set of strata, the so-called µ-admissible set AdmI(µ). We give the following explicit
characterization of KR strata (see Corollary 2.8).
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Theorem 1.1. Let A•, A′
• be k-valued points of AI . Denote by αji the natural map

H1
DR(Ai) → H1

DR(Aj) and by ⊥ the orthogonal complement inside H1(A0) with respect
to the pairing induced by the principal polarization on A0, and similarly for the chain A′

•.
Then the points A•, A′

• lie in the same KR stratum if and only if for all 0 � j < i � g,
one has

dim ω(Aj)/αji(ω(Ai)) = dimω(A′
j)/α′

ji(ω(A′
i)),

dim H1
DR(Aj)/(ω(Aj) + αji(H1

DR(Ai))) = dimH1
DR(A′

j)/(ω(A′
j) + α′

ji(H
1
DR(A′

i))),

and for all all 0 � i, j � g,

dim α0i(ω(Ai)) + α0j(H1
DR(Aj))⊥ = dimα′

0i(ω(A′
i)) + α′

0j(H
1
DR(A′

j))
⊥.

There is an explicit formula for these values on the stratum associated with a given
element of the µ-admissible set: see § 2.

The relationship between the Newton stratification and the KR stratification is compli-
cated. In general neither of these stratifications is a refinement of the other one. Neverthe-
less, there are some relations between them. For instance, the ordinary Newton stratum
(which is open and dense in AI) is precisely the union of the maximal KR strata. At the
other extreme, the supersingular locus is not in general a union of KR strata. However, it
is our impression that those KR strata which are entirely contained in the supersingular
locus make up a significant part of it. We call these KR strata supersingular. In § 4 we
specify the subset of superspecial strata inside the set of all KR strata. These strata are
supersingular by definition, and in [16] we prove that the set of superspecial KR strata
coincides with the set of supersingular KR strata (see Theorem 4.5). In § 6 we give a very
simple geometric description of the superspecial KR strata in terms of Deligne–Lusztig
varieties.

According to our definition (Definition 4.3), we define first what an i-superspecial KR
stratum, for 0 � i � [g/2], is, and then call a KR stratum superspecial if it is i-super-
special for some integer 0 � i � [g/2]. To give an idea, let us consider the case i = 0 to
simplify the notation. We call a KR stratum 0-superspecial, if for one (equivalently: all)
chain A• lying in this stratum, A0 and Ag are superspecial, and the isogeny A0 → Ag

given by the chain is isomorphic to the Frobenius morphism A0 → A
(p)
0 . Fix such a chain

of abelian varieties, and denote by G′ the automorphism group scheme of the principally
polarized abelian variety (A0, λ0), i.e. G′(R) = {x ∈ (End(A0) ⊗ R)×; x′x = 1}, where
x �→ x′ denotes the Rosati involution for λ0. We consider the base change of G′ over Qp;
it is an inner form of the derived group of G = GSp2g. Let Ḡ′ be the quasi-split unitary
group which arises as the maximal reductive quotient of the special fibre of the Bruhat–
Tits group scheme for the maximal parahoric subgroup of G′ which is the stabilizer of
the ‘vertex’ {0, g} of the base alcove. As indicated above, we parametrize the KR strata
by the admissible set AdmI(µ), a finite subset of the extended affine Weyl group. There
is a unique element τ of length 0 such that AdmI(µ) ⊂ Waτ , where Wa is the affine Weyl
group, a Coxeter group generated by simple reflections s0, . . . , sg. In particular, Aτ is the
unique zero-dimensional KR stratum; it is contained in the closure of every KR stratum.
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We have that wτ ∈ Adm(µ) gives rise to a 0-superspecial stratum if and only if w lies in
W{0,g}, where W{0,g} is the subgroup of Wa generated by s1, . . . , sg−1. The group W{0,g}
is isomorphic to the symmetric group Sg on g letters; we see it as the Weyl group of the
group Ḡ′. We have, by Proposition 6.1, Theorem 6.3 and Corollary 6.5, and the remark
following it, the following theorem.

Theorem 1.2. Let w ∈ W{0,g}, such that Awτ is a 0-superspecial KR stratum. We have
an isomorphism

Awτ

∼=−→
∐

x∈π(Aτ )

X(w−1),

where X(w−1) is the Deligne–Lusztig variety associated to w−1 in the flag variety of
all Borel subgroups of Ḡ′, and π is the projection AI → Ag, which maps a chain
(A•, λ0, λg, η) to (A0, λ0, η).

We also determine the number of connected components of Awτ (with w as above): see
Corollary 6.7. As indicated above, both results carry over to the case of i-superspecial
strata for any i ∈ {0, . . . , [g/2]}.

Note that the union of supersingular KR strata is an interesting subvariety of AI ,
not only because it has such a nice description, and in fact a description which links it
to representation theory. From the point of view of the trace formula, it makes sense
to restrict to a set of KR strata (which corresponds to the choice of a particular test
function) and, at the same time, to a certain Newton stratum (the latter corresponds to
making the index set of the sum smaller). It also becomes apparent through the results
of [16] that among the set of all KR strata, the superspecial ones are singled out in
several ways. For instance, all KR strata which are not superspecial, are connected.

Maybe most importantly, although the union of the supersingular KR strata is not all
of the supersingular locus, we still get a significant part. The following table backs this
up for small g. First, we have the following result on the dimension (Proposition 4.6).

Proposition 1.3. The dimension of the union of all superspecial KR strata is g2/2, if
g is even, and g(g − 1)/2, if g is odd. There is a unique superspecial stratum of this
maximal dimension.

The dimension of the whole moduli space AI is g(g + 1)/2. The dimension of the
union of all superspecial KR strata is given in Proposition 4.6; it is g2/2 if g is even, and
g(g − 1)/2 otherwise. The numbers of KR strata, and of KR strata of p-rank 0 can be
obtained from Haines’s paper [20, Proposition 8.2], together with the results of Ngô and
Genestier [33]. The dimension of the p-rank 0 locus is [g2/2] (see [16, Theorem 8.8]). It
follows in particular that for g even, the dimension of the supersingular locus is g2/2.
Note that for g = 5 we do not know the dimension of the supersingular locus; for g = 6 we
know it only because it has to lie between the dimension of the union of all superspecial
KR strata and the dimension of the p-rank 0 locus. As a word of warning one should say
that neither of these loci is equidimensional in general.

Furthermore, it can be shown that any irreducible component of maximal dimension
of the union of all superspecial KR strata is actually an irreducible component of the
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Table 1. Some numerical data.

g 1 2 3 4 5 6

number of KR strata 3 13 79 633 6331 75 973
number of KR strata of p-rank 0 1 5 29 233 2329 27 949
dimension of union of superspecial KR strata 0 2 3 8 10 18
dimension of supersingular locus 0 2 3 8 ? 18
dimension of p-rank 0 locus 0 2 4 8 12 18
dim AI 1 3 6 10 15 21

p-rank 0 locus, and hence in particular an irreducible component of the supersingular
locus. Also see the remarks at the end of § 4 and in particular [16].

Deligne–Lusztig varieties play a prominent role in the representation theory of finite
groups of Lie type. More precisely, one can realize the representations of these groups in
their cohomology (with coefficients in certain local systems). On the other hand, generally
speaking, it is suggested by the work of Boyer [5], Fargues [13], Harris and Taylor [25–27]
and others that a correspondence of Jacquet–Langlands type should be realized in the
cohomology of the supersingular locus. Of course, one will have to consider deeper level
structure. Nevertheless, since the supersingular locus (or even the union of superspecial
KR strata) is of quite high dimension, and with the link to Deligne–Lusztig varieties we
have an interesting connection to representation theory, it is of high interest to investigate
which representations occur in the cohomology of the superspecial KR strata. We remark
that the local component Πp at p of an admissible representation Πf of GSp2g(Af ) which
occurs in the cohomology of the moduli space AI has a non-zero Iwahori fixed vector.
It is proved by Borel [4] that (a) any subquotient of an unramified principal series con-
tains a non-zero Iwahori fixed vector, and (b) any irreducible admissible representation
which possesses a non-zero Iwahori fixed vector occurs as a subquotient of an unramified
principal series.

There is a third stratification on the moduli space Ag, the so-called Ekedahl–Oort
(EO) stratification. It is given by the isomorphism class of the p-torsion (as a finite
group scheme) of the underlying abelian variety (see Oort’s paper [34]). The relation-
ship between the Newton stratification and the EO stratification has been studied by
Harashita; see, for instance, [24], where Deligne–Lusztig varieties also make an appear-
ance. About the relationship between the KR stratification on AI and the EO stratifi-
cation on Ag, not much is known at present. It is easy to show that the image of every
KR stratum under the natural map is a union of certain EO strata. In particular, all
supersingular KR strata are contained in the inverse image of the union of all EO strata
which are contained in the supersingular locus of Ag. We expect that this inclusion is
strict in general. We also mention the paper [11] by Ekedahl and van der Geer, in which
the EO stratification of Ag is investigated using a flag complex Fg → Ag, which contains
part of AI . See [16] for some results about the relationship between the KR stratification
and the Ekedahl–Oort stratification.
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Deligne–Lusztig varieties also play a role in recent work of Yoshida [41] who gives a
local approach to non-abelian Lubin–Tate theory (in the case of depth 0), and of Vollaard
and Wedhorn [39,40] about the supersingular locus of the Shimura variety of GU(1, n−1)
in the case of good reduction. There is also the paper [29] by Hoeve which appeared very
shortly after the first version of the current article, where a description of Ekedahl–
Oort strata which are entirely contained in the supersingular locus is given in terms of
Deligne–Lusztig varieties. This refines the results of Harashita [24]. The relationship to
our description of superspecial KR strata is explained in [15] by Hoeve and the first
named author.

We conclude the introduction with an overview about the individual sections. In § 2,
we recall the group theoretic notation which we use, as well as the definition of local
models and of the KR stratification. We give an explicit numerical characterization of
KR strata in terms of abelian varieties (Corollary 2.8). In § 3 we assemble some results
about the minimal KR stratum. In § 4 we construct the list of superspecial KR strata,
prove that they are supersingular, and compute the dimension of their union, and in § 5
we recall the definition and some basic properties of Deligne–Lusztig varieties. The main
result about the description of the supersingular KR strata constructed in § 4 as disjoint
unions of Deligne–Lusztig varieties is given in § 6. We close with a few remarks about
generalizations to other Shimura varieties, specifically to the unitary case in § 7.

2. Local models and numerical characterization of strata

In §§ 2.1–2.4 we recall some notation and collect a number of previously known facts
about the moduli spaces we are concerned with, and the KR stratification.

2.1. The extended affine Weyl group

A general reference for this section is Rapoport’s survey paper [36]. We fix a complete
discrete valuation ring O with fraction field K, uniformizer π ∈ O, and residue class field
κ := O/πO.

The groups which are of primary interest for us in the sequel are G = GLn and
G = GSp2g. In these cases, everything is easily made explicit (and we will mostly do so,
below). It turns out that (in contrast to the general case) ‘all’ notions are well behaved
with respect to the natural embedding GSp2g ⊂ GL2g.

Let G be a split connected reductive group over O, let T be a split maximal torus,
and let B ⊇ T be a Borel subgroup of G. These data give rise to a based root datum
(X∗, X∗, R, R∨, ∆). We will assume for simplicity that it is irreducible. Denote by W =
NGT/T its Weyl group, generated by the simple reflections {sα; α ∈ ∆}. Denote by W̃ :=
X∗ �W ∼= NGT (κ((t)))/T (κ[[t]]) the extended affine Weyl group. For λ ∈ X∗ = X∗(T ), we
denote by tλ the corresponding element in W̃ . We also use the notation tλ for the element
λ(t) of G(κ((t))) (where we regard λ as a homomorphism Gm → G). We may regard the
group W̃ as a subgroup of the group A(X∗,R) of affine transformations on the space
X∗,R := X∗ ⊗Z R. The element x = tνw is identified with the function x(v) = w · v + ν

for v ∈ X∗,R. Let Sa = {sα; α ∈ ∆}∪{s0}, where s0 = t−α̃∨
sα̃ and where α̃ is the unique
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highest root. The subgroup Wa ⊆ W̃ generated by Sa is the affine Weyl group of the root
system associated with our root datum, and (Wa, Sa) is a Coxeter system.

We define a length function 
 : W̃ → Z as follows:


(wtλ) =
∑
α<0

w(α)>0

|〈α, λ〉 + 1| +
∑
α<0

w(α)<0

|〈α, λ〉|. (2.1)

This function extends the length function on Wa. We have a short exact sequence

1 → Wa → W̃ → X∗/Q∨ → 0, (2.2)

where Q∨ is the coroot lattice, i.e. the subgroup of X∗ generated by R∨. The restriction
of the projection W̃ → X∗/Q∨ to the subgroup Ω ⊆ W̃ of elements of length 0 is an
isomorphism Ω

∼=−→ X∗/Q∨. The group X∗/Q∨ is called the algebraic fundamental group
of G, and is sometimes denoted by π1(G).

We extend the Bruhat order on Wa to W̃ by declaring that

∀w, w′ ∈ Wa, τ, τ ′ ∈ Ω, wτ � w′τ ′ ⇐⇒ w � w′ and τ = τ ′. (2.3)

For an affine root β = α − n, α ∈ R, n ∈ Z, we have the hyperplane Hβ = Hα,n =
{x ∈ X∗,R; 〈α, x〉 = n} in X∗,R. An alcove is a connected component of the complement
of the union of all affine root hyperplanes inside X∗,R. There is a unique alcove lying in
the anti-dominant chamber (with respect to ∆) whose closure contains the origin. We
call this alcove the base alcove and denote it by a. The group W̃ acts on X∗,R, and since
the union of all affine root hyperplanes is stable under this action, we have an action of
W̃ on the set of alcoves. The affine Weyl group Wa acts simply transitively on the set
of alcoves, so we can identify Wa with the set of alcoves in the standard apartment X∗,R

by mapping w ∈ Wa to the alcove wa. On the other hand, the group Ω of elements of
length 0 in W̃ is precisely the stabilizer of the base alcove inside W̃ . If λ denotes the
image of the origin under τ ∈ Ω, then τw0w = tλ, where w is the longest element in the
stabilizer Wλ of λ in W , and w0 is the longest element in W .

2.2. The general linear group

Let V = Kn with standard basis e1, . . . , en, G = GLn = Aut(V ), choose T to be the
diagonal torus, and let B be the Borel subgroup of upper triangular matrices. We identify
X∗(T ) with Zn, and the Weyl group with the symmetric group Sn. The fundamental
group π1(GLn) is isomorphic to Z. The standard lattice chain over O is the chain

Λ0 = On ⊂ Λ1 ⊂ · · · ⊂ Λn−1 ⊂ Λn = π−1Λ0 (2.4)

of O-lattices in V where the lattice Λi is defined as

Λi = 〈π−1e1, . . . , π
−1ei, ei+1, . . . , en〉.

(The O-submodule in V generated by x1, . . . , xk ∈ V is denoted by 〈x1, . . . , xk〉.) We
extend the lattice chain to Λi with index set i ∈ Z by putting Λi+n = π−1Λi. The
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stabilizer of the standard lattice chain is the Iwahori subgroup I associated with B

(i.e. I is the inverse image of B(κ) under the projection G(O) → G(κ)). We call I the
standard Iwahori subgroup. The base alcove a1 corresponding to I is the alcove whose
stabilizer is I. Similarly, for the function field case, we have the standard lattice chain
λ• over κ[[t]].

We denote by F lagGLn
the affine flag variety for GLn over κ. It parametrizes complete

periodic lattice chains in κ((t))n (see [1,12] for details). Using the chain λ• as the base
point, we can identify F lagGLn

with the quotient (as fppf sheaves) of the loop group
G(κ((t))) by the stabilizer of λ•, the standard Iwahori subgroup of G(κ((t))).

Let us recall the definition of the local model attached to the general linear group
(see [37]). We refer to this case as the linear case. Fix a positive integer r, 0 < r < n,
and let M lin be the O-scheme representing the following functor. For an O-algebra R,
let

M lin(R) =
{

(Fi)i ∈
n−1∏
i=0

Grassr(Λi)(R); αi(Fi) ⊆ Fi+1 for all i = 0, . . . , n − 1
}

, (2.5)

where αi : Λi⊗R → Λi+1⊗R is the map obtained by base change from the inclusion Λi ⊂
Λi+1. In terms of the natural bases, it is given by the matrix diag(1, . . . , 1, π, 1, . . . , 1)
with the π in the (i + 1)th place. Note that we impose the condition for i = n − 1, too,
where we set Fn := F0. We can similarly define a variant M lin

J , if instead of I we use a
subset J ⊂ I as the index set, i.e. where we consider compatible families F•,J := (Fi)i∈J .

We can identify the special fibre M lin
κ of the local model with the closed subscheme{

(Li)i; tλi ⊆ Li ⊆ λi,

n∧
L0 = tn−rκ[[t]]

}
(2.6)

of the affine flag variety (it is clear how to understand the above description in a functorial
way, and that this functor coincides with the functor represented by the local model; see
also [14]). See [37, Chapter 3] for a more general definition of local models and for the
relationship to Shimura varieties and moduli spaces of p-divisible groups. From the point
of view of Shimura varieties, the local model defined above occurs in the case of unitary
groups which split over an unramified extension of Qp.

2.3. The group of symplectic similitudes

Set V := K2g and let e1, . . . , e2g be the standard basis. Denote by ψ : V × V → K the
non-degenerate alternating form whose non-zero pairings are

ψ(ei, e2g+1−i) = 1, 1 � i � g,

ψ(ei, e2g+1−i) = −1, g + 1 � i � 2g.

The representing matrix for ψ is(
0 Ĩg

−Ĩg 0

)
, Ĩg = anti-diag(1, . . . , 1).
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Let GSp2g be the group of symplectic similitudes with respect to ψ (over O or over κ,
etc., depending on the context). Denote by T the diagonal torus of GSp2g, and by B the
Borel group of upper triangular matrices.

The standard embedding GSp2g ⊂ GL2g gives us an identification of the Weyl group
W = NGT/T with a subgroup of the Weyl group of GL2g. If we identify the latter as the
symmetric group S2g in the usual way, then W is the subgroup consisting of elements
that commute with the permutation

θ = (1, 2g)(2, 2g − 1) · · · (g, g + 1). (2.7)

Similarly, we identify the cocharacter group X∗(T ) of T with the group

{(u1, . . . , u2g) ∈ Z2g | u1 + u2g = · · · = ug + ug+1}. (2.8)

The extended affine Weyl group W̃ is the semi-direct product X∗(T ) � W of the finite
Weyl group W and the cocharacter group X∗(T ). The affine Weyl group is generated
by the simple affine reflections s0, . . . , sg which we can express (with respect to the
identification W̃ ⊂ W̃GL2g = Z2g � S2g) as

si = (i, i + 1)(2g + 1 − i, 2g − i), i = 1, . . . , g − 1,

sg = (g, g + 1), s0 = (−1, 0, . . . , 0, 1)(1, 2g).

}
(2.9)

The fundamental group of GSp2g is Z. If τ denotes a generator of the subgroup Ω ⊂ W̃

of elements of length zero, then τ2 is central. In fact, τ2 is t(1,...,1) or t(−1,...,−1); later we
will work with τ such that τ2 = t(1,...,1).

Let µ = (1, . . . , 1, 0, . . . , 0) be the minuscule dominant coweight, associated with the
Shimura variety of Siegel type.

The standard lattice chains Λ• (in K2g) and λ• (in κ((t))2g) defined above are self-dual.
We define the standard Iwahori subgroup I (in GSp2g(K), and GSp2g(κ((t))), respec-
tively) to be the stabilizer of the standard lattice chain. The standard lattice chain also
gives rise to a base alcove in the apartment X∗(T )R.

We have the affine flag variety F lagGSp2g
for GSp2g which again we can define as

the quotient of the loop group GSp2g(κ((t))) by the Iwahori subgroup fixed above. The
inclusion GSp2g ⊂ GL2g induces a closed embedding of F lagGSp2g

into the affine flag
variety for GL2g. In this way, we can identify F lagGSp2g

with the locus of all self-dual
lattice chains in F lagGL2g

.
Now we want to give the definition of the local model for the symplectic group. Let

r = g, n = 2g. For this choice of r and n we get a linear local model M lin as defined
above, and we let M sympl be the O-scheme representing the functor

M sympl(R)

= {(Fi)i ∈ M lin(R); ∀i : Fi → Λi ⊗ R ∼= (Λ2g−i ⊗ R)∨ → F∨
2g−i is the zero map},

where R is any O-algebra, Λi ⊗R ∼= (Λ2g−i ⊗R)∨ is the isomorphism induced by ψ (and
the periodicity isomorphism Λ−i

∼= Λ2g−i), and (Λ2g−i ⊗ R)∨ → F∨
2g−i is the R-dual of
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the inclusion F2g−i → Λ2g−i ⊗ R. Clearly, M sympl is represented by a closed subscheme
of M lin. Because of the duality condition, it is enough to keep track of the partial chain Fi,
i = 0, . . . , g. Because of the periodicity, we can also use the lattice chain Λ−g → · · · → Λ0

instead of Λ0 → · · · → Λg.

2.4. Moduli spaces and the KR stratification

Let g � 1 be an integer, p a rational prime, N � 3 an integer with (p, N) = 1.
Choose ζN ∈ Q̄ ⊂ C a primitive Nth root of unity and fix an embedding Q̄ ↪→ Q̄p. Put
I := {0, 1, . . . , g}. Let AI be the moduli space over F̄p parametrizing equivalence classes
of objects

(A0
α−→ A1

α−→ · · · α−→ Ag, λ0, λg, η),

where

• each Ai is a g-dimensional abelian variety,

• α is an isogeny of degree p,

• λ0 and λg are principal polarizations on A0 and Ag, respectively, such that
(αg)∗λg = pλ0,

• η is a symplectic level-N structure on A0 with respect to ζN .

Put η0 := η, ηi := α∗ηi−1 for i = 1, . . . , g, and λi−1 := α∗λi for i = g, . . . , 2. Let
Ai := (Ai, λi, ηi). Then AI parametrizes equivalence classes of objects

(A0
α−→ A1

α−→ · · · α−→ Ag),

where A0 ∈ Ag,1,N , and for i �= 0,

Ai ∈ A′
g,pg−i,N := {A ∈ Ag,pg−i,N | ker λ ⊂ A[p]}.

Here Ag,d,N denotes the moduli space of abelian varieties of dimension g with a polar-
ization of degree d2 and a symplectic level-N structure. For any non-empty subset
J = {i0, . . . , ir} ⊂ I, let AJ be the moduli space over F̄p parametrizing equivalence
classes of objects

(Ai0

α−→ Ai1

α−→ · · · α−→ Air
),

where Ai0 ∈ Ag,1,N if i0 = 0, Aij
∈ A′

g,pg−ij ,N
for others, and each isogeny α is of

degree pij−ij−1 .
For J1 ⊂ J2, let πJ1,J2 : AJ2 → AJ1 be the natural projection. The transition morphism

πJ1,J2 is proper and dominant. For 1 � j � r, put kj := ij − ij−1 and put k0 := 0. There
are the following fundamental results.

Fact 2.1.

(1) The ordinary locus Aord
J ⊂ AJ is dense.

(2) The moduli space AJ has pure dimension g(g + 1)/2.

(3) The moduli space AJ has (k0 + 1)(k1 + 1) · · · (kr + 1) irreducible components.

https://doi.org/10.1017/S1474748009000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748009000218


Kottwitz–Rapoport strata and Deligne–Lusztig varieties 367

Proof. Part (1) is proved in Ngô and Genestier [33] for the case J = I and in [42]
in general. Part (2) follows from (1) (or from the flatness of the integral model of AJ ,
see [14]). Part (3) is proved in [42] in the case 0 ∈ J . However, the general case follows
easily: consider J ′ = J ∪{0} and let Aord,e

J′ ⊂ Aord
J′ be the subvariety consisting of objects

A• such that ker(A0 → Ai0) is etale. Then the argument of [42] shows that Aord,e
J′

has
∏r

i=0(ki + 1) irreducible components, and that Aord,e
J′ and Aord

J have same number
of irreducible components. This proves (3) for all J . Note that this result for the case
|J | = 1 is also obtained in de Jong [7]. �

Now let O = Zp, V = Q2g
p , and let ψ, and the lattice chain (Λi)i∈Z be as above. Put

ψ0 := ψ on Λ0 = Z2g
p . Let ψ−g be the pairing on Λ−g which is 1/p times the pull-back

of ψ0. We shall also write M loc
I for the local model M sympl associated to this lattice

chain Λ• (here I stands for the Iwahori case, i.e. I = {0, . . . , g}).
Let ÃI be the moduli space over F̄p parametrizing equivalence classes of objects (A•, ξ),

where A• ∈ AI and ξ = (ξi)i∈I : H1
DR(Ai/S) � Λ−i ⊗ OS is an isomorphism of lattice

chains which preserves the polarizations up to scalars. Taking duals, the trivializations
ξ of the chain of de Rham cohomology groups H1

DR(A•/S) are in one-to-one correspon-
dence with those of the chain of its dual HDR

1 (A•/S) with the lattice chain Λ• ⊗ OS .
Here HDR

1 (Ai/S) is the linear dual of H1
DR(Ai/S). Let GI be the group scheme over Zp

representing the functor S �→ Aut(Λ• ⊗ OS , [ψ0], [ψ−g]). The group scheme GI is smooth
and affine. This group acts on ÃI and M loc

I from the left in the obvious way.
Following Rapoport and Zink [37], we have the following local model diagram:

ÃI

ϕ1

����
��

��
�� ϕ2

����
��

��
��

AI M loc
I,F̄p

(2.10)

where

• the morphism ϕ2 is given by sending each object (A•, ξ) to the image ξ(ω•) of the
Hodge filtration ω• ⊂ H1

DR(A•); this map is GI -equivariant, surjective and smooth;

• the morphism ϕ1 : ÃI → AI is simply forgetting the trivialization ξ; this map is a
GI -torsor, and hence is smooth and affine.

Similarly we define the local model M loc
J , the moduli space ÃJ , and the group scheme

GJ for each non-empty subset J ⊂ I. We also have the local model diagram between
AJ , ÃJ and M loc

J,F̄p
and the properties as above. Although in this paper we are only

concerned with these spaces in positive characteristic, we remark that this construction
can be carried through over Zp instead of Fp.

Consider the decomposition into GI -orbits, and its pullback to ÃI :

M loc
I,F̄p

=
∐
x

M loc
I,x, ÃI =

∐
x

ÃI,x. (2.11)
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Since ϕ1 is a GI -torsor, the stratification on ÃI descends to a stratification,

AI =
∐

x∈AdmI(µ)

AI,x. (2.12)

This is called the Kottwitz–Rapoport (KR) stratification. We sometimes write Aw instead
of AI,w. The strata are indexed by the (finite) set AdmI(µ) of µ-admissible elements in
the extended Weyl group W̃ . We recall the definition:

AdmI(µ) = {x ∈ W̃ ; x � tw(µ) for some w ∈ W}. (2.13)

Kottwitz and Rapoport [31] have shown that AdmI(µ) is precisely the set of µ-permissible
alcoves (see the reminder, Definition 2.4, in the following subsection).

In fact, the set AdmI(µ) is contained in Waτ , where τ is the unique element that is less
than tµ and fixes the base alcove a. In terms of the identification of W̃ with a subgroup
of W̃GL2g = Z2g � S2g, we have

τ = t(0,...,0,1,...,1)(1, g + 1)(2, g + 2) · · · (g, 2g). (2.14)

We also note the following results.

Fact 2.2 (Ngô–Genestier [33]).

(1) Each KR stratum AI,x is smooth of pure dimension 
(x).

(2) The p-rank function is constant on each KR stratum. Furthermore, one has

p-rank(x) = 1
2# Fix(w),

where we write x = tνw and Fix(w) := {i ∈ {1, . . . , 2g}; w(i) = i} (and consider
w ∈ W ⊂ S2g).

Remark 2.3. We suggest to think of the KR stratification as a stratification by singu-
larities. One justification is the following. Let RΨQ̄	 be the sheaf of nearby cycles (where
we apply the nearby cycles functor to the constant sheaf Q̄	, 
 �= p a prime, on the
generic fibre over Qp to obtain a sheaf on the special fibre over k). Then the trace of
Frobenius on the stalks of RΨQ̄	 is constant along the KR strata. The reason is that the
stalk at a point in the special fibre, and the stalk at a point of the special fibre of the
local model corresponding to it via the local model diagram are isomorphic. On the local
model, however, the stratification is the stratification by orbits of a group action, and the
nearby cycles sheaf is equivariant for this action, so clearly the stalk, and in particular
the trace of Frobenius do not depend on the choice of point in a fixed orbit. Compare
this with § 4.1 of the paper [22] by Haines and Ngô.

However, clearly points of different strata can have the same singularity, i.e. can have
smoothly equivalent, or even isomorphic stalks. So the notion ‘stratification by singular-
ities’ has to be taken with a grain of salt.
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2.5. Numerical characterization of Schubert cells in the linear case

We recall the combinatorial description of ‘alcoves’ of [31] (which we, however, have
to adapt to our normalization). We write 1 = (1, . . . , 1) ∈ Zn. An extended alcove is a
tuple (xi)i=0,...,n−1, xi ∈ Zn such that, setting xn := x0 − 1, for all i ∈ {0, . . . , n − 1} we
have xi+1(j) = xi(j) for all but precisely one j, where xi+1(j) = xi(j) − 1.

The relationship between alcoves and extended alcoves is as follows. We identify the
fixed diagonal torus T ⊂ GLn with Gn

m in the obvious way, and correspondingly have
X∗(T ) = Zn. Hence the entries xi of an extended alcove x• can be viewed as ele-
ments of X∗(T ), and the conditions we impose ensure that they are the vertices of an
alcove in X∗(T )R. On the other hand, we can associate to each extended alcove the sum∑

j x0(j) ∈ Z = π1(GLn). The choices we made yield an identification W̃ = Sn � Zn,
and we see that W̃ acts simply transitively on the set of extended alcoves. The alcove
ω•, where ωi = (−1(i), 0(n−i)), is called the standard alcove. We use it as a base point to
identify W̃ with the set of extended alcoves. Similarly, we identify the affine Weyl group
Wa with the set of alcoves in X∗(T )R (as defined above). We obtain a commutative
diagram (the short exact sequence in the first row was discussed above)

Wa ��

∼=
��

W̃

∼=
��

�� π1(GLn)

=

��
{alcove in X∗(T )R} �� {extended alcove} �� Z

Definition 2.4 (Kottwitz and Rapoport [31]). Let µ = (1(r), 0(n−r)) be a dominant
minuscule coweight (0 � r � n). An extended alcove (x0, . . . , xn−1) is called µ-per-
missible, if for all i:

• ωi � xi � ωi + 1 (where � is understood component-wise),

•
∑

xi :=
∑n

j=1 xi(j) = n − r − i.

Given an alcove x = (x0, . . . , xn−1), we define

rij = rij(x) =
i∑

k=j+1

(ωi(k) − xi(k) + 1), i, j ∈ {0, . . . , n − 1},

where we identify {1, . . . , n} with Z/nZ and the sum is over the elements j + 1, j + 2,

. . . , i − 1, i ∈ Z/nZ. (For instance, r0,n−1 = ω0(n) − x0(n) + 1.) Since

xi(j) = rij − ri,j−1 + ωi(j) + 1,

we have the following lemma.

Lemma 2.5. The alcove x is uniquely determined by the tuple (rij(x))i,j .

Note that rii =
∑

ωi −
∑

xi + n = r is independent of x, so that we can (and often will
silently) omit the rii from the data. Let us interpret the numbers rij in terms of lattice
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chains. We know that the set of extended alcoves is in bijection with the extended affine
Weyl group, and thus with the set of Iwahori orbits in the affine flag variety. Explicitly, the
alcove (x0, . . . , xn−1) corresponds to the I-orbit of the lattice chain (Lx

0 ⊂ · · · ⊂ Lx
n−1)

with
Lx

i = 〈txi(1)e1, . . . , t
xi(n)en〉

(in fact, this lattice chain is the unique T (κ[[t]])-fixed point in the corresponding I-orbit).
Then for any µ-permissible alcove x we have

rij(x) = dimκ(Lx
i + λj′/λj′),

where j′ = j if i > j, and j′ = j − n otherwise. In fact,

dimκ(Lx
i + λj′/λj′) = #{k ∈ {1, . . . , n}; xi(k) < ωj′(k)}

= #{k ∈ [j + 1, i]; xi(k) < ωj′(k)}
= rij(x),

because xi(k) � ωi(k) for all i, k, and ωi(k) = ωj′(k) if (and only if) k �∈ [j + 1, i]. On
the other hand, if we replace the chain Lx

• by another lattice chain in the same I-orbit,
then the dimensions on the right-hand side of the above equation do not change, so we
have the following proposition.

Proposition 2.6. With respect to the natural bijection of Schubert cells (i.e. I-orbits
in F lagGLn

) and extended alcoves as above, the Schubert cell corresponding to a
µ-permissible alcove x is the locus of lattice chains L• with

dimκ(Li + λj′/λj′) = rij(x),

for all i, j.

It does not seem possible to give a simple characterization which tuples (rij) can occur
(i.e. give a non-empty locus in the affine flag variety).

With the identification of the local model with a closed subscheme of the affine flag
variety above, we see that

rij = rk(αj′−1 ◦ · · · ◦ αi)(Fi),

where the α• denote the transition maps in the local model.
It is clear that we can also use this characterization to describe the KR stratification

of the special fibre of a Shimura variety corresponding to this local model. (See below
for an explicit formulation in terms of abelian varieties of the corresponding numerical
characterization of KR strata in the Siegel case.)

2.6. Numerical characterization of Schubert cells in the symplectic case

In the symplectic case, we again use the description of alcoves as in [31], adapted to
our normalizations.
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An extended alcove for the group GSp2g is an alcove x for GL2g which satisfies the
duality condition:

xi(j) + x2g−i(2g − j + 1) = c − 1 for all i, j,

for some c = c(x) ∈ Z depending only on x (but not on i, j). Here we set x2g = x0 + 1.
In particular, the standard alcove ω satisfies this condition with c(ω) = 0. As above,
let µ = (1, . . . , 1, 0, . . . , 0) = (1(g), 0(g)). An alcove for GSp2g is µ-permissible if it is
µ-permissible for GL2g (for the same µ, interpreted as a coweight for GL2g). If x is a
µ-permissible alcove, then c(x) = 1.

As above, we define

rij = rij(x) =
i∑

k=j+1

(ωi(k) − xi(k) + 1), i, j ∈ {0, . . . , 2g − 1}.

For 0 � i � g, we have

ω2g−i(k) − x2g−i(k) + 1 = −ωi(2g − k + 1) + xi(2g − k + 1) − c(x) + 1,

so we can express all rij in terms of x0, . . . , xg (or, alternatively, in terms of xg, . . . , x2g

(= x0 + 1)). Of course, we again have, with notation as in the GL2g-case,

rij(x) = dimLx
i + λj′/λj′ .

For 0 < j < 2g we define

r2g,j(x) := dimLx
2g + λj/λj = r0j(x).

We obtain that in the symplectic case the rij for i = g, . . . , 2g, j = 0, . . . , 2g − 1, i �= j,
determine the alcove x uniquely.

Corollary 2.7. With respect to the natural bijection of Schubert cells (i.e. I-orbits
in F lagGSp2g

) and extended alcoves as above, the Schubert cell corresponding to a
µ-permissible alcove x is the locus of lattice chains L• with

dimκ(Li + λj′/λj′) = rij(x),

for all i = g, . . . , 2g, j = 0, . . . , 2g − 1, i �= j.

Finally, let us make these quantities explicit in terms of the moduli space AI of chains
of abelian varieties. Let k be an algebraic closure of Fp, and let A• ∈ AI(k). We denote by
ωi ⊂ H1

DR(Ai/k) the Hodge filtration, and by ⊥ the orthogonal complement of a subspace
of H1

DR(A0) with respect to the pairing induced by the (principal) polarization of A0.
Furthermore, we denote by αij : H1

DR(Aj) → H1
DR(Ai) the natural map (0 � i � j � g).

Corollary 2.8. Let x be a µ-admissible alcove. With notation as above, the point A•
lies in the KR stratum associated with x if and only if for all 0 � i, j � g:

dim ωj/αji(ωi) = g − r2g−i,2g−j(x) if i > j,

dim H1
DR(Ai)/(ωi + αij(H1

DR(Aj))) = j − i − r2g−i,2g−j(x) if i < j,

dim α0i(ωi) + α0j(H1
DR(Aj))⊥ = r2g−i,j(x) + j.
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Proof. Clearly, the above equalities determine all rij(x) for g � i � 2g, 0 � j � 2g − 1,
i �= j, so there is at most one x such that they are satisfied. Therefore, we only have
to check that the equalities above translate to the description of the rij in terms of
lattice chains as given above. Denote by L• the lattice chain (over k[[t]]) corresponding to
the point ω• ⊂ H1

DR(A•). To account for the contravariance, here we identify the chain
(H1

DR(Ai))i=0,...,g with the chain (λ−i/tλ−i)i=0,...,g, such that ωi gives rise to tλ−i ⊂
L−i ⊂ λ−i. Using duality and periodicity, we can extend the chain (Li)i=−g,...,0 to a
‘complete’ chain (Li)i∈Z.

We have, for i > j (i.e. g � 2g − i < 2g − j � 2g),

dim ωj/αji(ωi) = dimL−j/(L−i + tλ−j)

= dimL−j/tλ−j − dim(L−i + tλ−j)/tλ−j

= g − dim(L2g−i + λ−j)/λ−j

= g − r2g−i,2g−j(x),

and for i < j (i.e. g � 2g − j < 2g − i � 2g),

dim H1
DR(Ai)/(ωi + αij(H1

DR(Aj))) = dimλ−i/(L−i + λ−j)

= dimλ2g−i/(L2g−i + λ2g−j)

= dimλ2g−i/λ2g−j − dim(L2g−i + λ2g−j)/λ2g−j

= j − i − r2g−i,2g−j(x),

and finally, for all 0 � i, j � g (i.e. 0 � j � g � 2g − i � 2g),

dim α0i(ωi) + α0j(H1
DR(Aj))⊥ = dim(L−i + tλ0)/tλ0 + λ−2g+j/tλ0

= dim(L−i + λj−2g)/λj−2g + dimλj−2g/tλ0

= dim(L2g−i + λj)/λj + j

= r2g−i,j(x) + j.

�

This characterizes KR strata in AI by the invariants defined (and computed for g � 3)
in [45]. In fact, the invariant in the first line is σji, in the second line we have σ′

ij , and
in the third line dij , with the notation of [45]. We discuss an explicit example.

Example 2.9. Let g = 3. We write down a couple of µ-permissible alcoves, and compute
some of their invariants which appear in the corollary:

τ : (0,0,0,1,1,1), (0,0,0,0,1,1), (0,0,0,0,0,1), (0,0,0,0,0,0), (−1,0,0,0,0,0), (−1,−1,0,0,0,0)
s2s3τ : (0,1,0,1,0,1), (0,0,0,1,0,1), (0,0,0,0,0,1), (0,0,0,0,0,0), (−1,0,0,0,0,0), (−1,0,−1,0,0,0)
s1τ : (0,0,0,1,1,1), (0,0,0,0,1,1), (0,0,0,0,1,0), (0,0,0,0,0,0), (0,−1,0,0,0,0), (−1,−1,0,0,0,0)
s0s1τ : (0,0,0,1,1,1), (0,0,0,0,1,1), (−1,0,0,0,1,1), (−1,0,0,0,0,1), (−1,−1,0,0,0,1), (−1,−1,0,0,0,0)
s2s0s1τ : (0,0,0,1,1,1), (0,0,0,1,0,1), (−1,0,0,1,0,1), (−1,0,0,0,0,1), (−1,0,−1,0,0,1), (−1,0,−1,0,0,0)
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So τ coincides with the base alcove ω• up to a shift, and we obtain the other alcoves
by applying the corresponding simple reflections (using their description in (2.9)). With
these descriptions, it is straightforward to compute all the invariants rij , and also those
in the corollary above, for instance we obtain

σ02 σ′
02 σ03 σ′

03 d12

τ 2 2 3 3 2
s2s3τ 2 1 3 2 3
s1τ 2 2 3 3 2
s0s1τ 1 2 2 3 2
s2s0s1τ 1 2 2 3 3

As claimed, these values agree with those obtained in [45].

3. The minimal KR stratum

3.1. The unitary group

Let k be a fixed algebraic closure of Fp, and let x0 = (A0, λ0) be a g-dimensional super-
special principally polarized abelian variety over k. Denote by Gx0 the automorphism
group scheme over Z associated to x0; for any commutative ring R, the group of its
R-valued points is

Gx0(R) = {x ∈ (End(A0) ⊗ R)×; x′x = 1}, (3.1)

where x �→ x′ is the Rosati involution induced by λ0. Let (M0, 〈· , ·〉0) be the Dieudonné
module of x0. Let

M̃0 := {m ∈ M0; F 2m + pm = 0} (3.2)

be the skeleton of M0; this is a Dieudonné module over Fp2 together with a quasi-
polarization induced from M0, and one has M̃0 ⊗W (Fp2 ) W (k) = M0. Here W (·) denotes
the ring of Witt vectors over the respective field. We can choose a basis e1, . . . , e2g (in M̃0)
for M0 such that

Feg+i = −ei and Fei = peg+i, ∀i = 1, . . . , g, (3.3)

and the representing matrix for 〈· , ·〉0 is(
0 Ĩg

−Ĩg 0

)
, Ĩg = anti-diag(1, . . . , 1).

Let V0 := M̃0/V M̃0 and pr : W (k) → k be the natural map. Define ϕ0(x, y) := 〈x, Fy〉0
and ϕ̄0 := pr(ϕ0) on M0. The pairing ϕ̄0 induces a non-degenerate Hermitian Fp-bilinear
form (again denoted by)

ϕ̄0 : V0 × V0 → Fp2 .
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Indeed, using the basis {eg+1, . . . , e2g} for V0, the pairing ϕ0 is simply given by

ϕ̄0((ai), (bi)) =
∑

i

aib̄g+1−i.

Denote by Ḡ0 the unitary group U(V0, ϕ̄0) over Fp. One should note that the group
Aut(M0/V M0, ϕ0) consisting of elements h ∈ Aut(M0/V M0) that preserve the pairing
ϕ0 is not Ḡ0(k) but rather Ḡ0(Fp), a finite group. Indeed, using the basis {eg+1, . . . , e2g},
one shows that the group Aut(M0/V M0, ϕ0) is the group of all h ∈ GLg(k) such that
ht · Ĩgh

(p) = Ĩg, and since these h automatically lie in GLg(Fp2), it is precisely Ḡ0(Fp).

3.2. Let Bp be the quaternion division algebra over Qp and OBp
be its ring of integers.

We choose a presentation

OBp = W (Fp2)[Π], Π2 = −p and Πa = aσΠ, ∀a ∈ W (Fp2).

We can write M̃0 =
⊕g

i=1 OBpfi, where fi = eg+i and Π acts by the Frobenius F . We
have Π∗ = V = −F = −Π, where ∗ is the canonical involution. One easily computes

(α + βΠ)∗ = ασ + Π∗β∗ = ασ − βΠ.

By Tate’s theorem on homomorphisms of abelian varieties and Dieudonné modules, we
have the identifications

Gx0(Zp) = AutDM(M0, 〈· , ·〉0) = AutOBp
(M̃0, 〈· , ·〉0). (3.4)

We also have
Gx0 ⊗ Fp = AutOBp

(M̃0 ⊗Zp
Fp, 〈· , ·〉0), (3.5)

regarded as algebraic groups over Fp. Since the subspace V M̃0/pM̃0 is stable under the
action of Gx0 ⊗ Fp, we have a homomorphism of algebraic groups

ρ : Gx0 ⊗ Fp → Aut(V0). (3.6)

The following lemma is easily verified.

Lemma 3.1.

(1) One has ϕ0(y, x) = ϕ0(x, y)σ for x, y ∈ M̃0.

(2) If a ∈ W (Fp2), then ϕ0(ax, y) = ϕ0(x, a∗y) for x, y ∈ M̃0. If a ∈ W (Fp2)Π, then
ϕ0(ax, y) = ϕ0(x, a∗y)σ for x, y ∈ M̃0. Consequently, we have

trW (Fp2 )/Zp
ϕ0(ax, y) = trW (Fp2 )/Zp

ϕ0(x, a∗y), ∀a ∈ OBp and x, y ∈ M̃0.

(3) An element h in AutOBp
(M̃0) preserves the pairing 〈· , ·〉0 if and only if it pre-

serves the pairing ϕ0. Consequently, the homomorphism ρ factors through the sub-
group Ḡ0.

(4) The homomorphism Gx0(Zp) = AutDM(M0, 〈· , ·〉0) → Ḡ0(Fp) is surjective.

(5) The homomorphism ρ induces an isomorphism ρ : (Gx0 ⊗ Fp)red � Ḡ0, where
(Gx0 ⊗ Fp)red denotes the maximal reductive quotient of Gx0 ⊗ Fp.
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3.3. Let d be an integer with 0 � d � g, and let M be a Dieudonné module over k with

V M0 ⊂ M ⊂ M0 and dimk M/V M0 = d.

The subspace M/V M0 defines an element in the Grassmannian Grassd(V0)(k) of d-dimen-
sional subspaces of V0.

Lemma 3.2. Notation as above, the Dieudonné module M is superspecial if and only
if M/V M0 ∈ Grassd(V0)(Fp2).

Proof. See [43, Lemma 6.1]. �

3.4. Let

gτ =

(
0 Ig

−pIg 0

)

be a representative in GSp2g(W (k)) for the double coset corresponding to τ ∈ W̃ , the
unique minimal element in the admissible set AdmI(µ). This gives rise to a point in the
local model M loc

I (k) described as follows (where Λ̄i = Λi/pΛi):

Λ̄−g −→ · · · −→ Λ̄−1 −→ Λ̄0

∪ ∪ ∪
L̄−g −→ · · · −→ L̄−1 −→ L̄0

with

L̄0 = 〈e1, . . . , eg〉, L̄−1 = 〈e1, . . . , eg−1, e2g〉,
L̄−2 = 〈e1, . . . , eg−2, e2g−1, e2g〉, . . . , L̄−g = 〈eg+1, . . . , e2g〉.

Here, in the description of L−i, e1, . . . , e2g is the standard basis of Λ̄−i. In other
words, we can define L−i as the image of Λ̄−g−i in Λ̄−i. Denote by αi,j : Λ−j → Λ−i

the composition. By duality we can extend the lattice chain (L−i)i=0,...,g to a complete
periodic lattice chain (Li)i∈Z. We then have

αi,g+i(L̄−g−i) = 0, ∀i = 0, . . . , g. (3.7)

We see that
α0,i(Λ̄−i)⊥ = α0,i(L̄−i), ∀i = 0, . . . , g, (3.8)

where ⊥ stands for the orthogonal complement with respect to ψ0. Note that

α0,i(Λ̄−i)⊥ = α0,g+i(Λ̄−g−i).

The condition (3.8) is equivalent to

αi,g+i(Λ̄−g−i) = L̄−i, ∀i = 0, . . . , g. (3.9)

Conversely, the condition (3.9) or (3.8) characterizes whether a point (L̄•) of M loc
I (k)

lies in the minimal stratum Aτ = AI,τ .
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Proposition 3.3. Let x = (A0 → · · · → Ag) ∈ AI(k) be a geometric point and M• =
(M−g ⊂ M−g+1 ⊂ · · · ⊂ M0) be the corresponding chain of Dieudonné modules. Let
M̄−i := M−i/pM0 for i = 0, . . . , g. Then x ∈ Aτ if and only if

〈M̄−1, FM̄−g+1〉0 = 〈M̄−2, FM̄−g+2〉0 = · · · = 〈M̄−g+1, FM̄−1〉0 = 0. (3.10)

Proof. We choose an isomorphism ξ : M• � Λ• ⊗ W (k) compatible with polarizations.
We have

0 = M̄⊥
0 ⊂ M̄⊥

−1 ⊂ · · · ⊂ M̄⊥
−g−1 ⊂ M̄⊥

−g = M̄−g ⊂ · · · ⊂ M̄0.

The condition (3.8) says that

V M̄−i = M̄⊥
−g+i, ∀i = 0, . . . , g.

It follows from the discussion above that x ∈ Aτ if and only if the condition

〈M̄−g+1, V M̄−1〉0 = 〈M̄−g+2, V M̄−2〉0 = · · · = 〈M̄−1, V M̄−g+1〉0 = 0 (3.11)

holds. The condition (3.11) is the same as the condition (3.10). This proves the proposi-
tion. �

Lemma 3.4. Let x = A• ∈ AI(k) be a geometric point and let M• be the chain of asso-
ciated Dieudonné modules. Fix an element i ∈ I. Suppose that there is an isomorphism
ξ : M• � Λ• ⊗ W (k), compatible with the polarizations, such that ξ(V M̄−i) = L̄−i and
ξ(V M̄−g+i) = L̄−g+i, where L̄• ⊂ Λ̄• is the point gτ ∈ M loc

I (Fp). Then both M−i and
M−g+i are superspecial.

Proof. Let M−g−i be the dual Dieudonné module of M−g+i with respect to the pair-
ing (1/p)〈· , ·〉0. It follows from (3.9) that M−g−i = V M−i. It follows from (3.7) that
V M−g−i = pM−i. This shows V 2M−i = pM−i. Therefore, M−i is superspecial. The
same argument shows that M−g+i is also superspecial. �

Theorem 3.5. Let x = A• ∈ AI(k) be a geometric point and let M• be the chain of
associated Dieudonné modules. Then x ∈ Aτ if and only if

(i) each Mi is superspecial, and

(ii) the subspace M̃−i/V M̃0 ⊂ V0 is isotropic with respect to ϕ̄0 for i � �g/2� and
M̃−i/V M̃0 = (M̃−g+i/V M̃0)⊥ with respect to ϕ̄0 for i < �g/2�.

Proof. If every Mi is superspecial, then the condition (ii) is equivalent to the condi-
tion (3.10). On the other hand, the lemma above shows that for x = A• ∈ Aτ , all the
Dieudonné modules of the Ai are superspecial. �

Remark 3.6. We have the following variant of the characterization of the minimal KR
stratum in the moduli space AI . Let x and M• be as in Theorem 3.5. We extend the chain
of Dieudonné modules M• to (M−i)0�i�2g using duality (as in the proof of Lemma 3.4).
Then x ∈ Aτ if and only if FM−i = M−g−i for all i = 0, . . . , g.
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We denote by Λg,1,N the set of superspecial points in the moduli space Ag,1,N (k).

Corollary 3.7.

(1) Let x, x′ be two points in Aτ and let M•, M ′
• be the corresponding chains

of Dieudonné modules. Then we have an isomorphism M• � M ′
• as chains of

Dieudonné modules with quasi-polarizations.

(2) We have #Aτ (k) = #Λg,1,N · #(Ḡ0/B0)(Fp), where B0 is any Borel subgroup of
Ḡ0 over Fp.

Proof. (1) Since (M0, 〈· , ·〉0) and (M ′
0, 〈· , ·〉′

0) are isomorphic (Theorem 3.5), we can
assume that M0 = M ′

0 and M−g = M ′
−g. Since the group Ḡ0(Fp) acts transitively on

the space of maximal chains of isotropic subspaces of V0 with respect to ϕ̄0, there is
an h̄ ∈ Ḡ0(Fp) such that h̄(M−i/M−g) = (M ′

−i/M−g) for all i (Theorem 3.5). Since
the map AutDM(M0, 〈· , ·〉0) → Ḡ0(Fp) is surjective (Lemma 3.1 (4)), there is an element
h ∈ AutDM(M0, 〈· , ·〉0) such that h(M−i) = (M ′

−i) for all i.

(2) This follows immediately from (1) and Theorem 3.5. �

There is an explicit formula for the number #(Ḡ0/B0)(Fp), in fact, slightly more
generally, we have the following lemma.

Lemma 3.8. We have, for any p-power q,

#(Ḡ0/B0)(Fq) =
g∏

i=1

1 − (−q)i

1 − (−1)iq
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d∏
i=1

(q2i − 1)(q2i−1 + 1)
(q2 − 1)

if g = 2d is even,

d∏
i=1

(q2i − 1)(q2i+1 + 1)
(q2 − 1)

if g = 2d + 1 is odd.

Proof. This is just a computation about the unitary group over a finite field, which
we omit here. The result can also be extracted from the general theorems in Carter’s
book [6, Chapter 14]. �

Using the mass formula for #Λg,1,N due to Ekedahl and Hashimoto-Ibukiyama (cf. [43,
§ 3])

#Λg,1,N = # Sp2g(Z/NZ)
(−1)g(g+1)/2

2g

g∏
i=1

[ζ(1 − 2i)(pi + (−1)i)], (3.12)

we get the following proposition.

Proposition 3.9.

#Aτ (k) = # Sp2g(Z/NZ) · (−1)g(g+1)/2

2g

g∏
i=1

[ζ(1 − 2i)(pi + (−1)i)] · Lp, (3.13)
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where

Lp =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d∏
i=1

(p2i − 1)(p2i−1 + 1)
(p2 − 1)

if g = 2d is even,

d∏
i=1

(p2i − 1)(p2i+1 + 1)
(p2 − 1)

if g = 2d + 1 is odd.

One can give similar formulae in the case of arbitrary parahoric level structure
(see [17]). In § 6 we will give similar formulae for the numbers of connected components
of some other KR strata (which are contained in the supersingular locus).

4. Supersingular KR strata

4.1. Recall that the affine Weyl group Wa (of G = GSp2g) is generated by the sim-
ple affine reflections s0, . . . , sg. See (2.9) for an explicit description. Denote by τ ∈ Ω

the length 0 element of W̃ with tµ ∈ Waτ . We can represent it by the matrix gτ as
in § 3.4 (or rather its analogue over k[[t]]). We use the notation for extended alcoves
as introduced in § 2, and identify the extended affine Weyl group W̃ with the set of
extended alcoves. For instance, we have τ = (τi)i with τi = (0(g+i), 1(g−i)) for i = 0, . . . , g,
τi = (−1(i−g), 0(2g−(i−g))) for i = g, . . . , 2g.

Definition 4.1. For 0 � i � [g/2], denote by W{i,g−i} the subgroup of Wa generated by
all simple reflections excluding si and sg−i.

Lemma 4.2. The map w �→ wτ yields a bijection

W{i,g−i}
∼−→ {x ∈ Adm(µ); xi = τi, xg−i = τg−i}.

Proof. It is easy to see that the map w �→ wτ induces a bijection

W{i,g−i}
∼−→ {x ∈ W̃ ; xi = τi, xg−i = τg−i}.

Hence it only remains to show that all elements x of the set on the right-hand side are in
fact µ-admissible. We need to check that ωj � xj � ωj +1 for all j. Now we have ωj � τi

whenever j � i − g, and τi � ωj + 1 whenever j � i + g. Since xi = τi, and xg−i = τg−i

by assumption, we have
ωj � τi � xj � τ−i � ωj + 1

for −i � j � i, and we have similar inequalities for i � j � g − i, g − i � j � g + i,
etc. �

Definition 4.3.

(1) We call a KR stratum supersingular if it is contained in the supersingular locus.

(2) For 0 � i � [g/2], we call a KR stratum i-superspecial if for all k-valued points A• in
the concerning stratum, Ai and Ag−i are superspecial, and the isogeny Ai → A∨

g−i
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is isomorphic to the Frobenius morphism Ai → A
(p)
i , i.e. if there is a commutative

diagram
Ai

=

��

�� A∨
g−i

∼=
��

Ai
F �� A(p)

i

(3) We call a stratum superspecial, if it is i-superspecial for some i.

Proposition 4.4. The KR stratum associated with w ∈ Adm(µ) is i-superspecial if and
only if w ∈ W{i,g−i}τ .

In particular, for all w ∈
⋃

i W{i,g−i}, the KR stratum associated with wτ is supersin-
gular.

Proof. Let w ∈ W{i,g−i}. The lemma above gives us that (wτ)i = τi, (wτ)g−i = τg−i.
Since the lattices of the standard lattice chains are fixed by I, this means that for all
chains L• in the Schubert cell corresponding to wτ , we have Li = Λi−g, Lg−i = Λ−i.
Now Lemma 3.4 implies that the KR stratum associated with wτ is i-superspecial.

On the other hand, suppose w ∈ Adm(µ) gives rise to an i-superspecial stratum. It
follows that for all lattice chains L• in the corresponding Schubert cell, Li = λi−g = τλi

and Li = τλi. Hence the preceding lemma yields the proposition. �

In [16], we prove that every KR stratum which is entirely contained in the supersingular
locus, is superspecial. The proof relies on exploiting the relationship between the KR
stratification and the Ekedahl–Oort stratification of Ag.

Theorem 4.5 (Görtz and Yu [16, Corollary 7.4]). If x ∈ Adm(µ) gives rise to a
supersingular KR stratum, then x lies in

⋃
i W{i,g−i}τ , i.e. the stratum corresponding to

x is superspecial.

This theorem can also be understood as a statement about the non-emptiness of cer-
tain affine Deligne–Lusztig varieties: for all x ∈ Adm(µ) �

⋃
i Wi,g−iτ , there exists a σ-

conjugacy class [b] different from the supersingular class, such that Xx(b) �= ∅ (see [21,
Proposition 12.6] and [18, 5.10]). From this point of view, one can check the corresponding
statement in the function field case (using a computer program which evaluates foldings
of galleries; cf. [21]) for g � 4. With the algorithms known to us, the case g = 5 is out of
reach.

Finally, we note the following proposition, which in particular gives a lower bound on
the dimension of the supersingular locus in AI . In all cases where we know the latter
dimension, this bound turns out to be sharp. The bound also shows that the codimension
of the supersingular locus is much smaller in the Iwahori case than in the case of good
reduction, i.e. the case of Ag.

Proposition 4.6. The dimension of the union of all superspecial KR strata is g2/2, if
g is even, and g(g − 1)/2, if g is odd. There is a unique superspecial stratum of this
maximal dimension.
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380 U. Görtz and C.-F. Yu

Proof. Let 0 � i � [g/2]. The Weyl group W{i,g−i} is isomorphic to the product of two
copies of the Weyl group of the symplectic group Sp2i, and one copy of the Weyl group
of SLg−2i. For the former groups, the longest element has length i2, for the latter one it
has length (g − 2i)(g − 2i − 1)/2, so the longest element of W{i,g−i} has length

2i2 +
(g − 2i)(g − 2i − 1)

2
=

(
2i − 2g − 1

4

)2

+
4g2 − 4g − 1

16
.

This parabola has its global minimum at i = g/4 − 1/8, so restricted to the set
{0, 1, . . . , [g/2]}, it takes its maximum at i = 0 if g is odd, and at i = [g/2] = g/2,
if g is even. Correspondingly, the maximum value is g(g − 1)/2 if g is odd, and g2/2 if g

is even. �

As pointed out in the introduction, comparing this dimension with the dimension of
the p-rank 0 locus, one can prove that for all even g (and also for g = 1) the supersingular
locus and the union of all superspecial KR strata have the same dimension.

One should note however that this locus is not at all equidimensional. In fact, it has
[g/2] maximal superspecial KR strata, corresponding to the longest elements of the Weyl
groups W{i,g−i}. The supersingular locus is not equidimensional either, in general (and
even for g = 2).

In [16, Theorem 8.8] we prove that the dimension of the p-rank 0 locus is [g2/2]. We
also show that every irreducible component of maximal dimension of the union of all
superspecial KR strata is actually an irreducible component of the p-rank 0 locus, and
hence in particular an irreducible component of the supersingular locus. Furthermore, if
g is even, then every top-dimensional irreducible component of the supersingular locus
is of this form.

5. Deligne–Lusztig varieties

5.1. Reminder on Deligne–Lusztig varieties

We first introduce the notation used in this section. Let G be a connected reductive group
over a finite field Fq. We fix an algebraic closure k of Fq. Let T ⊂ G be a maximal torus
defined over Fq, and B a Borel subgroup of G defined over Fq and containing T . Denote
by W the Weyl group NGT (k)/T (k). Let σ denote the Frobenius x �→ xq on k, and also
the Frobenius on G(k). Below we often silently identify G, B, G/B, etc., with their sets
of k-valued points.

We consider the relative position map

inv : G/B × G/B → W,

which maps a pair (g1, g2), g1, g2 ∈ G(k) to the unique element w such that g−1
1 g2 ∈ BwB.

With a little more effort, introducing the Weyl group of G (as the projective limit over
all isomorphisms between Weyl groups for pairs (T, B) as above), one can make this
independent of the choice of a torus, in some sense. For us, working with a fixed torus is
good enough, however. We recall the definition of Deligne–Lusztig varieties.
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Definition 5.1 (Deligne and Lusztig [9]). Let w ∈ W . The Deligne–Lusztig variety
associated to w is

X(w) = {g ∈ (G/B)(k); inv(g, σg) = w}.

Then X(w) is a locally closed subvariety of G/B, which is smooth of pure dimension

(w), the length of w.

5.2. ‘Local model diagram’ for Deligne–Lusztig varieties

We use the notation of the previous section. Consider the diagram

G/B
π−→ G

L−→ G/B,

where π is the projection, and L is the concatenation of the Lang isogeny G → G,
g �→ g−1σ(g), with the projection. Both maps in this diagram are smooth, of the same rel-
ative dimension, and under these maps, Deligne–Lusztig varieties and Schubert cells cor-
respond to each other: π−1(X(w)) = L−1(BwB/B). For example, this implies instantly
that X(w) is smooth of pure dimension 
(w).

In particular, we see that the singularities of the closure of X(w) are smoothly equiv-
alent to the singularities of the Schubert variety BwB/B. This gives a simpler approach
to some of the results of Hansen [23].

5.3. Connected components of Deligne–Lusztig varieties

There is the following result by Lusztig (unpublished) about the irreducibility (or,
equivalently, connectedness) of Deligne–Lusztig varieties; see [10, Proposition 8.4] by
Digne and Michel or [2, Theorem 2] by Bonnafé and Rouquier, where the more general
case of Deligne–Lusztig varieties in G/P for a parabolic subgroup P ⊂ G is also consid-
ered. Let S ⊂ W denote the set of simple reflections (for our choice of Borel group B).
For any subset J ⊆ S, we have the standard parabolic subgroup WJ ⊆ W generated
by the elements of J . (Note that the notation here, which is the usual one, differs from
the notation W{i,g−i} used in the previous section.) The Frobenius σ acts on the Weyl
group W .

Fact 5.2. Let w ∈ W . The Deligne–Lusztig variety X(w) is irreducible if and only if w

is not contained in any proper σ-stable standard parabolic subgroup of W .

The following corollary gives the number of irreducible components of an arbi-
trary X(w); it follows easily from the results in [2].

Corollary 5.3. Let w ∈ W , and let WJ , J ⊆ S, be the minimal F -stable standard
parabolic subgroup of W which contains w. Let PJ = BWJB be the associated parabolic
subgroup. Then the number of irreducible components of X(w) is #(G/PJ)(Fq).

In the corollary, we allow J = S, in which case PJ = G (and in fact X(w) is irreducible
by the theorem).
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Proof. As in the proof of the ‘only if’ half of [2, Theorem 2], we consider the projection
p : G/B → G/PJ . It is easy to see (see [2]) that

p(X(w)) = XJ(1) := {g ∈ G/PJ(k); g−1σ(g) ∈ PJ}.

Note that this proves that X(w) is not connected unless J = S.
To prove the corollary, we need to show that the fibres of the restriction X(w) → XJ(1)

of p are connected. Because this morphism is equivariant under the G(Fq)-actions on both
sides, it is enough to consider the fibre over 1. Let πJ : PJ → PJ/Ru(PJ) =: MJ be the
projection to the maximal reductive quotient of PJ . The image of T and B under πJ are
a maximal torus and a Borel subgroup of MJ . The Weyl group of MJ (with respect to
this maximal torus) can be naturally identified with WJ . In particular, we can consider
w as an element of the Weyl group of MJ . Since PJ/B = MJ/πJ(B), we have

(p|X(w))−1(1) = {g ∈ PJ/B; g−1σ(g) ∈ BwB}
∼= {g ∈ MJ/πJ(B); g−1σ(g) ∈ πJ(B)wπJ(B)}.

Since by the definition of J , w is not contained in any proper F -stable standard parabolic
subgroup of WJ , Fact 5.2 implies that this fibre is irreducible, as we had to show. �

5.4. Affineness of Deligne–Lusztig varieties

We conclude by recalling some results about the affineness of Deligne–Lusztig varieties.
Haastert has shown that every X(w) is quasi-affine (see [19, Satz 2.3]). This is proved by
constructing an ample line bundle on G/B whose restriction to X(w) is trivial. Deligne
and Lusztig have given a criterion of the affineness of X(w) in terms of the underlying root
system. This implies in particular that X(w) is affine whenever the cardinality q of the
residue class field is greater or equal than the Coxeter number of G (see [9, Theorem 9.7]).
For further results in this direction see the recent papers by Orlik and Rapoport [35],
He [28] and by Bonnafé and Rouquier [3].

6. Geometric structure of supersingular KR strata

6.1. Supersingular KR strata are disjoint unions of DL varieties

Fix a point A• in the minimal KR stratum. We denote by G′ the automorphism group
of (A0, λ0), an inner form of G = Sp2g which splits over Qp2 ; this group was denoted by
Gx0 in § 3. Denote by L the completion of the maximal unramified extension of Qp. We
identify G(L) = G′(L), and keep track of the difference between the two groups by means
of the two different Frobenius actions. Denote the Frobenius on G(L) giving rise to the
split form by σ, and the Frobenius giving rise to G′ by σ′ = Int(b) ◦ σ, for a suitable
b ∈ GSp2g(L).

To make things completely explicit, we identify the chain of Dieudonné modules M(Ai)
of the Ai, i = 0, . . . , g (inside their common isocrystal), with the standard lattice chain
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Λ−i, i = 0, . . . , g (inside V = L2g) (cf. §§ 2.2 and 3.1). As above, we identify G with
Sp(V, 〈· , ·〉0), where 〈· , ·〉0 is given by

(
0 Ĩg

−Ĩg 0

)
, Ĩg = anti-diag(1, . . . , 1).

With the notation of § 3.4, we have b = −gτ . We can (and do) choose the identification
of M(Ai) with Λ−i such that the Frobenius F on M(Ai) corresponds to bσ with

b =

(
0 −Ig

pIg 0

)
.

This is consistent with the setup in § 3.1; see (3.3). We have σ′ = Int(b) ◦ σ with this b.
The Iwahori subgroup associated with our chain is the standard Iwahori subgroup I = I ′

in G(L) = G′(L).
Denote by I = {0, . . . , g} the set of vertices of the extended Dynkin diagram (of type

C̃g, see the following figure):

0 1 2 g − 2 g − 1 g

• • • . . . • • •

The Galois group Gal(Qp2/Qp) acts on this set, considered as the extended Dynkin
diagram of G′. Specifically, the non-trivial element induces the map i �→ g − i on I.
For each non-empty subset J ⊆ I we have the parahoric subgroup PJ ⊂ G(L) of G,
which we define as the subgroup generated by the Iwahori subgroup I and the affine
simple reflections si, i �∈ J . (Note that this notation is not the usual one (where PJ

would be the subgroup generated by I and sj for j ∈ J); in particular, for us PI =
I.) If the subset J is Galois stable, then PJ is at the same time the underlying set
of a parahoric subgroup P ′

J of G′. We denote by P ′
J the corresponding smooth group

scheme in the sense of Bruhat–Tits theory, and by Ḡ′
J the maximal reductive quotient

of the special fibre of P ′
J . (For instance, Ḡ′

{0,g} is the group denoted by Ḡ0 in § 3.1, see
Lemma 3.1.)

The Dynkin diagram of Ḡ′
J is obtained from the extended Dynkin diagram C̃g by

deleting the vertices in J . The group Ḡ′
J is not split, but splits over Fp2 . The Frobenius

of Fp2 over Fp is induced from the Frobenius Int(b) ◦ σ on G′(L). In particular, it acts
on the Dynkin diagram by i �→ g − i (cf. [38]).

The diagonal maximal torus in G is σ′-stable, and hence can be considered as a (non-
split) maximal torus of G′ over Qp. Similarly, the standard Borel subgroup B ⊆ G(L)
‘is’ a Borel subgroup of G′. Especially, we can identify the Weyl groups of G and G′ with
respect to these maximal tori. The fixed maximal torus of G′ gives rise to a maximal
torus of Ḡ′

J , and the Weyl group W̄ ′
J of Ḡ′

J with respect to this torus is isomorphic to
the parabolic subgroup WJ ⊂ Wa corresponding to J .
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Let B̄′
J ⊂ Ḡ′

J be the image of the Iwahori group I ′ = P ′
I ⊂ G′ in Ḡ′

J ; this is a Borel
subgroup of Ḡ′

J . We have a commutative diagram

P ′
I × P ′

J/P ′
I

��

��

B̄′
J × Ḡ′

J/B̄′
J

��
P ′

J/P ′
I

∼= �� Ḡ′
J/B̄′

J

which shows that there is a 1 : 1 correspondence between the P ′
I -orbits in P ′

J/P ′
I and the

B̄′
J -orbits in Ḡ′

J/B̄′
J . This correspondence is compatible with our identification of WJ

and W̄ ′
J . In the sequel, we denote by A•,J the partial chain (Ai)i∈J .

Proposition 6.1. Let J ⊆ I be a non-empty Frobenius-stable subset. Let πJ,I : AI →
AJ be the projection, see § 2.4. We have an isomorphism

π−1
J,I(A•,J)

∼=−→ Ḡ′
J/B̄′

J

of schemes over k, where A• is the point in the minimal KR stratum fixed above.

Proof. The space on the left-hand side consists of all chains B• ∈ AI with Bj = Aj

for j ∈ J (and such that the isogenies Bj → Bj′ for j, j′ ∈ J coincide with the fixed
isogenies Aj → Aj′). Let J̃ = {±j + 2gk; j ∈ J, k ∈ Z}. We extend the chains A•, B•
by duality so that they have index set Z; then Ai = Bi for all i ∈ J̃ .

Denote by ωi ⊂ H1
DR(Bi) the Hodge filtration. The Hodge filtration of Ai is just the

image of H1
DR(Ai+g) in H1

DR(Ai). For j ∈ J , we obtain that ωj is the image of H1
DR(Bj+g)

in H1
DR(Bj).

Now let S be a k-scheme. To an S-valued point B• ∈ π−1
J,I(A•,J) and elements j0 < j1

of J̃ , such that no i, j0 < i < j1, lies in J̃ , we can associate the flags

0 � α(ωj1−1) � α(ωj1−2) � · · · � α(ωj0+1) � H1
DR(Aj0+g)/H1

DR(Aj1+g)

= Λ̄−j0−g/Λ̄−j1−g,

where by abuse of notation, for every i, j0 < i < j1, we denote by α(ωi) the image of
ωi in ωj0/ωj1 = H1

DR(Aj0+g)/H1
DR(Aj1+g). Since the number of steps is equal to the

dimension of the space on the right-hand side, and because the dimension difference at
each step is at most 1, it must indeed be equal to 1, which means that we have strict
inclusions at each step, as indicated above. Taking into account the periodicity and the
duality conditions, it is clear that the collection of these flags is the same as an S-valued
point of Ḡ′

J/B̄′
J . In particular, we obtain a morphism π−1

J,I(A•,J) → Ḡ′
J/B̄′

J (over k).
Now let K ⊇ k be any perfect field. We want to show that the morphism we constructed

is bijective on K-valued points. We use the description of K-valued points of the left-
hand side by Dieudonné theory. We have H1

DR(Ai) = M(Ai)/p (= Λ−i/p). Given a flag
in Ḡ′

J/B̄′
J , we can lift it to chains

M(Aj1+g) ⊂ ωj1−1 ⊂ · · · ⊂ ωj0+1 ⊂ M(Aj0+g),
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where j0, j1 ∈ J are as above. Now Verschiebung induces a bijective σ−1-linear map
M(Aj0)/M(Aj1)

∼=−→ M(Aj0+g)/M(Aj1+g). We set Mi := V −1ωi and obtain a chain

M(Aj1) ⊂ Mj1−1 ⊂ · · · ⊂ Mj0+1 ⊂ M(Aj0).

Because FM(Aj0) = V M(Aj0) = M(Aj0−g) ⊂ M(Aj1), the Mi are automatically sta-
ble under F and V , and are the unique chain of Dieudonné modules such that the
images under Verschiebung are the ωi. We obtain a unique chain of abelian varieties
in π−1

J,I(A•,J)(K) which is mapped to the point we started with in the flag variety
Ḡ′

J/B̄′
J(K). This proves that we have a bijection on K-valued points. In particular, the

morphism is universally bijective and, since it is proper, is a universal homeomorphism.
It follows that both sides have the same dimension.

Now consider the induced morphism on the tangent spaces, i.e. on K[ε]/ε2-valued
points where the underlying K-valued point is fixed. By the theory of Grothendieck and
Messing, a lift of the chain of abelian varieties over K to K[ε] corresponds to a lift of
the Hodge filtration. This means that our morphism is an isomorphism on the tangent
spaces. It follows that the left-hand side is smooth and that the morphism is separable,
and hence is in fact an isomorphism. �

Remark 6.2. Note that at first one could think that the map which sends a chain B•
to the flag

0 � α(H1
DR(Bj1−1)) � · · · � H1

DR(Bj0)/H1
DR(Bj1) = H1

DR(Aj0)/H1
DR(Aj1)

gives the desired isomorphism. This is again a bijection on K-valued points. But the
theory of Grothendieck and Messing shows that on the tangent spaces, this map induces
the zero map; it is a purely inseparable morphism.

We now analyse the restriction of this isomorphism to the intersection with a KR
stratum.

Theorem 6.3. Let J ⊆ I be a non-empty Frobenius-stable subset. Let w ∈ WJ . The
isomorphism π−1

J,I(A•,J)
∼=−→ Ḡ′

J/B̄′
J restricts to an isomorphism

Awτ ∩ π−1
J,I(A•,J)

∼=−→ X(w−1).

Proof. We can check this assertion on k-valued points, because the KR strata, as well
as the Deligne–Lusztig varieties, are reduced. Let h ∈ P ′

J(k), and let ḣ ∈ P ′
J be a lift

of h. We can describe the image point of h in P ′
J/I ′ ∼= Ḡ′

J/B̄′
J

∼= π−1
J,I(A•,J) as follows: it

is the chain B• of abelian varieties with Bi = Ai for i ∈ J , and with chain of Dieudonné
modules V −1ḣΛ−i−g, i = 0, . . . , g (where Λ−i is the Dieudonné module of Ai according
to our normalization fixed above). We rewrite this as

V −1ḣΛ−i−g = τ−1σ(ḣ)τΛ−i = σ′(ḣ)Λ−i.

The image of this Dieudonné module under Verschiebung is ḣΛ−i−g (in fact, this was
the definition of the morphism π−1

J,I(A•,J)
∼=−→ Ḡ′

J/B̄′
J , so to say).
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We have an isomorphism ψi : H1
DR(Bi) = σ′(ḣ)Λ−i/p

∼=−→ Λ−i/p = Λ̄−i given by
σ′(h)−1, so the corresponding point in the local model (which is obtained as the image
under ψ• of the reduction modulo p of the image of V ) is σ′(h)−1hΛ̄−i−g = σ′(h)−1hτΛ̄−i

(note that here σ′ is the Frobenius on the reduction P ′
J over k, and τ is the element in

G(k((t))) which induces the shift of the lattice chain over k[[t]]).
So the element h ∈ P ′

J(k) gives rise to an element in the KR stratum Awτ if and only
if σ′(h)−1hτ ∈ IwIτ (note that τ normalizes I). Because of the correspondence between
Iwahori orbits in P ′

J/I ′ and B̄′
J -orbits in Ḡ′

J/B̄′
J discussed above, we can reformulate

this condition as σ′(h)−1h ∈ B̄′
JwB̄′

J , or equivalently as h−1σ′(h) ∈ B̄′
Jw−1B̄′

J , where we
denote the image of h in (P ′

J)red = Ḡ′
J again by h. This proves our claim.

We can subsume this discussion in the following commutative diagram over k = F̄p

(we omit the subscript k) extending the local model diagram (2.10):

Ḡ′
J/B̄′

J

=

��

(P ′
J)red�� �� P red

J

P ′
J/I ′

∼=
��

P ′
J

��

��

��

β �� PJ

��

·τ
��

π−1
J,I(A•,J)

��

˜π−1
J,I(A•,J)�� ��

��

(PJ/I)τ ��

��

WJτ

��
AI ÃI

�� �� M loc ��

��

Adm(µ)

��
F lagGSp2g

�� W̃

The maps in the first row are just those induced from the second row. In the second
row, β is the map P ′

J → P ′
J , h �→ σ′(h)−1h, followed by our identification P ′

J = PJ .
The fourth row is essentially the local model diagram, and the third row is its restriction
to π−1

J,I(xJ): that is, we define
˜π−1
J,I(xJ)

as the inverse image of π−1
J,I(xJ) in ÃI . �

The following lemma will allow us to put all these pieces together in order to obtain a
description of the whole stratum Aw.

Lemma 6.4. Let J ⊆ I be a non-empty Frobenius-stable subset, and let w ∈ WJ . Let
A0

wτ be a connected component of the KR stratum Awτ . Then the closure of A0
wτ in AI

meets the minimal KR stratum.

Proof. Let z ∈ A0
wτ , and let B• be the corresponding chain of abelian varieties. By

assumption, we can identify the partial chain (M(Bi))i∈J of Dieudonné modules for
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i ∈ J with the chain (Λ−i)i∈J , as Dieudonné modules, where Frobenius on Λ−i is given
by bσ with b as above. Once we fix such an identification, there exists a unique chain A•
of abelian varieties such that Ai = Bi for i ∈ J (compatibly with the isogenies between
these), and such that M(Ai) = Λ−i for all i (as Dieudonné modules). In particular we can
identify the chain ω(Ai) ⊂ H1

DR(Ai) of Hodge filtrations with the chain Λ̄−i−g ⊂ Λ̄−i. So
the chain A• gives rise to a point in the minimal KR stratum, and z ∈ π−1

J,I(A•,J). Since
π−1

J,I(A•,J) is isomorphic to a flag variety, where by the preceding theorem the KR strata
correspond to Deligne–Lusztig varieties, the closure relations of KR strata correspond to
the Bruhat order, and the lemma follows. �

In fact more generally we expect that whenever we take a connected component of a
KR stratum, then its closure meets the minimal KR stratum. Altogether, we obtain the
following description of supersingular KR strata.

Corollary 6.5. Let J ⊆ I be a non-empty Frobenius-stable subset, and let w ∈ WJ . We
have an isomorphism

Awτ

∼=−→
∐

x∈πJ,I(Aτ )

X(w−1).

Proof. We obtain this isomorphism by putting together all the isomorphisms of the
previous theorem. The lemma above implies that the right-hand side indeed is all of Awτ .

�

Remark 6.6. We note that the above results also prove Theorem 1.2 of the introduction,
because for chains A• ∈ Aτ , the morphism A0 → Ag is determined by A0 alone, and
hence π{0,g},I(Aτ ) projects isomorphically onto its image in Ag.

As a further consequence, we obtain that KR strata Awτ with w as above are always
quasi-affine, and are affine if p � 2g, which is an upper bound for the Coxeter numbers
of the groups Ḡ′

{i,g−i} (see § 5.4). We show in [16] that all KR strata are quasi-affine.

6.2. Number of connected components

We compute the number of connected components of each i-superspecial KR stratum.

Corollary 6.7. Let J � I be a Frobenius-stable subset, and let w ∈ WJ . We assume
that J is minimal with the property that it is Frobenius-stable and w ∈ WJ . Then the
number of connected components of Awτ is

#Λg,1,N · #(Ḡ′
{0,g}/B̄′

{0,g}(Fp))(#(Ḡ′
J/B̄′

J(Fp)))−1.

Note that Ḡ′
{0,g} is the group denoted Ḡ0 in § 3, where explicit formulae for the first

two factors were given. We will come back to making the whole formula explicit in [17].

Proof. By Corollary 6.5, the number of connected components is #πJ,I(Aτ ), because the
Deligne–Lusztig variety X(w−1) is connected by our assumption on J (see Corollary 3.7).
Now each fibre of the map Aτ → πJ,I(Aτ ) can be identified with Ḡ′

J/B̄′
J(Fp), as we see

from Theorem 6.3. Since the term in the numerator is #Aτ (k) by Corollary 3.7, the
corollary follows. �
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7. The unitary case

It is an obvious question whether the results about supersingular KR strata generalize
to other Shimura varieties of PEL type. We are convinced that by the same method,
one obtains a geometric description of KR strata which are entirely contained in the
basic locus (let us call these the basic KR strata) in other cases, too, and we intend to
come back to this question in a future paper. For the moment, we will restrict ourselves to
pointing out that nevertheless the Siegel case is particularly well adapted to this method.
The reason is that in general, one would expect that the basic KR strata make up only
a very small part of the basic locus. For an extreme case, let us consider the fake unitary
case, associated to a unitary group which splits over an unramified extension of Qp. Let
(r, s) be the signature of this unitary group over R. The extended Dynkin diagram is a
circle with r + s vertices, and Frobenius acts on it by a shift by r steps (or, depending
on the setup, by a shift by s steps). Now if r and s are coprime, then the only non-empty
Frobenius-stable subset of the set of vertices is the set of all vertices. As a consequence,
there are no parahoric subgroups as in § 6.1 except for the Iwahori subgroup itself, and
the only KR stratum we get by our method is the zero-dimensional one. Assuming that
the analogue of Theorem 4.5 holds, this is the only basic KR stratum.
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18. U. Görtz, T. Haines, R. Kottwitz and D. Reuman, Dimensions of some affine
Deligne–Lusztig varieties, Annales Scient. Éc. Norm. Sup. 39 (2006), 467–511
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