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Summary

The global decline in psittacid populations highlights the need for monitoring programmes that
allow us to estimate the level of confidence that can be placed in a non-detection observation in
order to assess changes in range status.Weused the detection/non-detection records for 26 psittacid
species detected during the first national bird monitoring programme in Venezuela carried out in
2010 by theNeotropical BiodiversityMapping Initiative.We fitted occupancymodels and evaluate
the suitability of the data to explain the lack of detections given the current sampling effort, and the
expected occurrence probabilities due to environmental conditions (conditional probability of
occurrence; ΨCONDL). We were able to fit reliable models for 13 of the 26 species detected. For
Green-rumped Parrotlet Forpus passerinus, Blue-headed Parrot Pionus menstrus, and Orange-
winged Amazon Amazona amazonica, the probability of detection (p) under the current
sampling effort was too low (< 0.2) in areas where environmental conditions would imply high
ΨCONDL (> 0.3). This suggests that sampling effort should be increased to generate reliable
estimations of occurrence. In contrast, for Scarlet Macaw Ara macao, Yellow-crowned Amazon
Amazona ochrocephala, Orange-chinned Parakeet Brotogeris jugularis and Brown-throated Par-
akeet Eupsittula pertinax the model estimated high p (> 0.3) and low ΨCONDL (< 0.2), suggesting
that the species are reliably detected and better models could be obtained by including other
predictive variables related to temporal use of resources and habitat heterogeneity. To improve
the effectiveness of parrot monitoring programme in Neotropical countries, we suggest increasing
the sampling effort, developing several surveys per year, and including variables related with
temporal use of resources and habitat heterogeneity.
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Introduction

Among birds, Psittacidae is a family of major conservation concern. Nearly half of the 344 species
in the world (Snyder et al. 2000) are considered threatened under the IUCN Red List criteria,
including nine already ‘Extinct in the Wild’ due high levels of habitat loss and trapping for illegal
trade (BirdLife International 2015).
Although research on the ecology and behaviour of psittacids has increased in the last decade,

there is an urgent need to determine trends in distribution at larger scales (Martin et al. 2014).
The few monitoring programmes for this family are usually focused on one, often globally
threatened species, or are limited to narrow geographic areas (but see Hille 2014). Status
assessment of range and population trends for psittacids are usually based on static representa-
tion of species distribution (range maps; Snyder et al. 2000). However, range maps could provide
a misleading interpretation of trends because they lack estimates of uncertainty in under- or
over-prediction and assume homogeneous probability of occurrence across the range (Peterson
et al. 2011). Data on presence and absence are required in order to track population changes, but
most studies are limited in time and resources, and many apparent absences are in fact lack of
detections (Kéry& Schmidt 2008). Standardised surveymethods and appropriate analytical tools
allow for the inclusion of heterogeneous detection probabilities, and the calculation of reliable
estimates of presence or absence and their associated uncertainty (MacKenzie et al. 2002).
Occupancy models have been widely used for monitoring avian populations (Baumgardt et al.
2014). These models use repeated detection and non-detection data (detection histories) at each
location to jointly estimate the probability of presence (Ψ), and the probability of detection (p;
MacKenzie et al. 2002). Indeed, the most common application of detectability estimates is to
determining whether a species is, in fact, present at a given site when not detected, but fewer case
studies provides evaluations of the level of confidence that can be placed in a particular non-
detection observation (Wintle et al. 2011). The accuracy with which a non-detection could be
interpreted as a true absence, may have direct implications in our ability to confidently interpret
a current species distribution and hence, our capacity to monitor temporal and geographical
changes (Garrard et al. 2014).
In Venezuela, as in several other Neotropical countries, the high diversity of psittacids is

combined with an increasing rate of land transformation (Rodrı́guez et al. 2010), illegal wildlife
trade (Sánchez-Mercado et al. 2020), and limited resources for monitoring and conservation effort
(Rodrı́guez 2014). The IUCN reports declining regional trends for 34 of the 50 Psittacidae species
occurring in the country (Table 1), and six species are already under some threat category in the
Venezuelan Red Data Book (Rodrı́guez et al. 2015). However, a more detailed national assessment
requires the evaluation of current status and trends for the whole family. As a first step, a national
bird monitoring programme was carried out in 2010 as a component of the Neotropical Biodiver-
sity Mapping Initiative (NeoMaps; Rodrı́guez et al. 2012, Ferrer-Paris et al. 2013). This pro-
gramme provides an important source of detection and non-detection records, ideal for fitting
occupancy models allowing the establishment of a baseline to evaluate temporal and spatial
changes in distributions (Ferrer-Paris et al. 2014, Berkunsky et al. 2015). A previous analysis
using NeoMaps data showed that even the most widespread psittacids from the Amazona genus
could be experiencing negative changes in their distribution (Ferrer-Paris et al. 2014). Here, we
used the NeoMaps data available for all psittacid species in Venezuela to provide a complete
description of the geographic distributions of most species occurring in the country. We used
NeoMaps detection/non-detection records to fit occupancy models and evaluated the uncertainty
and reliability of the resulting predictions for presence probabilities, and the suitability of the data
to explain the lack of detections across the survey sites. Furthermore, we provide recommendations
for improving future surveys to monitoring distribution changes in the country and any other
Neotropical country.
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Table 1. Psittacidae species reported for Venezuela. Distribution description, conservation categories, and population trend for each species according IUCN is shown. The
number of NeoMaps sampling sites overlapping with the expected distribution of the species according to the available range maps from BirdLife is shown. The number of
sites with detections, the ratio of current/expected detections and the number of detections for each Venezuelan psittacid species reported in Global Biodiversity Facility
(GBIF) in 2010 is shown. The total number of sites sampled was 1,350.

Species Common name Endemism Distribution
range
category for
Venezuela

Conservation
category

Population
trend

Number
of sites
sampled

Number
of sites
with
detections

Ratio
Current/
Expected
detection

Detections
GBIF 2010

Amazona amazonica Orange-winged Amazon No Widespread LC Decreasing 715 97 14 78
Amazona autumnalis Red-lored Amazon No Restricted LC Decreasing 50 0 0 2

Amazona
barbadensis

Yellow-shouldered
Amazon

Almost Restricted VU Decreasing 85 5 6 9

Amazona bodini Northern Festive
Amazon

Almost Restricted NT Decreasing 102 0 0 0

Amazona
dufresniana

Blue-cheeked Amazon No Restricted NT Decreasing 109 0 0 16

Amazona farinosa Southern Mealy Amazon No Widespread NT Decreasing 482 17 4 23
Amazona

mercenarius
Scaly-naped Amazon No Restricted LC Decreasing 103 0 0 1

Amazona
ochrocephala

Yellow-crowned Amazon No Widespread LC Decreasing 1,191 143 12 118

Ara ararauna Blue-and-yellow Macaw No Widespread LC Decreasing 112 0 0 6

Ara chloropterus Red-and-green Macaw No Widespread LC Decreasing 1,045 13 1 57

Ara macao Scarlet Macaw No Widespread LC Decreasing 607 8 1 21
Ara militaris Military Macaw No Restricted VU Decreasing 35 8 23 10

Ara severus Chestnut-fronted Macaw No Widespread LC Stable 642 61 10 29

Aratinga solstitialis Sun Parakeet No Restricted EN* Decreasing 0 0 0 0

Bolborhynchus
lineola

Barred Parakeet No Restricted LC Stable 96 0 0 4

Brotogeris
chrysopterus

Golden-winged Parakeet No Widespread LC Decreasing 454 2 0 5

Brotogeris
cyanoptera

Cobalt-winged Parakeet No Restricted LC Stable 50 0 0 0

Brotogeris jugularis Orange-chinned Parakeet No Widespread LC Stable 557 20 4 98
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Table 1. Continued.

Species Common name Endemism Distribution
range
category for
Venezuela

Conservation
category

Population
trend

Number
of sites
sampled

Number
of sites
with
detections

Ratio
Current/
Expected
detection

Detections
GBIF 2010

Deroptyus
accipitrinus

Red-fan Parrot No Widespread LC Decreasing 308 0 0 13

Diopsittaca nobilis Northern Red-
shouldered Macaw

No Widespread LC Stable 361 2 1 43

Eupsittula pertinax Brown-throated Parakeet No Widespread LC Increasing 1,180 190 16 234

Forpus conspicillatus Spectacled Parrotlet No Restricted LC Increasing 0 0 0 0

Forpus modestus Dusky-billed Parrotlet No Restricted LC Decreasing 102 0 0 2
Forpus passerinus Green-rumped Parrotlet No Widespread LC Stable 1,060 47 4 174

Hapalopsittaca
amazonina

Rusty-faced Parrot No Restricted VU C2a(i) Decreasing 43 0 0 0

Nannopsittaca
panychlora

Tepui Parrotlet Almost Restricted LC Stable 146 1 1 35

Orthopsittaca
manilata

Red-bellied Macaw No Widespread LC Stable 407 5 1 9

Pionites
melanocephala

Black-headed Parrot No Widespread LC Stable 354 5 1 38

Pionus chalcopterus Bronze-winged Parrot No Restricted LC Decreasing 38 0 0 11

Pionus fuscus Dusky Parrot No Widespread LC Decreasing 283 0 0 4
Pionus menstruus Blue-headed Parrot No Widespread LC Decreasing 798 47 6 90

Pionus seniloides White-capped Parrot No Restricted LC Decreasing 128 0 0 0

Pionus sordidus Red-billed Parrot No Widespread LC Decreasing 162 0 0 8

Thectocercus
acuticaudatus

Blue-crowned Parakeet No Widespread LC Decreasing 575 0 0 6

Psittacara
leucophthalmus

White-eyed Parakeet No Widespread LC Decreasing 411 7 2 2

Psittacara wagleri Scarlet-fronted Parakeet No Widespread NT Decreasing 215 4 2 42

Pyrilia barrabandi Orange-cheeked Parrot No Widespread NT Stable 50 2 4 0

Pyrilia caica Caica Parrot No Widespread NT Decreasing 299 0 0 5
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Table 1. Continued.

Species Common name Endemism Distribution
range
category for
Venezuela

Conservation
category

Population
trend

Number
of sites
sampled

Number
of sites
with
detections

Ratio
Current/
Expected
detection

Detections
GBIF 2010

Pyrilia pyrilia Saffron-headed Parrot No Widespread NT Decreasing 150 0 0 11
Pyrrhura

caeruleiceps
Perija Parakeet No Restricted EN Decreasing 7 0 0 0

Pyrrhura egregia Fiery-shouldered
Parakeet

Almost Restricted LC Decreasing 152 3 2 16

Pyrrhura emma Venezuelan Parakeet Endemic Restricted LC Decreasing 107 0 0 0

Pyrrhura hoematotis Blood-eared Parakeet Endemic Restricted LC Decreasing 85 1 1 19

Pyrrhura melanura Maroon-tailed Parakeet No Widespread LC Decreasing 50 3 6 0

Pyrrhura picta Painted Parakeet No Widespread LC Decreasing 317 10 3 28
Pyrrhura

rhodocephala
Rose-headed Parakeet Endemic Restricted LC Stable 160 1 1 12

Touit batavica Lilac-tailed Parrotlet No Widespread LC Decreasing 183 0 0 6
Touit dilectissima Blue-fronted Parrotlet No Restricted LC Stable 87 0 0 1

Touit huetii Scarlet-shouldered
Parrotlet

No Widespread VU Stable 213 0 0 2

Touit purpurata Sapphire-rumped
Parrotlet

No Widespread LC Stable 222 0 0 13
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Methods

Study species

A total of 50 species from 19 genera of psittacids occur in Venezuela, although the presence of Sun
Parakeet Aratinga solstitialis has only been confirmed in the disputed territory of Guyana Ese-
quiba (Hilty 2003, Rojas-Suárez pers. comm.). Seven species are endemic or almost endemic to
Venezuela (Amazona barbadensis, Amazona bodini, Nannopsittaca panychlora, Pyrrhura egre-
gia, P. emma, P. hoematotis and P. rhodocephala). Fourteen further species have restricted distri-
bution in the country (Table 1; Hilty 2003).
Range maps for all these species were obtained from BirdLife (BirdLife International 2008) and

clipped to the region between 0–13˚N and 59–73ºWwhich includes all of Venezuela and neighbour-
ing regions. Within this polygon we retrieved 21,860 presence records for all 50 psittacid species
from the Global Biodiversity Information Facility (GBIF Occurrence Download http://doi.org/10.
15468/dl.ofmi8y, 10 June 2016).

Field survey

The NeoMaps bird survey was performed between March and April 2010 by a team composed of
seven expert ornithologists and several field assistants (methods fully described in Rodrı́guez et al.
2012). The sampling universe consisted of 170 half-degree cells defined in the Venezuelan Biodi-
versity Grid, which cover over half of the country, but do not include the southern forest regions
(Figure 1). Twenty- seven cells were selected using a stratified sampling design based on environ-
mental and biogeographical variables.
Standardised field sampling protocols for birds were implemented along a 40-km roadside

transect within each cell. Two surveys were performed during two consecutive days in each
transect: on the first day, 3-min point counts were performed at 50 stops, 800 m apart. On the
second day, cumulative species lists were recorded at a selection of 10 stops sampled for 9min each,
divided into three consecutive 3-min periods. Total sampling effort was 108 hours of bird surveys
(Rodrı́guez et al. 2012).
For this analysis we built detection histories for each psittacid species recorded byNeoMaps.We

considered each stop as a ‘site’ (i; 1,350 sites, 50 stops across 27 transects), and each timed survey
period of 3min as a ‘observation’ ( j), with duration d = 3min. For the first day survey, detections
were recorded as ‘1’ and lack of detections as ‘0’. For the cumulative list of the second day the
detection history was filled with ‘0’ until the first detection, and with null values (N) afterward.
Thus, valid detection histories for the second day are 1NN, 01N, 001 and 000, or NNN if the site
was not visited on the second day (Ferrer-Paris et al. 2013). Time of day was used as an observation
covariate. Sites covariates were extracted from the spatial location of each site.

Site covariates

Ranges of psittacid species are often described in terms of elevation, aridity and vegetation cover
(Hilty 2003). Taking this into consideration, we searched for site covariates that could describe the
environmental conditions during sampling and decided to use time series of remotely sensed data
(Kerr et al. 2001). In order to obtain representative data on climatic and vegetation conditions at the
time of the survey, we matched the location and date of each observations with time-series of
environmental variables derived from the Moderate Resolution Radio Spectrometer (MODIS)
sensors in Terra-Satellites and queried them using the global MODIS Subsetting Tool (Land
Processes Distributed Active Archive Center (LP DAAC 2014), and the Climate Hazards Group
InfraRed Precipitation with Station data archive (CHIRPS version 2.0; Funk et al. 2015). We
calculated the representative value of the variable for the year prior to the sampling time (approx.
March 2009–March 2010).
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We considered that the effect of elevation could be properly described by the annual mean
temperature, thus we used the Land Surface Temperature with Daily Cycle (LST; MOD11A2,
version 6, 1-km spatial resolution) as a measure of local temperature during day time (Wan et al.
2015).We used the annualmean value of the EnhancedVegetation Index (EVI;MOD13Q1, version
5, 250 m resolution) as proxy for vegetation cover, because it measures the chlorophyll concen-
tration across all vegetation components (Didan 2015).We used total annual precipitation and total
annual potential evapotranspiration as proxies for water balance. We used the CHIRPS precipita-
tion data (PREC; version 2, 1-km resolution) and the Potential Evapo-transpiration (PET;
MOD16A2, version 6, 1-km resolution; Running et al. 2017).

Occupancy models

We used a single-season occupancy model based on zero-inflated binomial models (MacKenzie
et al. 2006) to estimate the probability of occurrence for species detected in the surveys (Ψ). The
occupancy state (zi) of site i was modelled as zi ~ Bernoulli (Ψi), while the observation process was
modelled as yij|zi ~ Bernoulli (zi * pij) in which pij represented site and occasion specific detection
probability. Covariates of Ψi (site covariates) and pij (observation covariates) were modelled using
the logit link (Fiske and Chandler 2011).
We fitted eight models representing different combinations of covariates for probability of

detection and probability of occurrence. First, we considered models with constant probability of

Figure 1. Sampling universe consisted in 170 half-degree cells defined in the Venezuelan Biodi-
versity Grid. Numbers indicate NeoMaps’ cells code visited by survey teams in 2010.
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detection (p(.)), and others that assumed detection changed linearlywith time of the day in hours (p
(h)). Regarding probability of occurrence, we defined a null model with constant probability (Ψ(.))
and alternative models considering the effects of vegetation (Ψ(V), using second degree poly-
nomials of mean EVI), climatic (Ψ(C), second degree polynomials of mean LSTand total PREC and
PET), or both vegetation and climatic covariates (Ψ(VC)). The models were fitted with data from
sampling regions that had at least one detection or that overlappedwith the expected distribution of
the species according to the available range maps from BirdLife (BirdLife International 2008) and
GBIF presence records for 2010 (GBIF 2018).
We evaluated the individual performance of each model using the corrected Akaike Information

Criterion (AICc; BurnhamandAnderson 2002). Thenweused themodelwith the best performance for
each species to explain the lack of detections across the survey sites. For the sites without detections, we
calculated the conditional probability of occurrence given that the species was not detected (MacKenzie
et al. 2006). This probability (ΨCONDL), considers two components: whether sampling effort was
enough to detect the species at least once, conditional on its presence (p* = 1 - Prod (1 - p)), and the
unconditional probability of occurrence given the values of the site covariates (Ψ’). We used the
unmarked, raster, and AICcmodavg packages of R to fit the models (Fiske and Chandler 2011).
We visualised the spatial distribution of the unconditional probability of occurrence (Ψ’) for the

whole country for the species with more than 15 detections, based on the model with the highest
support for each species (Table 2) and values of the vegetation and climatic covariates. We used the
predict function of unmarked package (Fiske and Chandler 2011) and a raster stack of predictive
variables at a resolution of 1 km.

Results

NeoMaps sampling in 2010 detected 26 of the 50 species of psittacids present inVenezuela (Table 1).
The most detected species were Brown-throated Parakeet Eupsittula pertinax (190 detections),
Yellow-crowned Amazon Amazona ochrocephala (143 detections) and Orange-winged Amazon
Amazona amazonica (97). For six species,NeoMaps sampling providedmore presence records than
GBIF data for the year 2010, including two detections ofOrange-cheeked Parrot Pyrilia barrabandi
and three detections for Maroon-tailed Parakeet Pyrrhura melanura (Table 1).
NeoMaps also provided detections outside the BirdLife distribution ranges for six species

(Amazona amazonica, Amazona farinosa, Ara militaris, Diopsittaca nobilis,Orthopsittaca man-
ilata, and Pionus menstruus. The ratio between actual and expected detections was usually lower
than 10%, except for Amazona amazonica, A. ochrocephala, Chestnut-fronted Macaw Ara
severus and E. pertinax, with values between 11% and 15% (Table 1). Detailed methods and
results are shown in Appendix S1 in the online supplementary material.

Model fitting

The number of models fitted to each species was limited due to non-convergence or unrealistic
estimates of coefficients. For the 12 species with less than five detections one or twomodels could be
fitted. The four species withmore detections also had several candidatemodels: Eupsittula pertinax
(eight models), Orange-chinned Parakeet Amazona amazonica, Brotogeris jugularis and Blue-
headed Parrot Pionus menstruus (six) and Green-rumped Parrotlet Forpus passerines (five), the
rest of the species had three or four models fitted (Table 2).
Althoughwewere able to fitmodels for 25 out of 26 detected species, we discarded themodels for

12 species with less than five detections due to obvious over-fitting in probabilities of presence or
detection. Among the 13 remaining species with reliable models, for five of them the model with
the lowest AICc considered constant detectability (Table 2). For Scarlet Macaw Ara macao,
Amazona ochrocephala and Eupsittula pertinax the model suggested constant high probability
of detection (> 0.3; Figure 2a), while for Amazona farinosa and Pyrrhura picta, constant low
probability (< 0.2; Figure 2a). For White-eyed Parakeet Psittacara leucophthalmus, Black-headed
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Table 2. Top performing occupancy models for 13 psittacid species with at least one detection during NeoMaps surveys. The sampling size used to fit each model is shown
as the total number of sites within species range sampled during NeoMaps surveys, as well as the number of sites where each species was detected is indicated (detections).
AICc = corrected Akaike Information Criterion. ΔAICc = the difference between the AIC for the ith model and the lowest AIC among all the models. AICw = relative weight
from the differences in values of AICc. LL = 2log likelihood. The model with the best performance by species is in bold.

Specie Model Sampling size
Number of sites
with detections AICc ΔAICc AICw LL

Amazona amazonica p(h)Ψ(VC) 900 97 553.79 0 0.999 -265.75

p(h)Ψ(C) 900 97 567.44 13.64 0.001 -274.62
p(.)Ψ(VC) 900 97 673.87 120.07 0 -326.81
p(.)Ψ(C) 900 97 697.20 143.41 0 -340.52
p(.)Ψ(V) 900 97 712.80 159.01 0 -352.38
Null 900 97 726.60 172.81 0 -361.29

Amazona barbadensis p(h)Ψ(.) 150 5 55.07 0 0.571 -24.45

Null 150 5 55.64 0.57 0.429 -25.78
Amazona farinosa p(.)Ψ(VC) 550 17 158.55 0 0.94 -69.07

p(.)Ψ(V) 550 17 164.08 5.54 0.059 -78.01
p(.)Ψ(C) 550 17 171.35 12.8 0.002 -77.54

Amazona ochrocephala p(.)Ψ(VC) 1,250 143 888.48 0 1 -434.15

p(.)Ψ(C) 1,250 143 916.99 28.52 0 -450.44
p(.)Ψ(V) 1,250 143 987.57 99.1 0 -489.77
Null 1,250 143 1042.13 153.65 0 -519.06

Ara chloropterus p(h)Ψ(.) 1,050 13 149.49 0 0.964 -71.74

Null 1,050 13 156.08 6.58 0.036 -76.03
Ara macao p(.)Ψ(C) 600 8 79.23 0 0.999 -31.49

p(.)Ψ(V) 600 8 93.84 14.61 0.001 -42.89
Null 600 8 101.00 21.77 0 -48.49
p(h)Ψ(.) 600 8 102.79 23.57 0 -48.38

Ara militaris p(h)Ψ(V) 150 8 71.81 0 0.365 -30.7

p(.)Ψ(V) 150 8 72.39 0.58 0.273 -32.06
p(h)Ψ(.) 150 8 72.61 0.8 0.245 -33.22
Null 150 8 74.10 2.29 0.116 -35.01

Ara severus p(.)Ψ(V) 700 61 450.52 0 1 -221.23

Null 700 61 482.05 31.52 0 -239.02
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Table 2. Continued.

Specie Model Sampling size
Number of sites
with detections AICc ΔAICc AICw LL

Psittacara leucophthalmus p(h)Ψ(.) 450 7 80.87 0 0.712 -37.41

Null 450 7 82.69 1.81 0.288 -39.33
Eupsittula pertinax p(.)Ψ(VC) 1,300 190 1177.36 0 0.666 -578.59

p(h)Ψ(VC) 1,300 190 1178.85 1.5 0.315 -578.32
p(.)Ψ(C) 1,300 190 1185.12 7.76 0.014 -584.5
p(h)Ψ(C) 1,300 190 1186.87 9.52 0.006 -584.37
p(.)Ψ(V) 1,300 190 1284.34 106.98 0 -638.15
p(h)Ψ(V) 1,300 190 1286.35 108.99 0 -638.15
Null 1,300 190 1293.65 116.29 0 -644.82
p(h)Ψ(.) 1,300 190 1295.62 118.27 0 -644.8

Psittacara wagleri p(h)Ψ(.) 250 4 47.11 0 1 -20.51

Brotogeris chrysopterus Null 450 2 31.54 0 0.734 -13.76

p(h)Ψ(.) 450 2 33.56 2.03 0.266 -13.76
Brotogeris jugularis p(h)Ψ(C) 650 20 174.63 0 0.551 -78.17

p(.)Ψ(C) 650 20 175.43 0.8 0.369 -79.6
p(.)Ψ(V) 650 20 179.17 4.54 0.057 -85.55
p(h)Ψ(V) 650 20 180.90 6.27 0.024 -85.4
Null 650 20 199.99 25.36 0 -97.99
p(h)Ψ(.) 650 20 200.78 26.15 0 -97.37

Diopsittaca nobilis Null 450 2 31.56 0 1 -13.76

Forpus passerinus p(h)Ψ(C) 1,050 47 399.47 0 1 -190.65

Forpus passerinus Null 1,050 47 441.40 41.93 0 -218.69
p(h)Ψ(.) 1,050 47 442.01 42.53 0 -217.99
p(.)Ψ(V) 1,050 47 443.34 43.87 0 -217.65
p(h)Ψ(V) 1,050 47 444.10 44.63 0 -217.02

Nannopsittaca panychlora Null 150 1 17.04 0 1 -6.48

Orthopsittaca manilata p(h)Ψ(.) 450 5 63.46 0 0.522 -28.7

Null 450 5 63.64 0.17 0.478 -29.8
Pyrilia barrabandi Null 50 2 22.75 0 0.744 -9.25

p(h)Ψ(.) 50 2 24.89 2.14 0.256 -9.18
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Table 2. Continued.

Specie Model Sampling size
Number of sites
with detections AICc ΔAICc AICw LL

Pionites melanocephala p(h)Ψ(.) 350 5 60.64 0 1 -27.28

Pionus menstruus p(h)Ψ(VC) 850 47 361.18 0 0.782 -169.43

p(h)Ψ(.) 850 47 364.38 3.2 0.158 -179.18
p(h)Ψ(V) 850 47 366.30 5.12 0.06 -178.11
p(.)Ψ(VC) 850 47 401.83 40.65 0 -190.79
p(.)Ψ(V) 850 47 415.45 54.27 0 -203.7
Null 850 47 419.05 57.87 0 -207.52

Pyrrhura egregia p(.)Ψ(V) 150 3 32.51 0 0.46 -12.12

Null 150 3 33.49 0.98 0.282 -14.71
p(h)Ψ(V) 150 3 34.65 2.14 0.158 -12.12
p(h)Ψ(.) 150 3 35.58 3.06 0.1 -14.71

Pyrrhura hoematotis Null 100 1 15.32 0 1 -5.6

Pyrrhura melanura p(h)Ψ(.) 50 3 31.24 0 1 -12.36

Pyrrhura picta p(.)Ψ(V) 350 10 89.88 0 0.724 -40.88

p(h)Ψ(V) 350 10 91.82 1.94 0.275 -40.82
Null 350 10 104.15 14.26 0.001 -50.06
p(h)Ψ(.) 350 10 106.02 16.14 0 -49.98
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Parrot Pionites melanocephala, Military Macaw Ara militaris, Yellow-shouldered Amazon Ama-
zonas barbadensis, Blue-headed Parrot and Orange-winged Amazon Amazona amazonica the
probability of detection was low with important variation across the time, but for Brotogeris
jugularis the detection was also variable but higher (Figure 2a).
For three species, the models with constant probability of occurrence (p(h)ψ(.)) had the lowest

AICc. Models including vegetation covariates either assuming constant detectability (p(.)ψ(V)) or
not (p(h)ψ(V)) had the lowest AICc for two species, Ara militaris and Painted Parakeet Pyrrhura
picta. However due the low number of detections (< 10) we were not able to perform spatial
prediction of unconditional probability of occurrence for these species.
Models including both climatic and vegetation covariates either assuming constant detectability (p

(.)ψ(VC)) or not (p(h)ψ(VC)), were selected for five species (Table 2). The spatial prediction of
unconditional probability of occurrence for Amazona amazonica; Figure 2a) showed a widespread
distribution, with the highest values in the most forested and humid part of the country, in the east
(south and north of the Orinoco river) and in the west (the Maracaibo Lake basin). For Southern

Figure 2. Spatial prediction of the (unconditional) probability of occurrence for the whole country
based on the model with highest support for each species (Table 2) and the values of the vegetation
and climatic covariates. Darker colours indicate higher probabilities. a) Amazona amazonica; b)
Amazona farinosa, c) Amazona ochrocephala; d) Brotogeris jugularis; e) Eupsittula pertinax; f)
Forpus passerinus; g) Pionus menstruus.
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MealyAmazonAmazona farinose; Figure 2b) the highest probabilities of occurrencewere in the dry
areas along the coast, north of the country. Yellow-crowned Amazon Amazona ochrocephala;
Figure 2c) and Brown-throated Parakeet Eupsittula pertinax; Figure 2e), show a widespread distri-
bution across the country, only excluded from the Venezuelan Andes (Figure 2c,e). However, for
E. pertinax, higher probabilities were predicted in the central flood plains, and the north-west,
characterised by high temperature and lower vegetation cover (Figure 2e), while for
A. ochrocephala higher probabilities were focused onmore humid areas with moderate forest cover.
Models including only climatic covariates had the lowest AICc for two species, Orange-chinned

Parakeet Brotogeris jugularis and Green-rumped Parrotlet Forpus passerinus. B. jugularis showed a
restricteddistribution focusedon thewesternpart of the country, in theMaracaiboLakebasin (Figure2d),
while F. passerinus, Figure 2f) had the highest probabilities in the dry areas across the coastal north.

Conditional probability of occurrence

For most species a great proportion of sites which lacked detections had low conditional probabilities of
occurrence (ΨCONDL<0.2). ForAramacao,Amazonaochrocephala,Brotogeris jugularis andEupsittula
pertinax themodel estimated extremely high probabilities of detection (Figure 3a) and low probabilities
of occurrence (Figure 3b), suggesting that the species are reliably detected were they are present. For

Figure 3. Model predictions. a) Detection probability (p*) = Sampling effort required to detect the
species at least once conditional on its presence. b) Conditional probability of presence given that
the species was not detected (ΨCONDL).
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Forpus passerinus, Pionus menstrus (Blue-headed Parrot), and Amazona amazonica the situation was
the opposite, suggesting that the species is often present but seldom detected (Figure 3a,b).

Discussion

The observed declines in psittacid populations across Venezuela highlights the need for moni-
toring programmes that can reliably detect occurrence in a cost-effective and logistically feasible
manner. The first national bird monitoring program in Venezuela developed by NeoMaps is an
important step to achieve this aim by providing confident detection and non-detection records for
92% of psittacid species in the country (48 species with sites sampled). With this data we were
able to fit occupancy models for 50% of Venezuelan psittacid species, which provide: 1) more
reliable data on species absences, 2) better understanding of the importance of factors affecting
psittacid occurrence, and 3) improving sampling strategy to get more confident occurrence
probabilities.

Reliability of species absence

For highly mobile species such as parrots, the lack of detections is likely to be a combination of
insufficient sampling effort and true absences during the time of survey (Ferrer-Paris et al. 2014).
For at least nine of the missing species, the lack of detection is most probably due to low sampling
effort within their distribution (less than four transects, 200 sampling sites). For Aratinga
solstitialis and Spectacled Parrotlet Forpus conspicillatus, no single NeoMaps survey locality
matched the expected distribution (Table 2). For eight further species the expected distribution
overlapped with survey localities along a single transect (less than 50 sampling sites; Amazona
autumnalis, Ara militaris, Brotogeris cyanoptera, Hapalopsittaca amazonina, Pionus chalcop-
terus, Pyrilia barrabandi, Pyrrhura caeruleiceps and Pyrrhura melanura). All these species
require targetted sampling in order to monitor their populations in the future. The most notable
“absences” are those of Red-fan Parrot Deroptyus accipitrinus, Caica Parrot Pyrilia caica and
Dusky Parrot Pionus fuscus, which were expected in six or seven transects (more than 300 sam-
pling sites) south of the Orinoco river, but were never detected. For these species the presence
records in GBIF during 2010 were also scarce (< 8; Table 2). Several species of Neotropical
psittacids perform seasonal movements following availability of food as well as adapting to novel
foods in modified environments (Juniper and Park 1998). So in those cases of non-detections in
spite of the high sampling effort, taking into account seasonal movements during the sampling
design would likely improve the detection probability. Evidence from Rı́o Manu in Peru shown a
three-fold decline in the number of large macaws encountered during the dry season compared
with the rainy season, which coincides with a sharp decline in plant energy production of the
forest during the dry season (Renton 2002).
For the species with low probability of detections (Figure 3a), we were able to provide useful

insights to improve occurrence predictions by analysing the components of conditional probability
of occurrence in those sites where the species was expected to occur, but was not detected. For
example for three species (Forpus passerinus, Pionus menstrus, and Amazona amazonica), the
probability of detection taking into account the current sampling effort was too low (< 0.2) in areas
where environmental conditions would imply high probabilities of presence (Figure 3a,b). This
suggests that sampling effort should be increased to generate reliable estimations of occurrence.
Evidence from parrot communities in northern Bolivia suggest that detection probability signif-
icantly improves with a larger sampling effort (nine weeks; Berkunsky et al. 2015). Recent
empirical studies suggest that the detectability rate is significantly correlated with sighting fre-
quency, and less conspicuous psittacids may require longer observation session in order to register
the presence of some species (Rodrigues et al. 2012).
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Factors affecting species occurrence

Factors related to vegetation, climatic conditions or both were important in explaining distribu-
tions of 10 species (Table 2; Figure 2). We used remotely sensed data to better represent the
vegetation and climatic conditions prior to NeoMaps’ sampling period, which were heavily influ-
enced by one episode of the ’El Niño-Southern Oscillation’ (ENSO; May 2009 and April 2010),
resulting in a severe drought, diminished water bodies and overall drier vegetation throughout the
country, which in turn could have affected the probability of detection or occurrence of some
species (Lentino and Portas 1994, Hilty 2003). A low number of detections and subsequent low
probability of occurrence of some widespread species in the Orinoco floodplains (llanos) could thus
be explained by this extended drought and its consequences on vegetation growth and resource
availability (Ferrer-Paris et al. 2013).
We were able to predict spatial distribution for seven species (Figure 2), which reflects in general

the expected distribution for these species, but for Amazona farinosa (Figure 2b) the model also
predicts high probabilities in the north-central region (Falcón and Lara states) where the species is
absent, probably due to biogeographic constrains or the influence of additional variables not
included in our model.
The low number of detections of several species often resulted in the selection of null and

constant models, with low predictive power. However, for three species (Brotogeris jugularis,
Amazona ochroceohala and Eupsittula pertinax; Figure 3a) with high probability of detection,
better models could be obtained by including other predictive variables. This is similar to other
studies where, for example, the distribution of food resources, improved the model predictions for
both specialist and generalist parrot species in the Brazilian cerrado (De Araújo et al. 2014).
Topographic variables like slope and orientation also determined the distribution pattern of
Mexican psittacid species, because they account for complexity in the landscape, especially at local
scales (Plasencia-Vázquez et al. 2014).

Improving sampling strategy

Our study indicates that important changes in the sampling design and modeling approach are
necessary to improve occurrence predictions in those sites where a species is expected to occur but is
not detected. Given the low ratio of actual/expected detections (~10%), we suggest that more
effective parrot monitoring programmes require: a) increasing sampling effort to improve esti-
mates of probability of occurrence for all psittacids in Venezuela. This implies adding more
sampling localities and days, and optimising survey time to those periods of the daywhen detection
probabilities are higher; b) implementing additional surveys per year to improve estimates of
seasonal patterns; c) including variables related with temporal use of resources and habitat het-
erogeneity in the survey and models, and d) alternatively, combining records from systematic
surveys with other sources of data (collections, literature, GBIF) which could significantly increase
the sample size allowing fitting of more informative models (Ferrer-Paris et al. 2014).

Supplementary Materials

To view supplementary material for this article, please visit http://dx.doi.org/10.1017/
S0959270919000522.

Acknowledgements

Funds for this research were provided by the Instituto Venezolano de Investigaciones Cientı́ficas
(Proyect number 1071). NeoMaps data were originally curated by G. A. Rodrı́guez; E. Blanco and
E. Goncalves helped curating GBIF records.

J. R. Ferrer-Paris and A. Sanchez-Mercado 420

https://doi.org/10.1017/S0959270919000522 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0959270919000522
http://dx.doi.org/10.1017/S0959270919000522
https://doi.org/10.1017/S0959270919000522


References

Baumgardt, J. A., Sauder, J. D. and Nicholson,
K. L. (2014) Occupancy modeling of wood-
peckers: Maximizing detections for multi-
ple species with multiple spatial scales.
J. Fish Wildl. Manag. 5: 198–207.

Berkunsky, I., Simoy, M. V, Cepeda, R. E.,
Marinelli, C., Kacoliris, F. P., Daniele, G.,
Cortelezzi, A., Dı́az-Luque, J. A., Friedman,
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