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The purely conductive state in configurations such as the Rayleigh–Bénard one is
linearly stable for yield stress fluids at all Rayleigh numbers, Ra. However, on
changing to localized heater configurations the static background state exists only if
the yield stress is sufficiently large. Otherwise, thermal plumes may be induced in
a stationary viscoplastic fluid layer, as illustrated in the recent experimental study
of Davaille et al. (J. Non-Newtonian Fluid Mech., vol. 193, 2013, 144–153). Here,
we study an analogous problem both analytically and computationally, from the
perspective of an ideal yield stress fluid (Bingham fluid) that is initially stationary in
a locally heated rectangular tank. We show that for a non-zero yield stress the onset
of flow waits for a start time ts that increases with the dimensionless ratio of yield
stress to buoyancy stress, denoted B. We provide a precise mathematical definition of
ts and approximately evaluate this for different values of B, using both computational
and semianalytical methods. For sufficiently large B > Bcr, the fluid is unable to
yield. For the flow studied, Bcr ≈ 0.00307. The critical value Bcr and the start time
ts, for B< Bcr, are wholly independent of Ra and Pr. For B< Bcr, yielding starts at
t = ts. The flow develops into either a weakly or a strongly convective flow. In the
former case the passage to a steady state is relatively smooth and monotone, resulting
eventually in a steady convective plume above the heater, rising and impinging on the
upper wall, then recirculating steadily around the tank. With strongly convecting flows,
for progressively larger Ra we observe an increasing number of distinct plume heads
and a tendency for plumes to develop as short-lived pulses. Over a certain range of
(Ra, B) the flow becomes temporarily frozen between two consecutive pulses. Such
characteristics are distinctly reminiscent of the experimental work of Davaille et al.
(J. Non-Newtonian Fluid Mech., vol. 193, 2013, 144–153). The yield stress plays
a multifaceted role here as it affects plume temperature, size and velocity through
different mechanisms. On the one hand, increasing B tends to increase the maximum
temperature of the plume heads. On the other hand, for larger B→ Bcr, the plume
never starts.
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1. Introduction
Viscoplastic fluids are those with a yield stress. Such fluids are commonplace in

everyday life and present in a variety of both industrial and natural settings; see
Balmforth, Frigaard & Ovarlez (2014) and Coussot (2014). Yield stress fluids only
deform if the applied shear stress surpasses a critical value called the yield stress.
Below this critical limit such fluids undergo rigid-body motion. A typical flow field
may consist of yielded and unyielded regions, according to whether the local stress
is above or below the yield stress respectively. Unyielded regions may be further
categorized as being stationary or in motion, with the former typically abutting a
wall of the flow domain.

This paper is motivated by the recent experimental study of Davaille et al. (2013)
in which thermal plumes are induced in a stationary viscoplastic fluid reservoir
(rectangular tank), by means of localized heating applied at the lower wall of the
tank. In natural convection, buoyancy forces resulting from thermal expansion induce
fluid motion. In the case of a viscoplastic fluid, these buoyancy forces may be
balanced by stress gradients that do not exceed the yield stress, allowing such fluids
to remain motionless in situations where purely viscous fluids would convect. This
yield-stress–buoyancy balance allows for interesting new phenomena to arise.

Natural convection of viscoplastic fluid is of particular interest to (at least) the food
industry and to geoscientists. Pancakes are one of the oldest foods known to mankind,
common across global civilizations and dating back to prehistory. Many similar foods
are made from batters that vary in rheological properties according to composition,
but frequently have a yield stress (Xue 2007). Rheology, boundary conditions, onset of
natural convection and the occurrence of dynamical structures such as thermal plumes
result in quite different culinary products, e.g. blini, waffles, crêpes and crumpets.
Geophysical interest in viscoplastic natural convection ranges from mantle dynamics
to basaltic lava flows, mud pots, mud volcanoes and mud baths.

There has only been relatively limited study of natural convection of yield stress
fluids despite the relatively common occurrence of such flows. The additional
complexity of strong coupling between energy and momentum balances in natural
convection flows has meant that the limited number of existing studies tend to be
computational. The largest body of work concerns the effect of the yield stress
on steady-state naturally convecting flows. In the first place there are a number of
one-dimensional naturally convecting flows that admit analytical solution (Yang &
Yeh 1965; Gershuni & Zhukhovitski 1973; Cherkasov 1979; Patel & Ingham 1994;
Bayazitoglu, Paslay & Cernocky 2007). Although one-dimensional, these solutions
can exhibit a rich structure, e.g. Karimfazli & Frigaard (2013) show the potential for
an infinite number of plug regions in a finite domain!

A number of authors have studied steady-state heat transfer characteristics
(Lyubimova 1977; Vikhansky 2009; Turan, Chakraborty & Poole 2010, 2012;
Turan, Poole & Chakraborty 2011), most commonly in a rectangular enclosure with
differentially heated sidewalls. The more recent studies of Turan and coauthors have
focused largely on using computational fluid dynamics tools to extend Newtonian
fluid Nusselt number closure expressions into non-Newtonian parameter regimes.
Within the context of steady-state flow, a sufficiently large yield stress suppresses
buoyancy-induced stresses, resulting in a static regime (zero velocity everywhere).
The temperature field then evolves to its steady conductive limit. A few studies have
explicitly considered flows in which this limiting value of the yield stress is evaluated
(e.g. Lyubimova 1977; Vikhansky 2010a,b; Karimfazli & Frigaard 2013; Huilgol &
Kefayati 2014; Karimfazli, Frigaard & Wachs 2015).
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476 I. Karimfazli, I. A. Frigaard and A. Wachs

The most classical setting for instability in natural convection is the Rayleigh–
Bénard problem, in which a horizontal layer of stationary fluid is heated from below.
It is well established now that flow onset due to linear instability is fundamentally
altered due to the yield stress. Zhang, Vola & Frigaard (2006) demonstrated that
the static conductive state of a Bingham fluid is linearly stable at all values of the
Rayleigh number, Ra,

Ra= ĝβ̂1T̂L̂3

ν̂κ̂
. (1.1)

The Rayleigh number represents the ratio of time scales for advective and conductive
heat transfer in buoyancy-driven flows. Here, β̂, ν̂ and κ̂ represent respectively the
coefficients of thermal expansion, kinematic viscosity and thermal diffusivity; L̂ is the
height of the fluid layer, 1T̂ is the temperature difference imposed across the fluid
layer and ĝ is the acceleration due to gravity.

Balmforth & Rust (2009) studied the limit of small yield stress, using weakly
nonlinear stability analysis to show that an unstable subcritical branch of nonlinear
convective states bifurcates from infinite Rayleigh number. Vikhansky (2009) also
briefly visited flow transition in the Rayleigh–Bénard problem, exploring the yield
stress needed to suppress steady Newtonian natural convection and speculating on
the effect of the yield stress on flow transients. The energy stability results of Zhang
et al. (2006) have been extended by the present authors (Karimfazli et al. 2015)
to include stationary states in differentially heated vertical cavities. The static state
is shown to be energy stable to arbitrary amplitude disturbances for Ra below the
Newtonian limit and conditionally stable for larger Ra. Karimfazli et al. (2015) also
study various controlled transitions between steady states, including establishing the
interesting possibility of temporary flow arrest between convecting steady states.
While the majority of these results are established for Bingham fluids, for reasons of
analytical and parametric simplicity, the main qualitative conclusions are expected to
be true for other simple yield stress models, e.g. Herschel–Bulkley and Casson fluids.

Although the theoretical background is well established, experimental studies do
not fully agree. Both Darbouli et al. (2013) and Kebiche, Castelain & Burghelea
(2014) have studied flow onset in the Rayleigh–Bénard set-up experimentally and,
although their results do not agree quantitatively, both groups find that above a
certain heating rate, natural convection starts without any manual agitation of the
fluid. Darbouli et al. (2013) use Carbopol gels at relatively weak concentrations and
yield stresses (.0.1 Pa). They offer a variety of explanations for the disagreement
with theory. First, they outline the difficulty of specifying a relevant viscosity for Ra
at low (zero) shear rates. Second, they speculate that at low concentrations a more
appropriate microstructural model might be that of a porous media flow of water
through a swollen microgel matrix. Kebiche et al. (2014) consider a wider range of
yield stresses, again with Carbopol. They show the onset of convective rolls above a
critical power threshold that increases exponentially with yield stress.

In discussing transient natural convection, a wide range of phenomena may occur. In
particular, regarding the effect of the yield stress on the onset of flow from a stationary
state we must first distinguish two different mechanisms. Due to the yield stress the
static state may be a solution to the flow problem for all values of the dimensionless
groups and all time. Typically this depends on the domain geometry and boundary
conditions. In this case, flow onset is a consequence of a hydrodynamic instability.
Alternatively, if the static state is not always a solution, flow onset from a static initial
state might be merely the result of temporal evolution of the driving (buoyancy) and/or
resisting (yield) stresses.
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Moving now specifically to the subject of this paper, thermal plumes have long
received interest both as convective flows that develop due to localized heat sources
and as instabilities that rise from a thermal boundary layer (see, e.g., Batchelor 1954;
Sparrow, Husar & Goldstein 1970; Moses, Zocchi & Libchaber 1993; Kaminski &
Jaupart 2003). A review of the vast body of research on Newtonian plumes can be
found in Ribe, Davaille & Christensen (2007). To the best of authors’ knowledge,
the first experimental studies of viscoplastic plumes were conducted very recently by
Davaille et al. (2013).

Davaille et al. examined natural convection of yield stress fluids in a rectangular
tank driven by a localized heater placed centrally on the bottom wall. They mainly
focused on illustrating various flow morphologies observed at different heating rates.
The effect of the heating rate is captured by the yield number, Y , which represents
the relative strength of thermal stresses and the yield stress,

Y = β̂ρ̂
ˆ̇q

τ̂yk̂
. (1.2)

Here, ρ̂, k̂ and τ̂y represent the density, thermal conductivity and yield stress; ˆ̇q is
the constant power supply applied to the heater. The effect of the yield number on
the transition between three different regimes is investigated, classified solely on the
value of the yield number, Y . The fluid is deemed motionless when Y . 120. When
120 . Y . 260, cellular convection is expected, i.e. a localized motion around the
heater. With Y > 260, finger-like plumes form above the heater and ascend upwards
into the tank. Within this range of Y , the developing plumes show pulsing trends, in
some cases resulting in complete stoppage of the flow between consecutive pulses. In
all of the convecting cases, it was observed that yielding and advection started a long
time after heating was initiated. In this work there was no study of the effects of Ra
on transition between the three regimes.

In a subsequent paper, Massmeyer et al. (2013) studied a similar flow numerically.
They considered a taller 3D cavity with insulated walls and imposed a constant
temperature at the heater, which gradually increased with time. This temperature
history was not produced using any particular mathematical function. Instead it was
derived from the temperature history of the heater in the experiments of Davaille
et al. (2013) and was only provided for a very limited number of simulations. This
significantly limits the possibility of quantitative benchmarking against their work.
The main focus of Massmeyer et al. (2013) appears to be on capturing the plume
onset time and maximum plume rise. They also briefly considered the effect of
small changes in fluid rheology on plume development. The simulations succeeded in
reproducing a few of the experimental features qualitatively well, e.g. the formation
of plume heads at high values of Y . However, the hydrodynamics of transition from
no motion to cellular motion and the processes affecting the features of cellular
motion as Ra and B change were not investigated or explained. Furthermore, the
intermittent pulsing of plumes observed by Davaille et al. (2013) was not reported
in the numerical study. Hassan, Pathak & Khan (2013) have numerically studied
steady-state convection of viscoplastic fluids in a similar set-up, with their focus
firmly on heat transfer.

A common technical issue with numerical studies such as those of Hassan et al.
(2013) and Massmeyer et al. (2013) is their reliance on regularized effective viscosity
models in simulating yield stress behaviour. Although exact yield stress models
are purportedly studied, the numerical code sees only a very viscous fluid at low
shear rates. This range is precisely that which is important for the study of flow
onset or stoppage. Although such methods may be used effectively, it is necessary
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to understand the degree to which the constitutive law is regularized, i.e. in terms
of typical shear rates of the flow studied. The second issue with such methods for
yielding problems is that the shape and position of the (apparent) yield surfaces are
known to be sensitive to the form of regularization used.

The main focus of our paper is to understand the effect of localized heating in
viscoplastic fluids from the mechanical perspective of a simple yield stress fluid. We
feel that localized heating is the key feature of the work of Davaille et al. (2013) that
merits further investigation. Where possible, we have tried to make analogies between
the phenomena observed by Davaille et al. (2013) and the simplified problem studied
here. However, the intention is not to reproduce experiments, but to clarify what may
be expected in terms of dynamical behaviour. For example, it is intuitive that a critical
ratio of buoyancy to yield stress should play a governing role, and we seek to expose
that in as simple a way as possible. Equally, the role of the Rayleigh number in
the flow onset and plume formation and development should be clarified. For those
flows that do convect we explore the variation of flow features with the controlling
dimensionless parameters, and look for processes that could promote pulsing features.

We employ both analytical and numerical techniques, always assuming an ideal
yield stress fluid. We consider a two-dimensional (2D) rectangular cavity with all
walls maintained at a temperature T̂C, except in the middle of the lower wall where a
centrally positioned heater is maintained at a higher temperature T̂H . Although in 2D,
key geometric ratios are chosen similar to those of the experiments in (Davaille et al.
2013). The heater thus covers 10 % of the bottom wall of a square cavity and the
geometry is fixed throughout the paper. As the focus is on yielding and yield stress,
we adopt the simplest (Bingham fluid) rheological model, for which the effective
viscosity is

µ̂e = τ̂y

ˆ̇γ + µ̂, (1.3)

where µ̂ is the plastic viscosity of the fluid and the rate of strain is denoted by
ˆ̇γ . Although different yield stress models can be used to describe the shear-thinning
behaviour, e.g. the Herschel–Bulkley model, this mainly affects the role of the plastic
viscosity. The commonality between all such models is the singularity of the effective
viscosity as yield surfaces are approached. Indeed, in studying flow onset the plastic
viscosity matters only if ˆ̇γ > 0, i.e. after onset.

As commented above in discussing the Rayleigh–Bénard studies, note the distinction
between analytical and computational studies involving simplified rheological
constitutive models and related experimental studies with yield stress fluids. The latter
necessarily involve additional complexities associated with the nature of yield stress
fluids, on which there has been a long-standing scientific discourse; see, e.g., Barnes
(1999), Divoux, Barentin & Manneville (2011), Ovarlez et al. (2013), Balmforth et al.
(2014), Coussot (2014) and Bonn et al. (2015). As much of the interest and concern
is focused on regimes of low strain rates and/or subyield stresses, where different
materials exhibit different characteristic behaviours, care must be taken in widely
interpreting the results of systematic studies for other materials. In this context, one
of the key values of using simplified rheological constitutive models (as here) is in
removing the ambiguity of results, i.e. in determining which phenomena have their
origin in pure yield stress behaviour.

A brief outline of the paper is as follows. In § 2 we formulate the problem, identify
the governing dimensionless groups and briefly explain our computational method. In
§ 3 we investigate the conditions that precede yielding (flow onset) and the role of the
yield stress in the transition from a motionless state to an advective one. In § 4 we
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FIGURE 1. (Colour online) Schematic of the domain geometry and temperature boundary
conditions. No-slip conditions are assumed on all walls and on the heater.

carefully consider the effect of the yield stress on the dynamics of flow development
after the start of yielding. This allows us to identify the mechanisms that play the
key role in transition between different regimes. We close in § 5 with a qualitative
comparison of our results with those of Davaille et al. (2013), and an overview of
the main characteristics of viscoplastic plumes.

2. Formulation

We consider a square (two-dimensional) cavity of side L̂ filled with a Bingham fluid
with the following properties: yield stress τ̂y, plastic viscosity µ̂, thermal diffusivity κ̂ ,
thermal expansion β̂ and density ρ̂. The cavity walls are maintained at temperature
T̂c, except the bottom wall where a heater of width ĥw is positioned in the middle
(−ĥw/26 x̂6 ĥw/2) and is maintained at temperature T̂H for t̂> 0. Figure 1 illustrates
the flow geometry and boundary conditions. In this paper we will denote dimensional
quantities with the ·̂ symbol and dimensionless quantities without.

At t̂= 0 the fluid is at temperature T̂C everywhere and the fluid is stationary. Heat
transfer and the onset of flow are driven by the temperature difference 1T̂ = T̂H − T̂C.
The hydrodynamics is governed by the momentum, energy and continuity equations.
Assuming the Boussinesq approximation and using dimensionless variables, these
equations are

1
Pr
∂ui

∂t
+Gr uj

∂ui

∂xj
=− ∂p

∂xi
+ ∂τij

∂xj
+ Tδi2, (2.1)

∂T
∂t
+ Ra uj

∂T
∂xj
= ∂2T
∂xi∂xi

, (2.2)

∂ui

∂xi
= 0, (2.3)

for i, j= 1, 2, with (x1, x2)= (x, y). Here, the convention of implicit summation over
repeated indices is adopted. In (2.1)–(2.3), ui, p, τij and T are the velocity, pressure,
deviatoric stress and temperature, respectively. The Bingham model is described by
the constitutive equations

τij =
(

1+ B
γ̇

)
γ̇ij, iff τ > B,

γ̇ = 0, iff τ 6 B.

 (2.4)
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The cavity is denoted by Ω=[−1/2,1/2]× [0,1] and the boundary conditions are

ui = 0, T = 0, at x1 =±1/2, (2.5a,b)
ui = 0, T = 0, at x2 = 1, (2.6a,b)

ui = 0, T =
{

1, at x2 = 0, |x1|6 r,
0, at x2 = 0, |x1|> r. (2.7a,b)

It should be noted that the solution is symmetric with respect to x= 0. Thus, one only
needs to analyse half of the domain, 06 x< 1/2, subject to the boundary conditions

ui = 0, T = 0, at x1 = 1/2, (2.8a,b)

u1 = 0,
∂T
∂x
= 0, at x1 = 0, (2.9a,b)

ui = 0, T = 0, at x2 = 1, (2.10a,b)

ui = 0, T =
{

1, at x2 = 0, 0 6 x1 6 r,
0, at x2 = 0, r< x1.

(2.11a,b)

In (2.1)–(2.3) dimensionless variables have been defined as follows:

xi = x̂i

L̂
, T = T̂ − T̂C

T̂H − T̂C

, ui = ν̂ ûi

ĝβ̂1T̂L̂2
,

p= p̂− ρ̂0ĝŷ

ρ̂0ĝβ̂1T̂L̂
, t= κ̂ t̂

L̂2
, τij = τ̂ij

ρ̂0ĝβ̂1T̂L̂
.

 (2.12)

The four independent dimensionless groups that describe this flow are the Rayleigh
number, Ra, Prandtl number, Pr, Bingham number, B, and width ratio r:

Ra= ĝβ̂1T̂L̂3

ν̂κ̂
, Pr= ν̂

κ̂
, B= τ̂y

ρ̂0ĝβ̂1T̂L̂
, r= ĥw

2L̂
. (2.13a−d)

It should be noted that the Grashof number Gr = Ra/Pr. The Bingham number
B reflects the ratio of the yield stress to a representative buoyancy stress. As the
velocity scale above comes from balancing buoyant stresses with viscous stresses, an
alternative interpretation for B is as the balance of yield stress and viscous stress.
The type of stress balance captured in B is sometimes referred to as the Oldroyd
number or yield number.

2.1. Computational method
We give now an outline of the computational method that has been used throughout
this paper. Adopting the constitutive equation of a Bingham fluid (or similar) gives
rise to two specific properties: (i) the stress field is undetermined when the strain-
rate field is zero and (ii) the equation is non-differentiable at the yield point. Two
families of numerical methods have been used to circumvent these issues. The first
is the well-known regularization method, which approximates the exact yield stress
law with a smoothed and bounded effective viscosity. This transforms the problem
into a generalized Newtonian flow, in which the material is treated as highly viscous
in regions where it is supposed not to yield. At the computational level, classical
solution methods for shear-thinning/shear-thickening fluid flows are used. This type
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of method is apparently used in Massmeyer et al. (2013). Although practical, this
technique raises issues in terms of the determination of the yield surface positions
and in determining limits of flow/no flow, e.g. onset and stopping. These defects are
simply because generalized Newtonian (i.e. purely viscous) materials move under any
applied deviatoric stress, even if their viscosity is very high.

The second method relies on Lagrange multiplier and decomposition–coordination
methods and is referred to in the literature as an augmented Lagrangian algorithm.
It has been shown that, when combined with a fully implicit backward Euler time
discretization, this algorithm computes return to rest in finite time in an accurate way
(in the sense that at rest the strain-rate field is computationally zero everywhere in the
flow domain). This is because the original form of the Bingham constitutive equation
is considered directly, with the Lagrange multiplier representing an admissible
stress. For an extended discussion on regularization techniques and the augmented
Lagrangian algorithm, the interested reader is referred to Frigaard & Nouar (2005)
and Glowinski & Wachs (2011) respectively.

In this study (2.1)–(2.3) with corresponding boundary conditions are solved using
an augmented Lagrangian algorithm combined with a finite volume/staggered grid
space discretization. The numerical strategy employed here is identical to that in
Karimfazli et al. (2015), wherein more details about the numerical scheme can
be found. All simulations are performed with PeliGRIFF, a code that has been
developed for numerical computation of two-phase flows (e.g. particles, drops or
bubbles suspended in Newtonian or yield stress fluids); see, e.g., Wachs et al. (2015)
for more details. A number of benchmark flows have been computed to verify that
this code does faithfully reproduce published results on steady-state natural convection
with Newtonian fluids (de Vahl Davis 1983) and with Bingham fluids (Turan et al.
2010), and compares well with available analytical results for the termination of flow.
These benchmark comparisons are detailed in Karimfazli et al. (2015) and are not
repeated here for brevity.

3. Onset of yielding and flow
At t=0, the velocity is zero everywhere and the fluid is at the reference temperature

(T= 0) everywhere in the domain. On neglecting all nonlinear advective terms that are
quadratic in the solution variables, the initial behaviour is governed by

1
Pr
∂ui

∂t
=− ∂p

∂xi
+ ∂τij

∂xj
+ Tδi2, (3.1)

∂T
∂t
= ∂2T
∂xi∂xi

. (3.2)

The driving force for the momentum equation is the buoyancy force. In order for
motion to start, the buoyancy stresses in the domain must overcome the yield stress.
Since the initial temperature is T(0, x, y) = 0, we might expect that the convection
cell will not immediately start, i.e. a time is required for the fluid to heat sufficiently
to generate a large enough buoyancy force. If the yield stress is sufficiently large,
yielding of the fluid will not occur and the flow remains static.

The minimum yield stress that is sufficient to suppress the flow indefinitely is called
the critical yield stress, denoted in dimensionless variables by Bcr. Suppose instead
that yielding starts at t= ts. Before yielding starts, for t< ts, we have u(t, x, y)= 0 and
T satisfies (3.2), with initial condition T(0, x, y)= 0. The temperature distribution in
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the cavity is thus governed purely by conduction and the analytical solution is easily
found in series form:

Tc(t, x1, x2)= Ts(x1, x2)+ Tt(t, x1, x2), (3.3)

Ts(x1, x2)=
∞∑

m=0

Cm sin[a2m+1(x1 + 0.5)] sinh[a2m+1(1− x2)], (3.4)

Tt(t, x1, x2)=
∞∑

m=1

∞∑
p=0

A2p+1,m exp(−(a2
2p+1 + b2

m)t) sin(a2p+1(x1 + 0.5)) sin(bm(1− x2)),

(3.5)

Cm = 4(−1)m

a2m+1

sin(a2m+1r)
sinh(a2m+1)

, (3.6)

A2p+1,q = 8(−1)p+q bq

a2p+1(b2
q + a2

2p+1)
sin(a2p+1r), (3.7)

a2p+1 = (2p+ 1)π and bm =mπ. (3.8)

In (3.3)–(3.5), Ts and Tt are respectively the steady-state and transient components of
the conductive temperature field Tc(t, x1, x2), and the exact solution to (2.1)–(2.3) is

u(t, x1, x2)= 0, T(t, x1, x2)= Tc(t, x1, x2); t ∈ [0, ts). (3.9a,b)

It should be noted that although the velocity is determined during the phase t ∈
[0, ts), the stress field is not. The static momentum balance is

0=− ∂p
∂xi
+ ∂τij

∂xj
+ Tcδi2. (3.10)

During this time period heat diffuses into the cavity from the heated plate, eventually
approaching the steady state. As initially T = 0, we expect that everywhere in the
cavity the size of the buoyancy force will increase monotonically with time. However,
t appears essentially as a parameter in (3.10) contained in Tc(t, x, y). The stress
components are not fully determined by (3.10), which is properly considered as an
admissibility condition for the stress. We denote by S the set of admissible stress
tensors σ̃ij = −p̃δij + τ̃ij that satisfy (3.10). In other words, at any time t ∈ [0, ts),
S depends on the buoyancy force Tcδi2. It is known that the stress tensor in a
viscoplastic fluid (Stokes) flow satisfies a stress maximization principle, which in this
case takes the following form; see, e.g., Prager (1954). The true stress tensor σij ∈S
maximizes

Ψ (τ̃ )=−1
2

∫
Ω

[max{τ̃ − B, 0}]2 dV (3.11)

over S . From this we may deduce that if any (admissible) stress tensor has τ̃ 6 B,
then τ 6 B for the actual stress field. In other words, suppose that at each t ∈ [0, ts)
we may find the admissible stress tensor σ̃ij with smallest τ̃ , this defines the limiting
yield stress, say B=Bc(Tc(t, x1, x2)), required to keep the fluid static; i.e. a yield stress
fluid will not yield unless it has to.

We observe that Tc(t, x, y) depends only on the dimensionless parameter r. The
admissibility condition (3.10) is independent of Ra and Pr. Thus, any admissible
stress field depends only on r. It follows that the limiting yield stress Bc must be
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FIGURE 2. Speed, |u|(t), and yield surfaces (white lines) at t= 0.006, B= 0.002 and
Pr= 104, at different values of Ra: (a) Ra= 104, (b) Ra= 105, (c) Ra= 106.

independent of Ra and Pr at each t ∈ [0, ts). It should be noted that this argument is
valid for more general cavity shapes Ω and heater configurations, i.e. the conductive
temperature field would first be solved (depending on domain geometry and heater
configuration only), and (3.10) then depends only on Ω and Tc.

A discontinuity in the initial temperature conditions may allow large admissible
stresses, causing localized yielding. However, for the present problem, the only
discontinuity is due to the wall temperature. For t > 0, the heat equation (3.2)
smooths the temperature field and, therefore, no singular stress values are expected
within the domain. We expect that the main physical effect will be a monotone
increase in Tc(t, x1, x2) and hence the buoyancy-induced stresses. In other words, we
would expect that Bc(t) increases with Tc(t, x, y). To suppress the flow indefinitely,
taking ts→∞ we see that Tc(ts, x1, x2)→ Ts(x1, x2). Therefore, provided that Bc(t)
increases monotonically with t, we can associate Bcr with the stress field induced by
the steady-state conductive temperature Ts(x1, x2).

3.1. Computational determination of the critical Bingham number
As we have demonstrated, the actual conditions for motion onset are independent of
Ra and Pr. However, once started these parameters affect the evolution of the solution.
At higher Ra, the yielded area propagates more rapidly. Therefore, at identical time
instances, the yield surfaces deviate more noticeably from the initial shape at onset.
The geometry of the yield surfaces shortly after yielding is illustrated for different
values of Ra at B= 0.002 in figure 2.

As B is increased it takes progressively longer for the flow to be initiated (ts
increases). However, the computed steady-state velocity decreases with B. Figure 3
illustrates the steady-state flow structure at a Bingham number close to the critical
value, where the convection is relatively weak for Ra= 104.

The critical Bingham number may be approximated from the results of numerical
solution of the flow. We have already determined that the initial yielding (flow onset)
is independent of both Ra and Pr. Thus, we fix Ra= 104 and Pr= 104 for our main
computations. Starting from an initially static and cold fluid we integrate forward in
time at a fixed B. If the flow starts we integrate until steady velocity and temperature
are achieved. We then use the following criterion to approximate ts from the norm of
the shear rate: ‖γ̇ ‖(ts)

‖γ̇ ‖(∞) = 10−3. (3.12)
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FIGURE 3. Flow field at Ra= 104,Pr= 104 and B= 0.0028. (a) Colourmap of the speed
|u|; white lines represent the yield surfaces. (b) Colourmap of the temperature T; white
lines represent the streamlines.
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0.005

0.010

r

FIGURE 4. Variation of Bcr with r. Estimates of Bcr are calculated using the computational
technique described in § 3.1.

We use linear interpolation to evaluate ‖γ̇ ‖(t) between the discrete numerical data
points. The results of the above explained computational approach are illustrated later
in figure 6(a).

To numerically estimate Bcr we extrapolate using the steady-state ‖γ̇ ‖(∞) at
three values of the Bingham number close to the critical value, to find Bcr where
‖γ̇ ‖(∞)= 0. Using this approach we find

Bcr = 0.0030. (3.13)

This limit is verified by additional computations at different values of Ra and Pr. It
should be noted that Bcr does change with r and the cavity aspect ratio. Variation of
Bcr with r is illustrated in figure 4. Increasing r increases the heat transferred to the
domain. On the other hand, as r→ 0.5 it is expected that the effect of the sidewalls
will become more important as the shape and position of yield surfaces are limited
by the walls. Moreover, more thermal energy is dissipated through the sidewalls as
they get closer to the heater. On increasing r from zero to 0.5, therefore, Bcr initially
increases to a maximum before decreasing to its limiting value Bcr= 0.0087 at r= 0.5.
It should be noted that had we assumed a zero heat flux at the vertical sidewalls, we
would have expected Bcr→ 0 as r→ 0.5.

3.2. Analytical determination of the critical Bingham number
There are a number of ways in which Bcr might be estimated analytically. First,
we might try a direct constructive method. The series form of Tc(t, x, y) inserted
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into (3.10) suggests that p and τij can be expressed similarly in series structure, e.g.

τij =
∑

m

Fij,m(x1, x2)+
∑

m

∑
p

Aij,(2p+1,m) exp(−αp,mt)Gij,(p,m)(x1, x2). (3.14)

Here, the first summation represents the stress tensor needed to balance the
buoyancy force from Ts(x1, x2) and the second summation balances the transient
component. We note that even in attempting to evaluate a single modal term of
the above expression the (modal) stresses are indeterminate, i.e. p, τ11 = −τ22 and
τ12 = τ21 must be found from two momentum equations. Nevertheless, we can
speculate regarding Bc(t) using (3.14). As t→∞,

τij ∼
∑

m

Fij,m(x1, x2)+ Aij,(1,1) exp(−α0,1t)Gij,(0,1)(x1, x2). (3.15)

As discussed earlier in § 3, Bc(t)∝ τ and Bc(t) is expected to increase monotonically
with time and limt→∞ Bc(t)= Bcr. We therefore hypothesize that

Bc(t)∼ Bcr(1− exp(−αt)), (3.16)

i.e. as B→ Bcr, the flow start time increases to infinity logarithmically, as ln(1 −
B/Bcr).

Alternatively, we may approach the limiting yield stress considering the energy
equation at the onset of motion. Suppose that the flow starts at t = ts, with ‖u‖> 0
for t > ts. We multiply (2.1) by ui and integrate over the cavity Ω to derive the
energy equation:

1
Pr

dH
dt
=−〈γ̇ 2(u)〉 − B〈γ̇ (u)〉 + 〈u2T〉, (3.17)

where H represents the kinetic energy of the fluid,

H = 1
2
〈u2〉 and 〈φ〉 =

∫
Ω

φ dx. (3.18a,b)

Assuming that when B = Bc yielding starts at ts, for sufficiently small 0 < ε � 1,
the flow field at t∗ = ts + ε t̃ can be described as

u(t∗)= u(ts)+ δuũ, (3.19)
T(t∗)= T(ts)+ δT T̃, (3.20)

with δu � 1, δT � 1 and the ·̃ denoting rescaled quantities local to starting. The
rescaled energy equation thus becomes

δT

ε

∂T̃
t̃
+ RaδuδT ũj

∂T̃
∂xj
= ∂

2Tc(ts)

∂xj∂xj
+ δT

∂2T̃
∂xj∂xj

, (3.21)

which yields δT = ε, i.e. the heat transfer is still dominated by conduction at t∗, and
T(t∗)= Tc(ts)+ εT̃∗. The rescaled kinetic energy equation is therefore

δ2
u

εPr
dH̃
dt̃
=−δ2

u〈γ̇ 2(ũ)〉 − Bcδu〈γ̇ (ũ)〉 + δu〈ũ2(Tc(ts)+ εT̃)〉. (3.22)
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Alternatively we may write

0<
δu

εPr
dH̃
dt̃
+ δu〈γ̇ 2(ũ)〉6−〈γ̇ (ũ)〉

[
Bc − sup

v∈V ,v 6=0

{
〈ṽ2(Tc(ts)+ εT̃)〉
〈γ̇ (ṽ)〉

}]
, (3.23)

where V = {v ∈ [H1
0(Ω)]2;∇ · v = 0}. Defining

Bc(ts)= sup
v∈V ,v 6=0

{ 〈ṽ2Tc(ts)〉
〈γ̇ (ṽ)〉

}
, (3.24)

we observe that a necessary condition for H (or H̃) to grow in time at t= ts is that
B 6 Bc(ts), i.e. taking B > Bc(ts) contradicts the assumption that ‖u‖ > 0 for t > ts.
Moreover, a comparison of (3.22) and (3.24) reveals that δu = ε2, i.e. the viscous
dissipation does not affect the kinetic energy balance (at the leading order) and the
excess buoyancy at t∗ accelerates the otherwise static fluid. Whether the condition
B>Bc(ts) is sharp or not depends on whether the actual solution attains the supremum
in (3.24). Nevertheless, as t→∞ we have Tc→Ts and Bc(t) exponentially approaches
a constant limiting value (see (3.16)).

Quantities such as Bc(t) are well defined, according to the theoretical development
in Temam & Strang (1980). Exact evaluation is difficult, but crude estimates may be
made analytically. For example, using integration by parts we have

∂

∂x2

(
u2

∫ x2

0
Tc(t, x1, s) ds

)
= u2Tc + ∂u2

∂x2

∫ x2

0
Tc(t, x1, s) ds. (3.25)

Using the above directly in (3.22) and simplifying the resulting integral we get

ε

Pr
dH̃
dt̃

6−〈γ̇ 2(ũ)〉
∫
Ω

γ̇ (ũ)
[

1
2

∫ x2

0
Tc(t, x1, s) ds− B+O(ε)

]
dx2 dx1. (3.26)

Choosing B such that

B >
1
2

∫ 1

0
Tc(t, x1, s) ds (3.27)

is sufficient to ensure that the flow does not start at t. As t → ∞ we may use
the steady-state temperature in the above estimate and evaluate numerically, giving
B & 0.054 as sufficient to suppress flow, i.e. Bcr 6 0.054. In comparison to the
numerical estimate given in (3.13), this estimate is very conservative.

We may also derive a semianalytical estimate based on the flow field just after onset.
The flow structure at a Bingham number close to the critical value was illustrated in
figure 3. We see that the flow is confined to the vicinity of the heater, rises vertically
above the heater and then recirculates within a yielded envelope. In figure 5, we see
that for B < Bcr, the yield surfaces shortly after ts are qualitatively similar to the
test function shape. This explains the relatively good approximation of ts illustrated
in figure 6.

It should be noted that evaluating the supremum in (3.24) does not depend on the
magnitude of the test velocity, but on the distribution of the velocity field. A flow
field with similar distribution of velocity to that observed in figure 3 just after flow
onset is illustrated in figure 5. Here, the Pi are plugs where the fluid is in rigid-body
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Rr

FIGURE 5. Schematic of the suggested flow geometry as t→ t+s . The dashed red lines
represent moving yield surfaces. The black solid lines represent static yield surfaces and
the bottom wall.
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FIGURE 6. (a) Comparison of numerical and analytical estimates of variation of ts with B.
(b) Variation of the analytical estimate of R with B.

motion. In P1, the velocity is in pure rotation about O1. In P2 and P3, the fluid is
undergoing pure translation:

u(x)=
rω eα, if x ∈ P1,

up2 e1, if x ∈ P2,

up3 e2, if x ∈ P3.

(3.28)

Here, ω is the angular velocity of P1. Fluid is assumed to be yielded in
asymptotically thin layers of width εi that separate the plugs, allowing adjustment of
the flow direction. Given the parameters θi and up1/(Rω), the geometry of the thin
yielded layers between the three moving plugs can be calculated using conservation
of mass. Similarly, using conservation of mass over control volumes where the static
and moving plugs meet suggests upi/(Rω) = cos(θi). The idea of such test solutions
is that they might represent functions that approximate the supremum in (3.24).

On substituting such a test function into (3.24), the problem of (approximately)
finding Bc is reduced to solving the optimization problem (3.24) with respect to θ2,
θ3 and R. Using this method we find

Bcr = 0.00307, (3.29)

which is very close to our numerical estimate.
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Strictly speaking, we should only expect such an approach to give a good estimate
when Tc becomes sufficiently steady, i.e. use of the steady-state Ts(x, y) with the
above test functions should give an approximate value for Bcr. However, this same
test function approach may be used for B<Bcr in the following way. Fixing t= ts, for
any conductive temperature Tc(ts, x, y) we insert the test function into (3.24), optimize
with respect to θ2, θ3 and R, and hence derive an estimate for Bc(ts). We now compare
B= Bc(ts) with the numerical value of B for which onset occurs at t= ts. Figure 6(a)
illustrates analytical and numerical estimates of variation of start time with Bingham
number. It should be noted that ts is independent of Ra and Pr and varies only with
B (domain geometry and boundary conditions).

Not surprisingly, the numerical estimates are consistently larger than the analytical
ones. First, the computationally evaluated velocity norm increases to a numerically
meaningful magnitude only after the exact velocity field has increased to a level
that falls above the resolution of the computational scheme. Second, the definition of
the numerical estimate in (3.12) may facilitate numerical consistency and precision
but it also introduces an intrinsic positive error. Third, it should be noted that the
semianalytical approach is also expected to overestimate ts(B) as it is not a perfect
evaluation of the supremum in (3.24) that defines Bc(t). It should be noted that Bcr
and the flow geometry as t→ t+s change with r and the cavity aspect ratio. We only
expect the flow geometry illustrated in figure 5 to provide reasonable estimates of
Bcr at those values of r and the cavity aspect ratio for which the yielded structure
does not touch the top or sidewalls of the cavity as t→ t+s .

4. Convective flow regimes
In the preceding section we have focused on stationary states and the onset of

motion. Now we explore the range of convective flows that are found for B<Bcr. We
start with a qualitative analysis. Throughout we focus on high Pr, which is realistic for
most yield stress fluids. At large Pr the nonlinear advective terms in the momentum
equation are small relative to the viscous dissipation. Thus, except on progressively
smaller transient time scales, the left-hand side of the momentum equation vanishes
as Pr →∞. Unless otherwise specified, the results presented here are obtained at
Pr= 104. The computed results were very similar for any Pr > 102.

At critical flow conditions a yield stress (say τ̂y,c) balances with the buoyancy
stresses, as captured in Bcr:

Bcrρ̂01T̂ĝL̂≈ τ̂y,c. (4.1)

As we have discussed, Bcr depends upon the domain geometry and boundary
conditions. Suppose now that B<Bcr so that motion starts at ts. Part of the buoyancy
stresses are balanced by the yield stress τ̂y < τ̂y,c, while the remainder may contribute
towards fluid motion, being balanced by developing viscous stresses. Assuming that
d̂ is the length scale of the subdomain containing the moving fluid, the characteristic
velocity of the convective flow that develops close to the heater is

Û ≈ d̂(Bcrρ̂0β̂1T̂ĝL̂− τ̂y)

µ̂
. (4.2)

Thus, Û defines a time scale t̂a for advection in the cell:

t̂a ≈ d̂

Û
= µ̂

Bcrρ̂0β̂1T̂ĝL̂− τ̂y

= µ̂
τ̂y

B
Bcr − B

. (4.3)
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We may compare t̂a with the conductive time scale t̂c = d̂2/κ̂ . The ratio of the
conductive to the advective time scale is

t̂c

t̂a
≈ (Bcrρ̂0β̂1T̂ĝL̂− τ̂y)d̂2

µ̂κ̂
= d̂2

L̂2
Ra(Bcr − B). (4.4)

Alternatively, we may interpret t̂−1
a = Û/d̂ as a representative strain rate, and use

this to define an effective viscosity:

µ̂e = µ̂+ τ̂y

ˆ̇γ ≈ µ̂+ τ̂y t̂a = µ̂ Bcr

Bcr − B
. (4.5)

On replacing µ̂ with µ̂e in (4.4) we obtain

t̂c

t̂a
≈ d̂2

L̂2
Ra(Bcr − B)= d̂2

L̂2
BcrRae. (4.6)

Essentially, as B is varied from zero to the critical limit at fixed Ra, the flow
characteristics transition from those of the Newtonian limit, where the effective
Rayleigh number, Rae, equals the nominal Rayleigh number, Ra, to the purely
conductive regime with zero velocity everywhere and Rae = 0.

We separate our analysis into two regimes. First, when t̂c . t̂a, advective effects are
not dominant and we expect that flow development is qualitatively more similar to the
diffusive regime where tc� ta. We see clearly that this behaviour is characteristic of
flows at low Rae, generally meaning either low Ra or moderate/high Ra with B/Bcr∼1.
Weak advection is studied in § 4.1. The second regime we study is for t̂c� t̂a, when
we expect that advection effects will become significant. From (4.6) we see that this
is only possible if Ra is sufficiently large, for fixed B/Bcr < 1. Strong advection is
studied in § 4.2.

Some insight into the transition between weak and strong convection is gained from
the simpler Newtonian flow (B= 0). The signature of the flow is given by monitoring
the heat flux through the heater, q̇,

q̇(t)=
∫ r

−r

∂T
∂x2

(t, x1, 0) dx1. (4.7)

In figure 7 we plot the computed q̇(t) for B= 0 at four different Ra. Over the time
scale illustrated, for smaller Ra the heat flux decays monotonically in an analogous
way to the heat flux of the purely conductive temperature (see Ra= 104 and Ra= 105).
However, for higher Ra (see Ra = 106 and Ra = 107 in the same figure), stronger
advection enhances the heat transfer around the heater, resulting in the formation of
a thermal plume head which then advects upwards. This sudden removal of hot fluid
away from the heater leads to increased thermal gradients close to the heater, which
then conduct heat away more effectively. Thus, at higher Ra we often observe a local
minimum in q̇(t), related to initial plume formation, followed by a local maximum
related to the enhanced conduction due to the removal of the plume head.

4.1. Weak advection, t̂c . t̂a

For t̂c < t̂a, i.e. sufficiently small effective Rayleigh number Rae, we observe a
slow and smooth development of the yielded region around the heater. The velocity
gradually increases from zero and the static plugs that separate the walls and the
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FIGURE 7. (Colour online) Heat flux rate, q̇(t), through the heater for B= 0 (Newtonian
fluid), Pr= 104. The heat flux in the purely conductive regime is represented by ×.

yielded region next to the heater shrink. Eventually the convective cellular motion
expands and attains a steady state. An illustration of this sequence is given in
figure 8 at different stages of flow development, for Ra= 104,B= 0.001. We observe
that the velocity and temperature increase monotonically towards their steady values.
Qualitatively similar results are found for larger B, except that the velocity and steady
temperature are reduced.

While the analysis leading to (4.6) is based on bulk scaling arguments, we may
also analyse the computational solution directly to give more accurate estimates
and interpretation of the system behaviour. First, we recall that the scaling of our
equations in (2.12) is based on a length scale L̂, a velocity scale Ûv = ĝβ̂1T̂L̂2/ν̂

(balancing buoyant and viscous stresses) and the conductive time scale t̂c = L̂2/κ̂ .
From the numerical solution, at any time t we find that only a limited subdomain of
the cavity has |u| > 0, and we call this the advecting domain. We can compute the
average speed over the advecting domain, Ua, and also the height d of the advecting
domain. In dimensional terms, the improved advective and conductive time scales are
given by t̂a = dL̂/(UaÛv), t̂c = d2L̂2/κ̂ and thus the (dimensionless) ratio of the two
time scales is

t̂c

t̂a
= tc

ta
≈ Ra Ua d. (4.8)

Now d has to be larger than the size of the yielded structure at ts, i.e. R 6 d 6 1
(see figure 5). Therefore, for the range of B considered here and at a constant Ra, the
changes in Ua are the main factors indicating changes in tc/ta.

Conductive heat transfer in the cell is driven by the temperature difference between
the heater and the periphery of the cell, δTc ≈ 1. Advective heat transfer, however, is
driven by the difference between the mean temperature of the fluid in the advecting
domain and that of the periphery of the cell, say δTa. The ratio of advective and
conductive heat fluxes, which we denote by φ, can therefore be estimated by

φ ≈ Ra Ua d δTa, (4.9)

which is similar to the time scale ratio, except for the inclusion of δTa again
postprocessed from the numerical solution. While not directly predictive (as they
need the computed numerical solution), quantities such as tc/ta, φ, Ua, . . . do give a
more accurate picture of the system at time t.
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FIGURE 8. Evolution of the speed |u| (a–d) and the temperature T (e–h), for Ra= 104,
B= 0.001, Pr= 104, at t= 0.006 (a,e), t= 0.033 (b,f ), t= 0.129 (c,g) and t= 0.399 (d,h).
The white contours in (a–h) denote the yield surface positions. (i,j) The evolution of Ua
and ‖T‖ respectively. The red markers in (i,j) represent the times when the snapshots are
taken.

Figure 9(a–c) illustrates the variation of tc/ta, φ and ‖T‖ with B when advection is
weak. At Ra= 104 the advective time scale slowly decreases with time to a minimum
that is at most comparable with the conductive time scale. During flow development,
therefore, conductive heat transfer is dominant and φ � 1. On increasing Ra (and
hence Rae), we observe that the advective time scale decreases faster and advection
plays a more significant role during flow development, φ ≈ 1 (figure 9d–f ). An
example of this flow type is given in figure 10(h–j), for Ra = 105, B = 0.001. Two
effects now compete. First, since advective time scales are shorter, the velocity field
develops faster, improving the heating of the fluid close to the heater more rapidly.
The heated fluid around the heater perhaps temporarily rises, contributing to a local
maximum in tc/ta. However, since the advective time scale is not sufficiently small,
this weak dominance of advection is quite short lived. As thermal energy diffuses
away from the heated core, tc/ta decreases and the steady state is gradually achieved.
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FIGURE 9. (Colour online) Effect of B on the development of tc/ta, φ and ‖T‖ at Ra=104

(a–c) and 105 (d–f ); Pr = 104. The broken red lines represent the development of the
conductive temperature field.

The dominant effect of increasing Bingham number, within this range of Ra, is the
increase in effective viscosity, which results in a decrease in the steady values of Ua,
tc/ta, φ and ‖T‖. At moderate Rae, advective and conductive heat transfer become
comparable, φ ≈ 1, signalling the end of the weak-advection regime.

The vertical component of velocity and the temperature profiles along the centreline
of the cavity at different stages of the flow development are plotted in figure 11. One
should notice the persistence of a plug close to the heater around the centreline. The
size of this plug generally increases with time and with B. In the weak-advection
regime considered here, the temperature of the fluid immediately surrounding the
heater does not become significantly higher than that of the surrounding fluid at any
stage.

Phenomenologically, the cellular motion observed by Davaille et al. (2013) is
analogous to a subset of the weak-advection regime presented here: when ta � tc
temperature development deviates negligibly from the conductive regime, motion
develops in an expanding cellular pattern around the heater and steady state is
achieved rather slowly. See, for example, the slow development of φ in figure 9(b,e)
at large values of B.

4.2. Strong advection, t̂c� t̂a

At sufficiently high Ra, when the fluid has no yield stress, cellular convection next to
the heater increases the average local temperature. The pocket of hot fluid then advects
upwards, eventually decelerating due to dissipation of thermal and kinetic energy at
the upper wall. This event results in the first pulse observed in tc/ta and improves
the advective heat transfer within the cavity. For Newtonian fluids, transition to the
steady state is typically relatively smooth after the first pulse, although non-monotone
at larger Ra.

For 0 < B < Bcr, a variety of flow features can emerge. The time development of
tc/ta and φ is illustrated in figure 12. We see that ta decreases quickly once yielding
starts and advective heat transfer dominates conduction. Thus, we find tc/ta � 1
and φ > 1. A few characteristic trends are evident in figure 12. First, considering
φ as an illustrative measure of the domination of convection over conduction, it is
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FIGURE 10. Evolution of the speed |u| (a–d) and the temperature T (e–h), for Ra= 105,
B= 0.001, Pr= 104, at t= 0.006 (a,e), t= 0.029 (b,f ), t= 0.031 (c,g) and t= 0.078 (d,h).
The white contours in (a–h) denote the yield surface positions. (i,j) The evolution of Ua
and ‖T‖ respectively. The red markers in (i,j) represent the times when the snapshots are
taken.

clear that at a fixed Ra the dominant effect of yield stress at lower values of B
is to increase the effective viscosity, resulting in a decrease in maximal tc/ta and
φ. However, as B is increased further we observe a range of B over which there
is an increase in maximum φ, i.e. advection is temporarily enhanced. Finally, as B
approaches the critical limit, we expect the maximum φ to decrease with B and to
recover the ‘weak-advection’ regime sufficiently close to Bcr. Further, in comparison
to the Newtonian flow, progressively stronger oscillatory trends are observed in the
development of φ as Ra is increased.

It must be recognized that a number of competing effects govern this complex
transient behaviour. The onset time is governed by B. However, once yielding starts,
both Ra and B affect the flow. Different features observed in the flow development
are due to the relative importance of such effects. In what follows we rely on a
simplistic analogy to explain the physics of the process more intuitively.
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FIGURE 11. Effect of the Bingham number on the development of u2 and T along the
centreline of the cavity at Ra= 104, 105: (a,d) Ra= 104, B= 0; (b,e) Ra= 104, B= 0.001;
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FIGURE 12. (Colour online) Effect of B on the development of tc/ta, φ and ‖T‖ at Ra=
106 (a–c) and 107 (d–f ); Pr= 104. The broken red lines represent the development of the
conductive temperature field. The red circular markers represent tp1 on each curve.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

63
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.639


Plumes in viscoplastic fluids 495

Figure 13 illustrates in more detail the evolution of a thermal plume, for Ra= 106,
B=0.0025. The initial development (figure 13a,e) is reminiscent of the flows observed
close to yielding (as illustrated in, e.g., figure 5). The formation and upward advection
of a ‘packet’ of hot fluid is evident in figure 13(c,g) and onward. As the packet of
hot fluid approaches the top wall, Ua decays. There is a short delay in which a local
minimum in Ua is attained, but no secondary ‘pulse’ of hot fluid detaches from the
plume, which becomes progressively steady. No secondary pulses were observed at
Ra = 106 over the range of Bingham numbers considered. Although details of the
flow regimes are different at different values of B, no significant qualitative differences
were observed at this Ra. Once the first ‘pulse’ in tc/ta passes, convergence to the
steady state is relatively smooth.

Consideration of the advection of fluid along the centreline in more detail can
facilitate an understanding of the effects of the yield stress. The development of the
velocity and temperature profiles along the symmetry line at Ra= 106 is illustrated in
figure 14 for both Newtonian and viscoplastic fluids. When the flow starts, there is a
plug on the centreline close to the heater. At the Bingham numbers illustrated here,
this plug initially moves upwards before approaching its steady shape and position
closer to the heater.

Shortly after the start of the flow a local maximum is noticeable in the temperature
profile along the centreline. Existence of this maximum is the hallmark of strong
advection. Figure 15 illustrates the local maximum temperature (T∗) and the location
(y∗) of the temperature maxima, from the instant that they are (numerically)
distinguishable until they disappear, close to the top wall. Although y∗ and T∗
are indeed not identical to the location and average temperature of the plume head,
they are representative of parametric changes that occur. It should be noted that even
for Newtonian fluid, there is a finite delay between the start of the flow (at ts = 0)
and the formation of the first distinct plume head (at tp1).

Precise identification of the instant that a plume head forms, say tp1, and the precise
shape of its boundaries at t = tp1 is not practical. This is mainly because at tp1 the
plume head is not distinguishable from the heated fluid layer that it is emerging
from. As the plume head advects away from the heater and a plume stem forms,
identification of the plume head becomes more feasible. A reproducible measure of
tp1 can therefore be defined as the instant when a local maximum is observed on the
centreline at y> 0. This reproducibility is gained at the cost of an inherent positive
error in the plume onset time. Using this definition, tp1 effectively represents the
instant when a plume-head-like feature is identifiable. Figure 16(a) illustrates how
tp1 − ts changes with B and Ra; tp1 − ts represents the time interval over which the
cellular motion develops around the heater before the plume emerges. Figure 16(b,c)
illustrates contours of T = 0.5T∗ at t ≈ tp1. These contours are representative of the
plume shape and size at tp1. It can be inferred from this figure that the plume onset
time and plume head size increase with B and decrease with Ra.

Simplistically, the rise of the plume head is analogous to the rise of a buoyant
‘packet’ of fluid. The packet is restricted by the yield stress of the surrounding fluid
and is pushed upwards by buoyancy. The packet is thus expected to rise only if
Bp < Bp,cr, where

Bp = τ̂y

(ρ̂0 − ρ̂p)ĝR̂p

= B
1T̂

1T̂p

L̂

R̂p

= B
Tprp

. (4.10)

Here, 1T̂p = T̂p − T̂0, and T̂p and R̂p are the average dimensional temperature and
characteristic radius of the packet respectively; T̂0 represents the average temperature
of the surrounding body of fluid.
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FIGURE 13. Evolution of the speed |u| (a–d,i–j) and the temperature T (e–h,k–l), for
Ra = 106, B = 0.0025, Pr = 104, at (a,e) t = 0.033, (b,f ) t = 0.036, (c,g) t = 0.038, (d,h)
t= 0.04, (i,k) t= 0.045 and (j,l) t= 0.05. The white contours in (a–d,i–j) denote the yield
surface positions. (m,n) The evolution of Ua and ‖T‖ respectively. The red markers in
(m,n) represent the times when the snapshots are taken.
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FIGURE 14. Effect of the Bingham number on the development of u2 and T along the
centreline of the cavity at Ra= 106: (a,d) Ra= 106, B= 0; (b,e) Ra= 106, B= 0.001; (c,f )
Ra= 106, B= 0.0025.
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The Bingham number affects Tp through two different mechanisms. First, ts and thus
T(ts) increases with B. This does not necessarily indicate an increase in the average
plume head temperature, Tp, with B, but we hypothesize that it is the main reason for
the observed increase in T∗ with B (see figure 15b). Second, the effective viscosity
and hence the advective time scale in the convecting cell increases with B. Given that
at a higher B, higher buoyancy stresses are needed for a packet to float upwards, it is
expected that the formation of a critically buoyant fluid packet is delayed, i.e. tp1− ts
increases with B (see figure 16a).

When yielding starts at ts, B is the only dimensionless parameter that defines d(t),
the width of the convecting cell. It is illustrated in figure 6(b) that d(ts) increases with
B. This is suggestive of an increase in rp with B. Moreover, since tp1 − ts increases
with B, diffusive length scales also increase with B and contribute to a larger rp.
Arguably this variation of rp with B constitutes a favourable effect on the formation
of a buoyant packet of fluid.

Once Bp < Bp,cr, the hot fluid packet starts to accelerate upwards, shaping the
first pulse observed in tc/ta. This positive acceleration is enhanced by the favourable
temperature gradient of the surrounding stagnant fluid. However, in addition to the
dependence of the average temperature and size of the plume head on the Bingham
number, the effective viscosity that it experiences while advecting upwards increases
with B.

When the dominant consequence of increasing B is the increase in Tp and rp, the
local maximum in tc/ta also increases with B. This balance of the abovementioned
mechanisms endures over a limited interval of B. As B approaches the critical limit,
the effective viscosity increases more rapidly while Tp and rp asymptote to finite
values of O(1). On increasing B beyond this interval, the local maximum of tc/ta
decreases with B, and, eventually, we expect to recover the weakly advective regime,
φ . 1.

For a very tall cavity, the acceleration diminishes as the temperature gradient
vanishes away from the heat source. The advecting plume head then slowly decelerates
due to dissipation of internal and kinetic energy. For cavities that are not sufficiently
tall, viscous dissipation dominates as the hot fluid approaches the top wall. As the
buoyant plume head ‘impinges’ on the wall, it deforms and is dispersed horizontally.
Considering the kinetic energy equation (3.17), this is equivalent to a major loss
of the driving buoyancy force, i.e. 〈u2T〉. Dissipation thus dominates the (transient)
balance of kinetic energy in the cavity, at least temporarily, and the advective velocity
decreases significantly, i.e. stronger pulses are affected more severely by the presence
of the wall. This explains the sharp decay of the strong pulses in tc/ta in figure 12.

Understanding the effect of Ra on the evolution of the plume head is perhaps
more straightforward. The decrease in tp1 − ts with increasing Ra can be attributed
to the improved heat transfer in the convecting cell: when yielding starts at ts, a
higher Ra means enhanced advection around the heater as tc/ta increases with Ra
(see figure 16a).

Going back to the simplistic rising fluid packet analogy, it is clear in (4.10) that
the critical buoyancy stress (∝Tp rp) needed to enable the rise of a bubble does not
explicitly depend on Ra and varies only with B. Given that tp1− ts decreases with Ra,
we expect the average plume head temperature, analogous to Tp, to increase with Ra,
while its size, analogous to rp, decreases. This leads to enhanced acceleration of the
plume head, and thus the increase in T∗(tp1) with Ra.

Overall, shorter transition times indicate limited diffusion. This implies that a
more significant share of the buoyant forces is carried within the plume head. We
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hypothesize that this is the prime reason behind sharper decay of the kinetic energy
of the pulse at higher Ra.

The flow development for Ra = 107 and relatively low B = 0.001 is illustrated in
figure 17. At this value of B only a single plume forms, with the flow thereafter
approaching steady state. To compare, the flow development for Ra = 107 and B =
0.0025 is illustrated in figure 18. The formation of a second plume head is evident
in figure 18(j,l). At sufficiently high Ra and over a certain range of B, the kinetic
energy dissipation after the decay of the first plume becomes sufficiently strong to
significantly decelerate the flow, bringing it close to complete stoppage. Consequently,
tc/ta decreases and the heat transfer is mostly localized around the heater. This brings
about favourable conditions for the formation of a second pulse, at tp2. In figure 19
the location and temperature at the local temperature maxima are traced with time. It
is evident that the number of identified pulses increases with Ra.

Comparing the state of the flow at t = 0 and t = tp1, it is not surprising that the
formation of the second pulse occurs faster than the first one, i.e. tp2− tp1 < tp1. First,
at tp1 the fluid temperature around the heater is above the reference temperature, so
less time is needed for its temperature to increase to a desired value. Second, the yield
stress of the fluid in the cavity is partly balanced by the buoyancy stresses (effected
by the temperature increases in the domain). This decrease in the effective yield
stress of the fluid implies lower critical Tb2rb2 for the second pulse in comparison to
the first. Since momentum and heat diffusive length scales increase with time, it is
expected that rb2 & rb1. This suggests that the average plume temperature decreases
for consecutive pulses (and this is what is observed). Further, the fluid temperature
in the domain has generally increased in comparison to tp1. This results in weaker
acceleration of the successive plume heads and, hence, a decrease in the plume head
velocity. As each pulse approaches the top wall and decelerates, the distribution of
buoyancy forces and the magnitude of the effective viscous dissipation determine
whether the kinetic energy decays sufficiently to allow the formation of yet another
pulsing plume.

The strongly advective flows described here are analogous to a subset of plume
flows observed by Davaille et al. (2013). Although quantitative comparison is not
feasible, certain similarities can be identified. When the plume forms, we have
observed a sudden uplift of isotherms away from the heater, and tp1 varies noticeably
with both Ra and B. Moreover, for sufficiently large values of Ra, which are analogous
to high heating rates, we have observed episodic features during flow development.

5. Summary and discussion

Taking as inspiration the experimental work of Davaille et al. (2013), we have
investigated the flow of a yield stress fluid in a cavity, driven by a localized heat
source at the bottom wall. We have taken a simple viscoplastic fluid (Bingham) and a
2D square cavity as a representative model problem with which to explore the general
features of buoyancy-driven flow of viscoplastic fluids due to localized heating. The
main contributions of our study are threefold. (i) We have clarified the temporal aspect
of flow onset, starting from an initially stationary state, and explained how this is
influenced by the yield stress. (ii) We have given an explanation for the transition
between weakly and strongly convecting steady flows as the Rayleigh number is
increased, including new observations on the interesting phenomenon of pulsing
of thermal plumes. (iii) We have systematically explored the effect of varying Ra
and B on features of weak and strong advective flows. We give below a qualitative
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FIGURE 17. (a–l) The evolution of the speed |u| (a–d,i–j) and the temperature T (e–h,k–l),
for Ra= 107, B= 0.001, Pr = 104, at (a,e) t = 0.0010, (b,f ) t = 0.0012, (c,g) t = 0.0014,
(d,h) t= 0.0020, (i,k) t= 0.0023 and (j,l) t= 0.0040. The white contours denote the yield
surface positions. (m,n) The evolution of Ua and ‖T‖ respectively. The red markers in
(m,n) represent the times when the snapshots are taken.
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FIGURE 18. For caption see next page.
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FIGURE 18. (cntd). (a–n) The evolution of the speed |u| (a–d,i–l) and the temperature T
(e–h,m–p), for Ra= 107,B= 0.0025,Pr= 104, during the flow onset and the formation of
the first two pulses, at (a,e) t= 0.0257, (b,f ) t= 0.0259, (c,g) t= 0.0260, (d,h) t= 0.0262,
(i,m) t = 0.0280, (j,n) t = 0.0287, (k,o) t = 0.0290, (l,p) t = 0.0297. The white contours
denote the yield surface positions. (q,r) The evolution of Ua and ‖T‖ respectively. The
red markers in (q,r) represent the times when the snapshots are taken.
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FIGURE 19. Variation of the location, x∗2, and temperature, T∗, of the local maxima of
temperature along the centreline, at Ra= 107. The curves representing the first and second
maxima are tagged usingE,@ respectively, and the legend in (b) is applicable to (a) and
(c) as well. (a) The effect of B on the development of x∗2 with time. Time is measured
with reference to ts, when yielding starts. The increase in tp1− ts with B is evident in this
figure. The variation of T∗ with distance from the heater is illustrated in (b,c). It should
be noted that the absolute maximum at y= 0 is excluded.

description of the occurrence of different flow regimes within the dimensionless
parameter space.

Regarding flow onset (§ 3), a number of insights have been gained. First, a simple
dimensional analysis reveals that both the Prandtl and Rayleigh numbers are irrelevant
insofar as determining when and if a given static initial condition will yield and flow.
This conclusion is quite generic, applying to arbitrary cavity shapes and different
boundary conditions. Equally, as the viscous stresses are unimportant in flow onset,
this insight is independent of the precise yield stress fluid model, i.e. it is equally
valid for, e.g., Herschel–Bulkley or Casson fluids.

Realizing the above allowed us in § 3 to focus on the role of the conductive
temperature field Tc(t, x) in determining onset. The conductive temperature field
Tc(t, x) may be calculated analytically or otherwise for general problems of the type
considered. At each time t, the conductive temperature Tc(t, x) produces a buoyancy
force, and it is the balance of this buoyancy force with a statically admissible stress
field that determines whether or not the flow commences at that time. This leads to
the (precise) notion of a time-evolving Bc(t) such that yielding occurs at t = ts if
B = Bc(ts). This captures, at each time, the fundamental balance between buoyancy
and yield stresses in determining yielding. Furthermore, since Tc(t, x) approaches
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a steady conductive temperature distribution, exponentially in time, the onset time
ts→∞ logarithmically as B→ Bcr.

With regard to the experimental study of Davaille et al. (2013), differences in
the boundary conditions at the heater, the spatial dimension of the problem and the
precise fluid rheology prevent quantitative comparison. Nevertheless, the physical
mechanisms responsible for the observed phenomena are analogous. The balance of
buoyancy and yield stresses, represented here by B, is the decisive dimensionless
group characterizing the transition from the purely conductive regime to convecting
flows. This is in full agreement with the observation of Davaille et al. (2013) that
identifies transition from conductive to convective regimes as occurring at a constant
yield number, Yc1. In fact, because of the relatively small width of the heater, the
binary nature of (non)existence of motion and the indifference of this limit to
viscosity, comparison of Yc1 and Bcr is the most feasible quantitative comparison
between our study and the experimental work of Davaille et al. (2013). Assuming
that the steady-state temperature difference of the heater, 1T̂ , and the heat transfer
rate through the heater, ˆ̇q, scale as 1T̂ = ˆ̇q/(4k̂R̂eff ), where R̂eff is the effective radius
of the heater (Davaille et al. 2013), we have

Y = 4
B

R̂eff

L̂
. (5.1)

Thus, based on our simplified 2D geometry and uniform heater temperature, we have
Yc1= 119, which is in close agreement with the value found by Davaille et al. (2013),
Yc1 = 120.

Flow onset as described in § 3 is the result of the evolution of the temperature field
in time. When B<Bcr at a certain time, ts, the yield stress is not sufficient to balance
the buoyancy stresses, thus yielding and the start of flow are inevitable. The onset
time is thus decided by the value of B and is independent of viscous forces, i.e. Ra.
This should be distinguished from flow onset in set-ups such as the Rayleigh–Bénard
paradigm where, due to the domain geometry and boundary conditions, the yield stress
is always capable of suppressing the buoyancy stresses in a motionless fluid domain.
Therefore, in such cases yielding starts only if sufficiently strong initial disturbances
are present in the domain. Viscous stresses then play a key role in determining the
start of yielding: at a given B yielding may start due to hydrodynamic instability if
Ra is sufficiently large to promote growth of the initial disturbances. Flow onset is
no longer determined by the Bingham number alone, and determination of an onset
time is not practical as it depends on the properties of the disturbances present in
the domain. Given the fundamentally different processes that can lead to the onset of
yielding and flow, great care must be taken in extending the results of Zhang et al.
(2006) and Balmforth & Rust (2009) to other problems. The applicability of their
analysis relies on the existence of a steady motionless background state.

Finally, regarding onset, some caution must be exercised in interpreting the
generality of our results for all domains, and boundary and initial conditions. Here,
we considered a simple geometry and boundary conditions, such that the calculated
Tc(t, x) increased monotonically in time to approach the steady conductive state.
The consequence was that Bc(t) apparently increased monotonically, approaching Bcr
as t → ∞. Although the conductive problem is generally diffusive, smoothing the
initial temperature distribution and any boundary discontinuities, we may conceive
of different domain geometries, and initial and boundary conditions that allow
temperature discontinuity within the domain (at t= 0) or lead to Tc(t, x) that develops
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non-monotonically. Ongoing work is aimed at clarifying transient characteristics in
such situations.

Once yielding starts viscous stresses become important. Because yield stress fluids
tend to be relatively viscous, practically speaking we can restrict our attention to
large Prandtl number, meaning that velocity transients evolve rapidly to a pseudosteady
equilibrium. The relative size of advective and conductive time scales plays the key
role in determining flow dynamics and the strength of convection. Therefore, when
B<Bcr, both Ra and B govern the flow characteristics. After the onset of convection,
the yield stress acts to increase the effective viscosity of the fluid, so that an effective
Rayleigh number Rae should be considered in determining the strength of advection. If
Rae is sufficiently high to prompt the formation of a plume head and pulsing, further
to viscosification of the flow, the yield stress affects flow development through other
mechanisms described in § 4.2, i.e. mere incorporation of the yield stress in defining
Rae no longer reveals the complicated role of the yield stress in flow development. We
feel that for an evolving transient such as here, Rae is conceptually useful in general
flow classification, but should be used along with B to identify flow characteristics
more specifically.

Assuming B < Bcr, high values of Ra, which signify strong buoyancy stresses
in comparison to viscous stresses, are imperative to the formation of plume heads
and subsequent pulsing. For progressively larger Ra we have observed an increased
tendency for plumes to form and to do so in a pulsing manner. Over a certain range
of (Ra, B) flow becomes temporarily frozen between two consecutive pulses. Such
characteristics are distinctly reminiscent of the experimental work of Davaille et al.
(2013). Unlike Massmeyer et al. (2013), we had no difficulty in finding repeated
pulsation in our numerical results. The yield stress plays a dual role here, at high Ra.
On the one hand, starting at B= 0, we have seen that increasing B tends to increase
the intensity of the pulses: the presence of the yield stress accelerates the return to
rest of parts of the fluid away from the plume head, thus restricting advective heat
transfer and focusing the heat closer to the heater. On the other hand, for larger
B→ Bcr, the plume never starts.

It was observed in our simulations that successive pulses become weaker and
eventually all of our flows approach a steady-state configuration at long times. This
is in qualitative agreement with the experimental work of Davaille et al. (2013). They
report observing a maximum of three pulses before steady state is achieved.

In terms of classifying the flows, we have established that convecting (yielded)
flows are governed by two dimensionless groups (Ra, B) that balance the ratios
of three competing stresses: buoyancy, viscous and yield stress. Presence of a
yield stress is fundamental in creating intense pulsing behaviour at high Ra and
moderate B < Bcr, which is quite unlike the Newtonian regime at any Ra that we
have observed. We have established necessary conditions for the onset of yielding in
a cavity subject to localized heating at the bottom wall and qualitatively described the
transition from smooth flow development (tc . ta) to pulsing (ta � tc). We can thus
illustrate, schematically, the main three observed flow regimes in the (Ra, B)-plane:
see figure 20.

The broken line marked B = B∗(Ra) signifies a transition from weak to strong
advection. Simplistically, using the hot-packet analogy, B∗(Ra) corresponds to the
Bingham number at which max

(
Bp(t)

) = Bp,cr; i.e. during the flow development the
most buoyant packet of fluid is critically buoyant. It should be noted that precise
positioning of B∗(Ra) has not been the focus of this work. This requires populating
the (Ra, B)-plane with more data points from individual simulations. Nevertheless,
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104 106 107105 Ra

Pure conduction

No pulsing
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FIGURE 20. (Colour online) Schematic of the flow regimes in (Ra,B)-plane. The dashed
line, B∗(Ra), represents the transition from weak to strong advection. The strength and
number of the observed pulses increases with Ra, away from B= 0 and B∗(Ra).

figure 20 may seem to be in contradiction with Davaille et al. (2013), where transition
from cellular motion to plumes is attributed to a critical ratio of buoyancy and yield
stresses, Y = Yc2. Interpreting a criterion such as Y = Yc2 as the transition from weak
to strong convection, as in the description of Davaille et al. (2013), we believe to be
incomplete. As we have seen, a more systematic study of the regimes reveals the Ra
dependence of many transition features and not only dependence on B (equivalently Y).
Although Y = Yc2 may seem to adequately describe the experimental data, use of Y
negates the effects of the viscous stresses in influencing the transition. We postulate
that limited sampling of the dimensionless parameter space in the experimental study
of Davaille et al. (2013) has obscured the variation of Yc2 with Ra.
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