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Autonomous vehicles with an ability to trace chemical plumes can be instrumental in tasks

such as detection of unexploded ordnance, search for undersea wreckage and environmental
monitoring. As a consequence, use of autonomous vehicles to perform chemical plume tra-
cing has received an increasing interest from the research community in recent years. Owing
to the diversity of applications and ambient fluid environment of the plumes, there are

numerous plume tracing strategies and approaches. This paper reviews two main approaches
and a number of strategies that have been successfully implemented to track air or water
borne plumes in order to locate odour sources using autonomous vehicles. The first strategy

considered is the biomimetic approach that offers excellent models for the development of
robotic systems. Strategies inspired by lobsters and bacterium are the main focus in this
study. The second scheme considers parallelization of the search procedure by employing a

multi-robot approach. This approach has the advantage of utilising a group of smaller and
simpler communicating robots which are capable of performing a collaborative search of the
plume.
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1. INTRODUCTION. The objectives for employing an autonomous vehicle
(AV) to perform plume tracing are wide ranging. One of the goals could involve
locating a source of a chemical discharge that is spatially dispersed by an ambient
(carrier) fluid flow. This task is useful in the location of the source of a hazardous
chemical discharge in water bodies (Arrieta et al, 2003; Farrell et al, 2003a),
location of source of a gas leakage or the origin of a fire (Ishida et al, 1999) and in
demining operations (by tracing volatile chemicals dispersed from the ordnance).
Another goal is the mapping (Farrell et al, 2003b) or surveillance of a chemical
plume which is of particular importance in environmental monitoring. It can be
argued that the use of a large scale array of static sensors can also be used to locate
a chemical source or for environmental monitoring. However, such a type of
passive sensing mechanism is only capable of finding sources located within the
area covered by the array. Additionally, the cost and number of sensors rises with
an increased need for resolution or the extent of the search area. A compact and
mobile system for plume tracing such as an AV or an autonomous robot equipped
with the necessary sensors provide an active sensing platform which can cover a
larger measurement area more efficiently and at a much lower cost. Thus the
mobility of AVs makes them more effective in locating the source of a chemical
plume as compared to a static system (Ishida et al, 1999).

Farrell et al (2003b) have suggested a way of mapping water-borne plumes by
an AV using hidden Markov methods. The use of a REMUS autonomous under-
water vehicle (AUV) for chemical plume tracing (CPT) has been demonstrated
by Farrell et al (2003a) and Arrieta et al (2003). Another project called Springer is
underway for the purpose of synoptic characterisation of effects like riverine
plumes, fronts and salinity intrusion. Springer will be helpful in real-time mapping
of pollutant spills and the tracking of contaminants to their source (Naeem et al,
2006). Another system has been developed by Ishida et al (1999) based on the
behaviour of a moth. Russell et al (1995) have developed a robotic system to locate
hazardous chemical leaks. Whilst Zarzhitsky et al (2004) have reported a fluid
dynamics based approach to multi-robot CPT for localisation of a toxic odour
source.

This paper is organised as follows. The task description of achieving CPT is out-
lined in the next section. Section 3 briefly explains the main approaches found in
the literature. CPT using biomimetic techniques is detailed in Section 4 whilst
Section 5 presents multi-robot guidance strategies. Finally, discussions and conclud-
ing remarks are provided in Section 6.

2. TASK DESCRIPTION. The task of CPT can simply be put forward as a
straightforward question (Cowen and Ward, 2002): given a measurable concen-
tration of a dissolved substance at a point within a fluid flow, where is the source?
However the answer to this question is significantly complex for a variety of
reasons. Chemical signals from any source propagate through a fluid environment
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in a peculiar way. Unlike wave or wave like propagation of acoustic, visual and
other electromagnetic signals, chemical signals disperse through the environment by
molecular diffusion and bulk flow (Atema, 1995). The chemical source gradually
dissolves into the ambient fluid medium resulting in a chemical trail or, in other
words, an ‘odour plume’. A plume can be defined as those regions of space that
contain the set of all molecules released from a single source (Grasso and Atema,
2002). When the flow of ambient fluid is turbulent the plume is not smooth, but
discontinuous and patchy. Turbulence acts to fragment a continuous stream of
chemicals released from an odour source and so patches of ambient fluid are inter-
posed between patches of odour (Murlis and Jones, 1981; Grasso, 2001).

The localisation of a chemical source in a fluid entails the tracking of an inter-
mittent plume. The challenge for an AV is to have an effective strategy that will
enable it to determine the odour (chemical) source location even though the plume
concentration is intermittent and the advection distance of the detected odour is
unknown. In addition to this, the flow of the carrier fluid varies with time and
location (Farrell et al, 2003a; Wei et al, 2001).

3. MAIN APPROACHES. The simplest approach to CPT is to develop a
gradient based strategy, wherein the AV simply tracks the gradient of the chemical
concentration formed by the dispersion of the chemical by fluid flow. However, the
dispersion of chemicals by turbulent fluid flow is not in a smooth gradient but has
complex structures and is often characterised by many local maxima and minima.
Thus an AV employing a simple gradient following algorithm using the instan-
taneous sensor information would be inefficient in tracing a turbulent plume
because of the risk of being trapped in a local maxima or minima.

One approach, considering the patchy nature of a plume, is to have a dense
array of sensors distributed over the area of interest and a long time average of the
output of each sensor to generate a smooth (time-averaged) plume and subsequently
use this estimated data for a gradient-based algorithm for locating the source. The
requirement of a wide array of sensors makes this strategy inefficient for a single
searcher vehicle (Wei et al, 2001). Thus there is a requirement for a strategy that
makes use of instantaneous (or very recent) sensor information to generate the
necessary speed and heading commands to guide the AV to the source.

The ability of many animals to locate distant odour sources provides example
solutions to the complex problem of CPT by a single searcher vehicle. Such animals
have the natural ability to navigate from one patch of plume to another to reach the
source. The strategies used by these animals to span gaps between patches as they
track an odour to the source are real CPT problems, which are not based on the
naive assumption of tracking through smooth continuous gradients (Grasso et al,
1998). These have inspired a range of biomimetic robots that try to mimic the
techniques of the animals for accomplishing CPT.

Another approach to plume tracing is to use a network of several simple
mobile robotic vehicles by distributing a number of sensors throughout a group of
smaller and simpler communicating robots and implementing a collaborative
search. The use of multiple robots circumvents the spatial limitations of a single
robot. These robots can be organised as an array of mobile sensor network to
implement a gradient based algorithm (Sandini et al, 1993) or any other complex
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algorithms. This strategy provides a wider and faster search procedure to trace a
chemical plume.

The task of tracing a chemical plume may be broken down into the following
subtasks (Farrell et al, 2004) :

’ Plume finding. This subtask involves the searching of a large area to detect
the plume for the first time. Detection of the plume relies on measurement of low
level chemical signatures at distances that are potentially far from the source.

’ Plume maintaining. The plume finding subtask is a time consuming activity. Thus
when the plume is found it is important to maintain at least intermittent contact
and at the same time progress towards the odour source.

’ Plume reacquiring. If the plume is patchy in nature, the vehicle may invariably
traverse out of the plume. At this juncture the vehicle must initiate a local search
and manoeuvre in the direction which would increase its chances of reacquiring
the plume.

’ Source declaration. Once the vehicle reaches the source of the plume, it should
be capable of positively identifying the source.

The next section provides a synoptic presentation of the biomimetic approach
for CPT.

4. BIOMIMETIC APPROACH. The highly evolved sensory mechanism of
many animals allows them to use air- or water-borne plumes of odour molecules to
locate distant unseen resources. Hence, they offer excellent models for the develop-
ment of robotic systems which are capable of orienting themselves to chemical
plumes (Belanger and Willis, 1998). A range of studies have been performed to
investigate the behaviour and orientation of several organisms such as moths, blue
crabs and lobsters in odour plumes. These organisms execute plume tracing,
naturally, to perform essential biological tasks such as foraging, mate seeking and
predator evasion. Fundamental approaches to all biomimetic strategies, described
in this paper, do not precisely mimic animal orientation to the odours, but use
the salient features of their odour guided manoeuvres to develop an equally effec-
tive biomimetic technique that can be compared with the real biological strategies
of the animals.

4.1. Strategies based on insect behaviour. Numerous studies have been carried
out to comprehend the odour guided navigation behaviour of insects (Belanger and
Willis, 1998; Vickers, 2000). The best studied example of plume tracing behaviour in
biology is the hypothesis of howmale moths track plumes of the female sex-attractant
pheromone upwind to their source, a sexually receptive female (Belanger and Willis,
1998). A male moth searching for the plume of pheromone upon detection of plume
flies in the upwind direction. This upwind flight known as ‘surging’ in biological
terms, is highly logical and is described as follows. If the moth has detected a
pheromone plume, the flow of the wind must be bearing the pheromones from the
source towards it. Therefore movement against the flow (upwind) will reduce its
distance from the source. Owing to the patchiness of the plume and meander of
its centreline, the male moth might loose contact with the plume. At this point it
ceases upwind flight and flies in a cross-wind direction to the flow in a bid to re-enter
the plume. This cross-wind (counter turning) flight is known as ‘casting’ in biological
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terms. Thus the male moths use a sequence of upwind surges and horizontal castings
to locate the source.

Farrell et al (2003a) have presented a behaviour based planning strategy inspired
primarily by the behaviour of moths. The implementation of this strategy on a
REMUS AUV is now described. The AUV is employed to locate a chemical plume,
trace it to the source and manoeuvre to reliably declare the source location. The AUV
is constrained to manoeuvre within a predefined search region called the operation
area (op-area), where it should search for a specified chemical. The op-area is defined
in a two dimensional coordinate system by xs[xmin, xmax] and ys[ymin, ymax]. The
strategy proposed by Farrell et al (2003a) is based on coordination of different
reactive behaviours like plume finding, tracking and reacquiring. Figure 1 shows the
behaviour switching diagram of the behaviours where the symbol d denotes the
behaviour switch when chemical is detected and �dd represents a change in the behav-
iour when chemical is not detected.

CPT is achieved by behavioural coordination of the following subtasks:

Go-To. The start of a search operation begins with this behaviour. At this stage
heading commands are issued that direct the vehicle from its current location
(i.e. home location) to the target location (i.e. a point in the op-area). The vehicle
heading y is calculated by using a line of sight of guidance formula:

y=atan2((ygxyc), (xgxxc)) and velocity=vc

where atan2 is a four quadrant arctangent function, (xg, yg) are coordinates of
target location, (xc, yc) are the coordinates of current vehicle location and vc is the
constant speed command.
Find Plume. By assuming that the chemical source may be located anywhere
within the op-area, Farrell et al (2003a) undertake a complete uniform search of
the area in an attempt to find the plume. The vehicle is made to explore the
op-area by reflecting it off the boundaries of the region in a billiard ball fashion.
This allows the vehicle to search effectively the entire op-area by frequently cross-
ing it in a cross flow direction and also along the flow direction until the entire
op-area is searched. The vehicle switches from Find Plume to Track Plume
behaviour as soon the plume is found.
Track Plume. Once the vehicle detects the plume concentration over a pre-
defined threshold value, the vehicle switches to tracking behaviour. This behaviour

Figure 1. Behaviour switching diagram (Farrell et al, 2003a).
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attempts to trace the plume towards the source location which is based on the surge
and cast type motion of the male moth. The behaviour is implemented in two
phases, Track-in and Track-out. In the Track-in case, the vehicle heading y is
defined as:

y=flow direction+180�

This makes the vehicle move exactly in an upstream direction as soon as it detects
the odour concentration greater than a predefined threshold. Whilst implementing
Track-in behaviour, if the vehicle does not encounter any trace of a plume for a
certain time interval it switches over to Track-out behaviour and moves in a cross
stream direction much like the casting motion of the moth. The vehicle heading y
is calculated as:

y=flow direction+180�tb(t)

The angle b(t) is selected to force the vehicle to implement the counter turning
manoeuvre, where the sign preceding b(t) determines the direction of counter
turning (left or right).
Plume Reacquire. If the searcher loses contact with the plume for greater than
l seconds the vehicle declares the plume to be lost and switches from Track-out
to Reacquire behaviour. The Reacquire behaviour is implemented using a clover
leaf shaped trajectory as shown in Figure 2. The clover leaf centre is the last
location at which the odour was detected: (xlast, ylast). The parameter dleaf
determines the size of the leaves and hence the extent of the search. This pattern is
selected because it yields a significant search in all directions relative to the last
detection point. The vehicle reverts to plume-finding behaviour if the plume is not

Figure 2. Clover leaf trajectory of the plume reacquire behaviour (Farrell et al, 2003a).
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re-contacted within N_re repetitions of the reacquisition trajectory. However, if
the plume is detected at any point during the reacquire behaviour, the vehicle
switches over to Track-in behaviour.

The source declaration is not implemented as a separate behaviour, it is based on
the tracking progress of the vehicle. Every time the Track-in behaviour ends, the last
detection point is added to a list. This list is sorted according to the distance along the
direction of the flow. As long as the vehicle is making progress up the plume, the
initial few points on the list will be widely separated. When the three points on the list
differ in the direction of flow by less than 4m, indicating the vehicle has ceased up-
stream progress, the most up flow point on the list is declared as the source location.

Farrell et al (2003a) have presented a successful in-water experimental demon-
stration of CPT on a REMUS AUV. The op-area selected for the experiments was
250–300 m along the shore and 100 m cross-shore. Using the strategy described
above, a plume of Rhodamine dye was successfully tracked for over a distance of
100 m. A more recent paper by Farrell et al (2005) demonstrates CPT results in an
op-area of dimension greater than 60 football fields. The AUV tracked the chemical
plume for over 975m between the first detection point and the declared source
location.

4.2. Strategies inspired by a lobster. Lobsters belong to the family of marine
crustaceans which have a remarkable ability of tracing chemical odour plumes for a
number of biological activities such as foraging, mating and individual recognition.
Lobsters possess a pair of antennules located on their head containing chemoreceptor
cells. Studies hypothesize that the lobsters flick the antennules at a frequency of
approximately 4Hz in order to increase the probability of finding the plume and to
obtain directional information. Thus they use a combination of information available
from the sensor cells located on both their antennules and legs. The initial distance
orientation is guided by the flicking of antennules and it has been demonstrated in a
number of experiments (Grasso et al, 1998; Consi et al, 1994) that on average, the
behaviour of the lobster is consistent with steering towards the side of the antenna
sensing the higher concentration (Grasso et al, 1998). However, in the vicinity of the
source, there is a definite behavioural change and increasing use of the array of
chemo-sensors located on their legs is made to help locate the source.

Grasso et al (1998) are involved in the study of a lobster’s perspective of tracing a
chemical plume. The authors have tried to apply analogous biomimetic strategies on
their robotic lobster, named ‘‘Robolobster ’’, which is similar in size to a real lobster
and possesses a pair of conductivity sensors as antennas. A simple strategy has been
implemented that allows the robotic lobster to orient itself to chemical signals in a
turbulent marine medium. This strategy makes use of the chemical concentration of
plume only to locate the source. Many animals use directed reaction to a chemical
stimulus. Such a guidance using chemical cues alone is known as chemotaxis in bio-
logical terms.

The purely chemotactic algorithm implemented for ‘‘Robolobster ’’ for tracking
a salt plume in a water tank has two simple rules :

Rule 1. Robolobster turns to the side of one of the two antennules (conductivity
sensor) which encounters higher concentration of salt plume. If the concentration
experienced by both sensors is the same the robot simply moves forward.
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Rule 2. Robolobster moves backwards if both sensors detect no salinity. This is
important because this guidance strategy based on the comparison between the
left and right sensor readings is prone to drift the robot out of the plume. Moving
backwards allows the Robolobster to re-enter the plume and hence minimise the
chances of getting lost.

This strategy makes the robot align itself to a local plume axis by maintaining a
constant mean reading between the two spatially separated sensors. The robot moves
forward when both the sensors bear similar readings assuming this motion would
lead to the source. However this strategy performed well only when tracking plumes
over a very short distance of a few metres from the source.

Grasso and Atema (2002) implemented another biomimetic strategy based on
Odour Gated Rheotaxis (OGR). OGR is a biological plume tracing technique that
uses the direction of mean flow of the carrier fluid along with chemical detection for
guidance. The OGR strategy is somewhat similar to the surge and cast type motion
of a male moth. Figure 3 depicts the robotic lobster performing CPT using an OGR
based strategy. While tracing a chemical plume, the robotic lobster judges whether
it is within or outside the plume. If the agent establishes that it is within the plume
it moves upstream. However, if the agent determines that it is outside the plume it
makes a move across the mean flow allowing it to make contact with the plume.
Figure 4 describes the implementation of the OGR strategy on the robotic lobster.
When the sensors located on the robotic lobsters are triggered (i.e. state S=1),
indicating that the robot is within the plume, it performs an upstream surge.
Conversely, if the robot moves out of the plume or reaches a hole in the plume then
the sensors are not triggered (i.e. S=0). At this juncture the robot chooses a
direction (left or right) to counter turn or cast. This task of selecting the casting
direction is not trivial. When the robot travels out of the plume boundary the
possibility of the actual plume being on its left or right side is equal. Grasso and
Atema (2002) have suggested a novel approach to this problem. The robot uses a
rudimentary memory which stores the number of plume stimulations received by

Figure 3. Illustration of Robotic lobster performing OGR based strategy (Zarzhitsky et al, 2004).
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the left and right sensor. Upon the loss of plume (i.e. S=0) the robot simply casts in
the direction of the sensor which received the highest stimulations. The robot con-
tinues to alternate between the surging and casting motions until the bottom sensor
detects odour (i.e. SD=1) which indicates that the robot has reached the source of
the plume. A timeout command is used to resolve the conflicts between the different
sensory states.

The use of mean flow information in OGR makes intuitive sense because
mean flow is a salient and informative environmental cue to the source direction. In
addition, if the agent senses the plume, the mean flow must be bearing chemicals from
the source towards the agent and therefore a movement against the mean flow will
reduce the agents’ distance from the source. Many animals implement an upstream
(or upwind) motion when detecting odour.

This study demonstrated two well known biological search techniques on auton-
omous robots, namely the chemotaxis and OGR inspired from lobsters. It is shown
how these guidance strategies make use of a pair of spatially separated sensors
mounted on an AV to track chemical plumes. A strategy inspired by bacterium is now
described in the next section.

4.3. Strategy inspired by bacterium. Bacterium makes use of the gradients of
chemical signals released from nutrition (food) sources to reach the location suc-
cessfully. Their search strategy can be related to a simple chemotactic process which
comprises of alternating between two behaviours. The first behaviour called ‘run’
allows the bacterium to swim smoothly in a straight line in a particular direction;
the second behaviour called ‘tumble’ allows it to reorient randomly in a new direc-
tion for the next run. In the absence of any concentration gradient, the bacterium

Figure 4. Schematic illustration of OGR based strategy (Zarzhitsky et al, 2004).
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executes a random walk. When the bacterium senses a positive gradient it reduces
the frequency of its tumbling leading to a greater run length in the direction of
positive gradient. Conversely, the negative gradient does not have influence on its
tumbling behaviour. Alteration in tumbling frequency allows the bacterium to move
forward in the direction of the source.

Dhariwal et al (2004) have proposed a novel technique inspired by the bacterium,
based on a biased random walk for detection, seeking and tracking of a gradient
inducing source. This algorithm is multi-functionary and can be used to track
gradients produced by any of the different types of sources such as light, heat, pH or
chemical concentration. The robotic agents in this strategy are programmed to
employ a biased random walk with a mean free path (MFP) of 10 units. In other
words, under the absence of a concentration gradient a robot would move 10 units
of distance in the search area in a random direction. After this the robot executes
tumbling (changing its direction randomly). If the robot senses a positive change
in gradient, it decreases its tumbling frequency. This change in frequency is the ‘bias ’
in the random walk, which increases the run length in the direction of the positive
gradient. A 10% bias was used in their strategy which is similar to that observed in
the motion of bacterium. Figure 5 depicts the simulation of a robot performing a pure
random walk and a biased random walk. An increase in the bias helps the robots to
reach the source faster, however, increasing the bias of the random walk might not be
a good idea if the source is mobile or of a variable intensity.

Dhariwal et al (2004) claim that their biased random walk algorithm has
significant advantages over a simple gradient descent algorithm. It is pointed out
that the chances of the robot being trapped in a concentration minima or maxima
are significantly lower than using a gradient based strategy. In addition, the sensing
and memory requirements for this algorithm are small since the robot has to store
only the last sensor output and compare it with the current reading. The compu-
tation of control involves the change in the length of the run in response to the
sensed gradient change. It is suggested that this simple biologically inspired
algorithm can be effectively implemented on a group of autonomous robots to

Figure 5. Pure random walk vs. biased random walk (Farrell et al, 2004).
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track concentration gradient emerging from different types of sources such as light,
pH or odour.

It is worth mentioning here that bacterium operate at low Reynolds numbers
whilst the lobster and moth operate at medium to high Reynolds numbers. This is
critical because at low Reynolds numbers, the time averaged and instantaneous fields
are very similar with well-defined and temporally stable gradient fields. This is not
true for medium or high Reynolds number flows. Therefore, the moth/lobster and
bacterium strategies cannot be directly compared. However, the authors are review-
ing the biomimetic techniques inspired from nature which could be applied to any
robot performing CPT regardless of the nature of the medium. The performance of
these algorithms on AVs could be compared qualitatively and quantitatively to
obtain the best possible solution to the CPT problem.

5. MULTI-ROBOT APPROACH. The strategies examined so far have
been mostly based on a single AV or robot performing CPT. This task has also
been successfully performed using multiple robots or searcher agents using a form
of distributed sensing or some kind of swarm intelligence (SI). The task of CPT can
be ameliorated by the physical distribution of the odour sensing elements, which
in principle could improve system speed and robustness via parallelization of the
search procedure. The parallelization of a search is best achieved by distributing a
number of sensors throughout a group of smaller and simpler communicating
robots which are capable of performing a collaborative search of the plume.

Hayes et al (2002) have described a distributed algorithm by which groups of
robots can solve the odour localisation task. As with many CPT algorithms,
described previously, they have approached the task of CPT for odour localisation

Figure 6. Spiral-Surge odour localisation behaviour (Belanger and Willis, 1998).
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by subdividing it into four subtasks of plume finding, plume maintaining, plume
reacquiring and source declaration. Based on this, the odour localisation strategy
developed is called the Spiral Surge (SS) algorithm. Figure 6 depicts a searcher
vehicle performing a SS algorithm. As shown, plume finding is performed by an
initial outward spiral search pattern (SPIRALGAP 1) (see Table 1). The initial spiral
search allows for an extensive search of the local area. The spiral gap can be
increased or decreased based on a priori information or size of the search area.
Plume maintaining behaviour is implemented by a simple upstream surge akin to
OGR. When an odour packet is encountered during the spiralling motion, the
robot samples the wind direction and moves upwind for a set distance (STEPSIZE).
If during the surge behaviour the robot encounters another plume particle, it
continues to travel upstream. After a surge, if no further plume particles are
encountered, the robot begins the casting behaviour. Casting is also achieved by
spiralling movement, the ‘casting spiral ’ (SPIRALGAP 2) can be tighter than the
‘plume finding spiral ’. A plume hit during ‘casting spiral ’ results in the robot
performing an upstream surge. If no plume hit is made for a set amount of time
(CASTTIME) the robot declares the plume to be lost and switches to plume finding
behaviour.

Source declaration can be accomplished by a robot by keeping in track of the past
spiral hit distances. The robot near the source of the plume will keep on surging out
of the plume boundary and subsequently spiral back to the origin of the surge before
receiving another plume hit. If the robot encounters a series of small inter-hit
distances after the casting spiral, this indicates that the robot has ceased progress up
the plume, and must therefore be at the source.

Hayes et al (2002) extended this algorithm to a multi-robot application using
the principles of SI. SI is a computational and behavioural metaphor for solving
distributed problems inspired by the biological and social behaviour of creatures of
many varied species (Hayes et al, 2002). Instead of using one robot, the task of odour
localisation is achieved by a swarm of robots performing the same SS algorithm. The
effectiveness of this swarm search is increased by incorporating collaboration
between the nodes of the swarm. In this study, the performance impact of three types
of communication signals are examined:

’ No signal (NONE). No communication signal between two nodes.
’ Come here (ATTRACT). Signal emitted by upwind surging robots that causes

all robots downwind, or with no plume information to surge in the direction of
the calling (attracting) robot. This signal may be used in plumes with significant
meander where the presence of larger number of robots at a particular location
is necessary to improve chances of source location.

Table 1. Spiral Surge algorithm parameters (Belanger and Willis, 1998).

SPIRALGAP 1 Initial spiral gap width

SPIRALGAP 2 Plume reacquisition spiral gap width

STEPSIZE Surge distance post odour hit

CASTTIME Length of time before reverting from reacquisition to initial search spiral

SRCDECTHRESH Significance threshold between consecutive separate odour hits

SRCDECCOUNT Number of significant differences before source declaration
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’ Stop (KILL). Signal emitted by the first robot to receive odour information
that causes all other robots to surge away from the signalling robot and then
enter a static mode (power save mode). This signal can be useful to allow only
a single robot to perform plume traversal and source declaration, which in
certain situations can be more successful.

The study shows that integrating the information collected by a group of agents
in an elementary manner can increase the efficiency of the odour localisation system
performance (Hayes et al, 2002). This study used a very elementary interaction
signal but a more involved interaction scheme with a greater number of signals and
variable signalling strengths might be useful for tracing more complicated plume
structures.

Cui et al (2004) have developed a fuzzy logic based approach to control a swarm
of small robots to locate a hazardous contaminant source. The swarm of robots
is deployed in the suspected area to act as a mobile sensor network to search for the
source of a hazardous gas leak. The entire search area is divided into a grid of small
cells as shown in Figure 7. Each cell in the grid can be occupied by only one robot at
a time. Each robot can measure the concentration of chemical in its own cell
and transmit it by communicating directly with robots in eight adjacent cells.
Communication with robots not in direct line of sight can be achieved by multi-hop

Figure 7. The environment grid map and expansion cell (Vickers, 2000).
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paths of the ‘ad hoc ’ communication network. It is imperative that each robot has
at least one other robot in any of the adjacent cells, otherwise the ad hoc network
would be disrupted.

Movement of each robot is controlled by the principles of swarm behaviour
control. The ‘separation property’ of the swarm behaviour requires that each robot
avoids exploration of a cell occupied by another robot to ensure wider coverage
without overlapping. The ‘cohesion property’ of swarm behaviour ensures that each
robot can occupy any unexplored and unoccupied cell provided there is at least one
robot in any of the eight adjacent cells, such cells are called expansion cells. Figure 7
shows the expansion cell of Robot ‘A’. The cohesion property helps to keep the
ad hoc network intact.

Assuming that the concentration of odour gradually decreases from its emission
source generating a concentration gradient, it is obvious that the nearer a robot is
to the source the higher the sensor reading value will be. Every robot collects
concentration and position information of its neighbouring robots using the ad hoc
network. The use of the ad hoc network to obtain concentration measurements of
remote robots increases the perceptible area of each robot. Using this information,
the robot decides its next location in the direction of highest reported concentration.
Thus, the aim of the strategy is to keep on steering individual robots and hence the
entire swarm, to the vicinity of highest reported concentration until the swarm finally
reaches the location of the source.

Cui et al (2004) makes use of the fuzzy logic control (FLC) based swarm behaviour
to endow each robot with the ability to steer in the direction of the emission source.
This assumes that there are n robots (R0, R1, … Rn) where each robot makes use of its
swarm-based FLC to generate the optimal deployment location. Figure 8 describes

Figure 8. Block diagram of the Swarm-based FLC system (Vickers, 2000).
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the implementation of swarm-based FLC for the ith robot designated as robot(i). The
procedure is outlined below.

Fuzzification. At this stage the robot receives the position and concentration
information from all robots. The fuzzification process converts these crisp inputs
into fuzzy linguistic variable inputs. The location angle of all robots relative to the
robot(i) are described as front zero (FZ), front right (FR), front left (FL), left (L),
right (R), rear zero (RZ), rear right (RR) and rear left (RL). The odour concen-
tration that each robot’s sensor detects is represented as: low (L), medium (M) and
high (H).
Fuzzy inference engine. Here the fuzzy inputs from the fuzzification stage are
combined with a set of rules to generate fuzzy outputs. Cui et al (2004) have
developed simple fuzzy rules in IF-THEN form to continuously steer the robot
in the direction of the highest reported concentration. The FLC rule base is briefly
described as follows:

If concentration is HIGH and direction is FZ, THEN move to FZ expansion cell.
If concentration is HIGH and direction is FL, THEN move to FL expansion cell.
.
.
If concentration is HIGH and direction is RR, THEN move to RR expansion cell

Defuzzification. Finally the fuzzy output from the fuzzy inference engine is
converted to a crisp value which is a fuzzy set, containing robot(i)’s movement
direction and its membership function. This fuzzy information is converted into
crisp information to compute the next manoeuvre. The centroid of gravity method
was employed to obtain a crisp deterministic output. For the interested reader,
further details of fuzzy set theory can be found in Chen and Pham (2001).

Sandini et al (1993) have investigated the possibility of finding the source of a
leaking pollutant by tracking the concentration gradient of the leak using a swarm of
robots. Each robot is equipped with a compound sensor composed of two spatially
separated sensory units. The instantaneous concentration reading from each of the
two units is temporally integrated which are compared continuously to generate a
differential gradient (see Figure 9). The control strategy is based on the computation
of the difference between the concentrations measured by the two sensing units.
When the differential gradient is below a certain threshold the robot performs

Figure 9. Logical structure of the sensor used for Gradient following (Grasso, 2001).
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Exploration (plume finding or reacquiring) behaviour, in which a random walk is
carried out composed of rectilinear motion interrupted by random turns. When the
differential gradient is above the threshold it employs ‘Gradient Following ’ (plume
maintaining) behaviour and moves in the direction of the sensor experiencing higher
concentration.

As explained earlier, a simple gradient following algorithm is not very efficient in
tracing a turbulent plume. Sandini et al (1993) employed a cooperative search method
using a swarm of robots. Each robot transmits its differential gradient reading to
other robots using an infrared link. A robot not only obtains gradient readings from
its own sensors but also acquires measurements transmitted from other vehicles
present in the swarm. As a net advantage, the perceptible area of each unit is
expanded and the convergence to the source of gradient is more likely to occur. The
movement of the robot is controlled by the combination of its own ‘direct ’ readings
and ‘indirect ’ readings transmitted from the other robots. The whole control
procedure is outlined below:

’ if the robot does not sense concentration directly and indirectly it continues
Exploration behaviour ;

’ if the robot senses the concentration only directly it continues Gradient following
behaviour ;

’ if the robot senses the concentration only indirectly it moves in the direction of
the robot experiencing higher concentration;

’ if the robot senses concentration directly and indirectly it decides to move in
the direction of the stronger signal.

It is demonstrated that even by using a simple cooperative behaviour, the swarm
was able to locate the source much faster (about 2 times) in comparison to robots
acting independently without any communication.

6. DISCUSSION AND CONCLUSIONS. The structure of a plume is
made up of many microscopic odorant packets. The spatial and temporal distri-
bution and their physical properties provide an assortment of information (such as
time averaged or instantaneous concentration, mass flux divergence etc) (Zarzhitsky
et al, 2004). Each component of this information can be potentially used to gener-
ate a plume tracing algorithm because there is no clear consensus on details of
plume structure and dynamics which are useful. Thus, it is not surprising that
there are a large number of strategies for plume tracking (Kazadi et al, 2000). This
paper has reviewed several guidance strategies which enable AVs to track chemical
plumes. So far, biomimetic techniques have had a greater share of interest in this
field, however, strategies based on multi-robots and fluid dynamics (Zarzhitsky
et al, 2004) have also been demonstrated.

The biomimetic approaches are based on the understanding of the modalities and
techniques used by animals and their ability to deal with patchy and intermittent
natural phenomena. However, the performance of these algorithms is inferior to the
performance of their biological counterparts. The main reason being the lack of
understanding of animal behaviour. Animals combine multiple sensor modalities
(olfactory, sight, auditory, tactile), especially in ‘‘source declaration’’ and the current
generation of AVs are still not capable of this level of data fusion.
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The use of collaborative search with multiple robots can provide a wide spatial
distant array of numerous sensors which can circumvent the problem posed by the
intermittency of the plume. The collaboration between the robots can in fact shorten
the time of the entire search procedure (Sandini et al, 1993). The multi-robot based
strategies provide reliability through redundancy and provide large area coverage
from a wide distribution of robots. Moreover, failure of one or more units will not
jeopardise the overall sensing operation (Russell et al, 1995). The cost of robots,
however, could impose a significant constraint on their development. In the case
of underwater CPT, the communication between the robots is severely restricted
and hence the desired performance may not be achieved.

Contemporary methods such as artificial intelligence (AI) can vastly improve
the plume tracing strategy. Use of AI techniques such as artificial neural networks
(ANN) and fuzzy logic can improve coordination of different behaviour. Such a
strategy has been devised by Farrell et al (2003a) for the REMUS AUV. Lilienthal
et al (2004) have achieved the sub-task of source declaration with the use of an ANN
to improve the robot’s ability to identify the source accurately. The fuzzy logic based
approach of Cui et al (2004) aided greatly the achievement of source localisation even
in the event of node failures. Despite the improvements that AI techniques can bring
to the task of CPT very few strategies have used these techniques to their advantage.
Hence, there is a definite potential for exploration in this research area.

Clearly a greater effort is required in understanding and interfacing between several
interdisciplinary fields such as biological behaviour and principles of fluid dynamics
to develop a practical chemical plume tracking system which is capable of providing
reliable tracking information to the AV.
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