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We consider a monotone binary system with ternary components. “Ternary” means that
each component can be in one of three states: up, middle (mid) and down. Handling such
systems is a hard task, even if a part of the components have no mid state. Nevertheless,
the permutation Monte Carlo methods, that proved very useful for dealing with binary
components, can be efficiently used also for ternary monotone systems. It turns out that for
“ternary” system there also exists a combinatorial invariant by means of which it becomes
possible to count the number C(r; x) of system failure sets which have a given number r
and x of components in up and down states, respectively. This invariant is called ternary
D-spectrum and it is an analogue of the D-spectrum (or signature) of a system with binary
components. Its value is the knowledge of system failure or path set properties which do
not depend on stochastic mechanism governing component failures. In case of independent
and identical components, knowing D-spectrum makes it easy to calculate system UP or
DOWN probability for a variety of UP/DOWN definitions suitable for systems of many
types, like communication networks, flow and supply networks, etc.

1. INTRODUCTION

1.1.

We consider a system containing n components numbered from 1 to n. Each component i
can be in three states: up, mid, down. These states will be denoted by numbers: 2 for up, 1
for mid and 0 for down. The state of system’s components is described by a ternary vector

v = (v1, v2, . . . , vn),
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where vi = 2, 1 or 0, according to the component state. For example, v = (2, 0, 1, 1, 2) means
that components 1 and 5 are in state up, components 3, 4 – in mid, and component 2 is
down.

The system has only two states, that is, is binary: UP (denoted by 1) and DOWN
(denoted by 0). The system state is determined by a binary structure function

ϕ = ϕ(v).

We make the following standard assumptions regarding the dependence of system state on
component states [1]:

(i) ϕ(2, 2, . . . , 2) = 1; ϕ(0, 0, 0, . . . , 0) = 0.
(ii) if v > y, then ϕ(v) ≥ ϕ(y). (v > y means that vi ≥ yi for all i but there is at least

one j such that vj > yj). (ii) means that the system is monotone.

Natural objects with ternary components are, for example, communication networks
with three-level performance of their edges or nodes. System UP state can be defined
as the situation when it is possible to maintain high-performance information exchange
among the nodes of a given subset T1 of nodes and information exchange (on any level) of
another subset of nodes T2. The DOWN state then is an absence of at least one of these
two connections modes. This is an extension of the standard T-terminal connectivity for a
network with binary components.

Very often, the network components subject to failure are nodes; see, for example, [8],
Chapters 12, 13. In modeling practical situations, it may be adequate to define three states
for a node: down means deletion of all adjacent edges, mid means deletion of a part of edges
adjacent to the node, and up means that all edges adjacent to the node remain operational.
A standard issue for a large networks with randomly failing nodes is determining the size of
the largest (connected) component. In our situation, the corresponding UP definition might
be presence of a component having at least, say 80% of all nodes in it.

Another natural application can be found in stochastic flow networks with three levels
of flow capacities for each network edge. The UP state of such network may be defined as
the existence of source-terminal flow exceeding some given critical level Lmax.

1.2.

Our further exposition is as follows. In Section 2, we define the so-called ternary D-spectrum,
which is the central issue of this paper. The ternary D-spectrum is system’s combinatorial
invariant. It depends only on its structure function ϕ(·). No information about component
reliability is needed for calculating the ternary spectrum. Contrary to the D-spectra for
binary systems considered in literature (also known as signatures or internal distributions
[2,4–6,10,11]), the ternary spectrum is not a single discrete cumulative distribution function
(CDF), but a collection of such CDFs. Some of them are not proper, that is, some of the
CDFs are strictly less than 1. The cumulative D-spectrum of a binary system is a vector
of dimension n, while the ternary D-spectrum is a set of k vectors, k < n, and all of them,
except the first one, have dimension strictly less than n.

We show how to calculate system DOWN probability by means of this D-spectrum
if the system has independent and identical components. A crucial role is played by a
combinatorial formula (3) (see our Theorem 1) expressing, by means of the D-spectrum,
the number of failure (cut) sets in the system.

If we know that components are independent and identical, and know their state
probabilities p2 = P (up), p1 = P (mid) and p0 = P (down) = 1 − p2 − p1, then we can easily
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calculate system DOWN probability by means of the ternary D-spectrum, see formula (6)
and Theorem 2. If the state probabilities depend on time, then it is quite easy to calculate
system “dynamic” reliability; see the example after Theorem 2 and formula (7).

Section 3 considers an example – a cubic network H4 with 16 nodes and 32 edges.
This network is UP if the set T1 having six nodes is strongly connected and all nodes of
H4 are weakly connected. We describe the ternary spectrum and present data on network
reliability. In Section 4, we present a Monte Carlo algorithm for calculating the ternary
spectrum. Section 5 is devoted to the so-called ternary importance spectrum by means of
which we will be able to evaluate and compare component importance.

1.3.

Some comments on the present state of art in computing reliability of complex networks.
Let us note here the important case of highly reliable systems with component failure

probability, say of magnitude 10−10. Such reliability parameters as overall connectivity or
T -terminal connectivity depends essentially only on the size and the number of minimal-
size cut sets, or in our terminology, on the failure sets having minimal number of failed
components; see Section 2. Such information is provided by the ternary D-spectrum. The
complexity of calculating the ternary spectrum versus regular binary spectrum (signature)
can be justified by the fact that ternary system is considerably more complex than the
similar binary system with the same number of components. For example, hypercube of
order 4 considered in Section 3 has 32 edges and total number of elementary states 332.
This is greater than the number of states of the same hypercube with binary edges by
factor of about 400,000.

In certain situations, modeling ternary component may be partially achieved using a
pair of binary components working in parallel. For example, in stochastic flow networks, an
edge e = (a, b) with capacities 0,D, 2D can be replaced by a pair of identical independent
parallel binary edges with capacities 0,D. This pair will provide Pe(up) = p2, Pe(down) =
(1 − p)2 and Pe(mid) = 2p(1 − p). This method is often used in practice; see, for exam-
ple, [3] and references therein. The above replacement has however limited applicability.
For example, it cannot provide an adequate substitute for a ternary edge with capacities
(0, 0.75D,D) and arbitrary (p2, p1, p0). In case that failed components in network are the
nodes, it is not clear at all how to replace a ternary node by a pair of binary nodes.

Multi-state network reliability mainly dealt with a two-terminal reliability in flow net-
work setting. A typical paper is [9] (see also references therein), which describes an algorithm
for approximating network reliability with independent and possibly non-identical edges
with variable capacities. Largest example presented in [9] deals with a network with 13
nodes and 20 edges having ternary capacities.

Signature or D-spectrum of a system with binary components has an important property
first discovered by Samaniego [10]: the CDF of system life-time τsyst can be expressed via the
CDF of its components as a linear combination of signature and respective order statistics.
Similar property does not exist for ternary systems. A certain resemblance to it has formula
(7) in Section 2 presenting the CDF of τsyst for the case that component states are described
by independent and identical stochastic processes.

2. TERNARY D-SPECTRUM

Our object of main interest will be the properties of random permutations of system compo-
nents. For our purposes, it will be convenient to write a permutation of component numbers
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together with the component states:

π = ((i1; s(i1)); (i2, s(i2)); . . . ; (in, s(in)). (1)

Here on the first position in each pair is component number (“name”) and on the second –
its state 2,1 or 0 for up, mid and down, respectively. A permutation in form (1) determines
in an obvious way the system state vector y = y(π). For example, the permutation

π = ((5, 2); (1, 0); (4, 1); (3, 2); (2, 1))

means that components 5 and 3 are up, component 1 is down and components 2 and 4 are
in mid. The corresponding system state vector will be

y = y(π) = (0, 1, 2, 1, 2),

where the jth position is occupied by number 2,1,0 denoting the state of component number
j, j = 1, 2, . . . , n.

Definition 1: Random permutation of rth type, r = 0, 1, . . . , n − 1.
A random permutation of component numbers {1, 2, . . . , n} in which all components are

in state mid is called a random permutation of zero-type. It has the following form:

π0 = ((i1, 1); . . . ; (i2, 1); . . . ; (in, 1)).

A random permutation πr is called a permutation of rth type, r > 0, if the components
i1, . . . , ir on the first r positions are in state up, and the components ir+1, . . . , in on the
remaining (n − r) positions are in state mid:

πr = ((i1, 2); . . . ; (ir, 2); (ir+1, 1); (ir+2, 1); . . . ; (in, 1))#

Probability of obtaining a particular ordering of component numbers (i1, i2, . . . , in) in
the rth type permutation is 1/n!

Definition 2: Failure (cut) set and (r;x)-failure set.
Failure set is a vector v = (v1, v2, . . . , vn) of component states such that

ϕ(v) = ϕ(v1, v2, . . . , vn) = 0.

Here vi = 2, 1 or 0 means that vector v component i is in state up,mid or down, respectively.
A failure set which has r components in up, x components in down, and (n − r − x)

components in mid is termed a (r;x)-failure set.

Definition 3: Path set and (r, x)-path set.
Path set is a vector w = (w1, w2, . . . , wn) of component states such that

ϕ(w) = ϕ(w1, w2, . . . , wn) = 1.

Here wi = 2, 1 or 0 means that vector w component i is in state up,mid or down,
respectively.
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A path set which has r components in up, x components in down, and (n − r − x)
components in mid is termed a (r;x)-path set.

Destruction process. The destruction process has several stages denoted
0, 1, . . . , n − 1. Stage r of destruction process consists of:

(a) generating a random permutation of rth type;
(b) an initial check of system state; and
(c) sequential destruction of its mid components (i.e., turning them from mid to down)

by moving from left to right.

In (a), according to Definition 1, we generate a random permutation of components numbers,
assign to the first r of them state up and to the remaining – state mid. For permutation of
zero-type all components are in state mid.

(b) means checking system state when the r first components in the permutation are
up and all remaining components are in mid. If for a particular r-permutation πr the check
reveals that the system is already DOWN, we say that this permutation has anchor equal
zero.

Stage (c) is carried out only if the anchor is not zero. It consists of turning the compo-
nents from mid to down by moving from left to right, and checking the system state after
each component destruction.

Definition 4: Anchor of an r-type permutation.
The anchor of a permutation πr of rth type denoted δ(πr) is the number of components

which have been turned down when the system was for the first time discovered in state
DOWN.

If in an r-type permutation, the system is already DOWN when no component has
been turned from mid to down, then this permutation has anchor equal zero.

Remark 1: There might exist such r for which the permutation has no anchor. It means that
after destruction of all n − r mid components the system remains in UP. If this happens
for a particular r�, then by monotonicity property of the system, there will be no anchor
for all r > r�.

It is important to note that by the same monotone property of the system, for any
permutation there might be at most a single transition UP → DOWN , at most a single
anchor. This property is very important for designing an fast search procedure for locating
the anchor.

Example 1: Suppose that the system has seven components. Consider a 3rd type random
permutation

π3 = ((2, 2); (1, 2); (7, 2); (6, 1); (4, 1); (5, 1); (3, 1)).

In this permutation, the first three positions occupy components 2,1 and 7 which are in
state 2, that is, up. The remaining components are in state 1: component 6 is on the fourth
position (from left to right), component 5 is on sixth position, etc. An initial check of this
permutation reveals that the system is UP. Suppose that we start turning into down the
components in mid by moving from left to right. Suppose that after doing this to components
6 and 4, the system remained in UP. When we turned down component 5 the system went
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DOWN. Then the anchor of this permutation δ(π3) = 3, while the permutation now took
the form:

π3 = ((2, 2); (1, 2); (7, 2); (6, 0); (4, 0); (5, 0); (3, 1)).

Let fr(y) be the probability that the anchor of rth type permutation equals y, y =
0, 1, 2, . . . , n − r:

fr(y) = P (In πr, the anchor δ(πr) = y).

Since the total number of permutations for each r is n!, and all permutations are equally
probable,

fr(y) =
the number of r-permutations with δ(πr) = y

n!
, y = 0, 1, . . . , n − r. (2)

Definition 5: Cumulative r-spectrum.

Fr(x) =
x∑

y=0

fr(y), x = 0, 1, 2, . . . , n − r,

is called cumulative r-spectrum. Obviously, Fr(x) ≤ 1.

Remark 2: Let us assume that all r-type permutations have anchor equals zero. It means
that the numerator of fr(0) in (2) will be equal n! and therefore fr(0) = 1, fr(j) = 0 for
j = 1, . . . , n − r and Fr(0) = 1 = Fr(j), j = 1, . . . , n − r.

Definition 6: Ternary D-spectrum. The collection of all cumulative r-spectra T sp =
{Fr(x)} for 0 ≤ r < n is called ternary D-spectrum.

Denote by C(r;x) the number of all (r, x)-failure sets in the system. (Let us remind
that an (r, x)-failure set has r components up, x components down and the remaining
components in mid.)

Theorem 1:

C(r;x) = Fr(x) · n!
r!x!(n − r − x)!

. (3)

Proof: Let us count all r-type permutations having anchor j, j ≤ x. After completing the
destruction process, there will be n!fr(j) such permutations. Each of them has the following
form:

((i1, 2); (i2; 2); . . . (ir, 2); (ir+1, 0); . . . ; (ir+j , 0); (ir+j+1, 1); . . . ; (in, 1)).

Now let us turn into down the components which are on the positions r + j + 1, r + j +
2, . . . , r + x. We will obtain permutations which have the following form:

((i1, 2); . . . (ir, 2); (ir+1, 0); . . . , (ir+j , 0); . . . ; (ir+x, 0); (ir+x+1, 1); . . . ; (in, 1)), (∗)

that is, the first r positions occupy components in up, next x positions – components in down
and the remaining – components in mid. Obviously, all these permutations are (r;x)-failure
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sets. Therefore, the r-permutations produce

n![fr(0) + fr(1) + · · · + fr(x)] = n!Fr(x)

(r;x)-failure sets. But each particular (r;x)-failure set will be repeated r!x!(n − r − x)!
times. Therefore, the number of different (r;x)-failure sets produced in the above process is

Fr(x) · n!
r!x!(n − r − x)!

= C1

and therefore C(r;x) ≥ C1. On the other hand, each (r;x)-failure set has its “representa-
tives” in permutations (*). Therefore, C(r;x) = C1. �

Remark 3: Suppose that in the set of n system components we choose randomly r compo-
nents and turn them into up. Then we choose randomly x components out of n − r remaining
and turn them into down. Finally, we turn the remaining (n − r − x) components into mid.
Call the set resulting from this operation set Q. There are n!/(r!x!(n − r − x)!) different and
equiprobable ways to create a Q-type set. Some of these sets will be failure sets. Theorem 1
states that the probability that the set Q is a failure set equals Fr(x) = fr(1) + · · · + fr(x).
This fact is true no matter what is the stochastic mechanism governing system components
transition from up to mid and from mid to down.

Denote by V (j;x) the number of path sets having j components up, x components down
and the remaining components in state mid. The following Corollary was suggested to the
authors by the anonymous Reviewer.

Corollary:
V (j;x) + C(j;x) =

n

j!x!(n − j − x)!
. (4)

The proof is straightforward. Choose randomly j components out of n and turn them
into up. Chose randomly x components out of existing (n − j) components and term them
into down. Turn the remaining (n − j − x) into mid. The state vector obtained in this
way is either a path vector or a failure (cut) vector. Since the number of (j;x)-failure sets
is Fr(x) · (n!/(r!x!(n − r − x)!)), the number of (j;x)-path sets is V (j;x) = (1 − Fr(x)) ·
(n!/(r!x!(n − r − x)!)), which proves the corollary.

Example 2: s − t flow in a triangular network.
The network has three edges e1 = (s, v), e2 = (v, t) and e3 = (s, t). Each edge can be

in three states up, mid and down. These states correspond to edge flow capacity 2,1 and 0,
respectively. The system is UP if the s − t flow L ≥ 2. Otherwise the network is DOWN.
It is easy to see, for example, that for the state vector y0 = (1, 1, 1) (all components are in
mid), system is UP. For example, for y1 = (2, 0, 1) the flow is 1, and therefore the system
is DOWN.

Let us find the ternary D-spectrum. Note that for three components numbered 1, 2
and 3 we have 3! = 6 different permutations of their numbers. Below is the list of them
(component states are not given):

π1 = ((1,−); (2,−); (3;−)), π2 = ((1,−); (3,−); (2,−)),

π3 = ((2,−); (1,−); (3,−)), π4 = ((2,−); (3,−); (1,−)),

π5 = ((3,−); (1,−); (2,−)), π6 = ((3,−); (2,−); (1,−)).

https://doi.org/10.1017/S0269964815000261 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964815000261


32 I.B. Gertsbakh, Y. Shpungin and R. Vaisman

Consider now the permutations of 0-type. Recall that all components now are in mid.
Obviously, initially the system is UP. For example, L = 2 for π = ((1, 1), (2, 1), (3, 1)). The
initial check reveals that no permutation has anchor equal zero. Let us start the destruction
process.

If we destruct the component on the first position in any of the permutations π1, . . . , π6,
the system will go DOWN. Therefore, the anchor of any πi is 1, and therefore f0(1) = 1.
Obviously, f0(2) = f0(3) = 0, and F0(1) = F0(2) = F0(3) = 1. By Theorem 1,

C(0; 1) = 3!/(0!1!2!) = 3;C(0; 2) = 3!/(0!2!1!) = 3;C(0, 3) = 3!/(0!0!3!) = 1.

Permutations of (r = 1)-type have on the first position a component in state up. So,
now in each πi the first position is occupied by a component with capacity 2, and next two
positions – by components with capacity 1. Obviously, for each πi the system is initially UP.
Now destruct the component on the second position in each of the πi’s. It is easy to see that
in the first four permutations, the system goes DOWN because the s − t flow becomes 1.
For π5 and π6, which have on their first position component e3 = (s, t), the system remains
UP . Therefore, the anchor equals one with probability f1(1) = 4/6. It is seen that for π5

and π6 destruction of the component on third position does not bring the system DOWN.
Therefore, f1(2) = 0. Thus F1(1) = 4/6 = F1(2). Now

C(1; 1) = (2/3) · 3!/(1!1!1!) = 4. C(1, 2) = (2/3) · 3!/(1!2!) = 2.

All permutations of 2-type have two components in up on their first two position. It is easy
to check that it guarantees that the system is UP. Therefore, our ternary spectrum is a
collection of two vectors:

Tsp = {(F0(1), F0(2), F0(3)); (F1(1), F1(2))} = {(1, 1, 1); (2/3, 2/3)}.

Theorem 1 opens way to compute system DOWN probability for the case that all
components are independent and have identical probabilities (p2, p1, p0) for up, mid and
down states, respectively. In that case, each (r;x) – failure set has probability pr

2p
(n−r−x)
1 px

0

and therefore the probability weight of all such sets equals

C(r;x) · pr
2p

(n−r−x)
1 px

0 . (5)

Theorem 2:

P (DOWN) =
∑

{x≥0,r≥0:0≤r+x≤n}
C(r;x) · pr

2p
(n−r−x)
1 px

0 . (6)

Formula (6) can be rewritten in an equivalent “dynamic” form to include the time
factor. Suppose we have n independent and identically distributed stochastic processes
{χi(t), t > 0, i = 1, . . . , n}. Each χi(t) is a decreasing, left continuous process with three
states: 2, 1 and 0. State 0 is absorbing. Each trajectory of χi(t) starts at t = 0 in state 2,
jumps into state 1 and later gets absorbed in state 0. At any time instant t > 0, χi(t) is in
one of its three states with probabilities p2(t), p1(t) and p0(t), respectively. Obviously

p0(t) + p1(t) + p2(t) = 1, t > 0.

Let τ2(i) be the sojourn time of χi(t) in state 2. Then P (τ2(i) ≤ t) = 1 − p2(t). Let τ1(i) be
the sojourn time of χi(t) in state 1. Then the event {τ2(i) + τ1(i) ≤ t} means that at time
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t + 0, χi(t) has already left state 1, and is therefore in state 0, that is,

P (τ2(i) + τ1(i) ≤ t) = p0(t).

Note that if at time instant t the system is DOWN, then its failure-free operation time τup

does not exceed t. Then we can write that

P (τup ≤ t) =
∑

{x≥0,r≥0:0≤r+x≤n}
C(r;x)[p2(t)]r[p0(t)]x[1 − p0(t) − p2(t)](n−r−x). (7)

3. EXAMPLE: HYPERCUBE NETWORK

We consider fourth-order hypercube H4. It has 16 nodes and 32 edges; see Figure 1. Each
edge, independently of other edges, can be in three states: up, mid and down with respective
probabilities p2, p1 and p0, p2 + p1 + p0 = 1. States up and mid provide high and medium
connection speed, respectively. Edge down state means loss of connection. We say that
node set T1 is strongly connected if any pair of nodes from this set is connected by a
path consisting only of edges providing high speed connection. We say that node set T2 is
weakly connected if any pair of nodes in this set can be connected by a path of operational
edges. We define UP state of our system as presence of strong connection between nodes
T1 = {0, 2, 4, 6, 10, 14} and weak connection between all 16 nodes of H4, (In our example
T2 = V , the set of all nodes). System DOWN state is absence of strong connection for T1

or absence of weak connection for T2, or both.
Our main tool for computing P (DOWN) is the ternary D-spectrum. For this purpose,

we used Monte Carlo procedure, the algorithmic details of which will be described in the
next section. Now let us mention some general properties of the ternary spectrum. First, it is
easy to check from Figure 1 that the minimal number of edges providing strong connection
for T1 equals 5. Therefore, if we have r ≤ 4 edges up and other edges in mid, the system
is DOWN. Thus the permutations of (r;x)-type have for r = 0, 1, 2, 3, 4 the anchor equal
zero. In the course of simulation, it was revealed that if r ≥ 29, then the system cannot fail.
Therefore, Fr(x) ≡ 0 for these r values. Figure 2 presents a sample of graphs of {Fi(x)}.

The D-spectrum has an ordering property following from monotonicity of the system:
Fr(x) > Fr+1(x).

The data on system DOWN probability are presented in Table 1. The fourth and fifth
columns present the calculation results obtained from formula (6) by using the simulated D-
spectrum based on M runs, M = 100, 000 and M = 500, 000. The CPU time for simulating
the D-spectrum was 11.5 and 57.2 s, respectively.

We see that for p2 ≤ 0.6 the system has low reliability – P (DOWN) ≥ 0.2. To provide
reliability of about 0.9 or higher, p2 should be near 0.7 or higher. To assess the accuracy of
the simulation, we made a crude Monte Carlo (CMC) simulation of P (DOWN) by using
N = 107 simulation runs for each of 10 combinations of (p2, p1, p0) shown in Table 1. The
CPU time of each CMC run was about 28 s.

Assuming that the CMC provides a result with negligible error, we see from Table 1
that M = 100, 000 provides an absolute error within the limits (80 − 10) × 10−5, which is
quite satisfactory for practical reliability purposes. Let us note that for systems with high
reliability (last two rows in Table 1), the absolute error is about 0.0001. The increase of M
leads to overall reduction of estimation error. The absolute errors for M = 500, 000 lie in
the limits [7 × 10−5, 34 × 10−5].
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Figure 1. Hypercube of order four. T1 = {0, 2, 4, 6, 10, 14}, T2 = V .

Figure 2. (Color online) Sample of Fi(x). From top to bottom: F11, F13, F15, F18, F20.

4. CALCULATING THE TERNARY SPECTRUM

The Monte Carlo procedure for calculating the ternary D-spectrum is rather
straightforward.

(a) Simulate a random permutation of rth type, 0 ≤ r < n. Start with r = 0 and proceed
by increasing r. Turn into up the first r components, and into mid the remaining
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Table 1. Network DOWN probability

P (DOWN), P (DOWN), CMC,

p2 p1 p0 M = 105 M = 5 · 105 N = 107

0.5 0.1 0.4 0.57733 0.57769 0.57775
0.5 0.2 0.3 0.49718 0.49802 0.49783
0.5 0.3 0.2 0.46520 0.46616 0.46605
0.5 0.4 0.1 0.45787 0.457881 0.45847
0.6 0.1 0.3 0.25952 0.25954 0.20937
0.6 0.2 0.2 0.20896 0.20935 0.20937
0.6 0.3 0.1 0.19737 0.19779 0.19762
0.7 0.1 0.2 0.07360 0.07336 0.07347
0.7 0.2 0.1 0.05923 0.05917 0.05911
0.8 0.1 0.1 0.01156 0.01148 0.01155

components. For each r, carry out the destruction process by turning into down one
mid component after another by moving from left to right. Check system state after
each destruction. If the system is found DOWN on the kth step, increase by one the
kth counter: Mk ⇐ Mk + 1. If the initial check reveals DOWN, set M0 ⇐ M0 + 1.
On the other hand, if we completed the rth type permutation simulation procedure
by turning all mid components into down and no anchor was discovered, then the
D-spectra counters should not be updated at all.

(b) Repeat step (a) M times; compute fractions F̂r(x) = (
∑x

i=0 Mi/M).

(c) Repeat steps (a), (b) for r running from 0 to n − 1. Take F̂r(x) as the estimate of
Fr(x).

The most CPU time consuming part of the above procedure is checking system UP
state after each destruction step. Essential acceleration here can be achieved by appropriate
use of the so-called DSS-disjoint set structures; see [4], page 30. The question of principal
interest is the choice of M . It depends essentially on the number of components n and desired
estimation accuracy. For practical purposes estimation of system DOWN probability with
relative error 0.1–0.2 % is quite satisfactory. Our calculations reveal that for M = 100, 000
the relative error lies within these limits. This has been checked by CMC based on 107

replications.
It is worth noting that having M = 100, 000 for estimating each Fr(x) in our example

in Section 3, consumes only 11.5 s of CPU time!
Now several general comments about the above-described Monte Carlo procedure. This

is a typical counting algorithm. The purpose of it is estimating the D-spectrum by means
of which it is possible to count failure sets of the system with given structure (number
of components in up, mid and down). The fact that due to the monotone property of our
system each permutation can have at most one anchor considerably simplifies the calculation
algorithm.

Since Mi/M are just fractions, their estimation in the above algorithm is unbiased and
consistent. So are the estimates F̂r(x) of Fr(x). Therefore, the estimation of P (DOWN)
by (6) is also unbiased and consistent.

Let us make some comments regarding the complexity and efficiency of the above Monte
Carlo procedure. A permutation can be stored in array of size n. So, the space complexity is
O(n). For each r ∈ [0, n − 1] we generate M permutations. Having in mind that permutation
generation can be performed in linear time (O(n)) and that the anchor of any permutation
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can be found using binary search procedure in O(log((n)) time, we conclude that the overall
time complexity is equal to O(nMlog(n)).

Regarding the efficiency, let us note that in this paper we consider an extension to the
well-known binary terminal network reliability problem. The binary version of this problem
belongs to #P complexity class [7]. As far as we know, there exists an efficient approximation
scheme (FPRAS) for the all terminal network reliability but not for the general terminal
reliability problem like that considered in this paper. Our general recommendation is to use
the estimators of the variance to control the relative error for sample size M .

It is also worth noting that our D-spectrum method has the following valuable prop-
erty: in estimating very small P (DOWN) probabilities by (6) (the rare event case), the
phenomenon of variance increase as P (DOWN) → 0 is avoided. P (DOWN) → 0 takes
places for very reliable systems if p2 → 1. But the variance of estimating the coefficients
C(r;x) in formula (6) does not depend in our spectrum algorithm on probabilistic properties
of system components.

5. COMPONENT IMPORTANCE AND IMPORTANCE SPECTRUM

5.1. Component Importance

In this section, we present a very useful reliability characteristic – component importance.
We will assume that the system consists of independent components. In binary case when
each component has two states up and down, the most known is the so-called the Birnbaum
Importance Measure (BIM). For component m, it is defined ( [1], Chapter 1) as

BIMm =
∂R(p1, . . . , pn)

∂pm
. (8)

Using pivotal decomposition, it is easy to obtain that

BIMm = R(p1, . . . , 1m, . . . , pn) − R(p1, . . . , 0m, . . . , pn)

= G(p1, . . . , 0m, . . . , pn) − G(p1, . . . , 1m, . . . , pn), (9)

where R(p1, . . . , 1m, . . . , pn) is the reliability of a system with the component m being up,
and R(p1, . . . , 0m, . . . , pn) is the reliability of the system with the component m being down.
For convenience we represented R(·) as 1 − G(·).

BIMm has transparent probabilistic meaning: it is the gain in system reliability received
from replacing a down component m by an absolutely reliable one. BIMm, being partial
derivative, gives an approximation to the system reliability increment δR resulted from
reliability increment of component m by δpm. This increment equals δR(·) ≈ BIMm · δpm. In
binary situation, increment of component up probability p by Δ means necessarily decrease
by Δ the down probability q = 1 − p. In ternary case, there is a complication: suppose we
increase p2 by Δ. Then we have to reduce p1 together with p0 by the same quantity, and
this can be done in several ways. For example, we can reduce p0 by Δ and leave unchanged
p1. Or we can decrease p1 by Δ and leave p0 unchanged, or we can reduce both p1 and p0

by Δ/2, and so on.
It seems to us that the most natural and simple is the first option. Our goal is to

derive a formula for ternary importance measure (TIM) for the case of independent and
identical components. This means that each component has the same state distribution
vector p = (p2, p1, p0), where p2, p1 and p0 are the probabilities that a component is in up,
mid or down, respectively.
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Definition 7: TIM of component m.

TIMm = G(p, . . . , 0m, . . . ,p) − G(p, . . . , 2m, . . . ,p). (10)

The problem in calculating the component importance is that usually the reliability func-
tion is not available in closed analytic form. The TIM-spectrum which we define below allows
to evaluate TIM’s by means of Monte Carlo simulation.

5.2. TIM-Spectrum

This notion is closely related to the r-permutation defined in Section 2. Let us remind that
in the process of component destruction, this permutation has on its first r positions the
numbers of components in state up, the next x positions occupy component numbers which
are in state down, and the components on the remaining (n − r − x) positions are in state
mid.

Denote by Z(r;x,m) the number of r-permutations satisfying the following two
conditions:

(i) If x elements in the permutation are down, then the system is DOWN ;
(ii) Component m is among the x down components.

Denote by Y (r;x,m) the number of r-permutations satisfying the above condition
(i) and the following condition

(iii) Component m is among the r up components.

Definition 8: TIM-spectra.
The collection {z(r;x,m)} = {Z(r;x,m)/n!}, x = 1, . . . , n;m = 1, 2, . . . , n is called the

TIM -down – spectrum of the system.
Similarly, the collection {y(r;x,m)} = {Y (r;x,m)/n!}, x = 1, . . . , n;m = 1, 2, . . . , n is

called the TIM -up – spectrum of the system.

Note that by definition, Z(r;x,m) permutations produce

Z(r;x,m)
r!x!(n − r − x)!

(r;x) – failure sets in which component m is among the down components.
Similarly, Y (r;x,m) permutations produce

Y (r;x,m)
r!x!(n − r − x)!

(r;x) – failure sets in which component m is among the up components. Then we arrive at
the following:

Theorem 3:

TIMm = G(p, . . . , 0m, . . . ,p) − G(p, . . . , 2m, . . . ,p), (11)

where

G(p, . . . , 0m, . . . ,p) =
n−1∑
j=0

n−j∑
x=1

z(j;x,m)n!
j!x!(n − j − x)!

pj
2p

x−1
0 p

(n−j−x)
1 (12)
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and

G(p, . . . , 2m, . . . ,p) =
n−1∑
j=0

n−j∑
x=1

y(j;x,m)n!
j!x!(n − j − x)!

p
(j−1)
2 px

0p
(n−j−x)
1 . (13)

Example 3: Let us consider a small network with three edges a, b and c. Edges a = (s, v)
and b = (v, t) are in series, and are parallel to edge c = (s, t). Each edge can be in three
states: up, mid and down with respective capacities 2, 1 and 0. System is UP if the maximal
s − t flow is at least 2. Otherwise the system is DOWN. Below is the list of all 13 DOWN
states:

v1 = (0, 0, 0), v2 = (0, 0, 1), v3 = (0, 1, 0), v4 = (0, 2, 0), v5 = (1, 0, 0),

v6 = (2, 0, 0), v7 = (0, 1, 1), v8 = (0, 2, 1), v9 = (1, 0, 1), v10 = (2, 0, 1),

v11 = (1, 1, 0), v12 = (1, 2, 0), v13 = (2, 1, 0).

Let us calculate the TIMs of all edges using the Definition 8.
By symmetry TIMa = TIMb, and

TIMa = (p2
0 + 2p0p1 + p2

1 + p0p2 + p1p2) − (p2
0 + 2p0p1) = p2

1 + p0p2 + p1p2,

TIMc = p2
2 + 2p0p1 + 2p0p2 + p2

1 + 2p1p2.

Let us now demonstrate the calculation of TIMa using the Importance spectrum and
Theorem 3. In total, there are the following six permutations of all components: per1 =
(a, b, c),

per2 = (a, c, b), per3 = (b, a, c), per4 = (b, c, a), per5 = (c, a, b), per6 = (c, b, a).

Suppose that a is down. Let r = 0. Then the following permutations satisfy (i) and (ii)
of the definition of Z(r;x,m): per1 and per2, for x = 1. Then Z(0; 1, a) = 2.

per1,per2,per3,per5 satisfy (i), (ii) – for x = 2, and then Z(0; 2, a) = 4.
Finally, all permutations satisfy the same conditions for x = 3. Then Z(0; 3, a) = 6.
Now let r = 1. The above conditions are satisfied by per5 for x = 1, by per3 and per4

for x = 2. Therefore, Z(1; 1, a) = 1, Z(1; 2, a) = 2.
For r = 2, all permutations give the UP state.
Suppose now that it is given that a is up. We have the following permutations satisfying

(i), (iii) of the definition of Y (r;x,m).
The case r = 0 is not relevant. Let r = 1. For per1,per2 and x = 1 we have Y (1; 1, a) = 2.

For x = 2, we get per2 and Y (1; 2, a) = 2. For r = 2 we have UP in all six permutations.
Now by Theorem 3 we obtain

TIMa =
(

2
0!1!2!

p2
1 +

4
0!2!1!

p0p1 +
6

0!3!0!
p2
0 +

1
1!1!1!

p2p1 +
2

1!2!
p2p0

)

−
(

2
1!1!1!

p0p1 +
1

1!2!
p2
0

)
= p2

1 + p1p2 + p0p2.

For systems having more than four components, manual calculations of the TIMs
becomes too complicated. There is however an efficient way of numerical estimation of
ternary importance spectrum by means of Monte Carlo simulation. Let us outline briefly
how this can be done. Look at step (a) of the procedure described in Section 4. It contains
the simulation of an r-permutation and subsequent destruction process. Suppose that this
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process reveals the system in DOWN state after exactly x steps. Then check whether a
fixed component m is among these x destructed components. If “Yes”, add 1 to the counter
of Z(r;x,m). The calculation of Y (r;x,m) goes along similar lines. In general, this reminds
the calculation of the BIM-spectra for binary system, see the description in [4], Chapter 10.
Summing up, the calculation of the ternary importance spectrum is carried out by means
of rather small modification of the basic algorithm for computing the ternary spectrum.
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