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Abstract
Addition of sub-therapeutic antibiotics to the feed of food-producing animals for growth promotion and
disease prevention has become a common agricultural practice in many countries. The emergence of anti-
biotic-resistant pathogens is a looming concern associated with the use of antibiotic growth promoters
(AGPs) around the world. In addition, some studies have shown that AGPs may not only affect antibiotic
resistance but may also stimulate the dissemination of virulence factors via bacteriophages. Although only
a few studies are currently available in the literature regarding this topic, in this article we endeavor to
provide a perspective about how AGPs would impact the transmission of virulence factors by horizontal
gene transfer via phages in a few pathogenic bacterial species significant to livestock production.
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The introduction of antibiotics is one of the most significant
achievements in the past century playing a substantial role in
the reduction of the burden of infectious diseases in humans
and animals worldwide (Aarestrup, 2015). Shortly after the
introduction of antibiotics, their growth-promoting effect in
chickens was discovered when it was observed that birds fed
with streptomycin exhibited increased growth compared with
those not receiving streptomycin (Moore et al., 1946). Since
the beginning of the 1950s, several antibiotics have been
added to the feed of food-producing animals. In many coun-
tries, it has become a hallmark of modern animal husbandry
to use sub-therapeutic levels of antibiotics as antibiotic growth
promoters (AGPs) to enhance growth rate and feed efficiency
(Castanon, 2007). Although the mechanisms for these effects
have not been fully elucidated, Cho et al. (2012) demonstrated
that growth promotion involves the modification of gut micro-
flora populations and changes in the host metabolism. In the

USA, in 2015, medically important antimicrobials accounted
for 62% of the nation’s annual domestic sales of all antimicro-
bials approved for use in food-producing animals, with tetracyc-
line constituting the largest volume (i.e. 71%) (FDA, 2016). In
China, similarly, approximately 52% of the total antibiotic con-
sumption in the country was used for animals in 2013 (Zhang
et al., 2015). A recent modeling study estimated that worldwide
antibiotic consumption in food animal production was approxi-
mately 63,000 tons in 2010, and this number is projected to
increase by two-thirds to 105,000 tons by 2030 (Van Boeckel
et al., 2015).
Despite the prevalent use of AGPs in agriculture, their effects

on antibiotic resistance by pathogens and their contribution to
environmental contamination are serious public health concerns
worldwide. In addition, a few recent articles suggest that AGPs
are likely to affect the spread of virulence factors in pathogens.
Since the impact of AGPs on antibiotic resistance and the envir-
onment have been extensively reviewed elsewhere (Wegener,
2003; Pruden et al., 2013; Aarestrup, 2015), we will only
briefly mention these issues. In this article, we focused on*Corresponding author. E-mail: bjeon@ualberta.ca
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presenting potential mechanisms by which AGPs could be
implicated in the dissemination of virulence factors. We will
base our discussion on information currently available regarding
phage-encoded virulence factors and the molecular mechanisms
of phage-mediated transduction in a few pathogenic bacterial
species significant to livestock production.

Effects of AGPs on the development of antimicrobial
resistance

Widespread use of AGPs in livestock has contributed to the
emergence of antibiotic-resistant bacteria through natural selec-
tion and has an adverse impact on public health. Despite con-
troversial debates, a number of studies have demonstrated
that the use of AGPs in food animals is implicated in the devel-
opment of antimicrobial resistance in bacteria (Bager et al., 1997;
Wegener, 2003). Many studies suggest that a long-term exposure
to low doses of AGPs may have greater selective potential than
a short-term and full-dose therapeutic use (Andersson and
Hughes, 2014; You and Silbergeld, 2014). The former ideally
stimulates the emergence, mobilization, and persistence of
antibiotic-resistant bacteria in both livestock and humans (You
and Silbergeld, 2014). An epidemiological study in chickens
and pigs demonstrated a strong association between the use
of avoparcin, a glycopeptide antibiotic, as a growth promoter
and the occurrence of vancomycin-resistant enterococci
(VRE) in food-producing animals in Denmark (Bager et al.,
1997). A ban of avoparcin as a growth promoter in the
European Union in 1997 resulted in a decrease in VRE in
poultry (Klare et al., 1999). Resistance of Salmonella Heidelberg
to extended-spectrum cephalosporins is strongly correlated
with the in ovo use of ceftiofur, a third-generation cephalosporin
for animals, to prevent Escherichia coli-induced omphalitis (i.e.
yolk sac infection) in broiler chickens in Canada. Voluntary
withdrawal of ceftiofur from broiler chicken hatcheries reduced
the resistance to the next-generation cephalosporins (Dutil et al.,
2010). Moreover, a recent study from seven European countries
strongly correlated veterinary antimicrobial consumption levels
of eight classes of antimicrobials with the prevalence of resist-
ance in non-pathogenic commensal E. coli isolates from pigs,
poultry, and cattle (Chantziaras et al., 2013). The public health
concern is that the resistant bacteria that are circulated in food-
producing animals can be transmitted to people through a
number of pathways, such as the food chain and environmental
sources, and by occupational contact with animals (Casey et al.,
2013; Founou et al., 2016).

Environmental contamination with antibiotics

Subsequent to the use of antibiotics in intensive animal produc-
tion systems, a substantial quantity of antibiotics or their active
metabolites is excreted by the animals in feces, which leads to
environmental contamination with sub-lethal concentrations of
antimicrobials (Li et al., 2013). For example, most (ca. 75%)
of the dietary chlortetracycline is not digested in cattle intestines

and is excreted in manure (Elmund et al., 1971). Resistant bacteria
and active antibiotics can spread from the farm to the environ-
ment when farmland is spread with manure containing antibiotic
residues. An increase in the prevalence of tetracycline-resistant
bacteria from soils amended with pig manure slurry was observed
(Sengeløv et al., 2003). The tetracycline-resistance gene tet(M) was
also detected in the soil treated with pig manure, and residues of
chlortetracycline and oxytetracycline remained highly stable in the
soil (Agersø et al., 2006). Furthermore, a significant proportion of
excreted antimicrobials ends up remaining in livestock wastewater
(Pruden et al., 2013). In China, antibiotics can be detected in resi-
dents’ tap water in some provinces due to the contamination of
major rivers, presumably from hospitals, pharmaceutical compan-
ies, and farms (Huang et al., 2015). Moreover, bacteria exposed to
sub-lethal concentrations of antibiotics in the environment can
develop resistance, and the resistance phenotype or genotype
may be disseminated by horizontal gene transfer. Thus, a resis-
tome may be established in the environment by the release of
antimicrobials in wastewater effluents and animal waste (Finley
et al., 2013).

Phage-mediated dissemination of virulence factors
by AGPs

Horizontal gene transfer may occur in gastrointestinal micro-
flora (Liu et al., 2012). Horizontal gene transfer is mediated by
three major mechanisms, including conjugation, transformation,
and transduction. Conjugation transfers DNA through a conju-
gation pilus from a donor to a recipient cell, requiring a
cell-to-cell contact (Koraimann and Wagner, 2014).
Transformation enables bacteria to take up exogenous DNA
from the environment. In order for natural transformation to
occur in the gastrointestinal tracts, extracellular DNA should
be protected from DNA-damaging agents, such as nucleases.
Furthermore, the recipient bacteria need to be naturally trans-
formable. However, only some, not all, bacteria are naturally
competent for DNA transformation (Johnston et al., 2014).
Transduction is mediated by bacteriophages (simply phages),
viruses specifically infecting bacteria (Salmond and Fineran,
2015). Since phage DNA is located within a capsid, phage
DNA can be protected by DNA-damaging agents in the
intestines.
A significant number of virulence factors are encoded in

mobile genetic elements, including phages (Frost et al., 2005).
Whereas lytic phages vigorously produce progeny phage parti-
cles and are released by bacterial cell lysis, temperate phages
may be integrated into the bacterial chromosome as a prophage,
and the prophages replicate together with the bacterial genome
(Feiner et al., 2015). When exposed to stresses (e.g. ultraviolet
(UV) light and antibiotics), the SOS response system of bacteria
triggers prophages to enter a lytic cycle (Fajardo and Martinez,
2008; Loś et al., 2011). Despite the well-established mechanisms
of phage-mediated horizontal gene transfer and the induction of
phages by antibiotics, few studies have examined the impact of
AGPs on the phage-mediated horizontal transfer of virulence
genes between pathogens. We will therefore discuss this topic
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mainly by extrapolating from our recent publication (Kim et al.,
2016) in combination with currently available information about
phage-encoded virulence factors in a few pathogenic bacterial
species found in food-producing animals.

AGP-mediated transmission of Shiga toxin-encoding
phages in STEC

A number of previous studies reported that antibiotic treatment
of E. coli significantly increased the propagation of Shiga toxin
(Stx) phages in Shiga toxin-producing E. coli (STEC) by the
stimulation of the SOS response system in E. coli (Zhang
et al., 2000; Cornick et al., 2006; McGannon et al., 2010). The
SOS system represents a ubiquitous response to DNA damage
that upregulates genes involved in DNA repair. The SOS
response is regulated by the RecA and LexA proteins (Michel,
2005). Induction of SOS response in vitro, which is characterized
by the activation of the RecA protein, has been demonstrated
with various antibiotics, including β-lactams (Maiques et al.,
2006) and fluoroquinolones (Bearson and Brunelle, 2015).
The stx genes are encoded in a λ prophage in the chromosome
of the STEC (Allison, 2007). Thus, antibiotic treatment induces
the production of Stx and is not recommended for patients
infected with enterohemorrhagic E. coli (Davis et al., 2013).
The induction of Stx-encoding phages by antibiotics has been
a controversial issue in human medicine, but has not been con-
sidered a serious issue in livestock because cattle, the major res-
ervoir for STEC, are resistant to Stx (Pruimboom-Brees et al.,
2000). However, antibiotic-mediated induction of phages encod-
ing virulence factors in the animal hosts for STEC may have a
different impact on public health, since phages mediate horizon-
tal gene transfer (Touchon et al., 2017). The transduction of
Stx-encoding phages to non-pathogenic commensal E. coli
may convert non-pathogenic E. coli (i.e. non-STEC) to STEC
in the intestines of cattle after treatment with antibiotics or in
the manure contaminated with residual antibiotics (Fig. 1).

Our recent study demonstrated that AGPs used in beef pro-
duction may facilitate the transmission of virulence factors in
E. coli even at extremely low concentrations. The induction
and subsequent transmission of Stx-encoding phages to non-
pathogenic E. coli were significantly affected by oxytetracycline
and chlortetracycline even at a concentration as low as
0.01 µg ml−1; these antibiotics significantly induced the SOS
response system by increasing recA expression (Kim et al.,
2016). Although antimicrobials are less frequently used for cattle
compared with chickens and swine, a significant amount of anti-
microbials is still used for cattle globally (Van Boeckel et al.,
2015). Feedlots use medications in feed and water to preserve
animal health and improve production. According to a survey
conducted by the USDA in 2011, more than 73% of all feedlots
in the USA administered at least one antimicrobial in the feed to
cattle for prophylaxis or growth promotion (USDA, 2013).
Ionophores, tylosin, chlortetracycline, and oxytetracycline are
commonly given to feedlot cattle. Ionophores, such as monen-
sin, are used to improve production and control coccidia
(Giguère et al., 2013; USDA, 2013). Tylosin is used to promote

growth and control the occurrence of liver abscesses in cattle
(Nagaraja and Chengappa, 1998; USDA, 2013). Chlortetracycline
and oxytetracycline are used as feed supplements mainly to pre-
vent bovine pneumonia and bacterial enteritis at sub-therapeutic
levels, but they are also used at therapeutic levels as metaphylac-
tics to prevent infections in some feedlots, particularly when
calves are first introduced into feedlots (Gustafson and Kiser,
2012; Giguère et al., 2013). Our research demonstrated that tet-
racyclines significantly increased the propagation of Stx phages
and stimulated the transmission of the stx genes to non-
pathogenic E. coli, thus converting them to STEC by transduc-
tion. A previous study reported that stx-positive commensal
E. coli are more frequently isolated from cattle after using chlor-
tetracycline in the feed (O’Connor et al., 2004); this suggests that
antibiotic treatment may affect the prevalence of stx-positive
commensal E. coli. It can be speculated that the use of AGPs
in cattle may partly explain the diversification of serotypes of
STEC.

Botulinum toxins in Clostridium botulinum

Clostridium botulinum is a Gram-positive, spore-forming bacter-
ium and an etiological agent of botulism, a progressive flaccid
paralysis. Spores of C. botulinum are frequently isolated from
the environment, such as soil, animal carcasses, and sediments
in lakes, and the intestinal tracts of animals (Huss, 1980).
Animals can be intoxicated by the ingestion of pre-formed tox-
ins or by the production of toxins by germinated spores in the
intestines (Critchley, 1991). Among the seven toxinotypes (i.e.
A, B, C, D, E, F, and G), C and D toxins are generally involved
in botulism outbreaks in animals, such as cattle, horses, sheep,
and wildfowl (Bohnel and Gessler, 2005). In C. botulinum, the
production of toxins C and D is dependent on the presence
of tox+ prophages, and the toxinotypes C and D were intercon-
vertible by the type of infecting phage (Eklund and Poysky,
1974). Curing of a prophage renders C. botulinum Type C unable
to produce a toxin, and the phage-cured C. botulinum Type C is
converted to type D and even to Clostridium novyi Type A
depending on the type of the phage used for transduction
(Eklund et al., 1974). This strongly suggests that phage-mediated
transduction may enable C. botulinum to produce neurotoxins.
Whereas ruminants and poultry are sensitive to botulism,
swine are relatively resistant. Clostridium botulinum has been
detected in 3% of the swine intestinal samples in Finland
(Myllykoski et al., 2006) and 62% of the fecal samples of pigs
in Sweden (Dahlenborg et al., 2001). A study in Japan reported
that C. botulinum type C was detected in swine liver, feces, and
environmental samples from swine farms at high rates (ca.
76%), suggesting that healthy swine could be a carrier of this
pathogen (Yamakawa et al., 1992).
The phage responsible for toxin production in C. botulinum

Type C, CEβ, is induced by UV light and acridine orange
(Eklund et al., 1971); information about antibiotic-mediated
induction of the phage is not available. However, given the
prevalence of C. botulinum Type C in pigs and the induction
of the phage lytic cycle by stresses, it can be hypothesized that
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botulinum phages could be induced by antibiotics used for
swine production, and the phages may be transmitted to C. botu-
linum in the gastrointestinal tracts of pigs. Allen et al., showed
that the supplementation of feed with ASP250 (chlortetracyc-
line, sulfamethazine, and penicillin) increased the abundance
of phage integrase-encoding genes. This demonstrates that
in-feed antibiotics may affect the virome in the swine gastro-
intestinal tracts (Allen et al., 2011). The phage-mediated trans-
duction would be unlikely to occur in manure in the
environment due to the oxygen sensitivity of C. botulinum.
However, no experimental data are currently available to test
this hypothesis.

Phage-encoded virulence factors in Staphylococcus
aureus

Staphylococcus aureus is isolated from skin, nasopharynx, and
gastrointestinal tracts of human beings and animals, mainly
causing skin and soft-tissue infections (Weese, 2010). In people,
S. aureus co-colonizes the intestinal tracts of 62% of
vancomycin-resistant Enterococcus faecium (VRE)-colonized
patients (Ray et al., 2003). It has been reported that several viru-
lence factors in S. aureus are encoded by phages, such as toxic
shock syndrome toxin 1 (Lindsay et al., 1998), Panton–
Valentine leukocidin (Diep et al., 2006), enterotoxin A (Betley
and Mekalanos, 1985), and exfoliative toxin (Yamaguchi et al.,
2000). The genomic island νSaβ that encodes multiple virulence
factors, such as staphylococcal superantigens, proteases, and
leukotoxins, is transmissible in S. aureus strains from human
beings and animals by phages (Moon et al., 2015). Prophages
are frequently activated by environmental signals activating the
SOS response, such as antibiotics (Wagner and Waldor, 2002).
Ubeda et al. (2005) reported phage-induced excision and replica-
tion of bovine-specific pathogenicity island SaPIbov1 after SOS
induction by antibiotics. It also promoted horizontal dissemin-
ation of virulence factors in the pathogenicity islands of
staphylococci. Recently, it was demonstrated that SOS response

activation by β-lactam antibiotics triggered prophage induction
in S. aureus lysogens, which in turn resulted in the replication
and high-frequency transfer of the pathogenicity islands, indicat-
ing that such antibiotics may have an unintended consequence
of promoting the spread of bacterial virulence factors
(Maiques et al., 2006). Although responses of staphylococcal
phages to AGPs at sub-lethal concentrations have not been
investigated, the existence of multiple types of phages in S. aureus
and the prevalence of S. aureus in animals would possibly
increase chances of transmission of virulence factors in S. aureus
by AGPs in livestock.

Effect of AGPs on Salmonella prophages encoding
virulence factors

Non-typhoidal Salmonella is a major foodborne pathogen of human
beings, accounting for approximately 153 million illnesses world-
wide per year (Kirk et al., 2015). Salmonella is isolated from a
wide range of food-producing animals. According to a recent
study of FoodNet Canada, Salmonella is prevalent in manure sam-
ples from broilers (55%), swine (30%), dairy cattle (13%), and beef
cattle (10%) (Flockhart et al., 2017). The ubiquitous nature of
Salmonella in food-producing animals may enable Salmonella to be
transmitted to people through the food chain and by direct contact
with animals. A number of virulence genes are encoded in pro-
phages in Salmonella. For instance, S. Typhimurium phages
SopEϕ and Gifsy-1, -2, and -3 encode type III secretion system
effector proteins, such as SopE, GogB, SseI and SspH1, and the
superoxide dismutases SodC-I and SodC-III involved in intracellu-
lar survival (Figueroa-Bossi and Bossi, 1999; Mirold et al., 1999;
Figueroa-Bossi et al., 2001). The Gifsy-1, -2, and -3 phages can
infect and lysogenize serovars other than Typhimurium, such as
Typhi, Abortusovis, and Gallinarum (Figueroa-Bossi et al., 2001).
Phages in Salmonella can be induced by antibiotics.

Fluoroquinolones (e.g. enrofloxacin and danofloxacin) induce
phage replication in two multidrug-resistant S. Typhimurium
strains, DT104 and DT120, and facilitate phage-mediated

Fig. 1. Schematic diagram for posited horizontal transfer of the stx gene via bacteriophages from STEC to non-pathogenic
Escherichia coli (i.e. non-STEC) after exposure to AGPs.
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horizontal gene transfer in Salmonella (Bearson and Brunelle,
2015). Carbadox is a veterinary antibiotic and is widely used
in the USA for swine production, to improve feed efficiency
and prevent enteric diseases. Carbadox induces phage propaga-
tion in S. Typhimurium LT2, even at low concentrations (e.g.
0.5 µg ml−1), and mediates the transfer of virulence and anti-
biotic-resistance genes in the Fels-1 prophage from LT2 to a
susceptible Salmonella strain (Bearson et al., 2014). Salmonella
colonizes the intestines of various food-producing animals,
such as poultry, pigs, and cattle and will be exposed to AGPs
in the gastrointestinal tracts of these animals. This may stimulate
the propagation of phages in Salmonella.

Thus far, studies regarding the AGP-mediated transmission
of virulence factors by phages have been conducted in vitro,
and further verification is required in vivo. However, a recent
study demonstrated that the transduction of the phage SopEΦ
in S. Typhimurium occurs at high frequencies during inflamma-
tion of murine intestines, through the induction of the bacterial
SOS response by stressors elicited by inflammatory immune
defenses (e.g. reactive nitrogen species and reactive oxygen spe-
cies) (Diard et al., 2017). Because antibiotics rely on the same
induction mechanisms (i.e. the SOS response) for phage induc-
tion as reactive oxygen species, AGPs would similarly mediate
the phage propagation and transmission in animals. In addition,
manure from food-producing animals contains antibiotic resi-
dues (Youngquist et al., 2016) and phage-harboring pathogens
excreted from the intestines of food-producing animals treated
with AGPs. It has been shown that even environmental stresses
in cattle feedlots, such as UV light (i.e. sunshine) and high tem-
perature, may synergistically mediate the transduction of Stx
phages to non-pathogenic E. coli (Yue et al., 2012). Therefore,
it is highly plausible that AGPs in manure may facilitate phage
induction and transmission in combination with the environ-
mental stresses affecting phage transduction. Even though the
scientific data about phage physiology and horizontal gene trans-
fer strongly support the idea that AGPs would affect the expan-
sion of pathogenic bacterial populations, this still awaits future
experimental verification.
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