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Release of a viscous power-law fluid over an
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We consider the two- and three-dimensional spreading of a finite volume of viscous
power-law fluid released over a denser inviscid fluid and subject to gravitational and
capillary forces. In the case of gravity-driven spreading, with a power-law fluid having
strain rate proportional to stress to the power n, there are similarity solutions with the
extent of the current being proportional to t1/n in the two-dimensional case and t1/2n

in the three-dimensional case. Perturbations from these asymptotic states are shown
to retain their initial shape but to decay relatively as t−1 in the two-dimensional
case and t−3/(n+3) in the three-dimensional case. The former is independent of n,
whereas the latter gives a slower rate of relative decay for fluids that are more
shear-thinning. In cases where the layer is subject to a constraining surface tension,
we determine the evolution of the layer towards a static state of uniform thickness
in which the gravitational and capillary forces balance. The asymptotic form of this
convergence is shown to depend strongly on n, with rapid finite-time algebraic decay
in shear-thickening cases, large-time exponential decay in the Newtonian case and slow
large-time algebraic decay in shear-thinning cases.

Key words: gravity currents, non-Newtonian flows, thin films

1. Introduction
In a recent paper, Pegler & Worster (2012) consider the gravitational spreading of

a layer of viscous Newtonian fluid supplied at constant flux, flowing over a denser
inviscid fluid. Such a layer receives negligible traction from both the inviscid fluid
below it and the air above it, which implies that its horizontal velocity undergoes very
little vertical shear and its dynamics are dominated by extensional viscous stresses.
In this paper, we investigate the example of a fixed volume of viscous power-law
fluid that spreads under the influence of gravitational and capillary forces. Our primary
motivation is to understand the stability of such flows to perturbation and to determine
the evolution of the layer towards self-similar propagation. Our interest in power-law
rheologies stems from the context of ice-shelf dynamics, where the flow is commonly
modelled using a power-law shear-thinning constitutive relation known as Glen’s flow
law (Paterson 1994).

The problem of a viscous Newtonian fluid of constant volume spreading at the
interface between inviscid fluids has been considered previously in two dimensions by
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DiPietro & Cox (1979) and in three dimensions by Koch & Koch (1995), both in the
case of negligible surface tension. DiPietro & Cox (1979) and Koch & Koch (1995)
calculate similarity solutions that describe the large-time asymptotic evolution of
two-dimensional and axisymmetric finite-volume releases, respectively. Both of these
similarity solutions exhibit a uniform thickness profile with no horizontal pressure
gradients in the interior. It is thus notable that the spread of the entire layer in these
asymptotic states is driven solely by the hydrostatic pressure discontinuity at their
edges; they provide excellent demonstrations of the long-range transmission of forces
that can occur through floating viscous layers of this kind.

Koch & Koch (1995) demonstrate numerically that a spherical blob of viscous
fluid released beneath the surface of a denser fluid of much lower viscosity
converges towards the axisymmetric similarity solution. These findings are supported
by laboratory experiments by Dorsey & Manga (1998), which show convergence of
the experimental spreading rate towards that of the similarity solution. In this paper,
we extend these studies to allow for both a power-law rheology and a constraining
surface tension and to calculate solutions for the evolution of the layer towards self-
similar propagation.

In the case of a two-dimensional finite-volume release subject to negligible surface
tension, we can integrate the model equations analytically to determine the evolution
of finite-amplitude perturbations. The equations describing an axisymmetric finite-
volume release are complicated fundamentally by contributions due to hoop stresses
(Pegler & Worster 2012). In this case, we perform a linear perturbation analysis
to calculate analytically the evolution of small axisymmetric perturbations from the
uniform asymptotic state. A significant contrast can be drawn between the behaviour
of the finite-volume release studied here and that of the constant-flux delivery studied
by Pegler & Worster (2012). In the latter case, the presence of the source precludes
a global evolution of the thickness towards a state of uniform thickness, and the
large-time flow is consequently shown to exhibit much greater structure.

The role of surface tension was found to be an important consideration in the
experimental study of Pegler & Worster (2012). In order to understand some aspects of
its influence, we determine here the evolution of an axisymmetric finite-volume release
subject to a constraining surface tension. We model the influence of surface tension to
leading order by assuming that it acts only at the front of the layer to give a stress of
magnitude that is inversely proportional to the thickness near the front. This model has
been developed previously in the context of float-glass manufacture (Howell 1994).

The case of a spreading surface tension, which we do not consider here, has been
studied in the context of very viscous oil slicks by DiPietro & Cox (1979). They
developed a higher-order surface-tension model to account for the development of a
thin precursor film ahead of the bulk of the layer. Their analysis suggests that the
dynamics in this case may transition to the gravity-driven regime described in the
preceding paragraphs. Other studies of oil-slick mechanics, such as those of Hoult
(1972) and Foda & Cox (1980), consider regimes in which the layer is driven by a
spreading surface tension and retarded by the underlying viscous drag of the ocean,
rather than the extensional viscous stresses in the slick.

We begin in § 2 by reviewing briefly our model for a viscous layer of fluid flowing
over a denser inviscid fluid. In § 3, we consider the evolution of perturbations from
the two- and three-dimensional similarity solutions. In § 4, we calculate solutions to
generalized model equations that include the effects of surface tension.
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FIGURE 1. Schematic cross-section of the uniform similarity solution (3.19) that describes
the large-time three-dimensional finite-volume release.

2. Model equations
Consider a thin layer of power-law viscous fluid of density ρ flowing on top of

an inviscid stationary ocean of greater density ρw, as shown schematically in the case
of uniform thickness in figure 1. The horizontal velocity u(x, t) of such a layer is
governed to leading order by the force-balance equation

∇(µH∇ ·u)+∇ · (µHe)= 1
2ρg′H∇H, (2.1)

where H(x, t) is the thickness, e ≡ (1/2)[∇u + (∇u)T] is the horizontal rate-of-strain
tensor, g′ ≡ (ρw − ρ)g/ρw is the reduced gravity, g is the acceleration due to gravity
and ∇ is the horizontal part of the gradient operator. Equation (2.1) follows from a
generalization of the derivation of the Newtonian case (DiPietro & Cox 1979; Pegler &
Worster 2012). We impose the power-law viscosity

µ= µ̃[ 1
2 E : E]m/2 ≡ µ̃[ 1

2 {e : e + (∇ · u)2}
]m/2

, (2.2)

where E is the full three-dimensional rate-of-strain tensor, and µ̃ and m are constants.
The constant m is related to the power-law exponent n by m≡ 1/n− 1. The Newtonian
case is given by n= 1 (m= 0); shear-thinning and shear-thickening cases are given by
n > 1(m < 0) and n < 1 (m > 0), respectively. In the context of glacial ice shelves, a
power-law exponent of n = 3 is commonly used in Glen’s flow law, corresponding to
shear-thinning (Paterson 1994). Having determined u by solving (2.1)–(2.2) subject to
suitable boundary conditions on u, the evolution of the thickness H is described by the
continuity equation

∂H

∂t
+∇ · (Hu)= 0. (2.3)

In this paper, we apply a dynamic boundary condition at edges of the layer that
represents a balance between the depth-integrated stress in the layer and the combined
effect of the hydrostatic pressure of the ocean exerted horizontally upon it and any
capillary forces. Note that, although capillary forces are negligible over the small
curvatures of the interior of the layer, capillary forces can be large at the edges
where the assumed thinness of the layer implies significant curvature of its surface. By
performing a horizontal force balance on a region that extends from a point x = X
on the edge to a nearby interior point where the curvature is small, Howell (1994)
determined the leading-order dynamic boundary condition

2µ[(∇ ·u)n+ e ·n] = ( 1
2ρg′H − γH−1

)
n (x= X), (2.4)
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where n is the unit horizontal normal to the edge. The constant γ ≡ γva + γvw − γaw

is a coefficient of total surface tension composed of the interfacial surface tensions
between the layer and the air γva, the layer and the ocean γvw, and the ocean and the
air γaw.

We expect (2.4) to be appropriate only if the surface tension is zero or constraining,
so γ > 0. If γ < 0, experiments with oil on water (Foda & Cox 1980) show that a
molecularly thin layer of oil propagates rapidly in front of the bulk of the oil. Clearly,
the presence of this thin layer of fluid in front of the bulk changes the interfacial
forces so that (2.4) does not apply.

3. Finite-volume release subject to negligible surface tension
We begin by considering the case of negligible surface tension γ = 0 in which the

motion of the layer is driven solely by horizontal buoyancy gradients.

3.1. Two-dimensional release
Consider a two-dimensional viscous layer of thickness H(x, t) and velocity u(x, t)x̂.
The evolution of the layer is governed by (2.1) and (2.3), which take the two-
dimensional forms

2
∂

∂x

(
µH

∂u

∂x

)
= 1

2
ρg′H

∂H

∂x
, (3.1)

DH

Dt
=−H

∂u

∂x
, (3.2)

respectively, where D/Dt ≡ ∂/∂t + u ∂/∂x is the material derivative. The effective
viscosity (2.2) takes the two-dimensional form

µ= µ̃
∣∣∣∣∂u

∂x

∣∣∣∣m. (3.3)

Let us assume that the layer has an edge at x = X(t). A boundary condition for
solution of (3.1) is given by the dynamic condition (2.4), which takes the two-
dimensional form

2µ
∂u

∂x
= 1

4
ρg′H (x= X). (3.4)

Equations (3.1) and (3.4) are invariant under Galilean transformation and therefore
solution of (3.1) for u requires a further condition to fix the velocity at a point;
otherwise, the layer is free to drift sideways. However, for the purposes of discussing
the convergence towards self-similarity, we require only ∂u/∂x and hence we impose
no further conditions on the velocity field. We assume the initial thickness profile

H = H0(x) (t = 0). (3.5)

Equation (3.1) can be integrated subject to condition (3.4) to give

2µ
∂u

∂x
= 1

4
ρg′H (3.6)

at all points of the layer. Equation (3.6) shows that the buoyancy-induced extension
of the layer is proportional to the thickness H at each point. Note that, although this
equation relates local variables, its right-hand side represents a non-local integration
of the horizontal buoyancy gradients from the front X to the point x. Equation (3.6)
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implies that the rate of extension is always positive, so we can remove the modulus
from the right-hand side of (3.3). Using (3.3) to eliminate µ from (3.6), we determine
that

∂u

∂x
=
(

g′H
8ν̃

)n

, (3.7)

where ν̃ ≡ µ̃/ρ is a constant and n≡ 1/(1+ m). Using (3.7) to substitute for ∂u/∂x in
(3.2), we deduce that

DH

Dt
=−H

(
g′H
8ν̃

)n

, (3.8)

which describes the material evolution of the thickness and shows, in particular, that
thicker parts of the layer are thinned more rapidly. Buoyancy forces therefore act to
dissipate any non-uniformities in the thickness profile. This can be contrasted with the
evolution of a shear-dominated viscous gravity current at a fluid interface, in which the
rate of thinning also depends on the slope of the current ∂H/∂x (Lister & Kerr 1989)
and the corresponding asymptotic similarity solution has non-uniform thickness.

Let HL(x0, t) denote the thickness at time t of the material fluid element that had
location x = x0 at t = 0. We can integrate (3.8) subject to (3.5) to obtain the solution
for the material evolution of the thickness,

1
Hn

L

= 1
Hn

0

+ n

(
g′

8ν̃

)n

t, (3.9)

(cf. Robison, Huppert & Worster 2010). By taking the reciprocal of both sides of (3.9)
and expanding in powers of t−1, we determine that

HL ∼ 8ν̃

g′ (nt)1/n

[
1− 1

n2

(
8ν̃

g′H0

)n

t−1

]
, (3.10)

for large times. This equation shows that the thickness of the layer converges towards
a uniform similarity solution 8ν̃/g′ (nt)1/n with a non-uniform first-order correction
that decays as t−1 at large times relative to the similarity solution. This rate of
relative decay is algebraic, which is a generic feature of perturbations to similarity
solutions that evolve algebraically in time (cf. Leppinen & Lister 2003). The time
scale n−2 (8ν̃/g′H0)

n characterizes the time beyond which buoyancy forces have had
significant influence on the flow (cf. Pegler & Worster 2012). The Newtonian case
n= 1 of the leading-order similarity solution in (3.10) has been calculated by DiPietro
& Cox (1979).

3.2. Three-dimensional release
Consider an isolated axisymmetric layer of volume V with thickness H(r, t). Left
alone, the layer will be driven to spread radially under the influence of buoyancy
forces. The velocity of the layer u(r, t) is described by the axisymmetric form of (2.1),

∂

∂r
[µH(∇ ·u+ err)]+ µH

r
(err − eθθ)= 1

2
ρg′H

∂H

∂r
, (3.11)

where err = ∂u/∂r and eθθ = u/r are the rates of radial and azimuthal extension, and
the viscosity (2.2) is given by

µ= µ̃[ 1
2 {e2

rr + e2
θθ + (∇ ·u)2}

]m/2
. (3.12)
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The last term on the left-hand side of (3.11) represents the viscous stress due to
azimuthal extension, or hoop stress. Its presence precludes the first integral of the
force-balance equation (3.11) that was possible with the two-dimensional analogue
(3.1). In the axisymmetric case, there is no analogue of (3.6) because the rate of
extension at any point of the layer is influenced non-locally by the hoop stresses
throughout the layer. Nevertheless, (3.11) shows that the qualitative effect of the
buoyancy force is to extend the layer radially.

The evolution of H is described by (2.3), which takes the axisymmetric form

∂H

∂t
+ 1

r

∂

∂r
(rHu)= 0. (3.13)

We impose a regularity condition at the origin, namely

u= 0 (r = 0), (3.14)

which provides one condition for solution of (3.11). A second is given by the dynamic
condition (2.4) which, in the absence of surface tension, takes the axisymmetric form

µ

[
2
∂u

∂r
+ u

r

]
= 1

4
ρg′H (r = R), (3.15)

where R(t) denotes the radial position of the edge, or front, of the layer. Conservation
of mass at the front implies that its position evolves according to

Ṙ= u(R, t), (3.16)

where we use a dot to denote d/dt. Equations (3.13), (3.14) and (3.16) ensure that no
mass enters the system and are consistent with a constant total volume∫ R

0
2πrH dr = V. (3.17)

We assume an initial condition

R(0)= 0, (3.18)

corresponding to a point release.
There are only two independent dimensional parameters in the system above,

namely µ̃/ρg′ and V . To form a horizontal length scale from these parameters, it
is necessary to incorporate an explicit dependence on time t. The system therefore
supports similarity solutions, which can be determined as

H0 = 12ν̃m

g′
(2nt)−1/n, u0 = r

2nt
, R0 =

(
Vg′

12πν̃m

)1/2

(2nt)1/2n, (3.19)

where ν̃m ≡ µ̃m/ρ ≡ 3m/2µ̃/ρ. This uniformly straining similarity solution is the
axisymmetric analogue of the two-dimensional asymptotic state described by the
leading-order term in (3.10). The Newtonian case of (3.19) with n = 1 has been
determined by Koch & Koch (1995).

To understand the evolution of the layer from general axisymmetric initial
conditions towards the similarity solution (3.19), we consider the evolution of a small
perturbation from the asymptotic state (3.19) made at time t = t0, namely

H(r, t0)= H0(t0)+ εH1(r, t0), R(t0)= R0(t0)+ εR1(t0), (3.20)
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where ε � 1, and H0, H1, R0 and R1 are of equal order. We assume that the
perturbation (3.20) leaves the volume of the layer unchanged so (3.17) is unaffected.

Let us define the scales

M ≡ µ̃mt−m
0 , H ≡ M

ρg′t0
, L ≡

(
V

2πH

)1/2

, (3.21)

which characterize the viscosity, thickness and radius of the similarity solution (3.19)
at the time t0 at which the perturbation (3.20) is made. We use (3.21) to non-
dimensionalize the system (3.11)–(3.18) according to

x≡L x̂, t ≡ t0 t̂, H ≡H Ĥ, u≡ (L /t0)û, µ≡M µ̂. (3.22)

On dropping the hat diacritic, (3.11) and (3.13) become

∂

∂r

[
µH

(
2
∂u

∂r
+ u

r

)]
+ µH

∂

∂r

(
u

r

)
= 1

2
H
∂H

∂r
, (3.23)

∂H

∂t
+ 1

r

∂

∂r
(rHu)= 0, (3.24)

and the viscosity (3.12) becomes

µ=
[

1
6

{(
∂u

∂r

)2

+
(

u

r

)2

+
(

1
r

∂

∂r
(ru)

)2
}]m/2

. (3.25)

Boundary conditions (3.14) and (3.15) become

u= 0 (r = 0), (3.26)

µ

[
2
∂u

∂r
+ u

r

]
= 1

4
H (r = R), (3.27)

and the frontal-evolution and volume-conservation equations (3.16) and (3.17) become

Ṙ= u(R, t),
∫ R

0
rH dr = 1, (3.28a,b)

respectively. The non-dimensional form of the similarity solution (3.19), which is a
solution of (3.23)–(3.28), can be written

H0 = 12E1/n, u0 = Er, R0 = 6−1/2E−1/2n, µ0 = Em, (3.29)

where E(t)≡ 1/2nt is the (uniform) rate of extension.
To determine the evolution of the perturbation, we substitute expansions of the form

H(r, t)= H0(t)+ εH1(r, t)+ · · · , (3.30)
u(r, t)= u0(r, t)+ εu1(r, t)+ · · · , (3.31)

R(t)= R0(t)+ εR1(t)+ · · · , (3.32)
µ(r, t)= µ0(t)+ εµ1(r, t)+ · · · , (3.33)

into (3.23)–(3.28). On equating the O(ε) terms, (3.23) and (3.24) provide

2
(

1+ 3
4

m

)
µ0H0

∂

∂r

[
∂u1

∂r
+ u1

r

]
+ 3Eµ0

∂H1

∂r
= 1

2
H0
∂H1

∂r
, (3.34)

∂H1

∂t
+ 1

r

∂

∂r
[r(H0u1 + u0H1)]= 0, (3.35)
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where we have used the first-order correction to the viscosity (3.25), namely

µ1 = mµ0

2E

(
∂u1

∂r
+ u1

r

)
. (3.36)

Boundary conditions (3.26) and (3.27) give

u1 = 0 (r = 0), (3.37)(
1+ 3

4
m

)
µ0

(
∂u1

∂r
+ u1

r

)
= 1

8
H1 + µ0u1

2r
(r = R0), (3.38)

and the frontal-evolution and volume-conservation equations (3.28a,b) give

Ṙ1 = u1(R0, t)+ ER1,

∫ R0

0
rH1 dr =−H0R0R1. (3.39a,b)

Equation (3.34) can be integrated and simplified using (3.29) to give(
1+ 3

4
m

)
µ0

(
∂u1

∂r
+ u1

r

)
= 1

8
H1 + A(t), (3.40)

where A is the constant of integration. On evaluating this equation at r = R0, and
comparing with condition (3.38), we deduce that

A(t)= µ0

2R0
u1(R0, t). (3.41)

It is possible to derive a second expression relating A and u1(R0, t) by first rewriting
(3.40) in the form (

1+ 3
4

m

)
µ0
∂

∂r
(ru1)= 1

8
rH1 + A(t)r, (3.42)

and then integrating from r = 0 to r = R0 to give(
1+ 3

4
m

)
µ0 [ru1]R0

0 =
1
8

∫ R0

0
rH1 dr + 1

2
A(t)R2

0. (3.43)

The integral in this equation can be evaluated using (3.39b) to give(
1+ 3

4
m

)
µ0u1(R0, t)=−1

8
H0R1 + 1

2
A(t)R0. (3.44)

Substituting (3.41) into (3.44), and making u1 the subject, we obtain

u1(R0, t)= −H0R1

6(1+ m)µ0
=−2nER1. (3.45)

Substituting (3.45) into the frontal evolution equation (3.39a), we obtain

Ṙ1 = (1− 2n)

2n
t−1R1 and hence R1(t)= R1(1)t(1−2n)/2n (3.46a,b)

on integration. Equation (3.46b) shows that radial perturbations to the frontal position
R1 evolve independently of the thickness perturbation. This is remarkable given that, as
we have noted, integration of (2.1) for the velocity u typically depends globally on the
thickness H. However, in this case, the viscous force on the left-hand side of (3.42)
is an exact differential, while the integral of buoyancy forces on the right-hand side
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0
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H

FIGURE 2. Numerical solution of the full nonlinear equations (3.11)–(3.15) for the evolution
of the thickness H in the Newtonian case (n = 1) of an axisymmetric finite-volume release,
plotted at progressive non-dimensional time intervals of 0.5, from a sample initial condition
imposed at t = 1, up to t = 5 (solid). We plot as dotted curves the asymptotic prediction
(3.50) at t = 1.5 and t = 2, which are seen to agree closely with the numerical solution. The
convergence of the solution towards the uniform asymptotic state (3.29) is also illustrated.

has a value that is given by the volume-conservation equation (3.39b). Comparison
of (3.46b) with (3.29) shows that the relative magnitude of the perturbation to the
frontal position decays as R1/R0 ∝ t−1 at large times. Notably, the rate of relative
decay is independent of n, which reflects the fact that R1 simply corresponds to
a time–displacement perturbation of the asymptotic similarity solution (3.29) (cf.
Leppinen & Lister 2003).

Combining (3.45) and (3.41), we determine that

A(t)=− nH0

12R0
R1. (3.47)

Substituting the left-hand side of (3.42) into (3.35), we obtain the evolution equation

∂H1

∂t
+ E

r

∂

∂r
(r2H1)+ 12E

1+ 3
4

m

(
1
8

H1 + A

)
= 0. (3.48)

We solve this equation analytically by first recasting it in terms of the similarity
variable η ≡ t−1/2nr to give

t
∂H1

∂t
+ qH1 = 2n

n+ 3
H0R1

R0
, (3.49)

where q ≡ (4n + 3)/[n(n + 3)] and the partial derivative ∂H1/∂t is understood to be
taken with η fixed. Integration of (3.49) gives finally

H1 = h1(t
−1/2nr)t−q − 2H0R1

R0

(
1− tn/(n+3)

)
, (3.50)

where h1(r) ≡ H1(r, 1) denotes the initial perturbation to the thickness. The first term
in the solution (3.50) shows that the perturbation to the similarity solution (3.29)
retains its initial shape h1 but decays as t−q. This decay is illustrated in the Newtonian
case n = 1 in figure 2, where we have plotted a numerical solution of the full
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Shear-
thickening Shear-

thinning

Two-dimensional

Three-dimensional

0.2

0.4
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n

0.5 3.5

FIGURE 3. Large-time rate of relative decay α, as defined by H1/H0 ∝ t−α , for the two-
dimensional (thin) and three-dimensional (bold) releases plotted against the exponent n of the
power-law rheology. Notably, α is independent of n in the two-dimensional case but decreases
with n in the three-dimensional case, as implied by (3.10) and (3.51), respectively.

(nonlinear) equations (3.23)–(3.28) for an example perturbation. The second term in
(3.50) describes a uniform perturbation of the thickness that is equivalent to a small
change in time origin of the asymptotic state (3.29).

The perturbation (3.50) decays relative to the leading-order similarity solution
according to

H1/H0 ∝ t−3/(n+3) ≡ t−α (t� 1) (3.51)

at large times. Notably, the rate of relative decay α ≡ 3/(n + 3) in (3.51) decreases
with n, so shear-thinning leads to a slower rate of relative decay. This dependence on
n, which is illustrated in figure 3, can be contrasted with the rate of relative decay of a
perturbation in the two-dimensional case (3.10), which was given by α = 1 for all n.

4. Influence of surface tension
In this section, we consider the influence of a constraining surface tension on the

evolution of the finite-volume release by allowing γ > 0 in the dynamic boundary
condition (2.4). We begin by noting that the buoyancy and capillary forces on the
right-hand side of (2.4) are comparable if the thickness at the edge is comparable to

Hc ≡
√

2γ /ρg′. (4.1)

Moreover, an exact balance between these forces can be achieved with

H =Hc and u= 0, (4.2)

which is a static solution of the general equations (2.1)–(2.4). Some experimental
confirmation of the static solution (4.2) has been provided by Sebilleau et al. (2010).

The governing equations for an axisymmetric finite-volume release subject to surface
tension are the same as those presented in § 3.2, except we replace the dynamic
condition (3.15) with the generalized form

2µ
[

2
∂u

∂r
+ u

r

]
= 1

2
ρg′H − γH−1 (r = R), (4.3)

which is the axisymmetric form of (2.4). Using (4.1), we define the scales

Mc ≡
[
µ̃ (ρg′Hc)

m]n
, Lc ≡

(
V

2πHc

)1/2

, Tc ≡ Mc

ρg′Hc
, (4.4)
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which characterize the viscosity, radius and time on which buoyancy drives a layer
with thickness (4.1). We use (4.1) and (4.4) to non-dimensionalize the system
according to

r ≡Lcr̂, t ≡Tc t̂, H ≡HcĤ, u≡ (Lc/Tc)û, µ≡Mcµ̂. (4.5)

On dropping hats, the non-dimensional system is equivalent to (3.23)–(3.28), except
we replace (3.27) with

µ

[
2
∂u

∂r
+ u

r

]
= 1

4

(
H − H−1

)
(r = R). (4.6)

As in § 3.2, we impose a point release (3.18), or equivalently

H→∞ (t→ 0). (4.7)

We find solutions to the system given by (3.23)–(3.26), (3.28), (4.6) and (4.7)
by trying an ansatz in which we take the thickness to be uniform at all times, so
H = H(t) only. With this simplification, (3.23) with (3.25) can be integrated subject to
(3.26) to provide the velocity and viscosity

u= Er, µ= |E |m, (4.8a,b)

respectively, where E(t) is a uniform rate of extension. Substitution of (4.8a,b) into
(3.24) and (4.6) determines the equations

dH

dt
+ 2EH = 0, 3E|E |m = 1

4
(H − H−1), (4.9a,b)

respectively. Using (4.9b) to eliminate E in (4.9a), we obtain the evolution equation

dH

dt
=−2ςH

∣∣∣∣ 1
12

(
H − H−1

)∣∣∣∣n, (4.10)

where ς ≡ sgn(H − 1).
For the Newtonian case, n = 1, we can integrate (4.10) analytically subject to (4.7)

to give

H = coth(t/6) (n= 1), (4.11)

which we have shown as a bold curve in figure 4. Given the initial condition of a
point release (4.7), the second term on the right-hand side of (4.10), which represents
surface tension, is negligible for t� 1; the gravity-driven similarity solutions (3.29)
therefore describe the leading-order flow at early times. To determine the solutions
in non-Newtonian cases n 6= 1, we solve (4.10) numerically using a Runge–Kutta
scheme, which we initialize using the similarity solutions (3.29). Our solutions in the
shear-thickening case n = 1/2 and the shear-thinning case n = 3 are plotted as thin
curves in figure 4.

The early-time similarity solutions (3.29) imply that the layer initially undergoes
significant gravity-driven extension with E � 1 at early times. Therefore, shear-
thinning cases thin faster than shear-thickening cases at early times. At large times,
the layer converges towards the equilibrium state (4.2) with a rate of approach that
depends strongly on the power-law exponent n. In particular, while the shear-thinning
and Newtonian cases n > 1 are seen to approach the equilibrium thickness H = 1 as
t→∞, the shear-thickening case attains it in finite time T .
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FIGURE 4. Evolution of the thickness of a finite-volume release subject to a constraining
surface tension for n= 1/2 (shear-thickening), n= 1 (Newtonian) and n= 3 (shear-thinning).
The Newtonian case is shown as a bold curve. The asymptote H = 1, towards which the
thickness converges in all cases of n, is shown as a dashed line. As given by (4.14), the
approach towards H = 1 occurs algebraically and exponentially over an infinite time in the
shear-thinning and Newtonian cases, respectively, but is attained in a finite time T ≈ 4.5 in the
shear-thickening case. The algebraic decay in the shear-thinning case n= 3 is notably slow.

In order to understand the asymptotic approach of the solutions towards H = 1, we
consider the evolution of a small perturbation from it, namely

H(t)= 1+ H̃(t), (4.12)

where H̃� 1. Substitution of (4.12) into (4.10) determines the leading-order equation

dH̃

dt
∼−2

(
1
6

H̃

)n

(H→ 1), (4.13)

where we have specialized to the case in which the layer thins towards the equilibrium,
so H̃ > 0 and ς = 1. By considering the solutions of (4.13), we can deduce that the
asymptotic behaviour of the thickness as H→ 1 is described by

H ∼


1+ 6 [(n− 1)t/3]−1/(n−1) (n> 1, t→∞),
1+ 2e−t/3 (n= 1, t→∞),
1+ 6 [(1− n)(T − t)/3]1/(1−n) (n< 1, t→ T),

(4.14a,b,c)

where T is a constant of integration. The approach towards H = 1 is thus algebraic
in non-Newtonian cases n 6= 1, but exponential in the Newtonian case n = 1. Notably,
(4.14a,b) describe a large-time approach towards H = 1, while (4.14c) describes a
finite-time approach (t→ T). In the shear-thickening case (4.14c), we note that (4.14c)
applies only if t 6 T; otherwise, the term inside the square brackets is negative.
However, (4.10) implies that the layer subsequently remains static, so H = 1 for t > T .

The rates of decay described by (4.14) are extremely sensitive to n. For example,
the Newtonian case n = 1 decreases to within 10 % of the equilibrium thickness after
t ≈ 10, but the shear-thinning case n = 3 does this after the significantly greater
time t ≈ 6000. This dramatic contrast can be attributed to the fact that, as the layer
approaches the static state (4.8b), the viscosity (4.8b) tends to infinity in shear-thinning
cases m< 0, but tends to zero in shear-thickening cases m> 0.
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Notably, the rates of attraction towards the asymptotic state (4.14) are significantly
more sensitive to n compared with those of perturbations from the uniformly stretching
asymptotic similarity solutions (3.51) considered in § 3.2. This contrast can be
explained by noting that the former describes a perturbation to a static equilibrium,
and is thus sensitive to the zero-strain singularity of the power-law rheology, whereas
the latter describes a perturbation to a continuously flowing state.

Solutions of (4.10) subject to initial conditions in which H(0) < 1 also describe
the thickening of an overextended layer as it relaxes back to equilibrium under the
influence of surface tension. The asymptotes (4.14a,b,c) also apply in these cases, but
with negative signs replacing the positive signs in front of the second terms.

Our analysis has shown that the equilibrium thickness (4.1) provides a threshold
below which the current does not thin. The potential for this threshold to significantly
influence the dynamics of a spreading viscous layer forms an important consideration
in the experimental study of Pegler & Worster (2012).

5. Conclusions
We have shown that a thin layer of viscous power-law fluid released over an

inviscid fluid evolves with qualitatively distinct behaviours in the two cases of the
coefficient of total surface tension γ = 0 and γ > 0. In the case γ = 0, both the
two-dimensional and axisymmetric releases converge towards similarity solutions with
uniform thickness profiles. The frontal position of these similarity solutions evolves as
t1/n and t1/2n in the two- and three-dimensional releases, respectively, where n is the
power-law exponent.

In the two-dimensional case, perturbations from the similarity solution decay relative
to the similarity solution as t−1. Notably, this rate of relative decay is independent
of n. In the three-dimensional case, any small axisymmetric perturbation from the
similarity solution evolves as a superposition of a scaled initial shape and a uniform
perturbation that is equivalent to a small change in time origin of the asymptotic state.
The large-time rate of relative decay of the perturbation t−3/(n+3) decreases with the
power-law exponent n. For example, it is t−3/4 for Newtonian fluid with n = 1, and
t−1/2 for the shear-thinning case n = 3, which is relevant to the case of glacial ice
modelled using Glen’s flow law.

In the case of a constraining surface tension γ > 0 our solutions of the generalized
model equations show that the layer converges towards a static state of uniform
thickness

√
2γ /ρg′. The asymptotic form of this convergence was shown to depend

strongly on n, with rapid finite-time algebraic decay in shear-thickening cases, large-
time exponential decay in the Newtonian case and slow large-time algebraic decay in
shear-thinning cases.

The results of this paper in the case γ = 0 may indicate some general properties of
relevance to glacial ice dynamics, such as the potential for markedly slow attraction of
ice shelves towards asymptotic states.
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