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ABSTRACT: Electroencephalography is an accessible, portable, noninvasive and safemeans of evaluating a patient’s brain activity. It can aid in
diagnosis and management decisions for post-cardiac arrest patients with seizures, myoclonus and other non-epileptic movements. It also
plays an important role in a multimodal approach to neuroprognostication predicting both poor and favorable outcomes. Individuals
ordering, performing and interpreting these tests, regardless of the indication, should understand the supporting evidence, logistical
considerations, limitations and impact the results may have on postarrest patients and their families as outlined herein.

RÉSUMÉ : L’évolution du rôle de l’électroencéphalographie dans les soins consécutifs à un arrêt cardiaque. L’électroencéphalographie
(EEG) est un moyen accessible, portatif, non invasif et sûr pour évaluer l’activité cérébrale des patients. Elle peut notamment faciliter le
diagnostic et les décisions de prise en charge de patients ayant subi un arrêt cardiaque et présentant des crises convulsives, des myoclonies et
d’autres troubles du mouvement non épileptiques. Elle joue également un rôle important dans une approche multimodale de pronostication
neurologique, permettant du coup de prédire une évolution favorable ou défavorable de l’état de santé des patients. Tel qu’indiqué dans le
présent article, les personnes qui demandent, effectuent et interprètent ces tests, et ce, quelle que soit les indications données, doivent bien
comprendre les preuves à l’appui, les considérations logistiques, les limites et l’impact que les résultats d’un examen d’EEG peuvent avoir sur
les patients ayant subi un arrêt cardiaque et sur leur famille.
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Introduction

The global incidence of cardiac arrest is over 55 per 100,000
person-years.1 Case fatality rates are as high as 90%, and survivors
and families remain at risk for significant morbidity and caregiver
stresses. This is in addition to large health care and economic
impacts.2–4

For patients in whom there is return of spontaneous circulation
(ROSC), secondary reperfusion brain injury can occur.5

Approximately 80% of patients admitted to the intensive care
unit (ICU) following cardiac arrest remain comatose, most often as
a result of hypoxic ischemic brain injury (HIBI).6 The initial focus
of care is on minimizing secondary brain injury by optimizing
cerebral perfusion and oxygenation, attenuating cerebral edema,
providing temperature control, maintaining metabolic homeosta-
sis, and treating seizures, which occur in up to 30% of patients.5

Postarrest myoclonus is also common and can complicate patient

management by causing family and healthcare worker distress,
ventilator asynchrony and the potential need for high doses of
sedatives that confound neuroprognostication.

Despite supportive care, approximately 60% of postarrest
patients die following withdrawal of life sustaining measures
(WLSM) because of a predicted poor neurological prognosis.6 As
such, consistent, objective and evidence-based neuroprognostication
is crucial to avoid prematureWLSM. Accurate neuroprognostication
can also circumvent prolonged, invasive, potentially harmful and
costly therapies that could perpetuate patient and family suffering
when there is no realistic chance of a favorable recovery. Several
guidelines6–9 outline an approach to neuroprognostication of
postarrest patients that ensure confounders are excluded and
sufficient time has passed, while also emphasizing multimodal
assessment, including repeated neurological examinations, neuro-
imaging, electrophysiological testing and biomarker levels.
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Electroencephalography (EEG) is one electrophysiological test
that can be used to aid in the process of neuroprognostication but
can also be used to support the diagnosis and management of
postarrest seizures, myoclonus and potentially other contributors
to secondary brain injury. There are several considerations
regarding appropriate use of EEG that merit attention. This
review explores these considerations, including EEG basics,
postarrest indications and the logistics of performance and
interpretation within the ICU.

EEG basics

Electroencephalography displays brain activity as the electrical
potential difference (voltage) between two cerebral locations
plotted over time. Signals originate from neuronal inhibitory and
excitatory post synaptic potentials generated from the underlying
cerebral cortex. In clinical practice, surface electrodes are placed in
accordance with the international 10-20 system on the head.
Electrodes are labeled with letters (Fp – Frontopolar, F-frontal,
T-temporal, P-parietal, O-occipital, C-central) and numbers (odd-
left hemisphere, even-right hemisphere) corresponding to specific
cerebral locations. Electrodes detect the cerebral signal that
undergoes volume conduction through the meninges, skull and
scalp. While other technologies are emerging, such as subdural
strips/grids and intraparenchymal electrodes as part of multi-
modal brain monitoring for patients with various types of acute
brain injury, they are not routinely used in postarrest patients.
Once detected, the signal undergoes complex processing
including differential amplification and filtering to attenuate
signals that are not cerebral in origin (e.g., artifacts) and is then
displayed as waveforms for interpretation (Figure 1A).

Interpretation of raw ICU EEG has been standardized by the
American Clinical Neurophysiology Society’s Standardized (ACNS)
Critical Care EEG Terminology.10 EEG background waveforms are
described based on location, amplitude/voltage, frequency, mor-
phology, continuity and reactivity.10 Superimposed abnormalities
may include sporadic epileptiform discharges, rhythmic and
periodic patterns (RPPs) and seizures, and brief potentially ictal
rhythmic discharges (BIRDs).10 (Figure 1B)

Electrographic seizures (ESz) defined by the Salzburg criteria10

include epileptiform discharges averaging > 2.5 Hz or discharges/
rhythmic activity and associated spatiotemporal evolution (of
morphology, location, or frequency) lasting ≥ 10 s (Figure 2).
Electroclinical seizures (ECSz) include discharges or rhythmic
activity with associated time-locked ictal clinical correlates; or both
EEG and clinical improvement with administration of a parenteral
antiseizure medication (ASM).10 Electrographic status epilepticus
is ≥ 10 continuous minutes10 or over 20% seizure burden (e.g. 12
minutes of ESz over 1 hour) as it has been shown that over 20%
seizure burden is associated with increased mortality and
morbidity10,11. Electroclinical status epilepticus can be defined
similarly, or by greater than 5 or 10 minutes of generalized or focal
clinical seizure activity respectively.10 BIRDs are defined as focal or
generalized rhythmic activity that is either sharply contoured or
similar in morphology and location as previously recorded
epileptiform discharges or seizures in the patient, and last < 10 s.10

RPPs are defined in terms of the type of pattern (PDs-periodic
discharges; RDA- rhythmic delta activity; SW-spike-and-wave or
sharp-and-wave) and localization (G-generalized; L-lateralized;
BI-bilateral independent; UI-unilateral independent; MF-multi-
focal).10 These patterns often lie within the ictal-interictal
continuum (IIC).12,13

Figure 1. Electroencephalography (EEG) acquisition and interpretation. A - EEG acquisition. Signals generated in cerebral cortex are transmitted via volume conduction through
the meninges, skull and scalp and detected by electrodes placed in accordance with the international 10–20 system. (Fp: frontal polar / F: frontal / T: temporal / P: parietal /
O: occipital / C: central. Odd numbers for left side of head, even for right side of head, and z represents midline). The signal undergoes processing via amplifiers and filters
(Hz: frequency) to attenuate signals that are not cerebral in origin and amplify those that are cerebral in origin. Channels display the voltage between two electrodes over time as
waveforms. Channels are often grouped into anatomical chains to facilitate localization of signals. B - EEG interpretation *using American Clinical Neurophysiology Society Critical
Care EEG Terminology descriptors divides EEG into background activity and superimposed abnormalities.
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Post-cardiac arrest EEG indications

Seizures and ictal-interictal continuum

Seizures have been reported in 3%–44% of postarrest patients.14–24

Rhythmic and periodic patterns classified as IIC have been
reported in 10%–35% of comatose postarrest patients.18,25–29 These
wide ranges likely reflect differences in classification of EEG
patterns, timing and duration of EEG monitoring. EEG findings
classified as IIC suggest an increased risk of seizures.12 Seizures and
IIC have been associated with secondary brain injury, increased
mortality and worsened recovery in critically ill patients.10,12,13,30–40

Most seizures in critically ill patients are non-convulsive. Clinical
manifestations may be confounded by sedation and neuromus-
cular blockade required for systemic concerns.14–22 As such, EEG is
an important modality for diagnosis and management of seizures
and status epilepticus (SE) in postarrest patients.

A routine or intermittent EEG (commonly referred to as a
“spot” EEG) which is often performed for 20-30 minutes may miss
more than 50% of electrographic seizures.30 In addition, studies
suggest that RPP and IIC may develop at various times post
ROSC.23,41 In critically ill adults with impaired consciousness due
to a variety of conditions including HIBI, continuous EEG leads to
increased seizure detection and modification of antiseizure
treatment, although with no effect on patient outcomes shown
to date.42 While preferred for both diagnosis and to guide
management, continuous EEG has several logistical considerations
and may not always be possible.

When detected, uncertainty exists regarding whether treating IIC,
seizures and SE is beneficial in comatose postarrest patients. Surveys
demonstrate that there is variability of treatment approaches43 and
other literature suggests the effects of antiseizure medications (ASM)
depend on the specific EEG pattern being treated.18,29

The recent TELSTAR trial44 investigated whether the treatment
of RPP in comatose postarrest patients improved outcomes. This was
a multicenter, randomized, open-label trial involving 172 patients,
with blinded assessment of primary and secondary outcomes. Eligible
patients were adult (≥18 years old), comatose (GCS≤ 8) postarrest
patients with RPP identified on continuous EEG. Patients in the
intervention group received stepwise treatment with ASM based on
international guidelines for the treatment of status epilepticus44–46 to
suppress RPP for at least 48 hours (defined as more than 90% activity
suppressed) in addition to standard postarrest care. Patients in the
control group received standard care alone, which was left to the
discretion of the treating physicians and followed European
Resuscitation Council (ERC) guidelines.6 In the control group the
treating physician could utilize sedative medications for management
of mechanical ventilation and treatment of myoclonus regardless of
EEG findings but the additional use of ASM was discouraged.
Decisions regardingWLSM during the trial were also made based on
ERC guidelines.6,44

At 3 months, 90% of the intervention group and 92% of control
group had a poor outcome defined as a Cerebral Performance
Category (CPC) of 3-5 (CPC 1: no/mild disability; CPC 2:
moderate disability; CPC 3: severe disability; CPC 4: coma; CPC 5:

Figure 2. Electrographic seizure. Example of an electrographic seizure consisting of (A) Focal rhythmic sharp discharges in the right temporal region that (B) Evolve in frequency,
morphology and location into (C) Generalized, maximal right temporal 3–4 Hz polyspike & wave activity. Once the seizure ends the electroencephalography demonstrates
(D) Generalized suppression and slowing.
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death). Mortality was 80% and 82, respectively. Serious adverse
events were similar between groups.

While informative, the TELSTAR trial has several important
considerations that preclude generalization to all postarrest
patients. Perhaps most important in the era of precision medicine
is the fact nearly 80% of patients had generalized periodic
discharges (GPD) (and < 10% actually had electrographic
seizures), more than 50% had myoclonus and over 30% of those
who underwent somatosensory evoked potentials (SSEPs) had
bilaterally absent N20 responses. As such, it is possible that many
of the RPP patterns that were being treated were simply
epiphonema of established very severe HIBI. Beretta et.al. showed
in their observational study that 44% patients with refractory status
epilepticus and no other unfavorable prognostic indicators can
obtain a good outcome (CPC 1-2) with aggressive and prolonged
treatment of seizures.47 This was in stark contrast to those patients
with GPD, of whom none survived with a good functional
outcome. Although only hypothesis generating, the post hoc
analysis in TELSTAR of GPD vs non-GPD patterns found that
aggressive treatment of non-GPD patterns with continuous, non-
suppressed background activity may be of benefit. However, a
small sample size and large confidence interval limit this analysis.

Additional limitations include that only 56% of patients in the
treatment arm obtained the goal of 48 hours of complete RPP
suppression as this often requires aggressive dosing of sedatives
when trying to suppress GPDs. While outcome assessors were
blinded, physicians caring for patients were not, which may have
introduced cognitive biases and influenced choices regarding
medical therapies and WLSM. Post- arrest mortality was mostly
related toWLSM due to a perceived poor prognosis. Concerningly,
16% of patients died of WLSM within 24 hours of randomization.

Taken together, we suggest that postarrest patients should
undergo individualized precision-based management of seizures
and RPP based on three pillars of (1) avoidance of secondary brain
injury that can be caused by seizures as has been shown in several
studies,33,40,48 (2) avoidance of the “self-fulfilling prophecy,” and
(3)multimodal neuroprognostication. If seizures or non-GPDRPP
are identified on EEG postarrest, particularly when they occur
upon a continuous, non-suppressed background, it is reasonable to
consider suppressing these patterns with anesthetic and/or ASM
with the goal of attenuating secondary brain injury. One must be
mindful to avoid a self-fulling prophecy and seek out other
objective prognosticating indicators. If no indicators of a poor
prognosis exist, then ongoing aggressive treatment of these EEG
patterns should be considered with the context of other medically
relevant information (e.g. patient age, comorbidities, other active
medical issues, etc). If other poorly prognosticating indicators
exist, it is possible that the RPP pattern is an epiphenomenon of an
injured brain. Expert consultation can be helpful.

Postarrest patients may experience movements due to a variety
of reasons other than electroclinical seizures including posturing,
paroxysmal sympathetic hyperactivity, and myoclonus. A spot or
prolonged EEG can be used to exclude electroclinical seizures in
patients with atypical movements so long as they are captured
during the test. This may allow for sedation to be weaned,
avoidance of unnecessary ASM and initiation of other therapies
targeted at the underlying issue.

Myoclonus

Myoclonus consists of sudden, involuntary, brief, irregular shock-
like muscle movements. Myoclonus is common postarrest and

occurs in 16%–37% of patients. It is often viewed as a single entity
and historically as an indicator of poor prognosis.34,49–54 However,
studies have reported high false positive rates when using
myoclonus in isolation to predict a poor prognosis.51,52,55–57

Myoclonus may present with considerable clinical and electro-
physiologic variability. It can occur shortly after ROSC or in a
delayed manner. Clinical detection may be masked by sedation or
neuromuscular blocking agents. Movements may be generalized,
multifocal, or focal; can involve various anatomical distributions
including eyelids, face, trunk and proximal/ and/or distal limbs;
may be spontaneous, action or stimulus induced; and stereotyped
(similar characteristics from one twitch to the next) or variable.49

Historically, Lance-Adams syndrome, a form of action or
stimulus induced myoclonus in patients who regained conscious-
ness postarrest was thought to appear days to weeks post ROSC.
However, it is now recognized that patients who evolve into this
syndrome may have myoclonus immediately post ROSC.58,59

Clinical features of myoclonus in postarrest patients who have a
good outcome have been described as asynchronous, multifocal,
nonstereotyped and involving distal limbs. Status myoclonus has
been variably defined in the literature, but is usually defined as
continuous, spontaneous and generalized myoclonus that is
unrelenting and lasting for 30 minutes or more.6,49,54 Patients
with statusmyoclonusmore often have a respiratory cause for their
arrest, a non-shockable rhythm and features of postarrest
syndrome (post-cardiac arrest global brain injury, myocardial
dysfunction, systemic ischemia and reperfusion response and
persistent precipitating pathology).60 However, all these clinical
features are imperfect when prognosticating patients, as studies
demonstrate variable specificities ranging between 89%–100%.49

EEG can assist in better characterizing postarrest myoclonus.
Both cortical and subcortical forms of postarrest myoclonus exist.
Specialized EEG techniques called jerk-locked EEG back averaging
may help distinguish these two localizations.49,61 However,
distinguishing between the two, does not necessarily aid in
prognosticating patients, as one study reported that 12% and 16%
of patients with cortical and subcortical myoclonus had good
outcomes, respectively.61

Important prognostic findings on EEG are background
characteristics and the presence of highly malignant patterns.
Patients with myoclonus, but also continuous, non-suppressed
and reactive EEG backgrounds have greater potential for clinical
improvement and favorable functional outcomes. It is important
to note that patients with Lance-Adams syndrome may have
epileptic discharges on their EEG. These discharges commonly
occur in the parasagittal chains or central regions and can
be quite prevalent, but do not indicate a poor prognosis
(Figure 3).49 Patients with status myoclonus, often have
malignant EEG patterns, such as burst suppression or GPDs
on a suppressed background.49 They may also have absent N20
potentials on somatosensory evoked potential testing and
concerning neuroimaging. Based on a multimodal approach
as recommended in guidelines,6–8 status myoclonus coupled
with these other indicators is suggestive of a poor prognosis.
However, particular caution is needed when myoclonus is not
associated with other indicators of a poor prognosis.

Neuroprognostication

Evidence supporting the use of EEG to aid in neuroprognostication
has increased substantially. While older literature was limited
by the use of several different EEG classification schemes,
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development of the ACNS Critical Care EEG Terminology62 has
been an important step toward standardizing EEG assessments and
research. Several studies have suggested that EEG can be used as
one component of a multimodal approach to help predict
prognosis. Unlike other prognosticating modalities, EEG can be
used not only to help predict a poor prognosis but also shows
promise in predicting a favorable prognosis.

Predicting a poor neurological prognosis
As the majority of postarrest patients die following WLSM,
consistent, objective and evidence-based neuroprognostication is
of the utmost importance. There are several EEG patterns that are
considered highly malignant and raise concern for a poor
prognosis, including burst suppression, suppressed background
and generalized period discharges superimposed upon a sup-
pressed background. The timing of these patterns in relation to a
patient’s arrest is also an important factor to consider.6,7,35

Burst suppression is a pattern consisting of 50-99% suppression
alternating with bursts of higher voltage activity.6,10 ACNS categorizes
burst suppression patterns as those with or without highly epilepti-
form bursts and/or those with or without identical bursts.10 One
study that separated burst suppression into synchronous (those with
highly epileptiform and/or identical bursts) and heterogenous/non-
synchronous (those without highly epileptiform and/or identical
bursts) categories showed that the predictive value of these patterns in
prognostication varied. Synchronous burst suppression patterns
detected from 6-96 hours post ROSC predicted a poor neurological
outcome at 6 months with a false positive rate (FPR) of 0% and high
precision. Heterogenous burst suppression was predictive of a poor
neurological outcome at 6 months with a FPR 0%–1.4% and high
precision, but only if detected beyond 24 hours post ROSC
(Figure 4).63

Many EEG recordings will show burst suppression in patients
immediately post ROSC but will return to a normal voltage in less
than 24 hours in patients destined for favorable neurologic
outcomes.6,36,37 Sedation required for systemic reasons, in addition
to profound metabolic derangements, can also cause non-
synchronous burst suppression in some patients who may have
favorable outcomes.6,19,21,35,36,38,39,64–66

A systematic review and meta-analysis of EEG patterns and
outcomes postarrest found that timing of EEG recordings
overlapped with sedation in 17/22 (77%) of studies reporting
burst suppression and reported significant heterogeneity for burst
suppression alone predicting a poor prognosis.35 This likely
partially explains why other studies assessing burst suppression
that do not specify whether synchronous or heterogenous have
shown that when present on an EEG within 24 hours and beyond
24 hours from ROSC have a FPR of 2% (95% CI 1, 8) and 1% (95%
CI 0, 2) respectively for predicting a poor neurological outcome
from hospital discharge to 6 months.19,21,57,63,65,67–77 (Figure 4)
Guidelines recommend various time points when burst suppres-
sion can be used to predict outcomes. Regardless, it is important
that physicians ensure no confounders (e.g., ongoing infusions or
delayed clearance of propofol, barbiturates and midazolam), are
present that could cause burst suppression, particularly when non-
synchronous burst suppression is present.

A suppressed background is defined as voltages less than 10uV
while an isoelectric background is less than 2uV. An isoelectric
background, when combined with specific electrographic criteria
(full set of electrodes, impedance 100-100,000 ohms, and
interelectrode distance > 10 cm) is consistent with electrocerebral
silence.78 Ideally, suppression should be measured and reported
objectively using quantitative software such as amplitude integrate
EEG due to challenges in visually interpreting the recording
due to contamination from electrical noise at required voltage

Figure 3. Electroencephalography (EEG) from a patient with Lance-Adams Syndrome. EEG of a patient day 4 postarrest showing abundant spike/polyspike and wave mainly
occurring in the parasagittal regions. Importantly these occur upon a background that is comprised of continuous, normal voltage mild slowing with reactivity. Clinically the
patient had status myoclonus with generalized myoclonus persisting for greater than 30 minutes and was unresponsive. Valproic acid and clobazam were used to suppress the
clinical myoclonus. Day 6 postarrest the patient became responsive, with ongoing action induced myoclonus in keeping with Lance-Adams Syndrome.
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sensitivities. An isoelectric background detected within 72 hours
of ROSC has been shown to predict a poor neurological outcome
at 6 to 12 months with FPR 0-1.4% and high precision.19,67,79

(Figure 5A)
Suppressed backgrounds, especially when detected beyond 72

hours are also predictive of a poor neurological outcome with a
FPR of 0% and high precision.21,63,67 Other studies assessing
suppression at earlier time points have shown mixed results
(Figure 5B).21,63,64,67,69 The high FPRs and wide CIs within this time
frame (especially < 24 hours postarrest) may be partially explained
by the effect of sedation and metabolic derangements that are not
well tracked in many studies reporting on the prognostic utility of
EEG. Guidelines recommend various time points (beyond 24 and
72 hours) when suppression may be used as part of a multimodal
approach to predict poor prognosis. It is crucial for providers to
consider confounders that may cause suppression when using this
as a marker for poor prognosis.

RPPs as previously outlined, comprise a heterogenous group of
EEG patterns. Many studies combine these patterns together and

have shown that when present on an EEG from ROSC up to 5 days
postarrest, their FPR in predicting a poor neurological outcome at
1 to 6 months ranges from 0-33%.39,64,69,80–82 The combination of
multiple patterns into one category, makes it impossible to draw
conclusions about each individual pattern. Studies specifically
assessing generalized periodic discharges during the initial
72 hours postarrest19, particularly when superimposed on a
suppressed (<10uV) background21,63 have consistently found
them to predict a poor neurologic outcome with a very low FPR
(Figure 6).

Studies assessing the association of electrographic seizures and
status epilepticus with outcome have defined seizures in a variety of
ways. Such studies have shown mixed results, regardless of the
timing of seizure detection postarrest.19,21,22,38,63–65,68–70 Although
seizures and status epilepticus are often associated with poor
neurological outcomes, this association was not consistent across
all studies. Late appearing seizures (after TTM)29 or those
occurring on a reactive or continuous background,22 may suggest
greater potential for recovery. Patients warrant an individualized

Figure 5. Isoelectric and suppressed electroencephalography (EEG) backgrounds. Examples of (A) Isoelectric (< 2uV) EEG background and (B) Suppressed (< 10uV) EEG
background. An isoelectric background detected within 72 hours of return of spontaneous circulation has been shown to predict a poor neurological outcome at 6 to 12 months
with false positive rate (FPR) 0%–1.4% and high precision. Suppressed backgrounds, especially when detected beyond 72 hours are also predictive of a poor neurological outcome
with a FPR of 0% and high precision, however other studies assessing suppression at earlier time points have shown mixed results.

Figure 4. Burst suppression patterns. Examples of (A) Highly epileptiform and identical burst suppression (aka synchronous burst suppression) vs (B) Heterogenous burst
suppression (aka burst suppression that is not identical anddoes not contain highly epileptiform bursts). Synchronous burst suppression patterns detected up to 72 hours post return
of spontaneous circulation (ROSC) predicted a poor neurological outcome at 6 months with false positive rate (FPR) 0% and high precision in a single study.63 Heterogenous burst
suppression in this same study was predictive of a poor neurological outcome at 6months with a FPR 0%–1.4% and high precision only if detected beyond 16 hours post ROSC. Other
studies assessing burst suppression that do not specify whether synchronous or heterogenous have shown that when present on an electroencephalography within 24 hours and
beyond 24 hours from ROSC have a FPR of 2% (95% CI 1, 8) and 1% (95% CI 0, 2), respectively, for predicting a poor neurological outcome from hospital discharge to 6 months.
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multimodal approach to treatment and prognostication when
electrographic seizures are identified.

Predicting a favorable neurological prognosis
While predictors of a poor neurologic outcome are more
extensively assessed in the literature, there are increasing studies
assessing electrographic predictors of good outcome.83 The
presence of favorable prognostic findings can be helpful in
counterbalancing pessimism that may exist in patients who have
factors often associated with poor outcomes, such as prolonged
arrest duration or a non-shockable rhythm.83

Several EEG background features have shown promise in
predicting a good functional recovery. Continuous or nearly
continuous activity, backgrounds comprised of relatively faster
frequencies (alpha [8–12 HZ] and theta [4–7 HZ] rather than delta
[1–3 HZ]), normal voltages, tracings demonstrating organization
(e.g. an anterior-posterior gradient), EEG reactivity (change in
EEG voltage or frequency with stimulation and eye opening) and
that absence of superimposed discharges recorded from 12–72
hours from arrest generally have specificity varying between 50-
100% for predicting a good functional outcome at 6 months.83

Another feature suggesting good outcome is the time to recovery of
these favorable EEG background characteristics. Post ROSC, the
EEG background is often suppressed or burst suppressed and
gradually returns to continuous with normal voltages. While this
transition is not specific for a good outcome, its timing is, as
patients with outcomes typically exhibit recovery within 24
hours.21,70,83

Available literature does not definitively determine which
combination of favorable features most strongly predict a good
outcome. However, the combination of a more continuous
background, with fewer discharges, appearing early after ROSC
is promising in numerous studies (Figure 7). When EEG
reactivity is included in assessments, specificity for predicting a
good outcome improves. However, the assessment of EEG
reactivity remains non-standardized, with only fair interrater
reliability. Further research is needed to define objective stimuli
thresholds of frequency and voltage changes that indicate
“reactivity”.79

Evolving evidence for other EEG indications

Several quantitative and advanced EEG techniques with relevance
to postarrest care and prognostication remain under investigation.
Evolving literature suggests that advanced EEG techniques can aid
in the detection of cerebral ischemia, cortical spreading depolar-
izations and intracranial hypertension.84 While much of this work
has been conducted in patients suffering from other forms of acute
brain injury such as traumatic brain injury and subarachnoid
hemorrhage, the foundational principles of detecting and
preventing secondary brain injury can also be applied to postarrest
patients.

EEG has the potential to augment the accuracy of existing
prognostication methods. Bedside clinical exams are a crucial
component of prognostication and predicting recovery of
consciousness. However, clinical examination of comatose patients

Figure 6. Generalized periodic discharges on a suppressed background. Generalized periodic discharges occurring upon a suppressed background (< 10uV) are predictive of a
poor prognosis with false positive rate of 0%.

198 The Canadian Journal of Neurological Sciences

https://doi.org/10.1017/cjn.2024.55
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:24:37, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/cjn.2024.55
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


is relatively crude, may be limited by confounders, and may vary
due to inter-examiner differences, and potential cognitive
biases.84 Standardized neurological exams may inappropriately
classify patients as comatose and unresponsive despite covert
consciousness84 which may influence WLSM in patients with
HIBI postarrest.84,85 Several EEG techniques have emerged as
promising for augmenting the accuracy of prognostication
models and may be beneficial for identifying covert conscious-
ness in ICU patients and improving long-term outcomes.84,86

These include the use of various quantitative techniques and
machine learning algorithms.84,87 EEG signals can be analyzed during
resting state, but also with passive and active perturbations. Passive
perturbation tasks evaluate the patient’s ability to detect stimuli (e.g.,
somatosensory, auditory), while active perturbation tasks evaluate
the patient’s ability to interact (e.g., respond to a motor command).

These techniques require specialized equipment, and some are
invasive (e.g., depth electrodes and subdural grids for detection of
cortical spreading depolarizations). Specialized processing,
machine learning and the expertise required for interpretation
currently limit the accessibility and feasibility of these approaches.

Logistical considerations of ICU EEG

Advantages of EEG include that it is a relatively accessible, portable,
noninvasive and safe means of monitoring brain activity. However,
ICU EEG acquisition and interpretation require substantial human,
technological and financial resources. In addition, several important
logistical considerations need to be navigated to ensure ICU EEGs

are performed and interpreted properly. There are several
guidelines45,88,89 pertaining to EEG in ICU settings, but these
provide limited guidance on the logistical challenges faced by
many institutions.

Confounders

When performing and interpreting any EEG, one must be mindful
of the effect of potential confounders at the time of the EEG.
Ongoing sedative infusions, the lingering effects of drugs/
medications taken in excess and contributing to a patient’s cardiac
arrest, or profound metabolic disturbances seen in the context of
the postarrest syndrome can influence the EEG. When EEGs are
performed with the intent of excluding seizures, these confounders
may result in false negatives and electrographic/non-convulsive
seizures may develop as these confounders dissipate. When EEG is
used for prognosticating purposes with or without associated
myoclonus, these confounders can contribute to some of the
previously described malignant EEG patterns such as suppression
and or non-synchronous/heterogenous burst suppression. While it
is common practice, if safe, to discontinue sedatives when patients
are undergoing spot EEGs, it important to be mindful of the
context sensitive half-life of sedatives in addition to the influence of
temperature control and multi-organ dysfunction.

Continuous vs intermittent EEG

Controversy remains regarding the optimal duration of EEG
depending on the indication. Studies have suggested that

Figure 7. Continuous, normal voltage, mildly slow electroencephalography (EEG) background. Example of a continuous, normal voltage, mildly slow EEG background with no
superimposed discharge recorded day 2 postarrest predictive of a good prognosis.
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intermittent EEG may miss a large proportion of non-convulsive
seizures. The recent pragmatic multicentre CERTA trial42

compared continuous (lasting 30–48 hours) to intermittent (2,
20–30 minute recordings) EEG in adult (>18 years) patients
admitted with altered level of consciousness (GCS ≤ 11 or FOUR
score≤ 12) of any etiology (30% of whom had HIBI). Patients with
prior seizures or status epilepticus were excluded from enrollment
and if any patient was diagnosed with seizures or status epilepticus
the protocol was stopped and they were subsequently treated with
best practices including conversion to continuous EEG if required
as it was considered unethical to withhold continuous EEG from
these patients. The intermittent EEG group had a lower burden of
comorbidities, while the continuous EEG group had more patients
with HIBI. Continuous EEG did lead to increased seizure detection
and more frequent modification of ASM, but no significant
difference in patient mortality.42 It’s difficult to make definitive
conclusions from this study because of bias that may have been
introduced by ASM adjustments that were not protocolized and it
is unclear whether ASM adjustments were made for EEG features
on the IIC or solely for definitive electrographic seizures/status
epilepticus. Considering the limitations of the CERTA trial, many
of the previously discussed considerations regarding the TELSTAR
trial remain important when deciding which postarrest patients
may warrant continuous EEG for detection and/or management of
non-convulsive seizures. A scoring system (2HELPs2B score)90

using both clinical and EEG features has been developed and
validated for identifying higher-risk patients who may need longer
EEG recordings for diagnosis of non-convulsive seizures, or
conversely, when it is safe to perform only a routine EEG. When
treating non-convulsive seizures in postarrest patient, continuous
EEG may support goal directed management for those who have
access to it. Other studies have assessed the yield of continuous vs
repeat intermittent EEGs on postarrest prognostication and
showed no difference.81,91 While serial EEGs have been suggested
as an alternative to continuous, these too can be resource intensive
and particularly more challenging for EEG technologists.

Acquisition considerations

Guidelines for qualifications of neurodiagnostic technologists exist
in various countries.92,93 Experience can vary, and responsibilities
should be tailored accordingly regarding the performance of
EEGs, reactivity assessments and maintaining technical quality of
continuous EEG recordings.

Standards exist for the equipment recommended for formal
ICUEEG.92,93While seizures are often non-convulsive in critically ill
patients, synchronized video and audio recordings are recom-
mended as they are very helpful in assessing for associations of EEG
findings with changes in clinical behavior, and potential causes for
artifacts.

In centers where continuous EEG is available, pending tests
requiring patient transport (e.g., neuroimaging) ideally should be
completed prior to connecting the patient to EEG. While
specialized electrodes made with conductive plastic and non-
ferrous metals that are compatible with both CT and MR imaging
exist,94,95 many centers may not have access, thus requiring
patients to be disconnected and reconnected to EEG repeatedly to
facilitate tests which is resource intensive, costly and demanding
on technologist and physician time. Even when specialized
electrodes are utilized, the risk of dislodging them from the
patient is high upon transport. Patients undergoing continuous
EEG require daily inspection for skin breakdown and infection of

the scalp. Electrode impedance and artifacts necessitate lead
maintenance and should be assessed regularly.

At times, during both continuous or intermittent EEG
recordings, ICU bedside personnel may be required to administer
medications for benzodiazepine/antiseizure medication trials
when attempting to diagnose seizures. Often myoclonus or other
patient movements that may have necessitated an EEG can cause
profound muscle and movement artifacts and neuromuscular
blocking agents may be required (when deemed safe and
appropriate) to suppress these artifacts and allow visualization of
the EEG signal underneath. ICU bedside personnel should be
familiar with how to annotate EEG, as annotation of relevant
information such as doses and titration of sedation/neuromuscular
blocking agents, administration of ASM, and clinical signs that may
not be evidence on the video recording is helpful for interpretation.

Interpretation considerations

Standards also exist regarding training and qualifications required for
EEG interpretation92,93 and reporting.93,96 For ICU EEG, all reporting
should use ACNS Critical Care EEG Terminology. Individuals must
be mindful of the impact wording of EEG reports may have and
clinical decision-making regarding seizure or myoclonus manage-
ment and neuroprognostication. The interpretation of EEG results
and incorporation into clinical decision-making should ideally be
guided by individuals with content expertise.

Continuous EEG recordings produce a large amount of data
that requires regular interpretation by neurophysiologists to
ensure treatments are delivered in a timely manner. Raw EEG
can undergo computational analysis via various mathematical
techniques to produce quantitative EEG. There are several
commercially available software packages that can produce several
different graphs (also known as trends) that display various EEG
features (frequency, voltage/amplitude, rhythmicity, presence of
discharges, etc.) on Y and Z axes and time on the X axis.
Commonly used trends include color and/or density spectral array
(CSA, CDSA, DSA), rhythmicity spectrograms, relative asymme-
try spectrograms, amplitude integrated EEG, suppression ratios,
alpha/delta ratio, relative alpha variability. These can be
augmented by seizure and RPP detection software. Quantitative
EEG facilitates screening of long periods of EEG, detection of
gradual changes over time, and identification of clinically relevant
events that require further review of raw EEG. Relevant to
postarrest care, quantitative EEG can be used to detect and
quantify seizures and intracranial hypertension from cerebral
edema, thus facilitating timely management. From a prognosti-
cation perspective it can assist with detection of EEG reactivity,
continuous measurement of background suppression (versus a
single spot measurement) and appreciating gradual background
changes over time.

Resource limitations and bridging the gap

Resource limitations may impede timely EEG recording or
interpretation, and thus delay necessary escalations or de-
escalations of care.

Several technologies exist including peel and stick electrodes,
electrode caps and bands, abbreviated montages and user-friendly
EEG machines.97 Studies suggest that training bedside personnel to
utilize these technologies to perform EEGs (vs EEG technologists)
results in a statistically significant reduction in the time delay to EEG
by 86–667minutes, no difference in the quality of the EEG, andmost
importantly changes in the diagnostic work-up and treatment of
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patients 49% and 40%–42%of the time respectively.97 At institutions
where EEG technologists may not be available around the clock,
these devices, may help facilitate timely performance of EEGs by
bedside ICU care providers. Alternatively at institutions that lack
access to formal EEG (especially continuous EEG), these devices
may assist in identifying patients who require transfer to other
centers that can facilitate EEG monitoring.97

At most centers, continuous EEG tracings are only reviewed
remotely by neurophysiologists a few times per day. Bedside care
providers can be trained to screen for non-convulsive seizures
using raw, and sonified EEG. Various quantitative EEG trends have
been used, resulting in 40%–93% sensitivity and 38%–95%
specificity for seizure detection.97 Sensitivity and specificity for
seizure detection using raw EEG varied between 3 quantitative 8%–
100% and 65%–100% respectively.97 Bedside personnel screening
sonified EEG for non-convulsive seizures has produced some of
the most promising results with sensitivity 95%–100% and
specificity 65%–85%.97 Detection of possible non-convulsive
seizures by bedside care providers can help facilitate notification
of neurophysiologists and timely therapies when appropriate. No
studies to date have assessed non-EEG expert accuracy of
interpreting other aspects of EEG that may be helpful for
neuroprognostication of postarrest patients.

Conclusion

Electroencephalography is a relatively accessible, portable, non-
invasive and safe means of evaluating a patient’s brain activity. It
can aid in diagnosis and management decisions for postarrest
patients with seizures, myoclonus and other non-epileptic move-
ments. It also may aid in a multimodal approach to neuro-
prognostication predicting both poor and favorable outcomes.
Individuals ordering, performing and interpreting these tests,
regardless of the indication, must understand the supporting
evidence, logistical considerations, limitations and impact the
results may have on postarrest patients and their families.
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