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Abstract. We generalize to a broader class of decoupled measures a result of Ziv and Merhav on
universal estimation of the specific cross (or relative) entropy, originally for a pair of multilevel
Markov measures. Our generalization focuses on abstract decoupling conditions and covers pairs
of suitably regular g-measures and pairs of equilibrium measures arising from the “small space of
interactions” in mathematical statistical mechanics.

1 Introduction

In 1993, Ziv and Merhav proposed a “new notion of empirical informational
divergence,” or relative-entropy estimator, based on the celebrated Lempel–Ziv com-
pression algorithm [ZM93]. While this estimator received – to the best of our knowl-
edge – little attention in the mathematical literature, it (and its variants) has met with
success in many practical applications across fields such as linguistics, medicine, and
physics (see, e.g., [BBCDE08, BCL02, CF05, CFF10, LMDEC19, RGS+22, RP12], to
only cite a few). In fact, our main motivation for a more extensive rigorous treatment
of the convergence of this estimator is that the very limitedMarkovian class of sources
covered by the original result of Ziv andMerhav pales in comparison with the breadth
of apparent applicability.

Ziv and Merhav’s estimator is defined as follows. Given two strings xN
1 and yN1 ,

let cN(y∣x) be the number of words in a sequential parsing of yN1 using the longest
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2 N. Barnfield, R. Grondin, G. Pozzoli, and R. Raquépas

possible substrings of xN
1 ; if there is no such substring of x

N
1 , the parsed word is set to

be one letter long. For example, if

x = 01000101110100111001000122021 . . . ,

y = 01100101000102011101001000210 . . . ,

and N = 24, then the Ziv–Merhav parsing of y241 = 011001010001020111010010 with
respect to x241 = 010001011101001110010001 is

y241 = 011∣00101∣00010∣2∣011101001∣0

and c24(y∣x) = 6.
1 Ziv and Merhav show that the estimator

Q̂N(y, x) ∶=
cN(y∣x) lnN

N

converges to the specific cross entropy hc(Q∣P) – see (2.1) below – between the sources
P and Q that have produced x and y, respectively, under the assumption that those
measures come from irreducible multilevel Markov chains. We will refer to (Q̂N)

∞
N=1

as the ZMestimator.�e relative entropy hr(Q∣P) can then be estimated by combining
the abovewith an estimation of the specific entropy h(Q), say à laLempel–Ziv [ZL78].
Both quantities are defined in Section 2 for the reader’s convenience.

One may note that the behavior of cN is intimately related to the so-calledWyner–
Ziv problem on waiting times. With

Wℓ(y, x) ∶= inf{r ∈ N ∶ x
r+ℓ−1
r = yℓ1},

the Wyner–Ziv problem concerns the convergence

lnWℓ

ℓ
→ hc(Q∣P)(1.1)

as ℓ→∞within sufficiently nice classes ofmeasures [Kon98, Shi93,WZ89]. To see the
relation, note that the length of the first word in the ZM parsing of yN1 with respect to
xN
1 is – save some edge cases – the largest possible ℓ such that Wℓ(y, x) ≤ N − ℓ + 1.

�is dual quantity is known as the longest-match length

ΛN(y, x) ∶=max{1, sup{ℓ ∈ N ∶Wℓ(y, x) ≤ N − ℓ + 1}} .

�e length of the second word in this parsing is then – again save some edge cases
handled in Section 3.4 – the longest-match length ΛN(T

ΛN(y ,x)y, x), and so on.
Any attempt at a theory of the asymptotic behavior of waiting times and its derived
quantities beyond Markovianity must take two important caveats into account. First,
it is known that the specific cross entropy between two ergodic sources does not
always exist (see, e.g., [vEFS93, Section A.5.2]). Second, it is known that there exists a
mixing measure P such that (1.1) fails with Q = P (see [Shi93, Section 4]). While the
precise breadth of the validity of (1.1) and its different refinements remains unknown,
a focus on decoupling conditions in the spirit of [Pfi02] has recently proved effective

1�roughout this paper, we will refer to the partitioning symbol “∣” as a separator, and we will say
that a separator falls within a given string if the separator lies a�er one of the letters that make up the
string.
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On the Ziv–Merhav theorem beyond Markovianity I 3

for making significant progress [CDEJR23a, CR23]; the present contribution follows
along those lines.

Broadly speaking, the present work is part of a research program [BCJP21, BJPP18,
CDEJR23a, CDEJR23b, CJPS19, CR23] whose goals include promoting the efficiency
of this decoupling perspective originating in statistical mechanics in revisiting long-
standing problems in dynamical systems and information theory. �is efficiency
concerns both the reformulation of different existing proof strategies in a common
language and the generation of nontrivial extensions. In the case presently at hand,
revisiting Ziv and Merhav’s argument from this decoupling perspective allows us to
replace the Markovianity assumption with a more permissive combination of three
abstract assumptions, namely ID, KB, and FE below.

Organization of the paper.

�e rest of the paper is organized as follows. In Section 2, we set the stage by properly
introducing our notation, objects of interest, and assumptions. In Section 3, we state
our main result, provide its proof, and make several comments. In Section 4, we
discuss examples to which this result applies beyond Markovianity.

2 Setting

Let Ω ∶= {(xk)k∈N ∶ xk ∈ A for all k ∈ N} be equipped with the σ-algebra generated
by cylinders of the form [a] ∶= {x ∈ Ω ∶ xn1 = a}. �e shi� map T ∶ Ω → Ω defined
by (Tx)k ∶= xk+1 is then a measurable surjection. Let P and Q be stationary (i.e.,
T-invariant) probability measures on Ω. We set

suppPn ∶= {a ∈ An ∶ P[a] > 0}
and

suppP ∶= {x ∈ Ω ∶ xn1 ∈ suppPn for all n ∈ N},
and similarly forQ. We consider samples (x , y) from the product measure P⊗Q on
Ω ×Ω, meaning that the two sources produce strings of symbols independently of
each other.�e (specific) entropy h(P) of a measure P is

h(P) ∶= lim
n→∞
−
1

n
∑
a∈An

P[a] lnP[a].
Fekete’s lemma ensures that this limit always exists and lies in [0, ln(#A)]. �e
(specific) cross entropy ofQ with respect to P is

hc(Q∣P) ∶= lim
n→∞
−
1

n
∑
a∈An

Q[a] lnP[a],(2.1)

when the limit exists in [0,∞]. In this case, the (specific) relative entropy hr(Q∣P) of
Q with respect to P is then defined as

hr(Q∣P) ∶= hc(Q∣P) − h(Q).
�e abstract properties of stationarymeasures thatwewill workwith are the following:
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4 N. Barnfield, R. Grondin, G. Pozzoli, and R. Raquépas

ID A measure P is said to be immediately decoupled on its support if there exists
a nondecreasing,2 nonnegative o(n)-sequence (kn)∞n=1 such that, for every n ∈ N,
both

sup
m∈N

max{ P[ab]
P[a]P[b] ∶ a ∈ suppPn , b ∈ suppPm} ≤ ekn(2.2)

and

inf
m∈N

min{ P[ab]
P[a]P[b] ∶ a ∈ suppPn , b ∈ suppPm , ab ∈ suppPn+m} ≥ e−kn .(2.3)

FE �e P-measure of cylinders is said to decay fast enough if there exists γ+ < 0
such that

sup
a∈suppPn

P[a] ≤ eγ+n(2.4)

for all n ∈ N.
KB �e measure P is said to satisfy Kontoyiannis’ bound on waiting times if there
exist nonnegative o(n)-sequences (kn)∞n=1 and (τn)∞n=1 such that

P{x ∶Wℓ(a, x) ≥ r} ≤ exp(−e−kℓP[a] ⌊ r − 1
ℓ + τℓ ⌋)

for every ℓ ∈ N, a ∈ Aℓ, and r ∈ N.
Let us briefly discuss these abstract assumptions. First, it is straightforward to show

that if P is the stationary measure for an irreducible multilevel Markov chain with
positive entropy, then P satisfies ID, FE, and KB. Already for Markov chains, we see
that only requiring the lower-decoupling bound (2.3) when ab is in the support is
significant: requiring the lower boundwhenever a and b are in the support (separately)
would be considerably more restrictive, as this would exclude all Markov measures
for which some transition probability is null. Second, the bound KB was derived in
[Kon98] under a ψ-mixing assumption, but the following implication seems more
natural for the classes of exampleswehave inmind:KBwill follow from the decoupling
condition ID if one is willing to assume that the support of P satisfies – as a subshi�
of Ω – a suitable notion of specification.3 Still regarding ψ-mixing, in the notation
of [Bra05, Section 2], Condition ID is implied by 0 < ψ′(0) ≤ ψ∗(0) < ∞, but ψ-
mixing itself does not imply ID and ID does not imply ψ-mixing – or any form of
mixing for that matter. �ird, combining ID and FE yields Shields’s finite-energy
condition [Shi96, Section II.5.a], but the converse implication is not true. It is also
worth mentioning the following relations to the Doeblin-type condition discussed,
e.g., in [KS94]: it implies FE but not ID, and it is not implied by our assumptions; we
will come back to this point in Section 4. Finally, repeated uses of (2.3) in ID implies
the following property, which naturally complements FE:

2�e requirement that (kn)∞n=1 be nondecreasing presents no loss of generality because one can
always set k′n ∶= max{k1 , k2 , . . . , kn} and preserve the other desired properties.

3For example, in the notation of [KŁO16, Section 8], Property (8) suffices. We refer the reader to
[CR23] for more optimal specification properties.
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On the Ziv–Merhav theorem beyond Markovianity I 5

SE�e P-measure of cylinders is said to decay slow enough if there exists4 γ− < 0
such that

inf
b∈suppPn

P[b] ≥ eγ−n
for all n ∈ N.
�ese assumptions are established and discussed in the context of important classes

of examples in Section 4.

3 Main result

3.1 Statement and structure of the proof

�eorem 3.1 Suppose that the stationary measure P satisfies ID, FE, and KB and that
the ergodic measureQ satisfies ID and FE.5 �en,

lim
N→∞

Q̂N(y, x) = hc(Q∣P)
for (P⊗Q)-almost every (x , y).

Let us now provide the structure of the proof in the case where suppQ ⊆ suppP,
postponing the more technical aspects to Sections 3.2 and 3.3.�roughout,

ℓ−,N ∶=
lnN

−2γ−

and

ℓ+,N ∶=
2 lnN

−γ+
.

�ese will serve as a priori bounds on the lengths of the words in different auxiliary
parsings.

Upper bound. Let ε ∈ (0, 1
2) and y ∈ suppQ be arbitrary. We consider an auxiliary

sequential parsing yN1 = y
(1,N)y(2,N) . . . y(ĉN ,N), where each word y( j,N) has length

ℓ j,N and is – except possibly for y(ĉN ,N) – the shortest prefix of Tℓ1,N+⋅⋅⋅+ℓ j−1,N yN1
satisfying

P[y( j,N)] ≤ N−1+ε ,(3.1)

where we define ℓ0,N ∶= 0 and T k yN1 ∶= (T k y)N−k1 for any k < N . �e power is
chosen in the hope that the words in this auxiliary parsing will be long enough, yet
likely enough for P that the vast majority of them find a match in xN

1 . To motivate
this Ansatz, note that, by linearity of expectation, the expected number of times a

4In fact, by (2.3), we can set γ− ∶= ln(minb∈supp P1 P[b]) − k1 .5We are using “ergodic” in the sense of dynamical systems, meaning that all shi�-invariant subsets
of AZ either have measure 0 or 1 according to Q, so the following common caveat is in order: Q could
come from a Markov chain and be ergodic in this sense even though it is periodic, which is at odds
with a terminology sometimes used in the literature on Markov chains. As far as the decoupling of Q is
concerned, we in fact only use (2.2), and not (2.3).
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6 N. Barnfield, R. Grondin, G. Pozzoli, and R. Raquépas

given string of P-probability N−1+ε appears in a string of length N obtained from
P grows as N ε .

ForN large enough, each length ℓ j,N is between ℓ−,N and ℓ+,N , due to Properties
FE and SE, except possibly for ℓĉN ,N which need only satisfy the upper bound. In
particular, ĉN = O( N

ln N
).

Note that, for each j = 1, 2, . . . , ĉN , the appearance of y( j,N) as a substring of
xN
1 – written y( j,N) ∈ xN

1 in what follows – implies the presence of at most one
separator of the original ZM parsing within y( j,N), that is,

P{x ∶ #{ j ≤ ĉN ∶ y( j,N) ∈ xN
1 } = ĉN} ≤ P{x ∶ cN(y∣x) ≤ ĉN},

which in turn implies

P{x ∶ cN(y∣x) > ĉN} ≤ P{x ∶ #{ j ≤ ĉN ∶ y( j,N) ∉ xN
1 } > 0} .

We show in Lemma 3.3 that the probability on the right-hand side is summable in
N and hence

∞∑
N=1

P{x ∶ cN(y∣x) > ĉN} <∞.(3.2)

On the other hand, Lemma 3.10 below shows that

(−1 + ε)(ĉN − 1) lnN = ĉN−1∑
j=1

lnN−1+ε

≥
ĉN∑
j=1

lnP[y( j,N)]
≥ lnP[yN1 ] − o(N).

Hence,

P{x ∶ cN(y∣x) lnN + lnP[yN1 ] > − ε

1 − ε lnP[yN1 ] + lnN + εN}
≤ P{x ∶ cN(y∣x) lnN > ĉN lnN}

for all N large enough. Recall that, by Condition SE, lnP[yN1 ] ≥ γ−N with γ− < 0.
Combining this with (3.2), we obtain

∞∑
N=1

P{x ∶ cN(y∣x) lnN
N

+ lnP[yN1 ]
N

> − ε

1 − ε γ− + 2ε} <∞.

Appealing to the Borel–Cantelli lemma, using the cross entropy analogue of the
Shannon–McMillan–Breiman theorem in Lemma 3.12, and then taking ε → 0, we
conclude that, for every y ∈ suppQ, we have

lim sup
N→∞

Q̂N(y, x) ≤ hc(Q∣P)
for almost every x sampled from P.
Lower bound I. Before we obtain the almost sure lower bound required for�eo-
rem 3.1, let us summarize Ziv and Merhav’s argument for proving that the lower
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On the Ziv–Merhav theorem beyond Markovianity I 7

bound holds in probability. �is argument will also help the reader understand
the more complicated construction used for the almost sure version. Let ε ∈ (0, 1

2)
and y ∈ suppQ be arbitrary.We consider an analogous auxiliary sequential parsing
yN1 = y

(1,N)y(2,N) . . . y(c̄N ,N), where eachword y( j,N) has length ℓ j,N and is – except

possibly for y(c̄N ,N) – the shortest prefix of Tℓ1,N+⋅⋅⋅+ℓ j−1,N yN1 that has probability

P[y( j,N)] ≤ N−1−ε ,(3.3)

where we define ℓ0,N ∶= 0. �e power is chosen in the hope that the words in this
auxiliary parsing will be numerous enough, yet unlikely enough for P that the
vast majority of them find no match in xN

1 . To motivate this Ansatz, note that the
expected number of times a given string of P-probability N−1−ε appears in a string
of length N obtained from P decays as N−ε .

Again, for N large enough, each length ℓ j,N in this parsing falls between ℓ−,N

and ℓ+,N , due to Properties FE and SE, except possibly for the last one, which only
satisfies the upper bound. In particular, c̄N = O( N

ln N
).

�e correspondence between the parsing cardinalities cN(y∣x) and c̄N relies on
the following observation: cN(y∣x) must be at least equal to the number of words
in the auxiliary parsing of yN1 that do not appear as strings in xN

1 . Indeed, if a word
y( j,N) does not appear as a substring of xN

1 – written y( j,N) ∉ xN
1 in what follows –

then the ZM parsing has at least one separator within y( j,N).�at is,

cN(y∣x) ≥ #{ j ∶ y( j,N) ∉ xN
1 }

≥ #{ j ≤ c̄N − 1 ∶ y( j,N) ∉ xN
1 }

and so

P{x ∶ cN(y∣x) ≥ (c̄N − 1) (1 − ε)}
≥ P{x ∶ #{ j ≤ c̄N − 1 ∶ y( j,N) ∈ xN

1 } ≤ (c̄N − 1)ε}
≥ 1 − P{x ∶ #{ j ≤ c̄N − 1 ∶ y( j,N) ∈ xN

1 } > (c̄N − 1) ε} .
One can easily show using a crude union bound and Markov’s inequality that the
appearance in xN

1 of more than an arbitrarily small proportion of all the words in
the auxiliary parsing except for the last one has vanishing – but not necessarily
summable – probability, and this enables us to conclude that

lim
N→∞

P{x ∶ cN(y∣x) ≥ (c̄N − 1)(1 − ε)} = 1.(3.4)

Note that since, by construction, for any j = 1, 2, . . . , c̄N , the auxiliary word
y( j,N) has no strict prefix with probability less than N−1−ε , the lower bound
in Condition ID implies that P[y( j,N)] ≥ N−1−2ε for N large enough. �erefore,
Lemma 3.10 yields

(−1 − 2ε)c̄N lnN − o(N) ≤ c̄N∑
j=1

lnP[y( j,N)]
≤ lnP[yN1 ] + o(N),(3.5)
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8 N. Barnfield, R. Grondin, G. Pozzoli, and R. Raquépas

which together with (3.4) implies

lim
N→∞

P{x ∶ cN(y∣x) lnN
N

+ lnP[yN1 ]
N

≥ −3ε c̄N lnN

N
− ε} = 1,

�us, using Lemma 3.12, the fact that c̄N = O( N
ln N
) and taking ε → 0, we

conclude that, for all y ∈ suppQ, we have

hc(Q∣P) ≤ lim inf
N→∞

Q̂N(y, x)(3.6)

in probability with respect to x sampled from P.
Lower bound II. Let ε ∈ (0, 1

2) and y ∈ suppQ be arbitrary, and fix 0 < α < γ+
8γ−
< 1.

In what follows and in the last part of Section 3.2, the number Nα is to be under-
stood as its integer part ⌊Nα⌋. Following Ziv and Merhav’s original strategy for
strengthening convergence in probability to almost sure convergence, we modify
the auxiliary parsing of yN1 in “Lower Bound I” by applying the same algorithm
separately to subsequent blocks of Nα symbols of yN1 .

First, let y(1,1,N) be the shortest prefix of yN
α

1 such thatP[y(1,1,N)] ≤ N−1−ε ; it has
length ℓ1,1,N , between ℓ−,N and ℓ+,N for N large enough due to Properties FE and
SE. Now, let y(2,1,N) be the shortest prefix of yN

α

ℓ1,1,N+1
such that P[y(2,1,N)] ≤ N−1−ε ,

and so on until not possible. We have parsed a first block of size Nα :

yN
α

1 = y
(1,1,N)y(2,1,N)⋯y(d1,N ,1,N)ξ(1,N),

where the (possibly empty) buffer ξ(1,N) has probability at least N−1−ε and length
at most ℓ+,N due to Property FE.

We then repeat the procedure with TNα

yN1 to obtain the second block, and so
on until

yN1 = y
(1,1,N)y(2,1,N)⋯y(d1,N ,1,N)ξ(1,N)y(1,2,N)y(2,2,N)⋯y(d2,N ,2,N)ξ(2,N)

⋯y(1,MN ,N)y(2,MN ,N)⋯y(dMN ,N ,MN ,N)ξ(MN ,N) .(3.7)

�e construction of y(1,MN ,N)y(2,MN ,N)⋯y(dMN ,N ,MN ,N)ξ(MN ,N) may differ from
that of the previous y(1,s ,N)y(2,s ,N)⋯y(ds ,N ,s ,N)ξ(s ,N) for s < MN in that it might
be the parsing of a block of a length smaller than Nα if there is a remainder in
the division of N by Nα . Note that, for N large enough, N 1−α ≤ MN ≤ 2N

1−α and

ds ,N ≤
2Nα

ℓ−,N
=∶ d+,N .�e number of auxiliary parsed words to be considered is

c̃N ∶= d1,N + d2,N +⋯+ dMN ,N .

It follows from the above that c̃N = O( N
ln N
), since ds ,N ≥ Nα

2ℓ+,N
=∶ d−,N for any s <

MN . As explained in “Lower bound I,” cN(y∣x)must be at least equal to the number
of words in the auxiliary parsing of yN1 that do not appear as strings in xN

1 , that is,

cN(y∣x) ≥ MN∑
s=1

#{ j ∶ y( j,s ,N) ∉ xN
1 } .

In order to control the latter, we prove below the two following technical
estimates:
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On the Ziv–Merhav theorem beyond Markovianity I 9

• Proposition 3.6: For almost every y sampled from Q, there exists Nε(y) such
that, for N ≥ Nε(y), the number of indices s such that the words y(1,s ,N),
y(2,s ,N) , . . . , y(ds ,N ,s ,N) are not distinct is smaller than εMN ; we comment on the
reason for this technical consideration in Remark 3.8.

• Proposition 3.9: Denoting by Sg(yN1 ) the set of indices s whose block of yN1 does
consist of distinct words, we have

P{#{ j ∶ y( j,s ,N) ∈ xN
1 } > εd+,N} ≤ ℓ+,N 2e

ε2γ+
8

d+,N
ℓ+,N

for N large enough and all s ∈ Sg(yN1 ). �is means that, with high probability,
only a small fraction of the words in these “good blocks” can appear in xN

1 (and
fail to contribute to cN(y∣x)).
�erefore, even considering the worst-case scenario where all y(i ,s ,N) with s ∉

Sg(yN1 ) do appear in xN
1 , we find that, for almost every y sampled fromQ,

∞∑
N=Nε(y)

P{x ∶ cN(y∣x) < c̃N − 2εd+,NMN}
≤

∞∑
N=Nε(y)

MN max
s∈Sg(yN1 )

P{#{ j ∶ y( j,s ,N) ∈ xN
1 } > εd+,N} < ∞.

In fact,

{x ∶ MN∑
s=1

#{ j ∶ y( j,s ,N) ∉ xN
1 } < c̃N − 2εd+,NMN}

= {x ∶ MN∑
s=1

#{ j ∶ y( j,s ,N) ∈ xN
1 } > 2εd+,NMN}

⊆

⎧⎪⎪⎨⎪⎪⎩x ∶ ∑
s∈Sg(yN1 )

#{ j ∶ y( j,s ,N) ∈ xN
1 } > εd+,NMN

⎫⎪⎪⎬⎪⎪⎭ ,
and we can perform a union bound a�er observing that for the number of words
in the auxiliary parsing of yN1 that appear in xN

1 and belong to “good blocks” to
exceed εd+,NMN , at least the number of such words in one of the “good blocks”
must exceed εd+,N .

Appealing to Lemma 3.10 and Remark 3.11, the relation (3.5) between c̃N and
lnP[yN1 ] remains valid and yields

P{x ∶ cN(y∣x) lnN
N

+
lnP[yN1 ]

N
< −2ε

c̃N lnN

N
− ε − 8ε

lnN

ℓ−,N
}

≤ P{x ∶ cN(y∣x) lnN
N

<
c̃N lnN

N
− 2εd+,NMN

lnN

N
}

for N large enough, which implies that there exists some constant C = C(γ−) > 0
such that

∞∑
N=1

P{x ∶ cN(y∣x) lnN
N

+
lnP[yN1 ]

N
< −Cε} < ∞.
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10 N. Barnfield, R. Grondin, G. Pozzoli, and R. Raquépas

By Lemma 3.12 and the Borel–Cantelli lemma, taking ε → 0, we conclude that

hc(Q∣P) ≤ lim sup
N→∞

Q̂N(y, x)
for almost every (x , y) sampled from P⊗Q.

�e above strategy is essentially that of Ziv and Merhav, but the lemmas and
propositions on which it relies need to be adapted beyond Markovianity. Before we
do so, let us state and prove a proposition that justifies our focus on situations where
suppQ ⊆ suppP.

Proposition 3.2 Suppose that Q is ergodic. If there exists k ∈ N such that
suppQk ∩ suppP

c

k ≠ ∅, then Q̂N →∞ almost surely as N →∞, in agreement with
�eorem 3.1.

Proof Fix k as in the hypothesis and then a ∈ suppQk/ suppPk . Because
a ∉ suppPk , a crude counting argument yields that the ZM parsing satisfies

cN(y∣x) ≥ #{ j ≤ N − k + 1 ∶ T j−1 y ∈ [a]}
k

for all x ∈ suppP. Because a ∈ suppQk and k is fixed, Birkhoff ’s ergodic theorem
applied to the function 1[a] yields

lim inf
N→∞

cN(y∣x)
N

> 0,

for almost every y ∼ Q. �is allows us to conclude that, almost surely, the estimator
diverges.

As for the claim that this is in agreement with �eorem 3.1, it is based on
the observation that if suppQk ∩ suppP

c

k ≠ ∅, then suppQn ∩ suppP
c

n ≠ ∅ for all
n ≥ k. Since the existence of a ∈ suppQn such that Pn[a] = 0 causes at least one
summand to be infinite on the right-hand side of (2.1), this allows us to conclude that
hc(Q∣P) = ∞. ∎

3.2 Properties of the auxiliary parsings

�roughout this section, ε ∈ (0, 1/2) is fixed but arbitrary. We assume that P and Q

are stationary and satisfy suppQ ⊆ suppP. For readability, we will omit keeping track
of the N-dependence in some of the notation introduced above. As foreshadowed in
the introduction, our analysis of the cardinalities of the auxiliary parsings will use
reformulations in terms of waiting times.

Lemma 3.3 Suppose that P satisfies ID, FE, and KB. Let y ∈ suppQ be arbitrary and
consider the auxiliary parsing of yN1 built around the requirement (3.1). �en,

P{x ∶ #{ j ≤ ĉN ∶ y( j) ∉ xN
1 } > 0} ≤ Ne−

N
ε
4

3ℓ+

for N large enough.
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On the Ziv–Merhav theorem beyond Markovianity I 11

Proof Let y( j) be the word that is obtained by removing the last letter from y( j); by

construction, P[y( j)] > N−1+ε . So, in view of ID,

P[y( j)] ≥ e−kℓ j−1P[y( j)] ( min
a∈supp P1

P[a])
≥ N−1+

ε
2(3.8)

for N large enough. We have used the fact that kℓ j−1 ≤ kℓ+ with kℓ = o(ℓ) and
ℓ+ = O(lnN). Using KB and considering all N large enough, we have

P{x ∶ Wℓ j
(y( j), x) > N − ℓ j + 1} ≤ exp(− N

ε
4

2ℓ+ + τℓ+
) ,(3.9)

where we used the defining properties of kℓ j
and ℓ j . �en, using that for N large

enough we have τℓ+ ≤ ℓ+ and taking a union bound over j,

P
⎛
⎝

ĉN⋃
j=1
{x ∶Wℓ j

(y( j) , x) > N − ℓ j + 1}⎞⎠ ≤ N exp(−N
ε
4

3ℓ+
) .

To conclude, note thatWℓ j
(y( j) , x) > N − ℓ j + 1 is a necessary and sufficient condition

for y( j) ∉ xN
1 . ∎

While, on the one hand, the last lemma states that thewords in the auxiliary parsing
built around (3.1) tend to appear in xN

1 , one can show that, on the other hand, the
words in the auxiliary parsing built around (3.3) tend to not appear in xN

1 . However,
the probabilistic estimate obtained pursuing this strategy only achieves convergence
in probability of the ZM estimator; see “Lower Bound I.” As Ziv and Merhav showed
in their original paper in the Markovian case, this estimate can actually be refined
and made summable in N using some additional combinatorial and probabilistic
arguments. Such a refinement is used to go from convergence in probability to almost
sure convergence in Section 3.1.We recall the following basic facts about ourmodified
auxiliary parsing (3.7) for N large enough:

• there are MN ≤ 2N
1−α blocks, indexed by s, each of length Nα except for the last

one (s = MN) which possibly has length less than Nα ;
• the sth block contains ds words y

(i ,s) with

d− ∶=
Nα

2ℓ+
≤ ds ≤

2Nα

ℓ−
=∶ d+ ,

except for the last one (s = MN) for which the lower boundmay not apply, and one
(possibly empty) buffer ξ(s);

• each word y(i ,s) has length ℓi ,s , with

ℓ− ∶=
lnN

−2γ−
≤ ℓi ,s ≤

2 lnN

−γ+
=∶ ℓ+.

Most of the factors of 2 in these facts are suboptimal; they are only meant to avoid
having to consider integer parts or superficial dependence on ε.
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12 N. Barnfield, R. Grondin, G. Pozzoli, and R. Raquépas

Definition 3.1 If the words y(1,s), y(2,s) , . . . , y(ds ,s) in (3.7) are all distinct, we say
that the sth block of yN1 is good and write s ∈ Sg(yN1 ). If that is not the case, we say that
the block is bad and write s ∈ Sb(yN1 ).
Lemma 3.4 If Q satisfies ID and FE, then

Q{y ∶ s ∈ Sb(yN1 )} ≤ ekℓ−N−2α ,
for every s and every N large enough.

Proof Fix Q as in the statement. By shi� invariance, Q{y ∶ s ∈ Sb(yN1 )} ≤ Q{y ∶ 1 ∈
Sb(yN1 )}.6 For the first block to be bad, two words y(i ,1) and y( j,1) need to coincide,
and in particular, their ℓ−-prefixes need to coincide. Hence, considering all possible
starting indices of these two words, and appealing to shi�-invariance, ID and FE, we
derive

Q{y ∶ 1 ∈ Sb(yN1 )} ≤
Nα

∑
r=ℓ−

r−ℓ−∑
r′=0

∑
u∈suppQℓ−

Q(T−r′[u] ∩ T−r[u])
≤ (Nα

2
) ∑
u∈suppQℓ−

ekℓ−Q[u]2
≤ N2αekℓ− eγ+ℓ− .

To conclude, recall that we have chosen α < γ+
8γ−
= − γ+ℓ−

4 ln N
and that γ± < 0. ∎

Lemma 3.5 IfQ satisfies ID and FE, then

Q{y ∶ #Sb(yN1 ) = m} ≤ (MN

m
)e2mkℓ−N−2mα ,

for all m ∈ N and for all N large enough.

Proof FixQ andm as in the statement. Let us first consider the probability that the
blocks of yN1 labeled sm , sm−1 down to s1 are bad.�is event can be thought of asmth
in a sequence of events defined inductively by E′k+1 = T

−Nα(sk+1−1){1 ∈ Sb} ∩ E′k where
E′0 = Ω. It follows, by a straightforward adaptation of the strategy of Lemma 3.4, that

Q(E′k+1) ≤ (N
α

2
) ∑
u∈suppQℓ−

e2kℓ−Q[u]2Q(E′k)
≤ N2αe2kℓ− max

u∈suppQℓ−

Q[u]Q(E′k).
Iterating and accounting for the different choices of s1 , . . . , sm−1 , sm (recall that
s ≤ MN ) gives the proposed bound. ∎

Proposition 3.6 If Q satisfies ID and FE, then for almost every y ∼ Q, there exists Nε

such that #Sb(yN1 ) < εMN for all N ≥ Nε .

Proof FixingQ as in the statement, usingMarkov’s inequality, the binomial theorem,
and Lemma 3.5, for every b > 0, we have

6In fact, as long as s < MN , the probabilities are equal.
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On the Ziv–Merhav theorem beyond Markovianity I 13

Q{y ∶ #Sb(yN1 ) ≥ εMN} ≤ E (eb(#Sb(y
N
1 ))) e−bεMN

= e−bεMN

MN∑
m=1

ebmQ{y ∶ #Sb(yN1 ) = m}
≤ e−bεMN (1 + eb+2kℓ−N−2α)MN

.

Choosing b = 2α lnN − 2kℓ− , recalling that MN/N 1−α ∈ (1, 2), and considering N
large enough so that b > 0 gives the bound

Q{y ∶ #Sb(yN1 ) ≥ εMN} ≤ e−N 1−α(2αε ln N−2εkℓ−−2 ln 2) .(3.10)

�e proposition thus follows from the Borel–Cantelli lemma. ∎

Lemma 3.7 Suppose that P satisfies ID and that the sth block of yN1 is good. Given ℓ

and K ∈ {1, 2, . . . , ℓ},
P{x ∶ #{ j ∶ y( j,s) = xK+rℓ+(ℓ−1)K+rℓ for some r ∈ {0, 1, . . . , ⌊N − K + 1

ℓ
⌋ − 1}} = m}

≤ (d+
m
)emkℓ+N−mε .

Proof By shi� invariance, we can assume that s = 1. Consider a set I = {ik}mk=1 of
m distinct indices such that y(ik ,1) has length ℓ, and let F(I) denote the event that
all the words {y(ik ,1)}mk=1 have a match in xN

1 with a starting point equivalent to K

mod ℓ. Since the words {y(ik ,1)}mk=1 are distinct, the starting positions of the matches
considered must be distinct. Moreover, by assumption, each such starting position
is of the form rℓ + K for some r at most ⌊ N−K+1

ℓ
⌋ − 1. �erefore, enumerating all

possibilities, we find

F(I) ⊆ ⋃
r1 , . . . ,rm

m⋂
k=1

T−rkℓ−K[y(ik ,ℓ)],
where the union is taken over distinct nonnegative integers r1 , . . . , rm all at most⌊ N−K+1

ℓ
⌋ − 1. Using ID, shi� invariance, and subadditivity gives

P(F(I)) ≤ m!(⌊ N−K+1ℓ
⌋ − 1

m
)(ekℓ+ max

i∈I
P[y(i ,ℓ)])m

≤ Nm(ekℓ+N−1−ε)m
≤ emkℓ+N−mε .

To conclude, we use a union bound, together with an upper bound on the number of
sets I of this nature. ∎

Remark 3.8 �e separation into fixed values of ℓ and K is a technical device to avoid
overlaps that would prevent the use of ID, and will be taken care of momentarily by
a union bound. For fixed ℓ, and for the purpose of relating cN and c̃N , the important
quantity is the number of j such that y( j,s) has size ℓ and appears in xN

1 (this is the only
way a separator could fail to appear within y( j,s)), and not the number of substrings

https://doi.org/10.4153/S0008414X24000178 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000178


14 N. Barnfield, R. Grondin, G. Pozzoli, and R. Raquépas

of size ℓ in xN
1 that are matches for some y( j,s). �e probability of the latter is easier

to control (this is what we control in the proof), and coincides with the former when
s ∈ Sg(yN1 ).
Proposition 3.9 Let y ∈ suppQ be arbitrary and consider the modified auxiliary
parsing of yN1 in (3.7). Suppose that P satisfies ID and that the sth block of yN1 is good.
�en, for N large enough, the event that more than a fraction ε of the maximum number
d+ of words y

(i ,s) in the sth block appears in xN
1 satisfies

P{x ∶ #{ j ∶ y( j,s) ∈ xN
1 } > εd+} ≤ ℓ2+e γ+ ε2

8

d+
ℓ+ .(3.11)

Proof Fix s ∈ Sg(yN1 ). Given ℓ and K ∈ {1, . . . , ℓ}, consider
χ(K ,ℓ) ∶= ∑

i∶ℓi ,s=ℓ

1Wℓ(y(i ,s) , ⋅ )≤N ⋅ 1Wℓ(y(i ,s) , ⋅ )≡mod ℓK
.(3.12)

Observe that, for any fixed x,

#{ j ∶ y( j,s) ∈ xN
1 } ≤

ds∑
i=1

1Wℓi ,s
(y(i ,s) ,x)≤N ,

and so for the random variable in (3.11) to exceed εd+, at least one of the random
variables χ(K ,ℓ) defined by (3.12) must exceed εd+

ℓ2+
, that is,

P{x ∶ #{ j ∶ y( j,s) ∈ xN
1 } > εd+} ≤ P⎛⎝ ⋃(K ,ℓ)

{x ∶ χ(K ,ℓ)(x) > εd+
ℓ2+
}⎞⎠ .(3.13)

Following the same strategy as in the proof of Proposition 3.6, we use Markov’s
inequality, the binomial theorem, and Lemma 3.7 to derive that, for every b > 0,

P{x ∶ χ(K ,ℓ)(x) > εd+
ℓ2+
} ≤ (1 + eb+kℓ+

N ε
)
d+

e
−bε

d+
ℓ2+ .

Choosing b = ε
2 lnN yields

P{x ∶ χ(K ,ℓ)(x) > εd+
ℓ2+
} ≤ e γ+ ε2

4

d+
ℓ+
(1−o(1))

≤ e
γ+ ε2

8

d+
ℓ+

for N large enough, recalling that γ+ < 0. Going back to our observation (3.13), we
conclude the proof by performing a union bound over K and ℓ. ∎

3.3 Cross entropy

Lemma 3.10 If P satisfies ID, y ∈ suppP, and yN1 is parsed as

yN1 = y
(1,N)y(2,N) . . . y(c

′
N−1,N)y(c

′
N ,N),
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On the Ziv–Merhav theorem beyond Markovianity I 15

with ℓ j ∶= ∣y( j,N)∣ ≥ λN for some properly diverging, nonnegative sequence (λN)∞N=1,
then

c′N∑
j=1

lnP[y( j,N)] = lnP[yN1 ] + o(N).
Proof Suppose P satisfies ID, y ∈ suppP, and yN1 is parsed as in the statement. Both
the upper and lower bounds are proved similarly, so we only provide the proof of the
former. Let ε > 0 be arbitrary and note that ID yields

lnP[yN1 ] = lnP[y(1,N)y(2,N) . . . y(c′N−1,N)y(c′N ,N)]
≤ ln(ekℓ1+⋅⋅⋅+kℓc′N−1P[y(1,N)]P[y(2,N)] . . .P[y(c′N ,N)])
=

c′N∑
j=1

lnP[y( j,N)] + c′N−1∑
j=1

kℓ j
.

Now since kℓ = o(ℓ) and λN →∞, we have kℓ j
< εℓ j for N large enough.�erefore,

lnP[yN1 ] <
c′N∑
j=1

lnP[y( j,N)] + c′N−1∑
j=1

εℓ j

<
c′N∑
j=1

lnP[y( j,N)] + εN
for N large enough. ∎

Remark 3.11 Note that the contribution coming from the buffers ξ(s ,N), with
s ∈ {1, . . . ,MN}, in the modified auxiliary parsing (3.7) can be embedded in the
correction term o(N) in the statement of Lemma 3.10. �is immediately follows by
observing that MN = o(c̃N).
Lemma 3.12 If P satisfies ID andQ is ergodic, and if suppQ ⊆ suppP, then

− lnP[yN1 ] = Nhc(Q∣P) + o(N)
forQ-almost every y.

Proof Fix P and Q as in the statement. In view of the upper bound in ID, we can
apply Kingman’s subadditive ergodic theorem to the sequence ( fn)∞n=1 of measurable
functions on the dynamical system (suppP, T ,Q) defined by fn(x) ∶= lnP[xn1 ]. ∎

3.4 Comments

�e following consequence of ID played an important role in the proof of the upper
bound:

Ad For every n ∈ N, the bound

min{P[ab]
P[a] ∶ a ∈ suppPn , b ∈ suppP1 , ab ∈ suppPn+1} ≥ e−kn(3.14)

holds.
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16 N. Barnfield, R. Grondin, G. Pozzoli, and R. Raquépas

Indeed, by construction of Ziv andMerhav’s auxiliary parsings, there is a lower bound
on P[y( j,N)] and an upper bound on P[y( j,N)], but both the bounds (3.2) and (3.5)

require a lower bound on P[y( j,N)] (see Lemma 3.3). Condition Ad serves as a way
of going back and forth between the two. Unfortunately, Ad may fail upon relaxing
the lower bound in ID to themore general lower-decoupling conditions that have met
with success in tackling other related problems [BCJP21, CDEJR23a, CJPS19, CR23].
We will come back to this point in Section 4.4.

As for the arguments available in the literature to establish KB, we foresee no
difficulty in adapting our argument to a set of hypotheses where the roles of a and b
are exchanged in the decoupling inequalities. Indeed, this would not affect SE nor Ad.
While the Markov property can be equivalently written in terms of conditioning on
the past or conditioning on the future, the class of g-measures discussed in Section 4
and its “reverse” counterpart do not coincide (see, e.g., [BFV19, Section 4.4]).

As mentioned in the introduction, the Ziv–Merhav estimator can be written in
terms of longest-match lengths:

cN lnN

N
=

lnN
1
cN
∑cN

i=1 ℓ
(i ,N)

,

where7

ℓ
(i ,N) =min{ΛN(TL(i−1,N) y, x),N − L(i−1,N)},

with

L(0,N) = 0 and L(i ,N) = L(i−1,N) + ℓ(i ,N)

for i = 1, 2, . . . , cN . It is known that the longest-match estimator (ℓ(1,N))−1 lnN =
ΛN(y, x)−1 lnN converges almost surely to the cross entropy, with good probability
estimates, for a class of measures that is more general than that considered here

(see [Kon98, Section 1.3] and [CDEJR23a, Section 3]). Hence, if each TL(i−1,N) y were
replaced by a new independent sample from Q, or by T∆(i−1)y for some fixed deter-
ministic ∆ ∈ N, then one would expect the convergence of the Ziv–Merhav estimator
to also hold considerably more generally. However, the dependence structure of the
starting indices seems to be posing a serious technical difficulty for the strategy of Ziv
and Merhav.

4 Examples

In this section, we discuss broad classes of measures to which our results apply. For
this discussion, we need basic topological considerations that we had avoided so far. A
one-sided (resp. two-sided) subshi� is a closed and shi�-invariant subset ofAN (resp.
A

Z) obtained by removing all sequences containing at least one string from some set
of forbidden strings. Closure is understood in the product topology, and the subshi�
is equipped with the subspace topology inherited from that topology. A subshi� is

7�e minimum over the two terms will be given by the former as long as i < cN . However, this
formulation is necessary to take care of the “edge cases” alluded to in the Introduction.
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said to be of finite type if the list of forbidden strings that defines it can be chosen to
be finite. A subshi� of finite type is said to be topologically transitive if, for any two
strings a and b with [a] and [b] intersecting the subshi�, there exists a third string ξ
such that [aξb] also intersects the subshi�. We refer the reader to [DGS76, Section 7]
or [KŁO16, Section 8] for a more thorough discussion.

4.1 Markov measures

As mentioned in Section 2, if P is the stationary measure for an irreducible Markov
chain with positive entropy, then P is ergodic and satisfies ID, FE, and KB.We use this
setting to illustrate the role of some of our conditions.

First, it is worth noting that the stationarymeasure for an irreducibleMarkov chain
neednot satisfy any formofmixing, nor theDoeblin-type condition in [KS94] because
it could be periodic.

In the case of a reducible Markov chain, a stationary measure can charge two
disjoint communication classes; let us call those classes A′ and A

′′.�en, for a ∈ A′,
the probability P{x ∶W1(a, x) ≥ r} ≥ P{x ∶ x1 ∈ A′′} does not decay as r →∞. In
terms of the language of subshi�s, the failure of KB is due to the fact that suppP
does not satisfy any form of specification; it is a subshi� of finite type that fails to be
transitive.More concretely, if the sequence x starts inA′′, then it remains there forever
and we do not expect to be able to probe any entropic quantity that also involves the
behavior of P onA

′ using the information contained in x.
Also note that a stationary measure for an irreducible Markov chain could fail to

have positive entropy if, for example, it is a convex combination of Dirac masses on
periodic orbits. Such a behavior is at odds with FE and can cause the bounds on the
lengths of the parsed words not to be controlled in terms of ℓ±,N , a fact which was
used repeatedly throughout our proofs.

4.2 Regular g-measures

Let Ω′ be a topologically transitive one-sided subshi� of finite type. Choosing as a
starting point one particular definition in the literature among others, we will say that
a translation-invariant measure P on Ω is a regular g-measure on Ω′ if suppP = Ω′

and there exists a continuous function g ∶ Ω′ → (0, 1] such that

∑
y∈Ω′

Ty=x

g(y) = 1(4.1)

for all x ∈ Ω′ and

lim
n→∞

sup
x∈Ω′
∣P[xn1 ]
P[xn2 ] − g(x)∣ = 0.(4.2)

�e convergence (4.2) can be used to show that P satisfies the decoupling condition
ID (see [CR23, Section B.3]). Our assumption on Ω′ more than suffices for ID to yield
KB (see [CR23, Sections 3.1 and B.2]).

Note that the ratio being compared to g is continuous in x at finite n, and the k-
level Markov condition, once written in terms of conditioning on the future, implies
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18 N. Barnfield, R. Grondin, G. Pozzoli, and R. Raquépas

that this ratio is eventually constant in n – starting with n = k + 1. Hence, regular g-
measures do generalize stationary k-level Markov measures.

Finally, let us discuss Condition FE in the context of regular g-measures. To do
so, we will use the fact that the convergence (4.2) can also be used to establish the
following weak Gibbs condition of Yuri at vanishing topological pressure: there exists
an eo(n)-sequence (Kn)∞n=1 such that

K−1n e∑
n−1
j=0 ln g(T jx) ≤ P[xn1 ] ≤ Kne

∑
n−1
j=0 ln g(T jx)

for every x ∈ Ω′; again, see [CR23, Section B.3], but it should be noted that this can
be seen as part of the “g-measure folklore” [BFV19, OST05, Wal05]. We are now ready
to provide a necessary and sufficient condition on the subshi� Ω′ for FE to hold for
all regular g-measures on Ω′. One special case will be that regular g-measures on
topologically mixing subshi�s of finite type with more than one letter satisfy ID and
FE, allowing for an application of our main result.

Lemma 4.1 Suppose that P is a regular g-measure on Ω′. �en, P satisfies FE if and
only if there exists r with the following property: for every y ∈ Ω′, there exists t ≤ r such
that T t y has more than one preimage in Ω′.

Proof Suppose that there exists r as above.�en, for every y ∈ Ω′, there exists t ≤ r
such that

g(T t−1 y) = 1 − ∑
z∈Ω′/{T t−1 y}

Tz=T t y

g(z) ≤ 1 − δ,

where δ ∶=min g.�is number is positive by continuity and compactness.�erefore,

ln g(y) + ln g(Ty) +⋯+ ln g(T t−1 y) ≤ ln(1 − δ)
and ln g(T t′ y) ≤ ln(1 − δ) for any t′ ≥ t. But then, the weak Gibbs property yields

P[yn1 ] ≤ Kne
∑
⌊ n
r
⌋−1

i=0 ∑
r−1
t=0 ln g(T ir+t y)

≤ exp(lnKn + ⌊n
r
⌋ ln(1 − δ)) ,

with lnKn = o(n). We conclude that Condition FE holds. Suppose now that no such r
exists.�en, for every n ∈ N, there exists y ∈ Ω′ such that T t y has only one preimage
in Ω′ for all t ≤ n. By the condition (4.1), this means that

ln g(y) + ln g(Ty) + ⋅ ⋅ ⋅ + ln g(Tn−1 y) = 0,
which, together with the lower bound in the weak Gibbs property, implies

P[yn1 ] ≥ K−1n = e−o(n) .
Since the right-hand side is eventually greater than eγ+n for any γ+ < 0, FE fails as
well. ∎
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Remark 4.2 If A contains at least two symbols, then the hypotheses – and thus the
conclusions – of Lemma 4.1 can be derived from a suitable specification property, but
not any specification property from the literature.8

4.3 Statistical mechanics

Let Ω
′
be a topologically transitive, two-sided subshi� of finite type, and let Ω′ be its

one-sided counterpart. Consider a family (ΦX)X⋐Z of interactions with

• the continuity property that, for all X ⋐ Z, the function ΦX – although seen as a

measurable function on Ω
′
– depends on the symbols with indices in the finite

subset X only,
• the translation-invariance property that, for all X ⋐ Z, ΦX+1 = ΦX ○ T ,
• the absolute summability property that∑X⋐Z

X∋1
sup

x∈Ω
′ ∣ΦX(x)∣ < ∞.

Such interactions are considered, e.g., in [Rue04, Sections 1.2 and 3.1] and are collo-
quially said to be in “the small space.” It is well known that any equilibrium measure
P (in the sense of the variational principle) for the energy-per-site potential

ϕ ∶= ∑
X⋐Z

min X=1

ΦX

coming from such a family of interactions is a translation-invariant Gibbs state in
the sense of the Dobrushin–Lanford–Ruelle equations (see, e.g., [Rue04, Sections

3.2 and 4.2]).9 Because we are working with a sufficiently regular subshi� Ω
′
, the

Dobrushin–Lanford–Ruelle equations and absolute summability can be used to show

thatP satisfies ID by adapting the argument of [LPS95, Section 9] for the case Ω
′
= AZ.

Again, the subshi� is sufficiently regular for ID to yield KB (see [CR23, Sections 3.1
and B.2]).

We now turn to Condition FE, assuming a certain familiarity with the thermo-
dynamic formalism, physical equivalence, and the Griffiths–Ruelle theorem on the
reader’s part (see, e.g., [Rue04, Section 4]).

Lemma 4.3 Suppose that Ω
′
, Φ, and P are as above. If Ω′ has positive topological

entropy, then P satisfies FE.

Proof sketch. We split the proof according to whether or not Φ is equivalent to a
constant in the sense of Ruelle. Because we can always add or subtract a constant from
each Φ{i}, there is no loss of generality in assuming that ϕ has topological pressure
Ptop(ϕ) = 0.

Case 1. On the one hand, if Φ is not equivalent to a constant in the sense
of Ruelle, then the Griffiths–Ruelle theorem guarantees that α ↦ Ptop(ϕ − αϕ) is

8For example, in the terminology of [KŁO16, Section 8], Property (6) suffices, but Property (8) does
not, as it allows Ω′ = {0101010101010 . . . , 1010101010101 . . . }.

9With a slight abuse of notation, we are using P for both the equilibrium measure on Ω
′

⊆ AZ and
its natural marginal on Ω′ ⊆ AN. Note that, by construction, the potential ϕ only depends on symbols
from Ω′.
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strictly convex (see, e.g., [Rue04, Section 4.6]). On the other hand, by the weak
Gibbs property established, e.g., in [PS20, Section 2], we have

lim
n→∞

1

n
ln ∑

a∈suppPn

P[a]1−α = Ptop(ϕ − αϕ).
It is easy to see from this relation that the function α ↦ Ptop(ϕ − αϕ) is non-
decreasing. Combining these properties, we deduce that Ptop(ϕ − αϕ) < 0 for all
α < 0. Assuming for the sake of contradiction that FE fails, one easily derives a
contradiction.
Case 2. If, on the contrary, Φ is equivalent to a constant the sense of Ruelle, then

the weak Gibbs property reads,

K−1n eνn ≤ P[xn1 ] ≤ Kne
νn

for all x ∈ Ω′ and some constant ν. Given that Ω′ has positive topological entropy,
summing the le�-most inequality over xn1 , the fact that Kn = e

o(n) can be used to
show that ν < 0.�en, the right-most inequality yields that FE holds, again thanks
to the fact that Kn = e

o(n). ∎

Every irreducible, stationary Markov measure with stochastic matrix [Pa ,b]a ,b∈A
can be obtained in this way by considering the following nearest-neighbor interactions
on its support:

Φ{i , i+1}(x) = ln Px i ,x i+1

for i ∈ N and ΦX(x) = 0 for X not of the form {i , i + 1}. To see this, one can check
by direct computation that, on its support, the Markov measure satisfies the Bowen–
Gibbs condition for the corresponding ϕ. For k-level Markov measures, consider
instead

Φ{i , . . . , i+k−1, i+k}(x) = ln P[x i . . . x i+k−1x i+k]
P[x i . . . x i+k−1] .

In this sense, equilibrium measures for potentials arising from interactions that are
absolutely summable do generalize stationary k-level Markov measures; we refer
the reader to [BGM+21, CHM+14] for recent thorough discussions of variants and
converses to this observation. �is generalization is far reaching as the theory of
entropy, large deviations, and phase transition is much richer in the small space of
interactions than in the space of finite-range interactions.

In a similar vein, equilibriummeasures (in the sense of the variational principle on
Ω′) for abstract potentials ϕ in the Bowen class also satisfy ID, thanks to the Bowen–
Gibbs property (see [Wal01, Section 4]). We refer the reader to [Wal01, Section 1]
for a definition of the Bowen class, which can be traced back to [Bow74]. �is class
includes potentials with summable variations, and thusHölder-continuous potentials,
and thus potentials naturally associated with stationary k-level Markov measures.
A more complete discussion from the point of view of decoupling – including
relaxation of the conditions on Ω′ – can be found in [CR23, Section 2.3].
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4.4 Hidden-Markov measures

While the above generalizations beyond Markovianity are o�en studied in the lit-
erature on mathematical physics and abstract dynamical systems, they might not
be the most natural from an information-theoretic point of view; hidden-Markov
models would most likely come to mind first for many practitioners. We recall that,
among several equivalent representations, a stationary hidden-MarkovmeasureP can
be characterized by a tuple (π, P, R) where (π, P) characterizes in the usual way a
stationary Markov process on a set S, called the hidden alphabet, and R is a (#S)-by-(#A)matrix whose rows each sum to 1:

P[an1 ] = ∑
sn1 ∈S

n

πs1Rs1 ,a1Ps1 ,s2Rs2 ,a2 ⋅ ⋅ ⋅ Psn−1 ,snRsn ,an

for n ∈ N and an1 ∈ A
n . We restrict our attention to the case where S is a finite set

and P is irreducible. We view the entry Rs ,a as the probability of observing a ∈ A at a
given time step given the hidden state s ∈ S at that same time step – the dynamics of
the latter governed by the hidden-Markov chain (π, P).�ere exist only very singular
examples of such measures for which FE fails. As exhibited by our next lemma, this
can only happen if the process is eventually almost-surely deterministic.

Lemma 4.4 Let P be as above. �en, P satisfies FE if and only if, for each s ∈ S, there
exists L such that

#{a ∈ AL
∶ P[a∣s1 = s] > 0} > 1.

Proof Suppose that for each s ∈ S there exists L as above. By inspection of the
canonical form of P provided by the Perron–Frobenius theorem, one deduces that
there exists a finite set Σ′ of possible row vectors σ that can arise as limit points for
sequences of the form ([Pm]i ,⋅ )∞m=1. Let Σ ∶= Σ′ ∪ {π} with π the unique invariant
probability row vector for P. By stochasticity, each σ ∈ Σ has nonnegative entries that
sum to 1. In this context, by assumption, there exists L ∈ N such that

δ ∶= max
a∈supp PL

max
σ∈Σ
∑
s∈SL

σs1Ps1 ,s2 ⋅ ⋅ ⋅ PsL−1 ,sLRs1 ,a1 ⋅ ⋅ ⋅RsL ,aL

= max
a∈supp PL

max
σ∈Σ
∑
s∈S

σsP[a∣s1 = s]
is strictly less than 1. Given ε > 0, by inspection of the same canonical form, there exists
m ∈ N with the following property: for all i, there is σ ∈ Σ such that

[Pm]i , ⋅ < σ + ε.
�en, taking a ∈ suppP and n ≥ L,

P[an1 ] ≤ P[aL+q(m+L)1 ]
for q ∶=max{k ∈ N0 ∶ n ≥ L + k(m + L)}. We introduce the shorthands R0(s) =
Rs1 ,a1 ⋅ ⋅ ⋅RsL ,aL

,

Rk(s) = Rs(k−1)(m+L)+L+1 ,a(k−1)(m+L)+L+1 ⋅ ⋅ ⋅Rsk(m+L)+L ,ak(m+L)+L
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and

R
′
k(s) = Rsk(m+L)+1 ,ak(m+L)+1

⋅ ⋅ ⋅Rsk(m+L)+L ,ak(m+L)+L

when 1 ≤ k ≤ q. We also identify s10 ≡ sL , s
2
0 ≡ s

1
m+L , s

3
0 ≡ s

2
m+L , and so on, and so forth.

One then obtains

P[aL+q(m+L)1 ]
= ∑

s1 , . . . ,sL
sk1 , . . . ,s

k
m+L

for 1≤k≤q

πs1Ps1 ,s2 ⋅ ⋅ ⋅ PsL−1 ,sLR0(s)
q∏
k=1

Psk0 ,sk1
Psk1 ,sk2

⋯Psk
m+L−1 ,s

k
m+L

Rk(s)

≤ ∑
s1 , . . . ,sL

skm , . . . ,skm+L
for 1≤k≤q

πs1Ps1 ,s2 ⋅ ⋅ ⋅ PsL−1 ,sLR0(s)
q∏
k=1

(σ(sk0)
skm
+ ε)Pskm ,skm+1

⋯Psk
m+L−1 ,s

k
m+L

R
′
k(s)

for some appropriate choices of σ(s
k
0) ∈ Σ that depend on m and the index sk0 only.

�erefore,

P[aL+q(m+L)1 ] ≤ δ ⋅ (δ + ε(#S))q .
By taking ε > 0 such that δ + ε(#S) < 1 and noting that q scales linearly with n, FE
holds.

To see the converse implication, suppose that there exists t ∈ S such that there is no
L as above.�en, there exists a ∈ Ω such that P[an1 ∣s1 = t] = 1 for all n ∈ N. Since

P[an1 ] ≥ P[an1 ∣s1 = t] ⋅ πt = πt

for all n ∈ N and eγ+n is eventually smaller than πt > 0 for all γ+ < 0, FE fails. ∎

One can show that every stationary hidden-Markov measure satisfies the upper
bound in ID. But in general – even if P is irreducible – only a weaker form of the
lower bound, known as selective lower decoupling, holds (see [BCJP21, Section 2] and
[CJPS19, Section 2]). �e fact that selective lower decoupling implies KB but does
not imply the condition called Ad in Section 3.4 seems to pose a genuine obstacle.

Figure 1: An example that does not satisfy Ad: a direct computation shows that [○○ . . . ○◇] is
too unlikely compared to [○○ . . . ○].
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Determining whether the ZM estimation remains generally valid in the class of
irreducible, hidden-Markov measures remains – to the best of our knowledge – an
important open problem.

In the further specialized case where the elements of R are all in {0, 1} – this is
sometimes called the function-Markov or lumped-Markov case – some conditions for
the g-measure property (and thus ID) are discussed in [CU03, Ver11, Yoo10]. However,
it is not difficult to find examples for which none of these known sufficient conditions
hold.

Example 4.5 �e stationary measure on {○, ◇, ◇ }N built from the four-hidden-state
chain depicted in Figure 1 satisfies the upper bound in ID, as well as FE and SE, but
not Ad – and hence not ID. However, note that this example satisfies the Doeblin-type
condition of [KS94] with r = 3.

Acknowledgements �e authors would like to thank G. Cristadoro, N. Cuneo, and
V. Jakšić for stimulating discussions on the topic of this note, as well as the referees for
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