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Abstract

In this paper we uniformly approximate the trajectories of the Cox–Ingersoll–Ross (CIR)
process. At a sequence of random times the approximate trajectories will be even exact.
In between, the approximation will be uniformly close to the exact trajectory. From a
conceptual point of view, the proposed method gives a better quality of approximation in
a path-wise sense than standard, or even exact, simulation of the CIR dynamics at some
deterministic time grid.
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1. Introduction

The Cox–Ingersoll–Ross (CIR) process X(s) = Xt,x(s) is determined by the following
stochastic differential equation (SDE):

dX(s) = k(λ − X(s)) ds + σ
√

X(s) dw(s), X(t) = x, s ≥ t ≥ 0, (1)

where k, λ, σ are positive constants, and w is a scalar Brownian motion. The associated second
order differential operator

L := k(λ − x)
∂

∂x
+ 1

2
σ 2x

∂2

∂x2 (2)

is referred to as the generator of the process X. Due to [11] this process has become very
popular in financial mathematical applications. The CIR process is used, in particular, as a
volatility process in the Heston model [15]. It is known (see [18]) that for x > 0 there exists
a unique strong solution Xt,x(s) of (1) for all s ≥ t ≥ 0. The CIR process X(s) = Xt,x(s)

is positive in the 2kλ ≥ σ 2 case and nonnegative in the 2kλ < σ 2 case. Moreover, in the last
case the origin is a reflecting boundary.

As a matter of fact, (1) does not satisfy the global Lipschitz assumption. The difficulties
arising in a usual simulation method, such as the Euler method for example, for (1) are connected
with this fact and with the natural requirement of preserving nonnegative approximations. A lot
of approximation methods for the CIR processes are proposed. For an extensive list of articles
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on this subject we refer the reader to [3] and [12]. Besides [3] and [12], we also refer the
reader to [1], [2], [16], and [17], where a number of discretization schemes for the CIR process
can be found. Further, we note that in [25] a weakly convergent fully implicit method was
implemented for the Heston model. Exact simulation of (1) at some deterministic time grid
was considered in [9] and [13] (see also [3]).

In [22], we considered uniform path-wise approximation of X(s) on an interval [t, t + T ]
using the Doss–Sussmann transformation (see [27]) which allows for expressing any trajectory
of X(s) by the solution of some ordinary differential equation that depends on the realization
of w(s). The approximation X̄(s) in [22] is uniform in the sense that the path-wise error is
uniformly bounded, i.e.

sup
t≤s≤t+T

|X̄(s) − X(s)| ≤ r almost surely, (3)

where r > 0 is fixed in advance.
In order to explain the idea behind uniform pathwise approximation, let us consider the

uniform pathwise approximation for a Wiener process W(t). First consider simulating W on
a fixed time grid t0, t1, . . . , tn = T . Although W may be even exactly simulated at the grid
points, the usual piecewise linear interpolation

W̄ (t) = ti+1 − t

ti+1 − ti
W(ti) + t − ti

ti+1 − ti
W(ti+1) (4)

is not uniform in the sense of (3). Put differently, for any (large) positive number A, there is
always a positive probability that

sup
t0≤t≤t0+T

|W̄ (t) − W(t)| > A.

Therefore, for path dependent applications, for instance, such a standard, even exact, simulation
method may be not desirable and a uniform method preserving (3) may be preferred. Apart
from applications, however, uniform simulation of trajectories of an SDE in the sense of (3)
may be considered as an interesting mathematical problem in its own right. In fact, it is a
research topic that has received considerable attention in recent years. See, for example, [5]
for an approach concerning a certain diffusion class that involves a rejection sampling method.
The idea of simulating first-passage times in order to construct uniform approximations was
also used in [6], and in [8] a pathwise approach was studied in connection with rough path
analysis. We further refer the reader to the recent related papers [7] and [10].

To uniformly approximate W(t), t ≥ t0 (where W(t0) is known), we simulate the points
(tm + θm, W(tm + θm) − W(tm)), m = 0, 1, 2, . . . , by simulating θm as being the first-passage
(stopping) time of the Wiener process W(t) − W(tm), t ≥ tm, to the boundary of the interval
[−r, r]. So, |W(t) − W(tm)| ≤ r for tm ≤ t ≤ tm + θm and, moreover, the random variable
rm := W(tm + θm) − W(tm), that takes values −r or +r with probability 1

2 , respectively, is
independent of the stopping time θm. The values W(t0), . . . , W(tm), . . . , where tm is the random
time tm = t0 + θ0 + · · · + θm−1 and W(tm) = W(tm−1) + rm−1, are exactly simulated values
of the Wiener process W(t) at random times tm. Clearly, the piecewise linear interpolation (4)
satisfies

sup
s≥t0

|W̄ (s) − W(s)| ≤ 2r almost surely,

i.e. a uniform path-wise approximation for a Wiener process W(t) is achieved.
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In [22], we approximately constructed a generic trajectory of X(s) by simulating the first-
passage times of the increments of the Wiener process to the boundary of an interval and
solving the ordinary differential equation after using the Doss–Sussmann transformation. Such
a simulation is more simple than the one proposed in [9] and, moreover, has the advantage
of a uniform nature. The uniform approximation is connected with simulation of space-time
bounded diffusions in fact (see [23] and [24, Chapter 5]). We note that the results of [22] were
obtained under the restriction 4kλ > σ 2. For the 4kλ ≤ σ 2 case, we did not succeed to extend
the results of [22] in a Doss–Sussmann context. In this paper we therefore follow an alternative
approach.

Let � > 0 be a small number, x > �, and τ(x) be the first-passage time of the trajectory
X0,x(s) to the boundary of the band (x − �, x + �). If x ≤ �, we denote by τ(x) the first-
passage time of X0,x(s) to the upper bound of [0, 2�). Clearly, for any Markov moment τ ,
the line segment between the points (τ, x) and (τ + τ(x), Xτ,x(τ + τ(x))) uniformly (with
exactness 2�) approximates the trajectory Xτ,x(s), τ ≤ s ≤ τ + τ(x). To simulate τ(x) we
solve a parabolic boundary-value problem for the distribution function of τ(x) by separation
of variables. The corresponding Sturm–Liouville problem in the region x > � is regular. The
0 < x ≤ � case is more complicated. If 2kλ/σ 2 ≥ 1 then the point x = 0 is not attainable in
contrast to the 2kλ/σ 2 < 1 case when x = 0 which is attainable. These distinctions result in
different boundary-value problems. In the next section we construct the distributions needed
in terms of solutions of the confluent hypergeometric equation. There the simulated random
values of X0,x(τ (x)) belong to a fixed space discretization grid 0 = x0 < x1 < x2 < · · · <

xn < · · ·. In Section 3 we develop uniform approximation of the CIR process using the squared
Bessel processes. We obtain the required distributions in terms of Bessel functions. However,
in contrast to Section 2, the simulated values of X0,x(τ (x)) do not belong to a fixed space
discretization grid anymore, while they are still exact. In Section 4 we give some guidelines for
numerical implementation of the proposed methods. In particular, we consider the method of
Section 3, and exemplify in full detail the 4kλ = σ 2 case, which is at the border of applicability
of the method in [22] in fact.

The uniform approximation methods developed in this paper can be applied for any set of
positive parameters k, λ, and σ of the CIR process, in contrast to the method in [22] (though the
latter approach is in certain respects more simple). Moreover, we here simulate exact values of
the CIR process at random exactly simulated times. As a consequence, the convergence of the
methods as � ↓ 0 is obvious.

2. Distribution functions for first-passage times of CIR trajectories to boundaries of
narrow bands

2.1. The main construction

The space domain for (1) is the real semi-axis [0, ∞) as Xt,x(s) ≥ 0 for any s ≥ t ≥ 0,
x ≥ 0. Consider a space discretization

0 = x0 < x1 < x2 < · · · < xn < · · · ,

where we assume for simplicity that xi+1 − xi = �, i = 0, 1, . . . .
Let the initial value x for the solution X0,x(s), s ≥ 0, be equal to xn for some n ≥ 2.

Let τ(xn) be the first-passage time of the trajectory X0,xn(s) to the boundary of the band
(xn−1, xn+1), i.e. X0,xn(τ (xn)) is equal either to xn−1 or to xn+1, and xn−1 < X0,xn(s) < xn+1
for 0 ≤ s < τ(xn). If the initial value x is equal to x1 then X0,x1(s) attains x2 with probability 1
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for some time τ(x1), which is the first-passage time of the trajectory X0,x1(s) to the upper bound
of the band [0, x2), i.e. X0,x1(τ (x1)) is equal to x2, and 0 ≤ X0,x1(s) < x2 for 0 ≤ s < τ(x1).
So, the random variable τ(xn) is defined such that, for any xn, from the set {x1, x2, . . . }, we
have X0,xn(τ (xn)) belonging to the same set. We now set

X0 = x = xn, xn ∈ {x1, x2, . . . }, τ 1 = τ(X0), X1 = X0,X0(τ 1).

By repeating the above scheme for x = X1 in the same way, one can obtain τ 2 = τ(X1) and
X2 = X0,X1(τ 2). Due to autonomy of (1), we have X2 = X0,X1(τ 2) = Xτ 1,X1(τ 1 + τ 2) =
X0,X0(τ 1 + τ 2). Continuing, we obtain the sequence

τm = τ(Xm−1),

Xm = X0,Xm−1(τm) = Xτ 1+···+τm−1,Xm−1(τ 1 + · · · + τm) = X0,X0(τ 1 + · · · + τm).

The points (0, X0), (τ 1, X1), . . . , (τ 1 + · · · + τm, Xm) belong to the trajectory (s, X0,X0(s)).
If the initial value x is not equal to xn, we first model X1 to be equal to one of the nodes

and then repeat the previous construction. If 0 ≤ x = X0 < x1 + �/2 then X1 is equal to
X0,x(τ

1), where τ 1 is the first-passage time of the trajectory X0,x(s) to the upper bound of
the band [0, x2), i.e. X0,x(τ

1) is equal to x2, and 0 ≤ X0,x(s) < x2 for 0 ≤ s < τ 1. If
xn − �/2 ≤ x = X0 < xn + �/2, n = 2, 3, . . . , then X1 = X0,x(τ

1), where τ 1 is the first-
passage time of the trajectory X0,x(s) to the boundary of the band (xn−1, xn+1), i.e. X0,x(τ

1)

is equal either to xn−1 or to xn+1, and xn−1 < X0,x(s) < xn+1 for 0 ≤ s < τ 1.
Suppose that, for m = 1, 2, . . . , the sequence (0, X0), (τ 1, X1), . . . , (τ 1 + · · · + τm, Xm)

is constructed. As an approximative trajectory X̄0,x(s), we take the polygonal line which passes
through the points of the following sequence:

X̄0,x(s) = Xi−1 + Xi − Xi−1

τ i
(s − (τ 0 + · · · + τ i−1)), (5)

τ 0 + · · · + τ i−1 ≤ s ≤ τ 0 + · · · + τ i, i = 1, 2, . . . ,

where τ 0 := 0 for notational convenience. Since, for i = 0, 1, 2, . . . , Xi = X̄0,x(τ
0 + · · · +

τ i) = X0,x(τ
0 + · · · + τ i), and both the trajectory X0,x(s) and the line segment (5) of the

polygonal line connecting the points (τ 0 + · · · + τ i−1, Xi−1) and (τ 0 + · · · + τ i, Xi), i > 0,
belong to a band of width 2�, we arrive at the following proposition.

Proposition 1. Approximation (5) satisfies

sup
0≤s<∞

|X̄0,x(s) − X0,x(s)| ≤ 2�,

i.e. this approximation is uniform.

Remark 1. If one is only interested in CIR trajectories on a time interval [0, T ], one may carry
out the construction (5) until

τ 0 + · · · + τ i−1 ≤ T ≤ τ 0 + · · · + τ i

and truncate the interpolation at T accordingly.
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2.2. Probabilities connected with attainability of boundaries and boundary-value prob-
lems for the probabilities

If 0 ≤ x < x1 + �/2 then X0,x(s) with probability 1 attains x2 for some time τ(x) which
is the first-passage time of X0,x(s) to the upper bound of the band [0, x2). If xn − �/2 ≤ x <

xn +�/2, n = 2, 3, . . . , then X0,x(τ (x)), where τ(x) is the first-passage time of the trajectory
X0,x(s) to the boundary of the band (xn−1, xn+1), attains either xn−1 or xn+1 with probability 1.
Let pl(x) be the probability P(X0,x(τ (x)) = xn−1) and pr(x) := P(X0,x(τ (x)) = xn+1).
Clearly, pl(x)+pr(x) = 1. Although we need pl(x) and pr(x) for xn −�/2 ≤ x < xn +�/2
only, we shall consider these functions for xn−1 ≤ x < xn+1. The probability pl(x) satisfies
the one-dimensional Dirichlet problem for the elliptic equation (see [24, Chapter 6, Section 3]),

Lp = 0, pl(xn−1) = 1, pl(xn+1) = 0 (6)

with L defined in (2). From (6), we have (in particular, for xn − �/2 ≤ x < xn + �/2, n =
2, 3, . . . )

pl(x) =
∫ xn+1
x

ξ−2kλ/σ 2
e(2k/σ 2)ξ dξ∫ xn+1

xn−1
ξ−2kλ/σ 2 e(2k/σ 2)ξ dξ

; (7)

hence,

pr(x) = 1 − pl(x) =
∫ x

xn−1
ξ−2kλ/σ 2

e(2k/σ 2)ξ dξ∫ xn+1
xn−1

ξ−2kλ/σ 2 e(2k/σ 2)ξ dξ
. (8)

In order to simulate τ(x) and X0,x(τ (x)), we need the probabilities

u(t, x) := P(τ (x) < t) for 0 ≤ x < x1 + 1
2�, (9)

and

ul(t, x) := P(τ (x) < t, X0,x(τ (x)) = xn−1), (10)

ur(t, x) := P(τ (x) < t , X0,x(τ (x)) = xn+1), for xn − 1
2� ≤ x < xn + 1

2�, n = 2, 3, . . . .

2.2.1. The region xn − �/2 ≤ x < xn + �/2, n = 2, 3, . . . . If xn − �/2 ≤ x < xn +
�/2, n = 2, 3, . . . , we use (10) in the following way. First, we simulate X0,x(τ (x)) according
to probabilities (7) and (8). If we have X0,x(τ (x)) = xn−1 then for simulating τ(x), we use
the conditional probability

P(τ (x) < t | X0,x(τ (x)) = xn−1) = ul(t, x)

pl(x)
,

and if X0,x(τ (x)) = xn+1, we use

P(τ (x) < t | X0,x(τ (x)) = xn+1) = ur(t, x)

pr(x)
.

The functions ul(t, x) and ur(t, x) satisfy

∂u

∂t
= Lu, t > 0, xn−1 < x < xn+1, n = 2, 3, . . . . (11)
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The function ul(t, x) satisfies the initial condition

ul(0, x) = 0, (12)

and the boundary conditions

ul(t, xn−1) = 1, ul(t, xn+1) = 0. (13)

The function ur(t, x) satisfies the initial condition

ur(0, x) = 0, (14)

and the boundary conditions

ur(t, xn−1) = 0, ur(t, xn+1) = 1. (15)

To obtain homogeneous boundary conditions for the problem (11)–(13), we introduce

vl = ul − xn+1 − x

xn+1 − xn−1
,

and for the problem (11), (14)–(15), we introduce

vr = ur − x − xn−1

xn+1 − xn−1
.

The function vl satisfies (for the corresponding n = 2, 3, . . . )

∂vl

∂t
= 1

2
σ 2x

∂2vl

∂x2 + k(λ − x)

[
∂vl

∂x
− 1

xn+1 − xn−1

]
, t > 0, xn−1 < x < xn+1, (16)

with the initial condition
vl(0, x) = − xn+1 − x

xn+1 − xn−1
(17)

and the homogeneous boundary conditions

vl(t, xn−1) = 0, vl(t, xn+1) = 0. (18)

The function vr satisfies (for the corresponding n = 2, 3, . . . )

∂vr

∂t
= 1

2
σ 2x

∂2vr

∂x2 + k(λ − x)

[
∂vr

∂x
+ 1

xn+1 − xn−1

]
, t > 0, xn−1 < x < xn+1, (19)

with the initial condition
vr(0, x) = − x − xn−1

xn+1 − xn−1
(20)

and the homogeneous boundary conditions of the form (18).
In order to construct the Green function of problem (16)–(18), we apply the method of sepa-

ration of variables. By separation of variables, we obtain T (t)X(x) as elementary independent
solutions to the homogeneous equation corresponding to (16), i.e.

∂v

∂t
= Lv,
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satisfying (18). We thus have
T ′(t) + μT (t) = 0,

i.e. T (t) = T0e−μt , μ > 0, and
1
2σ 2xX′′ + k(λ − x)X′ + μX = 0 (21)

with the homogeneous boundary conditions

X(xn−1) = X(xn+1) = 0. (22)

Introduce

p(x) := exp

(
− 2k

σ 2 x

)
x2kλ/σ 2

, q(x) := 2

σ 2x
p(x),

xn−1 < x < xn+1, n = 2, 3, . . . .

Then (21) can be expressed in the self-adjoint form

(p(x)X′)′ + μq(x)X = 0, X(xn−1) = X(xn+1) = 0. (23)

On the intervals (xn−1, xn+1), n = 2, 3, . . . , we have p(x) > 0, q(x) > 0, i.e. the Sturm–
Liouville problem (23) is regular. Therefore, all the eigenvalues μj , j = 1, 2, . . . , of problem
(23) (hence, (21) and (22)) are positive. Let Xj , j = 1, 2, . . . , be the corresponding eigen-
functions which are orthogonal with respect to the scalar product

〈f, g〉 :=
∫ xn+1

xn−1

f (y)g(y)q(y) dy.

It is well known that the solution of the problem (16)–(18) is equal to

vl(t, x) =
∫ xn+1

xn−1

G(x, ξ, t)q(ξ)vl(0, ξ) dξ

+
∫ t

0

∫ xn+1

xn−1

G(x, ξ, t − s)q(ξ)

[
−k(λ − ξ)

1

xn+1 − xn−1

]
dξ ds,

where the Green function is

G(x, ξ, t) =
∞∑

j=1

e−μj t Xj (x)Xj (ξ)

‖Xj‖2 , ‖Xj‖2 =
∫ xn+1

xn−1

q(ξ)X2
j (ξ) dξ.

The function vr(t, x) is found analogously.
The eigenvalues μj and eigenfunctions Xj can be found in terms of the solutions of the

confluent hypergeometric equation (the Kummer equation). Indeed, the general solution of the
linear equation (21) is given by

X(x) = C1	(b, c; ζ ) + C2�(b, c; ζ ),

where C1 and C2 are arbitrary constants,

b = 2kλ

σ 2 + μ

k
, c = 2kλ

σ 2 ; ζ = − 2k

σ 2 x

and 	(b, c; ζ ), �(b, c; ζ ) are the known linear independent solutions of the confluent hyper-
geometric equation

ζy′′
ζ ζ + (c − ζ )y′

ζ − by = 0

(see [4, Section 6.2]). The problem (19) and (20) is solved analogously.

https://doi.org/10.1017/apr.2016.66 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.66


1102 G. N. MILSTEIN AND J. SCHOENMAKERS

2.2.2. The region 0 ≤ x < x1 + �/2. If 0 ≤ x < x1 + �/2 then X0,x(τ (x)) = x2 with
probability 1 and in order to simulate τ(x) we use the probability (9). Here, we do not give
a method for computing the probability u(t, x) in (9) in the spirit of Section 2.2.1. As an
alternative, such a method will be presented in the next section in the context of another,
computationally more tractable approach. On the other hand, from a practical point of view,
one could apply the following approximate result derived in [22]:

u(t, x) ≈ 1 − 2xγ (2�)−γ
∞∑

m=1

J−2γ (π−2γ,m

√
x/2�)

π−2γ,mJ−2γ+1(π−2γ,m)

× exp

[
−σ 2π2−2γ,m

16�
t

]
, 0 ≤ x ≤ 2�,

where γ := 1
2 − kλ/σ 2, J−2γ is a Bessel function of the first kind, and π−2γ,m, m = 1, 2, . . .

are the positive zeros of J−2γ .
From a theoretical point of view, the developed approach can be applied for uniform

approximation of the solutions of a lot of other SDEs. However, in general, we will arrive
at a Sturm–Liouville problem where the eigenvalues and eigenfunctions cannot be expressed in
terms of well-studied special functions, as in the present section, where the probabilities ul(t, x)

and ur(t, x) can be found in terms of solutions of the Kummer equation. In the next section
we develop uniform approximation of the CIR process using the squared Bessel process.

3. Using squared Bessel processes

Due to [14], the solution X(s) = Xt,x(s) of (1) has the representation

X(s) = e−k(s−t)Y

(
σ 2

4k
(ek(s−t) − 1)

)
, s ≥ t, (24)

where Y (s) = Yt,x(s) denotes a squared Bessel process with dimension δ = 4kλ/σ 2 starting
at x, i.e. Y (s) satisfies

dY (s) = δ ds + 2
√

Y (s) dw(s), Y (t) = X(t) = x, (25)

with associated differential operator (generator)

G := δ
∂

∂y
+ 2y

∂2

∂y2 ; (26)

see also [26].

3.1. Method

Due to the autonomy of (1) and (24), one can start at t = 0. Let x > �. Let θ = θ(x) be
the first-passage time of the trajectory Y0,x(ϑ) to the boundary of the band (x −�, x +�), i.e.
Y0,x(θ(x)) is equal to either x −� or x +� and x −� < Y0,x(ϑ) < x +� for 0 ≤ ϑ < θ(x).
If x ≤ �, we denote by θ(x) the first-passage time of the trajectory Y0,x(s) to the upper bound
[0, 2�), i.e. Y0,x(θ(x)) = 2� and 0 ≤ Y0,x(s) < 2� for 0 ≤ s < θ(x).

Due to (24), the solution X0,x(s) of (1) is equal to

X0,x(s) = e−ksY0,x

(
σ 2

4k
(eks − 1)

)
, s ≥ 0.
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Let us introduce

τ(x) := 1

k
ln

(
1 + 4k

σ 2 θ(x)

)
.

For 0 ≤ s ≤ τ(x), we have (σ 2/4k)(eks − 1) ≤ θ(x). Hence, for these s, we have

x − � ≤ Y0,x

(
σ 2

4k
(eks − 1)

)
≤ x + �, x > �,

Y0,x

(
σ 2

4k
(eks − 1)

)
≤ 2�, x ≤ �.

Therefore,

(x − �)e−ks ≤ X0,x(s) ≤ (x + �)e−ks, x > �, 0 ≤ s ≤ τ(x), (27)

0 ≤ X0,x(s) ≤ 2�e−ks, x ≤ �, 0 ≤ s ≤ τ(x).

Let us introduce the interpolation

X̄0,x(s) := xe−ks + s

τ (x)
(X0,x(τ (x))ekτ(x) − x)e−ks, 0 ≤ s ≤ τ(x). (28)

For x > �, we then have, by (27),

(x − �)e−ks ≤ xe−ks − s

τ (x)
�e−ks ≤ X̄0,x(s) ≤ xe−ks + s

τ (x)
�e−ks ≤ (x + �)e−ks,

and by using (27) again,
|X̄0,x(s) − X0,x(s)| ≤ 2�e−ks . (29)

For x ≤ �, we have, by (27),

0 ≤ xe−ks − s

τ (x)
xe−ks ≤ X̄0,x(s) ≤ xe−ks + s

τ (x)
(2� − x)e−ks ≤ 2�e−ks

yielding (29) for x ≤ � also.
Denote X0 := x and set

θ0 = 0, θ1 = θ(X0), τ 0 = 0, τ 1 = 1

k
ln

(
1 + 4k

σ 2 θ1
)

, (30)

X1 = X0,X0(τ 1) = e−kτ 1
Y0,X0(θ1),

where Y0,X0(θ1) = X0 ± � if X0 > � and Y0,X0(θ1) = 2� if X0 ≤ �, and construct the
interpolation (28) for τ 0 ≤ s ≤ τ 1.

Then we set

θ2 = θ(X1), τ 2 = 1

k
ln

(
1 + 4k

σ 2 θ2
)

, (31)

X2 = X0,X1(τ 2) = Xτ 1,X1(τ 1 + τ 2) = X0,X0(τ 1 + τ 2) = e−kτ 2
Y0,X1(θ2),

where Y0,X1(θ2) = X1 ± � if X1 > � and Y0,X1(θ2) = 2� if X1 ≤ �, and construct the
interpolation (28) for τ 1 ≤ s ≤ τ 2.
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Continuing, we obtain the sequence

θm = θ(Xm−1), τm = 1

k
ln

(
1 + 4k

σ 2 θm

)
, (32)

Xm = X0,Xm−1(τm) = Xτ 0+···+τm−1,Xm−1(τ 0 + · · · + τm)

= X0,X0(τ 0 + · · · + τm)

= e−kτm

Y0,Xm−1(θm), m = 1, 2, . . . .

and a piecewise interpolated trajectory

X̄0,x(s) =
(

Xi−1 + s − (τ 0 + · · · + τ i−1)

τ i
(Xiekτ i − Xi−1)

)
e−k(s−(τ 0+···+τ i−1)), (33)

τ 0 + · · · + τ i−1 ≤ s ≤ τ 0 + · · · + τ i, i = 1, 2, . . . .

The points (0, X0), (τ 1, X1), . . . , (τ 1+· · ·+τm, Xm), . . . belong to the trajectory (s, X0,x(s)).
Unlike the modeling in Section 2, the difference between Xm−1 and Xm is not a multiple of �

here because of the presence of the random factor e−kτm
. Also, the Xm generally do not jump

over a pre-fixed grid such as in Section 2. Now, obviously, for the present method we have the
following proposition analogue to Proposition 1.

Proposition 2. Approximation (33) is uniform and satisfies

sup
0≤s<∞

|X̄0,x(s) − X0,x(s)| ≤ 2�.

If the approximation is only needed on a time interval [0, T ], a remark similar to Remark 1
applies.

3.2. Simulating θ(x) and Y0,x(θ(x))

In Section 2 we developed a method of simulating the first-passage time τ(x) of the solution
X0,x(s) of (1). Here, we develop analogous methods for simulating θ(x) and Y0,x(θ(x)) and
then use algorithm (30)–(33) in order to obtain a uniform approximation of solutions of (1).
Due to the simplicity of (25) in comparison with (1), such an approach is more effective than
the direct one.

3.2.1. The region x > �. The time θ(y) is the first-passage time of the solution Y0,y(s) of (25)
to the boundary of the band (x −�, x +�), x −� ≤ y ≤ x +�. Let pl(y) be the probability
P(Y0,y(θ(y)) = x − �) and pr(y) = P(Y0,y(θ(y)) = x + �), x − � ≤ y ≤ x + �. Clearly,
pl(y) + pr(y) = 1. The probability pl(y) satisfies the one-dimensional Dirichlet problem for
the elliptic equation (see [24, Chapter 6, Section 3])

Gpl = 0, x − � < y < x + �, pl(x − �) = 1, pl(x + �) = 0 (34)

with G defined in (26). The solution pl(y) of problem (34) is equal to

pl(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y−2kλ/σ 2+1 − (x + �)−2kλ/σ 2+1

(x − �)−2kλ/σ 2+1 − (x + �)−2kλ/σ 2+1
, 2kλ/σ 2 �= 1,

ln
y

x + �

/
ln

x − �

x + �
, 2kλ/σ 2 = 1.
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Hence, the probability

pl(x) = P(Y0,x(θ(x)) = x−�) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x−2kλ/σ 2+1 − (x + �)−2kλ/σ 2+1

(x − �)−2kλ/σ 2+1 − (x + �)−2kλ/σ 2+1
, 2kλ/σ 2 �= 1,

ln
x

x + �

/
ln

x − �

x + �
, 2kλ/σ 2 = 1,

(35)
and pr(x) = 1 − pl(x).

In order to simulate θ(x) and Y0,x(θ(x)), we need the probabilities

u(t, y) = P(θ(y) < t), x − � ≤ y ≤ x + �,

and
ul(t, y) = P(θ(y) < t, Y0,y(θ(y)) = x − �), (36)

ur(t, y) = P(θ(y) < t, Y0,y(θ(y)) = x + �), for x − � ≤ y ≤ x + �.

We use (36) in the following way. First, we simulate Y0,x(θ(x)) according to the probabilities
pl(x) and pr(x). If we have Y0,x(θ(x)) = x − � then in order to simulate θ(x), we use the
conditional probability

P(θ(x) < t | Y0,x(θ(x)) = x − �) = ul(t, x)

pl(x)
(37)

and if Y0,x(θ(x)) = x + �, we use

P(θ(x) < t | Y0,x(θ(x)) = x + �) = ur(t, x)

pr(x)
.

The functions ul(t, y) and ur(t, y) are the solutions of the first boundary-value problem of
parabolic-type (see [24, Chapter 5, Section 3])

∂u

∂t
= Gu, t > 0, x − � < y < x + �. (38)

The function ul(t, y) satisfies the initial condition

ul(0, y) = 0, (39)

and the boundary conditions

ul(t, x − �) = 1, ul(t, x + �) = 0. (40)

To obtain homogeneous boundary conditions for problem (38)–(40), we introduce

vl(t, y) = ul(t, y) − x + � − y

2�
. (41)

The function vl(t, y) satisfies

∂vl

∂t
= 2y

∂2vl

∂y2 + 4kλ

σ 2

[
∂vl

∂y
− 1

2�

]
, t > 0, x − � < y < x + �, (42)
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with the initial condition

vl(0, y) = −x + � − y

2�
(43)

and the homogeneous boundary conditions

vl(t, x − �) = 0, vl(t, x + �) = 0. (44)

Analogous equations can be written for ur(t, y) and vr(t, y).
In connection with the problem (42)–(44), we use the method of separation of variables to

the homogeneous equation
∂v

∂t
= Gv

with the homogeneous boundary conditions

v(t, x − �) = 0, v(t, x + �) = 0. (45)

For elementary independent solutions T (t)Y(y), we have

T ′

T
= 2yY′′ + δY′

Y
=: −μ = constant,

and for Y(y), we then have the corresponding Sturm–Liouville problem

2yY′′ + δY′ + μY = 0, (46)

Y(x − �) = 0, Y(x + �) = 0,

along with
T (t) = T0e−μt .

It is straightforward to check that elementary solutions of (46) are given in terms of Bessel
functions by

Y1(y) = yγ J−2γ (
√

2μy), Y2(y) = yγ J2γ (
√

2μy) (47)

with

γ = 1

2
− kλ

σ 2 = 1

2
− δ

4
(48)

(see [22]). If 2γ is not an integer, Y1 and Y2 are independent. If 2γ is an integer, i.e. when

2kλ

σ 2 = 1, 2, . . . (49)

these solutions are dependent however. In this case, we may take as a second independent
solution

Y2(y) = yγ Y2γ (
√

2μy), (50)

where Y2γ is a Bessel function of the second kind. Note that for (49), it follows that σ 2 ≤ 2kλ,
i.e. the boundary 0 is not attainable. We omit the analysis connected with (49) since it is similar
to the derivations below.

Due to the boundary condition (45), the eigenvalues of the problem (46) follow by requiring
that the system

C1J2γ (
√

2μ(x + �)) + C2J−2γ (
√

2μ(x + �)) = 0,

C1J2γ (
√

2μ(x − �)) + C2J−2γ (
√

2μ(x − �)) = 0
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has a nontrivial solution. Thus, we must have

J2γ (
√

2μ(x + �))J−2γ (
√

2μ(x − �)) − J2γ (
√

2μ(x − �))J−2γ (
√

2μ(x + �)) = 0. (51)

Let us denote the solutions with 0 < μ1 < μ2 < · · ·, and the respective eigenfunctions by

Yj (y) = J−2γ (
√

2μj (x + �))yγ J2γ (
√

2μjy)

− J2γ (
√

2μj (x + �))yγ J−2γ (
√

2μjy). (52)

We note that (46) can be written in the selfadjoint form

(p(y)Y′)′ + μq(y)Y = 0 with p(y) = yδ/2, q(y) = 1
2yδ/2−1, (53)

i.e. eigenfunctions corresponding to different eigenvalues are orthogonal with respect to the
scalar product

〈f, g〉 :=
∫ x+�

x−�

f (y)g(y)q(y) dy.

Thus, the Green function of the considered problem is given by

G(y, η, t) =
∞∑

j=1

e−μj t Yj (y)Yj (η)

‖Yj‖2 , (54)

‖Yj‖2 =
∫ x+�

x−�

q(ξ)Y2
j (ξ) dξ,

and the solution to (42) is equal to

vl(t, y) =
∫ x+�

x−�

G(y, η, t)q(η)vl(0, η) dη

+
∫ t

0

∫ x+�

x−�

G(y, η, t − s)q(η)

[
−4kλ

σ 2

1

2�

]
dη ds. (55)

3.2.2. The region x ≤ �. Let us recall that the scale density s(y) and the speed density m(y)

of the process (25) determined via the relation

1

2

1

m(y)

d

dy

(
1

s(y)

d

dy

)
= δ

d

dy
+ 2y

d2

dy2 ,

where the right-hand side is the generator of the process (25) (see, for example, [19, Chapter 4]
and [20, Chapter 6]). It is straightforward to obtain

s(y) = Cy−δ/2 and m(y) = 1

4C
yδ/2−1 for arbitrary C > 0.

Case I: δ/2 = 2kλ/σ 2 ≥ 1. In this case, we have, for any r > 0,

S(0, r] :=
∫ r

0
s(y) dy = ∞, (56)

M(0, r] :=
∫ r

0
m(y) dy < ∞, �(0, r] :=

∫ r

0
S(0, h]m(h) dh = ∞,

N(0, r] :=
∫ r

0
m(η) dη

∫ r

η

s(y) dy < ∞.

https://doi.org/10.1017/apr.2016.66 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.66


1108 G. N. MILSTEIN AND J. SCHOENMAKERS

As a consequence of (56), for the process Y in (25), the boundary 0 is unattainable if it starts
somewhere in Y (0) > 0. Therefore, the state space of Y is considered to be (0, ∞) in this case.
For details, see, for example, [20].

Case II: δ/2 = 2kλ/σ 2 < 1. In this case, we have, for any r > 0,

S(0, r] :=
∫ r

0
s(y) dy < ∞, (57)

M(0, r] :=
∫ r

0
m(y) dy < ∞, (58)

�(0, r] :=
∫ r

0
S(0, h]m(h) dh < ∞,

N(0, r] :=
∫ r

0
m(η) dη

∫ r

η

s(y) dy < ∞. (59)

As a consequence of (57) and (58), the point 0 is a regular boundary point of Y in (25) (see [20]).
That is, 0 is attainable for Y from any starting point Y (0) > 0, and the process starts afresh
after reaching 0 (strong Markov property), and reaches any positive level in finite time due to
(59). Since no atomic speed mass at the boundary is imposed, the boundary 0 is reflecting.

Let θ(y) be the first-passage time of the solution Y0,y(s) to (25) of the level 2�, 0 ≤ y ≤ 2�,
and let

q(t, y) := P(θ(y) ≥ t). (60)

Although we need q(t, y) for 0 ≤ y ≤ � only, we shall consider boundary-value problems for
q with 0 ≤ y ≤ 2�.

Proposition 3. (Case I.) If 2kλ/σ 2 ≥ 1, the probability q in (60) satisfies and is uniquely
determined as a bounded solution of the following mixed initial-boundary-value problem:

∂q

∂t
= Gq, 0 < y < 2�, (61)

q(0, y) = 1, (62)

q(t, 2�) = 0, q(t, 0) is bounded. (63)

Proof. A bounded solution q (with bounded ∂q/∂y) in the considered case can be constructed
by separation of variables (see Proposition 5). Due to the boundedness of q, we may take the
Laplace transform

q̂(α, y) :=
∫ ∞

0
e−αtq(t, y) dt, (64)

and then take the Laplace transform of (61)–(63) with respect to t , yielding the system

Gq̂ = αq̂(α, y) − 1, q̂(α, 2�) = 0, q̂(α, 0) is bounded. (65)

Then, by setting q̂ =: (1 − q̃)/α, we obtain

Gq̃ = αq̃, q̃(α, 2�) = 1, q̃(α, 0) is bounded. (66)

Since the boundary 0 is not attainable in this case, we may apply the Itô formula to

Q(s, Y (s)) := e−αs q̃(α, Y (s)),
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where Y (s) = Y0,y(s) is the solution of (25). By using (66), we then obtain

dQ = e−αs q̃y(α, Y (s))2
√

Y (s) dw(s),

and so we have

e−αθ(y)q̃(α, Y (θ(y))) − q̃(α, y) =
∫ θ(y)

0
e−αs2

√
Y (s)q̃y(α, Y (s)) dw(s).

Now taking expectations and taking into account (66), it follows that

q̃(α, y) = E[e−αθ(y)].
We thus have

q̃(α, y) = E[e−αθ(y)] = −
∫ ∞

0
e−αt dP(θ(y) ≥ t) (67)

= 1 − α

∫ ∞

0
P(θ(y) ≥ t)e−αt dt, (68)

whence,

q̂(α, y) =
∫ ∞

0
P(θ(y) ≥ t)e−αt dt, (69)

and so
q(t, y) = P(θ(y) ≥ t) (70)

by uniqueness of the Laplace transform. �
Proposition 4. (Case II.) Let 2kλ/σ 2 < 1. If q(t, y) is a bounded solution of the mixed
initial-boundary-value problem consisting of (61)–(63), and the additional boundary condition

lim
y↓0

qy(t, y)

s(y)
= lim

y↓0
qy(t, y)y2kλ/σ 2 = 0 uniformly in 0 < t < ∞, (71)

then (60) holds, and so, in particular, the solution of (61)–(63), and (71), is unique. The
existence of q(t, y) follows by construction using the method of separation of variables, see
Proposition 5.

Proof. Let q(t, y) be a solution as stated. Due to the boundedness of q the Laplace transform
(64) exists as above, and by taking the Laplace transform of (61)–(63), and (71), with respect
to t , we obtain the system consisting of (65) and, additionally,

lim
y↓0

q̂y(α, y)

s(y)
= lim

y↓0
q̂y(α, y)y2kλ/σ 2 = 0.

Now by setting q̂ =: (1 − q̃)/α, we obtain the system consisting of (66), supplemented with

lim
y↓0

q̃y(α, y)

s(y)
= lim

y↓0
q̃y(α, y)y2kλ/σ 2 = 0.

The results in [19, Sections 4.5 and 4.6] (see also [21]) then imply that

q̃(α, y) = E[e−αθ(y)],
and finally, we obtain

q(t, y) = P(θ(y) ≥ t)

analogously to (67)–(70). �
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Remarkably, by the next proposition, (60) can be represented by one and the same expression
for both case I and case II.

Proposition 5. For both case I and case II, the probability q(t, y) in (60) satisfies

q(t, y) = 2yγ (2�)−γ
∞∑

m=1

J−2γ (π−2γ,m

√
y/2�)

π−2γ,mJ−2γ+1(π−2γ,m)
exp

[
−π2−2γ,m

4�
t

]
, 0 ≤ y ≤ 2�,

(72)
where with γ as in (48), J−2γ is the Bessel function of the first kind with parameter −2γ , and
π−2γ,m, m = 1, 2, . . . is the increasing sequence of positive zeros of J−2γ .

Proof. We apply the method of separation of variables. We seek elementary solutions
T (t)Y(y) satisfying (61); hence,

2yY′′T + δY′T = YT ′.

So, we may set
T ′

T
= 2yY′′ + δY′

Y
=: −μ = constant

and obtain the system

T (t) = T0e−μt , 2yY′′ + δY′ + μY = 0. (73)

We recall that elementary independent solutions of (46) are given in terms of Bessel functions,
see (47)–(50).

(i) In case I, where 2kλ/σ 2 ≥ 1; hence, γ ≤ 0, the only feasible elementary solutions are
T (t)Y(y), where Y is of the type

Y1(y) = yγ J−2γ (
√

2μy) = entire function of y not vanishing at y = 0. (74)

Indeed, if 2γ is not an integer, we have, in particular, that 2γ < 0, and then the second
independent solution is of type

Y2(y) = yγ J2γ (
√

2μy) = y2γ × entire function of y not vanishing at y = 0, (75)

which is unbounded for y ↓ 0. On the other hand, if 2γ = 0, −1, −2, . . . , the second
independent solution is of type

Y2(y) = yγ Y2γ (
√

2μy)

(see (50)), which is also unbounded for y ↓ 0.

(ii) In case II, where 2kλ/σ 2 < 1, we have γ > 0 and, in particular, that 2γ is not an integer.
Then both solutions (74) and (75) are bounded for y ↓ 0. However, the solution (75),
which is, by (48), of type

y1−2kλ/σ 2 × entire function of y not vanishing at y = 0,

yields an elementary solution T (t)Y(y) that clearly violates the boundary condition (71),
while (71) is obviously satisfied for elementary solutions T (t)Y(y) with Y of type (74).
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As a result, for both case I and case II, solutions of type (74) are feasible only. That is, we
consider

Yγ (y) := Y(y) = yγ J−2γ (
√

2μy). (76)

In view of boundary condition (63), we next require Yγ (2�) = 0 for both cases, leading to the
eigenvalues

μm := π2−2γ,m

4�
,

and the elementary solutions T (t)Yγ,m(y) with

Yγ,m(y) := yγ J−2γ (
√

2μmy) = yγ J−2γ

(
π−2γ,m

√
y

2�

)
, m = 1, 2, . . . . (77)

Now, as solution candidate for (60), we consider the Fourier–Bessel series

q(t, y) =
∞∑

m=1

βme−(π2−2γ,m/4�)tYγ,m(y), 0 ≤ y ≤ 2�, (78)

by (73). The initial condition (62) then yields

1 =
∞∑

m=1

βmYγ,m(y),

from which the coefficients (βm)m=1,2,... may be solved straightforwardly by a well-known
orthogonality relation for Bessel functions as in [22, Appendix C]. We recall it for completeness.
The well-known relation∫ 1

0
zJ−2γ (π−2γ,kz)J−2γ (π−2γ,k′z) dz = δk,k′

2
J 2−2γ+1(π−2γ,k)

straightforwardly implies that∫ 2�

0
Yγ,m(y)Yγ,m′(y)y−2γ dy = 2�δm,m′J 2−2γ+1(π−2γ,m).

Further, we have∫ 2�

0
Yγ,m(y)y−2γ dy =

∫ 2�

0
y−γ J−2γ

(
π−2γ,m

√
y

2�

)
dy

= 2(2�)−γ+1
∫ 1

0
z−2γ+1J−2γ (π−2γ,mz) dz

= 2(2�)−γ+1 J−2γ+1(π−2γ,m)

π−2γ,m

,

and so we obtain

βm = 2(2�)−γ

π−2γ,mJ−2γ+1(π−2γ,m)
,

from which, with (77) and (78), expression (72) follows.
Finally, since the series (72) converges point-wise and uniformly on any compact subset

of R>0 × (0, 2�), it is straightforward to check that (72) is a solution of the mixed initial-
boundary-value problem of Proposition 3 in case I, and of the mixed initial-boundary-value
problem of Proposition 4 in case II. In particular, (72) represents (60) in both cases. �
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Remark 2. It should be noted that in [22] the boundary condition (71), necessary for the case

2kλ

σ 2 < 1, (79)

i.e. case II in the present setting, was not considered there in fact. As such, the related proof
there was incomplete. However, the above analysis shows that in both case I and case II only
solutions of type (76) are feasible. Therefore, the results regarding (60) in [22] go through for
(79) also.

4. Some guidelines for numerical implementation

In this section we consider some features regarding the numerical implementation of the
developed methods. In particular we focus on the method proposed in Section 3.

The region x > �. From a generic state (t, x) of the CIR process already constructed via (32),
we first proceed by simulating Y0,x(θ(x)). For this one may simulate a random variable U

uniformly distributed on [0, 1], and then set Y0,x(θ(x)) = x − � if U < pl(x) with pl(x)

given in (35), otherwise Y0,x(θ(x)) = x +�. Now suppose that Y0,x(θ(x)) = x −�, the other
case is analogous. We next need to simulate θ(x) by sampling from the conditional distribution
(37). Once this distribution is computed, we obtain θ = θ(x) by solving

ul(θ, x)

pl(x)
= U, (80)

where U ∼ Uniform[0, 1], for θ , and then obtain a new state (tnew, xnew) by setting

τ := 1

k
ln

(
1 + 4k

σ 2 θ

)
tnew := t + τ, xnew := e−kτ (x − �).

Due to (33), we thus have, for t ≤ s ≤ tnew, the uniform interpolation

X̄0,x(s) =
(

x + s − t

tnew − t
(xnewek(tnew−t) − x)

)
e−k(s−t) (81)

that satisfies
|X̄0,x(s) − X0,x(s)| ≤ 2�, t ≤ s ≤ tnew.

Of course, the main issue is the computation of ul(θ, x) in (80). By taking y equal to x in (41),
(54), and (55), we obtain, after a few elementary manipulations,

ul(θ, x) = 1

2
− 2kλ

�σ 2

∞∑
j=1

1

μj

∫ x+�

x−�

Yj (x)Yj (η)

‖Yj‖2 q(η) dη

+ 2kλ

�σ 2

∞∑
j=1

e−μj θ

μj

∫ x+�

x−�

Yj (x)Yj (η)

‖Yj‖2 q(η) dη

+
∞∑

j=1

∫ x+�

x−�

e−μj θ Yj (x)Yj (η)

‖Yj‖2 q(η)vl(0, η) dη.

https://doi.org/10.1017/apr.2016.66 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.66


Uniform approximation of the CIR process 1113

Since ul(θ, x) ↑ pl(x) for θ ↑ ∞, we must have

1

2
− 2kλ

�σ 2

∞∑
j=1

1

μj

∫ x+�

x−�

Yj (x)Yj (η)

‖Yj‖2 q(η) dη = pl(x)

and, thus, by using (43), taking into account (53) and some rearranging, we obtain

ul(θ, x) = pl(x) +
∞∑

j=1

e−μj θ Yj (x)

‖Yj‖2

((
kλ

μjσ 2 − x + �

4

)
1

�

∫ x+�

x−�

Yj (η)η2kλ/σ 2−1 dη

+ 1

4�

∫ x+�

x−�

Yj (η)η2kλ/σ 2
dη

)
. (82)

In a similar way, it can be shown that

ur(θ, x) = pr(x) −
∞∑

j=1

Yj (x)

‖Yj‖2 e−μj θ

((
kλ

μjσ 2 − x − �

4

)
1

�

∫ x+�

x−�

Yj (η)η2kλ/σ 2−1 dη

+ 1

4�

∫ x+�

x−�

Yj (η)η2kλ/σ 2
dη

)
. (83)

For small �, the integrals in (82) and (83) may be computed accurately by a suitable quadra-
ture formula while the first integral, in (82) and (83) respectively, may require some refined
quadrature procedure in the case where 2kλ/σ 2 < 1 and x − � is close to 0. Further, typically
the eigenvalues μj tend to ∞ quite rapidly as j tends to ∞, see Example 1 below. Therefore,
it is usually enough to compute only the first few terms in the series in (82). Finally, the first
few eigenvalues μj have to be computed numerically from the transcendental equation (51).
In this respect, we note that there are nowadays extensive C++ libraries (or libraries for other
program languages) available, that include transcendental functions and equation solvers for
instance, in order to carry out such procedures.

The region x ≤ �. When a generic state (t, x) falls in this region we need to simulate θ = θ(x)

from the distribution due to (72). For this, we may solve the equation

1 − q(θ, x) = V, (84)

where V ∼ Uniform[0, 1], for θ , and a new state (tnew, xnew) is then obtained by setting

τ := 1

k
ln

(
1 + 4k

σ 2 θ

)
tnew := t + τ, xnew := 2�e−kτ ,

and the uniform interpolation between (t, x) and (tnew, xnew) is carried out by (81) again.
It should be noted that, in principle, root searching or other numerical techniques mentioned

above cause bias errors. However, the size of these errors can be kept very small (almost
negligible) by using efficient numerical procedures. In fact, an in-depth treatment of numerical
algorithms and their error analysis based on the developed approach would require further study
and is considered beyond the scope of this paper. Below we restrict ourselves to an example
which shows the viability of the results obtained.
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Example 1. Let us illustrate the method for 2kλ/σ 2 = 1
2 ; hence, γ = 1

4 . In fact, this case is at
the borderline of applicability of the method presented in [22], where σ 2 < 4kλ was required.

The region x > �. For γ = 1
4 , we have

J1/2(z) =
√

2

πz
sin z, J−1/2(z) =

√
2

πz
cos z (85)

and, thus, (51) implies that

sin(
√

2μ(x + �)) cos(
√

2μ(x − �)) − sin(
√

2μ(x − �)) cos(
√

2μ(x + �)) = 0;

hence,

sin(
√

2μ(x + �) − √
2μ(x − �)) = 0,

i.e.

μj = j2π2

8�2 (
√

x + � + √
x − �)2. (86)

Thus, for the eigenfunctions (52), we may take

Yj (y) = sin(
√

2μjy − √
2μj (x − �)), (87)

while

‖Yj‖2 =
∫ x+�

x−�

1

2
ξ−1/2 sin2(

√
2μjξ − √

2μj (x − �)) dξ = �√
x + � + √

x − �
. (88)

Further, in (82) and (83), we obtain, via straightforward calculus,

∫ x+�

x−�

Yj (η)η2kλ/σ 2
dη

=
∫ x+�

x−�

η1/2 sin(
√

2μjη − √
2μj (x − �)) dη

= −2�
√

2√
μj

+ 2
√

� + x

μj

sin(
√

2μj (x + �) − √
2μj (x − �))

+ 2
√

2(μj (x + �) − 1)

μj
√

μj

sin2
(√

μj (x + �)

2
−

√
2μj (x − �)

2

)
(89)

and ∫ x+�

x−�

Yj (η)η2kλ/σ 2−1 dη =
∫ x+�

x−�

η−1/2 sin(
√

2μjη − √
2μj (x − �)) dη (90)

= 2
√

2√
μj

sin2
(√

μj (x + �)

2
−

√
μj (x − �)

2

)
.

Now, by substituting (87), (88), (86) (partially), (89), and (90) into (82) and (83), we arrive,
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after some algebra, at

ul(θ, x) = pl(x) +
∞∑

j=1

e−μj θ sin(
√

2μjx − √
2μj (x − �))

×
(

− 2

jπ
+ 4

√
x + �

j2π2(
√

x + � + √
x − �)

× sin(
√

2μj (x + �) − √
2μj (x − �))

)
, (91)

and

ur(θ, x) = pr(x) +
∞∑

j=1

e−μj θ sin(
√

2μjx − √
2μj (x + �))

×
(

2

jπ
+ 4

√
x − �

j2π2(
√

x + � + √
x − �)

× sin(
√

2μj (x + �) − √
2μj (x − �))

)
, (92)

respectively, where, due to (35),

pl(x) = 1 − pr(x) =
√

x + � − √
x√

x + � − √
x − �

,

and μj is given by (86).

Remark 3. Let us note that the eigenvalues (86) blow up with rate j2 as j ↑ ∞ and with �−2

as � ↓ 0; that is, for a fixed θ > 0 the series (91) and (92) will converge very fast. Thus, in
particular, when � is small, the first few terms of the series are already sufficient to obtain a
very high accuracy for ul(θ, x) and ur(θ, x), respectively.

The region x ≤ �. By taking γ = 1
4 in (72), using (85), and the fact that

π−1/2,m = 1
2 (2m − 1)π, m = 1, 2, . . . ,

we obtain

q(θ, y) = 4

π

∞∑
m=1

(−1)m−1

2m − 1
cos

(
(2m−1)π

√
y

8�

)
exp

[
− (2m − 1)2π2

16�
θ

]
, 0 ≤ y ≤ 2�,

(93)
and a remark similar to Remark 3 applies.

Remark 4. Besides the fact that, for given θ > 0, the series (91), (92), and (93) converge very
(exponentially) fast in the number of terms, the root search procedures for (80) and (84) can be
carried out very fast as well (by a bisection method, for instance), since the left-hand-sides of
(80) and (84) are increasing in θ .

It can be expected that for other parameter constellations similar convergence behavior can
be observed but a detailed analysis is considered beyond the scope of this paper, however.
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