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We consider the unbounded settling dynamics of a circular disk of diameter d and
finite thickness h evolving with a vertical speed U in a linearly stratified fluid of
kinematic viscosity ν and diffusivity κ of the stratifying agent, at moderate Reynolds
numbers (Re = Ud/ν). The influence of the disk geometry (diameter d and aspect
ratio χ = d/h) and of the stratified environment (buoyancy frequency N, viscosity and
diffusivity) are experimentally and numerically investigated. Three regimes for the
settling dynamics have been identified for a disk reaching its gravitational equilibrium
level. The disk first falls broadside-on, experiencing an enhanced drag force that can
be linked to the stratification. A second regime corresponds to a change of stability
for the disk orientation, from broadside-on to edgewise settling. This occurs when
the non-dimensional velocity U/

√
νN becomes smaller than some threshold value.

Uncertainties in identifying the threshold value is discussed in terms of disk quality.
It differs from the same problem in a homogeneous fluid which is associated with
a fixed orientation (at its initial value) in the Stokes regime and a broadside-on
settling orientation at low, but finite Reynolds numbers. Finally, the third regime
corresponds to the disk returning to its broadside orientation after stopping at its
neutrally buoyant level.

Key words: stratified flows, particle/fluid flows

1. Introduction
While the rising/settling dynamics of rigid objects in a homogeneous fluid has raised

considerable interest, the influence of a density stratification of the fluid on the motion
of a body is a much more complex problem which has gained interest in recent
years. Such a fluid environment is, however, encountered in many environmental and
industrial situations, where transport and mixing processes are related to the settling of
biomass or pollutants to the bottom of the ocean or in the atmosphere. In particular,
in marine biology it is desirable to gain a better understanding of the dynamics of
microorganisms in a stratified environment (MacIntyre, Alldredge & Gotschalk 1995),
of their role in mixing (Wagner, Young & Lauga 2014; Wang & Ardekani 2015;
Houghton et al. 2018) and of their potential influence on the general circulation of the
oceans (Wunsch & Ferrari 2004). The influence of density gradients on the dispersal
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of pollutants is likewise an essential question for waste-water disposal in the ocean
(Koh & Brooks 1975), as it is for the quality of the atmosphere (Fernando et al.
2001). Also, atmospheric events, such as dust storms and volcanic eruptions (Carazzo
& Jellinek 2012), have a strong impact on air traffic and require further investigation
and modelling.

Among the variety of freely moving bodies investigated for a homogeneous fluid,
the disk of finite thickness is particularly interesting. Anisotropy of the body plays an
important role in the motion of the body, especially when the velocity of the body
departs from its principal axis, corresponding to axial symmetry (Ern et al. 2012).

For a disk of finite thickness h, diameter d and density ρd evolving in a
homogeneous fluid of density ρ and kinematic viscosity ν, the motion of the body
depends on three parameters. First we define the Archimedes number

Ar=√(ρd/ρ − 1)ghd/ν, (1.1)

which is analogous to the Reynolds number (Ud/ν) based on the gravitational velocity
Ug = √(ρd/ρ − 1)gh (g being the gravitational acceleration) instead of the observed
velocity U. The two other parameters are the density ratio R, and the geometrical
aspect ratio χ given by

R= ρd/ρ and χ = d/h. (1.2a,b)

The buoyancy-driven motion of a disk in a homogeneous fluid has been thoroughly
investigated experimentally (Willmarth, Hawk & Harvey 1964; Field et al. 1997;
Fernandes et al. 2007), numerically (Auguste, Fabre & Magnaudet 2010; Chrust,
Bouchet & Dušek 2013) and theoretically (Fabre, Auguste & Magnaudet 2008;
Tchoufag, Fabre & Magnaudet 2014). These works mainly focus on the different
non-rectilinear and non-vertical paths, along with their characteristics which are
observed above a critical Archimedes number Arc(R, χ) that depends on the density
ratio and the aspect ratio. Among these, periodic motions are observed and associated
with an unsteady wake and the periodic release of vortices. Below Arc, the body
follows a rectilinear vertical path associated with a stationary flow in the frame
moving with the body. This path corresponds to a broadside-on type of motion,
where the principal axis of the disk is aligned with the velocity. Disks dropped with
different initial inclination angles tend to orient themselves with their face normal
to the direction of motion, indicating that a single stable position exists for the disk
in this regime. This behaviour is observed for Reynolds numbers that are greater
than approximately 0.1 (this critical value depends on the body shape), whereas in
the Stokes regime, the body retains its original orientation as it falls (McNown &
Malaika 1950).

From a general point of view, in the case of a continuously stratified fluid
characterized by its Brunt–Väisälä frequency

N =
√
− g
ρ0

dρ
dz
, (1.3)

where ρ0 is a reference density for the background density ρ(z), the dynamics
of moving objects is governed by two additional parameters, the Froude number
Fr = U/Nd and the Schmidt (or Prandtl) number Sc= ν/κ (or Pr = ν/κ) describing
the competition between diffusive effects in the fluid, we denote κ as the diffusion
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coefficient of the stratifying agent. Experimental (Yick, Stocker & Peacock 2007;
Biró et al. 2008a) and numerical studies (Yick et al. 2009; Doostmohammadi, Dabiri
& Ardekani 2014) have been devoted to the freely falling sphere, showing that the
influence of the linearly stratified fluid can be considered as an increase of the drag
coefficient due to a buoyancy-driven jet at the rear of the object. The intensity and
structure of this jet, and more generally of the object wake, depend on the Reynolds,
Froude and Schmidt numbers. Similar results have been obtained for moving spheres
at fixed velocities (Torres et al. 2000; Hanazaki, Kashimoto & Okamura 2009a;
Hanazaki, Konishi & Okamura 2009b; Hanazaki, Nakamura & Yoshikawa 2015;
Okino, Akiyama & Hanazaki 2017), although the first observations of the peculiar
nature of the stratified wake for vertically moving spheres originates from much
earlier work (Mowbray & Rarity 1967; Ochoa & Van Woert 1977). In the limit
of low values of the Reynolds number (Re < 1), recent studies investigated the
influence of stratification on the Stokes dynamics of a sphere in sharply stratified
(two-layer) fluids (Srdić-Mitrović, Mohamed & Fernando 1999; Camassa et al. 2010)
and linearly stratified fluids (Ardekani & Stocker 2010), the history force experienced
by a vertically moving idealized object (Candelier, Mehaddi & Vauquelin 2014), the
mixing induced in the stratification (Wagner et al. 2014; Wang & Ardekani 2015) or
the specific case of porous objects (Kindler, Khalili & Stocker 2010; Camassa et al.
2013; Prairie et al. 2013).

The evolution of a disk in a linearly stratified fluid has not been studied to date. To
our knowledge, a single numerical study considers the case of an anisotropic object,
an ellipsoid, settling in a stratified fluid (Doostmohammadi & Ardekani 2014). (After
submission of this manuscript, another study focusing on the dynamics of a disk
encountering a stratified two-layer fluid (Mrokowska 2018) has been published.) The
main result associated with this study is a rotational influence of the stratification on
an initially tilted object, for Re' 0.1. Some studies on moving droplets in a stratified
ambient have also been realized (Blanchette & Shapiro 2012; Bayareh et al. 2013;
Martin & Blanchette 2017), but the influence of the anisotropic shape of such object
has not been studied.

This article presents the settling dynamics of a disk of finite thickness evolving
in a linearly stratified fluid, at moderate to low values of the Reynolds number. We
limit ourselves to low enough Reynolds numbers so that the orientation of the disk
in a homogeneous fluid would remain broadside-on. It provides a parametrization for
the steady stratified drag on a disk stably falling broadside-on for Reynolds numbers
ranging from 1 to 100, and Froude numbers varying from 0.01 to 10. It also discusses
the change of stability of the orientation from horizontal to vertical. The next section
(§ 2) provides the analytical guidelines for the problem description. The experimental
and numerical approaches are described in § 3, the results are presented in § 4 and
discussed in § 5 and conclusions are outlined in § 6.

2. Modelling of the settling dynamics in a stratified environment

We provide here a formulation for the description of a circular disk settling
in a linearly stratified fluid. Here, we neglected vertical variations of the kinematic
viscosity since it varies only of the order of two per cent over the whole water column.
We do not consider the case of sharp density interfaces, with spatial variations of N
and an inherently unsteady process, although several studies have provided analytical
models on the forces on solid or porous objects (Camassa et al. 2010; Kindler et al.
2010; Camassa et al. 2013).
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If we consider the settling dynamics of a disk with a fixed orientation with gravity
(broadside-on for instance), one can consider its dynamics to follow

ρd
dU
dt
=−(ρd − ρ(z))g+ 1

2h
ρ(z)CS

DU2 + 4
πd2h

(FH + FA), (2.1)

where FH and FA correspond to forces due to history and added-mass effects
(Srdić-Mitrović et al. 1999; Birò et al. 2008b; Doostmohammadi et al. 2014). In
the case of a sharp density stratification, other modelling approaches based on
perturbations of the Stokes flow problem have been successfully developed, but not
generalized to continuously stratified fluids (Camassa et al. 2010). We consider the
disk to have a quasi-steady dynamics when the buoyancy force is instantaneously
balanced by the drag force at any given depth. We define a stratified drag coefficient
CS

D, similarly to Yick et al. (2009), as

CS
D =

2(ρd/ρ(z)− 1)gh
U(z)2

. (2.2)

This is valid only if the temporal variations of the velocity are weak enough to neglect
added-mass effect and history forces, as will be justified later. It should be noted
that, in the case of a stratified fluid, even for a quasi-steady fall, several quantities
describing the dynamics vary with z including

R(z)= ρd/ρ(z), (2.3)

Re(z)= |U(z)|d
ν

, (2.4)

Ar(z)=
√
(ρd/ρ(z)− 1)ghd

ν
, (2.5)

Fr(z)= |U(z)|
Nd

. (2.6)

For a single experimental or numerical study, the different parameters can vary
over a range of values, however the ratio Re/Fr = Nd2/ν remains constant, and
the Archimedes and Reynolds numbers can be related by Ar2 = Re2CS

D/2 for a
quasi-steady fall.

In the limit case of a homogeneous fluid (1/Fr → 0), in the parameter range
Ar 6 50 associated with Re 6 130 for which the disk has a stable steady evolution
falling broadside-on, the drag coefficient must tend to (Pitter, Pruppacher & Hamielec
1973; Clift, Grace & Weber 1978)

CH
D =

64
πRe

(1+ 0.138Re0.792), (2.7)

valid for 1.5 . Re . 133 and for disks with χ > 1.
For any stratified fluid (Fr being finite), in the same parameter range, the drag

coefficient can be related to the one in a homogeneous fluid as follows

CS
D =CH

D{1+Π(Fr, Re,R, χ, Pr)}, (2.8)

with Π tending to zero when Fr tends to infinity.
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In the case of a spherical object evolving in a linearly stratified fluid, one can
consider that (2.8) should be written

CS
D =CH

D(1+ aRepFrq), (2.9)

where a, p and q are constants. These constants can be different, depending on
the nature of the stratified fluid through the Schmidt (or Prandtl) number, and on
the range of the Reynolds and Froude numbers that are considered, as suggested
by previous studies. Indeed, for a sphere at low enough values of the Reynolds
number (Re< 10), analytical studies have found power-law dependency with p= 1/3,
q = −2/3 (Zvirin & Chadwick 1975) or p = 1/4, q = −1/2 (Candelier et al. 2014)
is possible. Experimental and numerical studies (Yick et al. 2009; Kindler et al.
2010) have matched the values of p= 1/2, q=−1 and a' 1.9. As a remark, these
studies present the Richardson number Ri = Re/Fr2 as a more relevant parameter to
describe the stratified drag for regimes where buoyancy and viscous forces are at
play. Numerical studies (Bayareh et al. 2013) have found q=−2.8 and a' 21 for a
droplet rising at fixed values of the Reynolds number (Re= 396 and 792).

3. Experimental and numerical approaches
3.1. Experimental approach

We consider disks of finite thickness (or short-length cylinders) whose densities range
between 1020 and 1025 kg m−3. Their diameters d and heights h range from 5 to
20 mm and from 1 to 5 mm, respectively. The corresponding aspect ratios χ = d/h
are 3, 6 and 10, determined with an accuracy of 1 %. Disks have been manufactured
from cylindrical bars of Nylon and have a density close to (but always larger than)
the surrounding salt-stratified fluid. Based on the stratification realized, the parameter
R − 1 varies from 10−2 to zero, when the disk reaches its neutral depth. Small
imperfections in their design could lead to minor imperfections in the distribution of
mass, as discussed in § 4.4.

The disks are released in a large glass tank (50 cm high with a square cross-section
of 56 cm width) containing salt-stratified water (Sc' 700). The linearly stratified fluid
is obtained using the double-bucket method (Oster 1965; Economidou & Hunt 2009),
the stratification is measured using a microscale conductivity–temperature probe (from
PME) displaced using a linear traverse which, after calibration, had a precision of
1 % in conductivity and temperature. Small fluctuations of ρ(z) compared to a linear
profile can induce some uncertainties in the estimate of a mean value for N, of the
order of 5 %–10 % on average (see figure 2a for instance), with the specific case of a
small value of N reaching 40 %. Plastic wrap placed over the top of the tank prevents
perturbation induced by convection and evaporation.

The disks are released from a twizzer after being introduced just below the free
surface, and into a small cylinder at the centre of the tank, immersed down to 5 cm
below the free surface, as indicated in figure 1. The main reason for this process is
to maintain the disks near the centre of the tank and avoid large flow perturbations in
the tank when introducing or removing the twizzer. However, it should be noted that
the presence of the cylinder can also induce weak perturbations of the velocity and
inclination of the disks when they escape from the cylinder and evolve in the large
section of the tank. Below the cylinder, we consider their dynamics unbounded (the
distance to the sidewalls is larger than 15 diameters for the largest disk).

A pair of identical cameras (1280× 1024 pixels) image two perpendicular fields of
view of the tank at the sampling frequency between 1 and 5 Hz. Camera 1 images
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FIGURE 1. Schematic of the experimental set-up. (a) Overall three-dimensional view,
(b) horizontal and (c) side views.
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FIGURE 2. (a) Density (solid) and Brunt–Väisälä frequency (dashed) profiles. (b) Overall
settling trajectory for a disk (E5 in table 1) shown in grey reaching its neutrally buoyant
depth at z0, where R is the horizontal displacement (in the (x, y) plane). (c) Archimedes
(solid) and Froude (dashed) numbers associated with it. Numbers in (b) indicate the three
phases of the trajectory.

the (y, z)-plane and camera 2 the (x, y)-plane, and their fields of view correspond to
physical dimensions of approximately 32 cm×26 cm in the centre of the tank. This is
sufficient to record most of the trajectory without moving the cameras, but the location
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Run d h ρd zi θi ρo ν × 106 κ × 109 N χ Sc/Pr Ari

(cm) (mm) (g cm−3) (cm) (deg.) (g cm−3) (m2 s−1) (m2 s−1) (rad s−1)

E
xp

er
im

en
ts

E1 0.87 0.9 1.0224 18 6= 0 1.015 1.0 1.43 0.50 10 700 66
E2 1.05 1.0 1.0224 18 6= 0 1.015 1.0 1.43 0.50 10 700 88
E3 1.20 1.2 1.0221 17 6= 0 1.015 1.0 1.43 0.50 10 700 106
E4 1.70 1.7 1.0219 16 6= 0 1.015 1.0 1.43 0.50 10 700 175
E5 1.05 1.8 1.0225 19 6= 0 1.015 1.0 1.43 0.50 6 700 115
E6 1.20 2.0 1.0221 17 6= 0 1.015 1.0 1.43 0.50 6 700 136
E7 1.70 2.8 1.0219 16 6= 0 1.015 1.0 1.43 0.50 6 700 226
E8 0.57 1.9 1.0228 19 6= 0 1.015 1.0 1.43 0.50 3 700 66
E9 0.70 2.3 1.0227 19 6= 0 1.015 1.0 1.43 0.50 3 700 89
E10 0.87 2.9 1.0224 19 6= 0 1.015 1.0 1.43 0.50 3 700 122
E11 1.20 4.0 1.0222 17 6= 0 1.015 1.0 1.43 0.50 3 700 193
E12 0.73 1.2 1.0226 80 6= 0 1.013 1.0 1.43 0.35 6 700 74
E13 1.20 1.2 1.0221 20 6= 0 1.020 1.0 1.43 0.18 10 700 16
E14 1.06 3.7 1.0225 19 6= 0 1.021 1.0 1.43 0.50 2.9 700 100

N
um

er
ic

s

N1 1.40 1.75 1.0240 9.1 5 1.018 1.0 1.43 0.5 8 700 141
N2 2.00 2.50 1.0240 13 5 1.018 3.0 4.29 0.5 8 700 80
N3 2.00 2.50 1.0240 13 5 1.018 7.0 10.0 0.5 8 700 34
N4 2.00 2.50 1.0240 13 5 1.018 20.0 28.6 0.5 8 700 12
N5 2.00 2.50 1.0240 13 5 1.018 1.0 2.00 0.5 8 500 240
N6 2.00 2.50 1.0240 13 5 1.018 1.0 5.00 0.5 8 200 240
N7 2.00 2.50 1.0240 13 5 1.018 1.0 14.3 0.5 8 70 240
N8 2.00 2.50 1.0240 13 5 1.018 1.0 1.43 0.5 8 700 240
N9 2.00 2.50 1.0240 13 5 1.018 1.0 1.43 0.7 8 700 240
N10 1.20 1.20 1.0219 13 5 1.018 1.0 1.43 0.5 10 700 81
N11 2.00 2.50 1.0240 13 0 1.018 1.0 1.43 0.5 8 700 240
N12 1.70 1.70 1.0219 12.75 0 1.018 1.0 1.43 0.5 10 700 136
N13 1.70 2.83 1.0219 13 [0.6–11] 1.018 1.0 1.43 0.5 6 700 175

TABLE 1. Summary of experiments and numerical simulations (labeled EX and NX with
X being a number, respectively). For experiments, Ari is the value estimated from the start
of the trajectory.

of the cameras does not permit us to visualize the bottom part of the cylinder, hence
we cannot have a recording of the initial conditions of release for the disk orientation
or its speed. The cameras are located nearly 2 m away from the centre of the tank
and follow the contour of the object that appears dark over a white background, which
allows for a recording of the centre of mass of the disk, along with its contour and
orientation. Optical set-up allows for a depth of field resolving the three phases of the
trajectory, as discussed in § 4.

The stratification can affect the detection of the object due to the vertical gradient
of the optical index n which is proportional to the gradient in density in a stratified
fluid. As discussed in Dalziel et al. (2007), the variation in the observed position due
to the stratification is proportional to δz= (L2/2)∂ ln n/∂z when observing the object
located at a distance L from the side of the tank. In our case, the weak and constant
density gradient (∂ρ/∂z' 25 kg m−4) corresponds to an optical gradient ∂n/∂z' 5×
10−3 m−1, that leads to δz 6 2 × 10−4 m. When compared to the disk thickness h,
δz/h6 0.22 for the disks used, this indicates an absolute error of 0.22h in the position
of the disk, which is constant over the whole domain. This does not affect the velocity
measurements or the estimate of the non-dimensional parameters defined in § 2.

The technique used to extract the three-dimensional dynamics is similar to the
approach described in Fernandes et al. (2007), and is described in figure 1(b,c).
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The two cameras are calibrated in three dimensions. For each camera, by imaging a
grid at several positions along the optical axis (the grid plane being perpendicular to
it), we measure the evolution of the spatial resolution βi (i = 1 or 2) from pixel to
meter along the optical axis, such that

β1(x)= β0
1 (1+ ε1x) and β2(y)= β0

2 (1+ ε2y). (3.1a,b)

As explained before, we neglect the influence of the stratification on the calibration,
and βi does not depends on z. In practice, typical values are β0

i ' 2.5× 10−4 m pix−1,
and their variation with position along the optical axis is εi ' 10−2 m−1. The three-
dimensional position of the disk is obtained by an iterative process. The position of
the disk (centre of mass) is first estimated in each image by using a first guess of
the spatial resolution to use (βi = β0

i ). It allows for a new estimate of the (x, y, z)-
coordinates of the disk, which can be used to update the value of βi. The position of
the disk is then computed based on these new values of the spatial resolutions for each
camera. The iterations end when the norm of the distance between the new position
of the disk and the previous estimate is less than 10−5 m.

A fluorescent dye and UV lightning are used in some cases to visualize the
structure of the stratified wake. The disks are immersed in a concentrated solution
of fluoresceine with a density matching the density of the top fresh layer of the
stratification, before being released in the stratified tank.

For all experimental runs, the parameters are described in table 1.

3.2. Numerical approach
Using the Boussinesq approximation, the equations of motion for viscous, incompre-
ssible fluids with variable density in the entire computational domain are written as

∇ · u= 0, (3.2)

ρ0
Du
Dt
=−∇p+µ∇2u+ (ρ − ρ̄)g+ f , (3.3)

where t is the time, u the velocity vector, p the hydrodynamic pressure, g the
gravitational acceleration, µ the dynamic viscosity of the fluid, ρ0 the reference fluid
density and ρ̄ the volumetric average of the density over the entire computational
domain. The density ρ can be written as ρ = ρf + φ(ρd − ρf ), where ρf is the
fluid density that depends on the fluid temperature or salinity; the indicator function
φ, which represents the volume fraction of grid cells occupied by the solid disk,
is a phase indicator to identify the disk and liquid phases with φ = 1 inside
the disk and φ = 0 inside the fluid domain. The body force f in the momentum
equation, equation (3.3), accounts for the solid–fluid interaction by using a distributed
Lagrange multiplier method, which has been extensively employed to study the
settling of rigid, general-shaped particles in both homogeneous fluids and stratified
fluids (Ardekani, Dabiri & Rangel 2008; Doostmohammadi & Ardekani 2013, 2014,
2015; Doostmohammadi et al. 2014). The disk is impermeable to the stratifying agent
and the temporal evolution of the density field is governed by a convection–diffusion
process described by

Dρ
Dt
= κ∇2ρ, (3.4)

where κ is the diffusivity of the stratifying agent. Equations (3.2)–(3.4) are discretized
using a finite volume method on non-uniform fixed Cartesian staggered grids. The
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time discretization is obtained using a first-order Euler method. The convection and
diffusion terms in both (3.3) and (3.4) are solved using the QUICK (quadratic
upstream interpolation for convective kinetics) and central-difference schemes
(Leonard 1979), respectively. The disk is initially placed at the centre of the (x, y)
plane and settles from location zi, at which the fluid density is ρ0, with an initial
inclination θi with respect to the horizontal direction and no initial velocity. The
no-slip boundary condition is enforced on the disk surface. The initial fluid density
linearly varies with depth ρf = ρ0 + γ (z − zi), where γ is the vertical density
gradient and z is the vertical component of spatial coordinates. The periodic boundary
conditions for density and velocity components are used on side boundaries of the
rectangular computational domain. The boundary conditions for density and velocity
on the top and bottom boundaries are defined as (∂ρ/∂z) = γ and (∂u/∂z) = 0,
respectively.

We would like to highlight that stratified flows develop thin boundary layers at high
Prandtl numbers that are computationally expensive to resolve. In this work, we use
a horizontal and vertical resolution of 128 grid points per diameter for all numerical
studies. While the density distribution in the jet would not be resolved with grid sizes
below d/128, the settling velocity and drag coefficient would be still accurate for
grid sizes as coarse as d/64. While the grid resolution used in this manuscript is not
enough to resolve the thickness of a steady jet, the disk orientation instability occurs
well before the steady jet develops; and during this transient behaviour studied in the
present work, the jet thickness is wider than the theoretical estimation for the steady
jet (see § A.1 for details). Consequently, the settling velocity and the orientation of the
disk can be computed accurately, in agreement with the experiment. Finally, increasing
the value of N generates a narrower jet, and requires a finer resolution, leading to
computationally expensive simulations (Towns et al. 2014).

The size of the computational domain is 4d× 4d× 25d, this lateral extent does not
modify the onset of the instability compared to larger domains (see § A.2).

For all numerical runs, the parameters are described in table 1. Additional runs for
direct comparison with experiments are also presented in § A.3.

4. Results
We first present the overall generic trajectory for a disk settling in a linearly

stratified fluid, before investigating more thoroughly the three distinct phases. As
mentioned in the introduction, we limit ourselves to low enough Reynolds numbers
so that the orientation of the disk in a homogeneous fluid would remain broadside-on,
typically Re 6 100 (Willmarth et al. 1964).

4.1. Overall trajectory of a settling disk
The overall trajectory of a settling disk is shown in figure 2. Figure 2(a) indicates
the density stratification ρ(z) and the corresponding profile of N(z), which can be
considered nearly constant with N ' 0.5 rad s−1 over the entire column in this case.
Figure 2(b) displays the trajectory of the centre of the disk, along with the disk
orientation (grey rectangle). Finally, figure 2(c) provides the corresponding evolution
of the Archimedes and Froude numbers during the settling process.

Three regimes for the settling dynamics have been identified before the disk reaches
its neutrally buoyant level. First, the disk experiences a quasi-steady phase when the
stratification enhances the steady drag experienced by the disk falling broadside-on.
We identify this first phase based on the inclination of the disk (θ ' 0). Along this
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FIGURE 3. Temporal evolution for many experimental disks of (a) the vertical velocity
U and position z, along with (b) the acceleration force ρd|dU/dt|. See table 1 for details
on parameters.

phase, we still have a variation of the velocity and non-dimensional parameters with
z, as can be noticed in figure 2(c). Then, there is a change of stability for the disk
orientation (from broadside-on to edgewise) when the value of the disks’ velocities
become ‘sufficiently’ small. Similarly to phase 1, we identify the start of this second
phase based on the inclination of the disk, when it becomes non-zero (we set an
arbitrary threshold θ > 5◦). Finally, the last phase corresponds to the disk settling
edgewise until stopping at its gravitational equilibrium level z0, defined by ρ(z0)= ρd.
At the end of its settling, it returns towards a horizontal orientation. We identify the
start of this final phase based on θ ' 90◦ or by the maximum value reached along the
trajectory, some disks ending their trajectory without completing the whole phase 2.

It should be noted that, for both the experimental and numerical cases studied, the
three phases of the dynamics occur in a plane (no helicoidal motion is observed).
Furthermore, for a given experiment or numerical simulation, all the non-dimensional
parameters are not independent, more specifically the Reynolds Re and Froude Fr
numbers follow this relationship Re/Fr = Nd2/ν which is constant for a single
experiment; N and d are different for different experiments.

4.2. Phase 1: broadside-on settling
We consider the part of the trajectory with broadside-on settling, corresponding to
phase 1 in figure 2(b). We first study the assumption of quasi-steady fall for the disk
broadside-on, by comparing the importance of acceleration with drag and buoyancy
forces. As can be seen in figure 3(a), it is for non-dimensional times Nt/2π smaller
than 2 that the velocity of the disk changes the most. This is confirmed in figure 3(b)
where we measure dU/dt to be of the order of ∼10−3 m s−2 at most. For the problem
considered, buoyancy forces are of the order of 102 N m−3 whereas an estimate of
the stratified drag coefficient is at least as large as in homogeneous case (CH

D ∼ 1
for Re ∈ [10, 100]), leading to ρ(z)CS

DU2/2h∼ 102 N m−3 in our experiments. If we
compare the values of these terms of opposite signs on the right-hand side of (2.1)
with acceleration forces which are of order 1 N m−3, this confirms our assumption
of quasi-steady fall where buoyancy and drag forces are the dominant forces, and the
small differences between the two is associated with small acceleration forces. Similar
results have been obtained from the numerical simulations, although not shown here.

We seek for a generic expression for the stratified drag coefficient of a disk, thus we
consider the trajectories of many disks of various aspect ratios and diameters (d, h and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

95
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.957


Settling disks in a linearly stratified fluid 885 A2-11

0
0.2
0.4

0
1
2

(a) (b) (c)

|u| (cm s-1) |ø| (s-1)

FIGURE 4. Colour maps of (a) velocity |u| and (b) vorticity |ω| fields for run N12. (c)
Zoom on the velocity vector field around the disk. Black solid lines are isopycnals for
ρ equals 1017.5 to 1020.6 kg cm−3 by steps of 0.588 kg cm−3. In (c), isopycnals with
ρ = 1017.5 kg cm−3 and ρ = 1020.6 kg cm−3 are not visible. The images correspond to
U = 0.18 cm s−1.

χ varied), evolving in different stratified environments (N, ν and κ changed). The
parameters for each experimental or numerical run are listed in table 1.

The numerical simulations provide a more complete description of the flow around
the disk in this quasi-steady phase. Here, we present results associated with a steady
broadside-on settling for disks initially released with no velocity and θi= 0 (runs N10
and 11). As the disk settles across a linearly stratified fluid, lighter fluid is drawn
down from its original position. Visible in figure 4 is that the vertical displacement
of isopycnals, denoted as Γ = (zρ(t) − zρ(0))/d, can be as large as 3. Similar
observations have been reported for a sphere moving downward in a salt-stratified
fluid (Sc = 700), where isopycnals are displaced for a large extent (Hanazaki et al.
2009b; Doostmohammadi et al. 2014; Hanazaki et al. 2015). One can notice a
bell-shape structure along the jet axis in the far wake, as described in Hanazaki
et al. (2015). This structure is related to internal waves generated in the wake of the
settling object. Internal waves generated upon settling can affect phase 3, as discussed
later. Nevertheless, during the quasi-steady phase, since the flow structure around the
disk remains axisymmetric (see figure 4a,b), the disk settles under the broadside-on
configuration.

Based on the disk velocity and the background fluid density profiles along the
trajectories in figure 3, we can compute the stratified drag coefficient CS

D using (2.2).
To compare it to the homogeneous case and seek an expression similar to (2.8), we
display CS

D/C
H
D − 1 in figure 5(a) as a function of the Froude number. The same

quantity is also obtained from numerical runs. Although the observations seem to
exhibit similar trends in figure 5(a), the results do not all collapse onto a unique
curve and we seek a better description of the normalized drag coefficient with the
parameters. Yick et al. (2009) suggest that the origin of the added drag on a settling
sphere in a linearly stratified fluid is due to the extra buoyancy force generated by
a spherical shell of light fluid around the sphere, entrained by viscosity over some
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FIGURE 5. Stratified drag coefficient CS
D minus the homogeneous drag coefficient CH

D in
(a), and normalized by a function of the aspect ratio χ in (b), as a function of the Froude
numbers during quasi-steady settling for trajectories identified in figure 3(c). Symbols
correspond to numerical simulations. The dashed line in (b) is the fit of the power law
as given in (4.3).

distance while settling. Thus we can express the extra stratified drag normalized with
the drag for a homogeneous fluid as a buoyancy force corresponding to the fluid
displaced by the object,

CS
D

CH
D
− 1' 1ρgV

1
2 CH

DρU2S
, (4.1)

with S the apparent section of the object, V the volume of light fluid displaced and
1ρ its density difference with the fluid at the depth of the object. When applied to
the disk geometry, we can consider that a shell of light fluid of width δ has a volume
V which scales like (π/2)d2δ(1+ 2/χ) when δ/d� 1, compared to the case of the
sphere with V that scales like πd2δ. Observations from numerical simulations zoomed
on the proximity of the disk, as shown in figure 4(c), confirm that a thin shell of light
fluid moves with the object (see also figure 7). For both geometries, S scales like
(π/4)d2. The light fluid composing the shell has been displaced over some distance
Γ d, as already discussed when presenting the numerical results in figure 4, and we
can estimate its density based on the density gradient such that 1ρ =Γ d(N2ρ/g). In
the end, the extra drag due to the stratification normalized with the homogeneous fluid
becomes

CS
D

CH
D
− 1' 1

CH
D

Γ

Fr2

δ

d

(
1+ 2

χ

)
, (4.2)

and we must consider proper scalings for δ and Γ .
It has been shown in previous studies (Yick et al. 2009; Hanazaki et al. 2015) that

the width δ of the light fluid shell entrained by viscous effects should scale like
√
ν/N,

which leads to δ/d∼√Fr/Re. It should be noted that, for a single experiment, δ/d is
constant, but depends on the fluid and disk properties. The scaling law for the vertical
entrainment of fluid Γ depends on the Froude number, but is not universal. Typically,
one considers Γ ∼Frα, and the constant α depends on the range of values encountered
for Re. Observations led to α= 1/2 for a sphere when Re< 1 (Yick et al. 2009) and
α = 1 for spheres (Hanazaki et al. 2015) with Re > 200 and Fr > 1, or for cylinders
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with Re ∼ O(103) (Higginson, Dalziel & Linden 2003). As displayed in figure 5(b),
by looking at (CS

D −CH
D)
√

Re/Fr/(1+ 2/χ) we seek a rescaled evolution of the drag
coefficient that depends on Fr only, and the data nicely collapse into a single curve
that can be fitted as

CS
D =CH

D

[
1+ a

CH
D

(
1+ 2

χ

)√
Fr
Re

Frq

]
, (4.3)

with the fitting parameters, a=14±2 and q=−1.7±0.1. This validates the discussion
above with a value of α = 0.3± 0.1 for the case of a disk.

In the end, the drag model in (4.3) is consistent with (2.8), with only χ , Re and
Fr playing a key part in this parameter space for values of Re∈ [5, 130], Fr ∈ [0.1, 3],
Pr ∈ [70, 700] and χ ∈ [3, 10]. One must notice the good agreement for both the
experimental and numerical results with the same modelling approach. These results
can be furthermore validated by investigating the relation between the Archimedes
and Reynolds numbers. As mentioned in § 2, one expects 2(Ar/Re)2 =CS

D in a quasi-
steady regime. If we compare 2(Ar/Re)2 to the expression in (4.3), we do find a good
correlation for phase 1 (cf. figure 16b in appendix B).

Compared to the known results for the sphere (Yick et al. 2009) in the same
range of parameters (CS

D/C
H
D − 1 ∼ Re1/2Fr−1), here we find CS

D/C
H
D − 1 ∼ (1 +

2/χ)Re1/2Fr−1.2 if we consider the drag on the disk to be CH
D ∼ Re−1. This indicates

that the disk is more strongly affected by the stratification (stronger added drag) than
a sphere of similar diameter. We will come back on the implication of this aspect
(cf. table 2) in the conclusion.

4.3. Phase 2: instability of the broadside-on settling
When the vertical velocity of the disk decreases, there is a change of stability for
the disk orientation from broadside-on to edgewise settling, this part of the trajectory
corresponds to phase 2 in figure 2(b). As we will see, this transition in the orientation
of the disk from 0 to π/2 seems to be a robust feature, for values of the Reynolds
number in the range 10–50, and of the Froude number in the range 0.1–2 and various
stratified environments. It should be noted that some of the disks do not reach the π/2-
orientation before initiation of phase 3 (when the disk reaches its equilibrium depth).
Furthermore, although not shown here, it is important to stress that the dynamics of
phase 2 takes place in a plane, no helicoidal motion has been observed in experiments
or numerics.

Figure 6 displays the evolution of the orientation as a function the vertical
velocity (insets) and of a non-dimensional velocity U/

√
νN for both experimental and

numerical disks. One should notice that the dynamics of all disks starts in phase 1,
corresponding to a large velocity with θ ∼ 0, then its rotation starts (phase 2) at
some lower velocity where θ suddenly increases; each trajectory in figure 6 reads
from right to left. In the numerical simulations displayed (runs N1 to 10), it should
be noted that we set the initial inclination at θi = 5◦. For numerical simulations of
a single disk released with θi = 0 (runs N11 to 12, used in phase 1), the analysis
shows that the orientation angle of these disks remains constant at θ ' 0 during the
whole settling motion computed.

One can notice that all disks start rotating below a threshold non-dimensional
velocity of 3.9± 1.1 for experimental runs (figure 6a), and of 1.8± 0.2 for numerical
runs (figure 6b). Since there is some dispersion of the values for the non-dimensional
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FIGURE 6. Orientation angle θ as a function of the vertical velocity U normalized by√
νN for (a) experimental and (b) numerical runs studying the change of stability. Insets

show θ versus U over the whole trajectory.
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FIGURE 7. Examples of wake visualizations during phase 2 in experiments and numerics,
the parameters chosen for each run are different. Maps of (a) density variations ρ?=ρ−ρf
for the numerical simulation (run N10), and (b) fluorescent dye for the experiment (run
E14). At the first frame, Re' 40 and Fr' 0.75 for experiments and Re' 17 and Fr' 0.23
for numerics; each frame is separated by 1t= 2 s, i.e. N1t= 1.

velocity at which the angle starts to increase, we defined the threshold value for Uc

to be the velocity when θ = 5◦. We also denote ρc as the density of the fluid for
this instant in the trajectory. We did not find such a collapse of the evolution of θ
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when searching for the influence of Pr, Ar or Fr on this threshold. We discuss the
dynamics of the change of stability in more detail in § 5.

Finally, we emphasize that the dynamics of phase 2 is associated with a complicated
process coupling the stratified flow structure in the wake of a freely rotating object
of anisotropic shape. However, some important features can be identified in the
experiments and numerical simulations. In figure 7, we present snapshots of the
stratified wake visualized using dye for experiments, and by tracking the magnitude
of the density perturbations for the numerics (see colour map in figure 7a), for two
different runs. Similarly to the case of a sphere studied in Hanazaki et al. (2009a),
the stable wake of a moving object in a stratified fluid is mainly composed of a
narrow vertical jet. This jet is generated by the up-going fluid that is lighter than its
surroundings, initially entrained by viscosity within a thin shell around the object,
as already discussed in § 4.2. When the disk starts to rotate, this narrow jet slowly
drifts from the centre of the back face of the disk, inducing a torque on the disk that
amplifies the rotation. Both the experimental and the numerical approaches are able
to obtain this dynamics with very similar trends between the two.

This change of the stratified wake behind the disk could depend on its aspect ratio,
its settling speed, its orientation and the stratified environment. We discuss the stability
and the dynamics of the rotation in § 5, but we anticipate that more studies are needed
to characterize the vertical dynamics of a tilted disk, when its orientation is fixed
since it is impossible to discriminate what effect occurs first, the modification of the
orientation of the disk or the position of the jet (if any order is applicable).

4.4. Phase 3: reaching a neutrally buoyant depth
Finally, when the disk ends up settling edgewise and gets close to its neutrally
buoyant depth z0, it returns to a nearly horizontal orientation, which we characterize
by an equilibrium angle θ(z0)= α. In the case of a perfectly designed disk, with the
centre of buoyancy at the centre of the geometry, one expects α = 0. However, as
described in appendix C, minor imperfections in the distribution of mass (or in the
shape equivalently) can lead to non-zero equilibrium inclination angles. We investigate
the impact of this observation in § 5.4.

This last phase is associated with a nearly zero horizontal drift while rotating,
as shown in figure 8(a,b), although the spatial resolution might not be sufficient to
draw any conclusions. Similarly to the change of stability at the initiation of phase
2, the rotation from a nearly vertical disk to the equilibrium angle seems to be
similar for all disks, as shown in figure 6(b), with a clear change of stability from
vertical to horizontal. It is interesting to notice that this rotation can be towards 0
or π, suggesting that the initiation of phase 2 of the trajectory is not automatically
correlated with the imperfection in the distribution of mass (heavy face can be up or
down).

The temporal evolution during this last phase is very slow compared to phases 1
and 2, with values of the Reynolds number smaller than 1. Numerical simulations of
this last phase have not been obtained due to very long computational times. As shown
in figure 8(c), most disks reach z0 smoothly. However, some disks oscillate around the
equilibrium position z0. We observed that all the oscillatory cases are associated with a
maximum value for the Reynolds number larger than 80, whereas the maximum values
of the Froude number could be smaller or larger than 1. These oscillations are due
to internal motion of the fluid (internal waves) generated while releasing the disks or
during phase 1, as mentioned in § 4.2, since the frequency of this oscillatory motion is
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FIGURE 8. (a) The settling trajectories, (b) the orientation angle and (c) the temporal
evolution of the vertical position in logarithmic scale for experimental disks to emphasize
phase 3.

near N. This is similar to observations made for a sphere settling in a linearly stratified
fluid from the surface down to a neutrally buoyant depth z0 (Biró et al. 2008a), where
oscillations around z0 were observed due to internal waves generated by the wake of
the settling body, with initial values of the Reynolds number larger than 300.

5. Discussion on the change of stability of the disk orientation
Based on the experimental and numerical results, several points have been identified

in the dynamics of a disk in a linearly stratified fluid with various values for the
disk and the fluid properties. First of all, the broadside-on settling at moderate
Reynolds number (Re> 10) is a stable regime for the disk, for Froude numbers larger
than 0.1–1 (depending on the value of the Reynolds number). An instability of the
broadside-on settling occurs when the non-dimensional velocity U/

√
νN becomes

smaller than a threshold value (3.9± 1.1 for experiments and 1.8± 0.2 for numerics)
leading to the edgewise orientation as a new stable orientation, as shown in figure 6.
The threshold for experimental and numerical runs have similar values and the
instability in orientation is a robust effect of the stratified environment. However,
more information can be provided on the disk dynamics and on the origin of the
instability, in order to help modelling this instability. We provide here complementary
analyses and results by means of numerical simulations to investigate the change of
stability of the orientation of the disk.

5.1. Possible orientations for settling
We first focus on the perfectly balanced disk, and discuss the stability of a specific
orientation for settling. As described in § 4.2, we have investigated the stability of the
broadside-on settling in a linearly stratified fluid for a perfectly balanced disk. All
numerical simulations initiated in a fluid at rest, with no velocity (Ui= 0) and no tilt
for the disk (θi = 0), lead to a steady vertical settling for the disk. More precisely,
during the same time (Nt/2π < 3), variations in the orientation angle remain very
weak (θ < 10−1 rad), and have a very weak tendency to increase. Hence, we conclude
that the settling dynamics in a linearly stratified fluid at rest, with an initial orientation
θi= 0, can be considered an equilibrium position for the disk. A complementary study
investigates the stability of the edgewise settling. Numerical simulations of a disk
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FIGURE 9. Phase diagram (θ, θ̇/N) of the orientation for the (a) experimental and
(b) numerical runs. The dashed black line has a slope σm/2π, as defined in § 5.3.

(similar to run N11) are realized with a initial orientation θi ' π/2 and different
values of the viscosity. In a homogenous fluid, the disk eventually settles under the
broadside-on configuration regardless of the initial release condition. When settling
in a linearly stratified fluid, a disk with an initial orientation θi = 85◦ can be stable
at low values of the Reynolds and Froude numbers with Re 6 11.2, Fr 6 1.14
(ν = 10−5 m2 s−1), and is unstable for larger values tested such as Re= 304, Fr= 3.1
(ν = 10−6 m2 s−1). This is in good agreement with the experimental observations.
Here again we can conclude that the settling dynamics in a linearly stratified fluid at
rest, with an initial orientation θi = π/2, can be considered an equilibrium position
for the disk at low enough velocities. We must now study the stability of these
equilibrium positions.

5.2. Stability of the orientation for settling
To better understand disk changing stability in the orientation (phase 2), we present in
§ 4.3 runs realized with an initial inclination of the disk, θi = 5◦. Although the initial
perturbation can have a different nature for experiments and numerical simulations,
the dynamics of the instability is similar for both approaches. A useful tool to follow
the change of equilibrium orientation is the phase diagram (θ, θ̇/N) which is shown
in figure 9 for experiments and numerics. All trajectories of the disks in the phase
diagram exhibit very similar trends.

First, there is a convergence towards (0, 0), the stable broadside-on settling. A
spiral associated with damped pitching oscillations with an amplitude of θ̇/N near
θ = 0 being O(1) is observed, with differences in amplitude between experiments and
numerical simulations that are due to the different initial conditions of release. In the
case of a homogeneous fluid, the damped pitching oscillations with a frequency f
are related to the natural frequency of oscillation of the body U/d, corresponding to
a Strouhal number St = fU/d of order 0.1 (Willmarth et al. 1964). In the stratified
environment, similar oscillations occur but could be affected by the stratification too.
Nevertheless, we cannot discriminate the role of U/d from N, the natural frequency
in the stratified fluid, since their ratio U/Nd= Fr is O(1) in our study.

Then, the (0, 0) equilibrium position becomes unstable and all trajectories follow
a positive or negative branch (black dashed line, discussed in § 5.3) towards a new
stability point (π/2, 0), with a clear change of stability towards edgewise settling.
It should be noted that some trajectories do not reach this point before the end of
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FIGURE 10. Temporal evolution of the orientation of the disk θ for (a) experiments and
(b) numerical simulations, along with the exponential growth using σm (2.7 in a, 2.8 in b).

settling, when the disk reaches its equilibrium depth before a complete change in
orientation.

The final branch of the trajectories in figure 9(a) corresponds to phase 3, when the
disk at its equilibrium depth rotates towards its non-zero equilibrium inclination angle
in a quasi-static manner (θ̇/N ∼ 0).

5.3. Temporal evolution for the change of orientation
We focus now on the temporal evolution of the orientation of the disk for the same
trajectories shown in figure 9. The results are presented in figure 10, with the same
display for the experimental and numerical results. We set a common origin of time
for an arbitrary orientation θ = 5◦ corresponding to a time t = tc. There is a good
collapse of early dynamics for the orientation of all disks in (a) experiments and (b)
numerical simulations. Furthermore, it is possible to model this early dynamics by an
exponential growth, as expected for an instability mechanism, with θ(t)=5 exp[σN(t−
tc)/2π]. Values for the growth rate σ of each trajectory have been extracted and the
mean value (σm ' 2.7) is similar for experiments and numerical simulations (2.7 and
2.8 respectively). No significant influence of the aspect ratio of the disk on σ have
been observed. At fixed value of χ , small increases in σ of 6 % and 10 % can also
be observed when the viscosity increases by a factor 3 and 7 respectively (runs N1
to N3). The growth rate does not depend on the Archimedes, Froude, Reynolds or
Richardson numbers either, and can be considered nearly constant in the range of
values spanned.

It can be noted that the part of the trajectory corresponding to an exponential
growth, is also reported in the phase diagrams in figure 9 by adding a dashed line
for θ(t)= 5 exp[σmN(t− tc)/2/π].

5.4. Parameters influencing the observed threshold
The identification of the threshold for the broadside-on orientation to become unstable
has shown some variations around a mean trend in terms of velocity, that can have
several origins. The disks being manufactured from a long bar, there could be some
imperfections in their design (uneven distribution of mass, asymmetry between the
faces, etc.); fluid perturbations in the tank can also initiate some tilting of the disk,
or there could be an influence of the initial release conditions of the disk.
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√
νN for numerical runs studying the change of stability with unbalanced disks (runs

similar to N1). (b) Evolution of the threshold velocity Uc (at θ = 5◦) with ε, compared
to the case of a ‘perfect’ disk (ε = 0).

Since the control of the initial conditions of release for the experimental disks is
difficult, we have tested to let a numerical disk (run N13) settle from different initial
angles θi (0.6◦, 5◦ and 11◦), with no initial velocity. The disk changes its orientation
at the same critical velocity for different initial angles, suggesting that the release
conditions do not influence the identification of the threshold. Furthermore, especially
for experimental cases, the long duration of the steady phase 1 makes it unlikely to
influence the transition from broadside-on to edgewise settling. The influence of the
confinement of the disk has also been tested numerically (see § A.2), without any
noticeable effect on the values of the threshold for the vertical velocity. We now focus
on the geometrical aspects.

All experimental disks are slightly unbalanced, and this can affect the way this
instability occurs and/or its corresponding threshold. A possible scenario could be
that the imperfections in the mass distribution of the disk are initiating the change of
stability in its orientation. A model for an unbalanced disk is presented in appendix C,
with the overall geometry being unchanged but the density distribution being uneven,
with one half of the disk having a density ρd and the other half ρd(1 + ε). Typical
values for ε can be estimated from the observations made in § 4.4 and using (C 14),
since it relates it to the angle α of the disk with the horizontal when ending at its
neutrally buoyant depth. For instance, with α ' 15◦ for run E7 or 35◦ for run E3,
the model predicts ε ' 7.3 × 10−5 or 1.2 × 10−4 respectively. Numerical simulations
of an unbalanced disk, as modelled in appendix C with different values for ε, are
presented in figure 11. Other settling parameters are similar to run N1 except for
N = 0.495 rad s−1. The evolution of the orientation angle with the settling velocity
is shown in figure 11(a). The case with ε = 5× 10−4 (red thick line) corresponds to
an unbalanced disk that should sit vertical when reaching its neutral depth. One can
observe that, with increasing values of ε, the rotation of the disk is initiated at an
earlier time in the settling process, hence at a higher velocity. In figure 11(b), the
threshold for the normalized velocity is modified by 25 % with ε = 2.4× 10−5 and is
more than double for ε = 2.4× 10−4. It should be noted that no modification of the
temporal evolution of θ has been observed.

These results are in good agreement with the experimental estimate for the threshold
velocity that is almost twice larger than the value for the numerical disk, since the
experimental disks are not perfectly made.
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FIGURE 12. Threshold values shown as Frc as a function of d/
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ν/N for all unstable

cases. Two additional results are shown, run N4 is initially unstable, and ‘ellipsoid’ refers
to parameters in Doostmohammadi & Ardekani (2014).

5.5. Stability domains for settling disks
Finally, from all these results, one can estimate the critical values for the parameters
(Arc, Rec and Frc) when the disks start to rotate by considering the values of the
velocity of the disk Uc and the density of the surrounding fluid ρc, obtained at t= tc
(θc = 5◦), which are close to the values at which the rotation starts. Since Re/Fr is
constant for each run, only Arc = √(ρd/ρc − 1)ghd/ν and Frc = Uc/Nd are relevant
here.

When discussing this threshold in § 4.3, results led to the conclusion that Uc scales
like
√
νN, although some dispersion of the threshold could be observed. The main

reason is due to the quality of the experimental disks that are slightly unbalanced, as
discussed in § 5.4, which could lead to a modification of Uc (and hence in Frc) up to a
factor 2. Based on the scaling found for the velocity, the Froude number should follow
Frc ∼ √ν/N/d, which is tested in figure 12. Here the experimental and numerical
results have similar trends, which can be associated with 1/Frc ' 0.50(d/

√
ν/N)

(dashed line) for the numerical simulations, and 1/Frc ' 0.25(d/
√
ν/N) (dotted

line) for experimental values. These results are in reasonably good agreement with
experiments and numerical simulations. They are also in agreement with the results
in § 5.4 which showed that imperfect disks rotate earlier than perfect ones. Due to the
dispersion of the extracted data, it must be noted that other models could match the
data. For instance, experimental results could be better described by a power law of
the type 1/Frc' 0.16(d/

√
ν/N)1.25 and numerical results by 1/Frc' 0.78(d/

√
ν/N)0.85.

The physical implications for such threshold estimates remain unclear.
Nevertheless, these predictions provide a clear separation of domains in the

(d/
√
ν/N, Fr) parameter space associated with a stable broadside-on or edgewise

settling. We also include extra numerical results in figure 12 that confirm these
stability domains. Run N4 in a very viscous stratified fluid initiated with θi = 5◦
revealed the broadside-on settling to be immediately unstable. The corresponding
estimate for the threshold values reported in the figure is indeed located in the
stable region for edgewise settling, i.e. 1/Fr > 0.5(d/

√
ν/N). Similarly, we include
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Object N (rad s−1) U (m s−1) TS (s) Re Fr Comments

Sphere 0 3.00× 10−4 13.33 6.00× 10−1 ∞ —
1.0× 10−3 2.98× 10−4 13.42 5.96× 10−1 149 —
2.0× 10−2 2.53× 10−4 15.81 5.06× 10−1 6.32 —

Disk 0 1.85× 10−4 21.62 7.40× 10−1 ∞ —
Broadside-on 1.0× 10−3 1.83× 10−4 21.86 7.32× 10−1 45.7 Stable

2.0× 10−2 4.80× 10−5 83.33 1.92× 10−1 0.60 Unstable

TABLE 2. Settling parameters for an object of density ρp = 1040 kg m−3, diameter
d = 4 mm (and aspect ratio χ = 3 for the disk) in a fluid with ρ0 = 1000 kg m−3. The
settling time is TS = d/U.

results from Doostmohammadi & Ardekani (2014) obtained for an ellipsoid at low
Reynolds and Froude numbers released in a stratified fluid with θi = 20◦. The
ellipsoid immediately rotates towards an edgewise settling, showing the stability of
this orientation for an ellipsoid with R = 1.1, χ = 2, Ar = 15, Re = 0.1, Fr = 1.03,
Pr= 103; indicated by a black diamond in figure 12.

Finally, we verified that the parameters of the threshold, expressed as Frcd/
√
ν/N,

do not depend on Arc (not shown). This suggests that there is no influence of the
depth (or the local density ρc) at which the transition occurs, and that the main physics
of the change of stability is indeed in the critical Froude number.

6. Conclusion
We presented experimental and numerical results on the settling dynamics of a disk

of finite thickness in a linearly stratified fluid. We characterized its dynamics at low
and intermediate values of the Archimedes or Reynolds number (Ar and Re in 0.1
to 150), and for Froude numbers in the range 0.01–4, showing the existence of two
separate domains in the parameter space associated with stable broadside-on settling
(high Re/Ar, high Fr) and edgewise settling (low Re/Ar, low Fr).

We provided a parametric model for the stratified drag of the disk when settling
broadside-on in a quasi-steady regime, inspired by a similar study based on buoyancy
effects acting on the settling dynamics of a sphere in a linearly stratified fluid (Yick
et al. 2009). The relevant parameters for the modification of the drag are the Reynolds
and Froude numbers and the aspect ratio of the disk. This parametric description can
be of great interest to predicting the settling speed of anisotropic objects evolving
in a stratified fluid. For instance, when considering plankton dynamics in the ocean,
a discoid shape is a common feature for various oceanic species (Hillebrand et al.
1999; Clavano, Boss & Karp-Boss 2007) such as diatoms. Typical specifications for a
microorganism are a radius of a' 2 mm, with aspect ratio χ = 3 and a nearly buoyant
density ρp' 1040 kg m−3, while the stratification can vary from N ' 10−3 rad s−1 in
the deep ocean to peak values greater than 2.0× 10−2 rad s−1 at sharp discontinuities
(MacIntyre et al. 1995). When modelling the settling speed of such microorganisms
by a disk in a stratified environment, it is thus important to take into account both the
effect of the geometry and of the stratification. The settling speed of a disk can be
2.5 times smaller in a linearly stratified fluid than in the homogeneous case when the
stratification is important (N' 10−2). It can be 2–5 times smaller than estimates made
with the model of a sphere Yick et al. (2009) in the same environment, as summarized
in table 2.
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When discussing the change of stability for the orientation of the disk, we provided
strong evidence of the instability mechanism, occurring at a threshold value for the
vertical settling speed that can be discussed in terms of the Froude number Fr,
compared to intrinsic properties of the fluid and the disk. In the case of a ‘perfect’
disk, the threshold verifies 1/Frc' 0.50(d/

√
ν/N), although some scattering observed

in the data could lead to a different scaling. The growth rate of the instability has also
been measured and is controlled by the Brunt–Väisälä frequency for both experiments
and numerics, with a weak influence of the geometrical properties of the disks and
the viscosity of the fluid. From our observations of the wake of the disk, we suggest
that the mechanism driving this instability is associated with the displacement of
the strongly localized low-pressure point at the centre of the back face of the disk
when settling broadside-on, which induces a destabilizing torque on the disk in
the horizontal direction. While reorientation of a disk in a homogeneous fluid at
low Reynolds numbers is stabilized by a hydrodynamic torque (Fabre, Tchoufag &
Magnaudet 2012), this effect seems to weaken in a stratified fluid when the vertical
velocity of the disk decreases. This stabilizing effect can be overreached by the
destabilizing stratified effect at sufficiently low values of Re/Ar and Fr. This should
be applicable to plankton dynamics, as discussed before, since low values of Re/Ar
and Fr can be reached in the ocean (cf. comments in table 2).

There are numerous interesting perspectives for this study. The modelling of the
stratification influence on the drag of an anisotropic bluff body, taking into account
boundary layer effects, would provide a basis for the understanding of the competing
effects of vorticity and buoyancy. The threshold estimates could be more precisely
studied although it is computationally very expensive to resolve such stratified flows at
high Prandtl numbers. Furthermore, a stability analysis for the change of preferential
orientation for the disk is also required to understand the onset of instability, along
with the temporal dynamics. A proper modelling of the torque on the disk (or on any
object actually) in a stratified environment is still lacking. Finally, the instability of the
orientation of the disk could be of great importance for the dynamics of a collection
of anisotropic objects in a stratified medium, modifying the interactions and triggering
instabilities in spatial distributions.
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Appendix A. Numerical validation
A.1. Grid resolution tests

In order to investigate the effect of grid resolution on the numerical modelling of
the fluid perturbations (velocity and density) around the disk, we first consider two
cases; a disk moving at a fixed speed with an imposed orientation (θ = 0), and a
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Run d h ρd zi θi ρo ν × 106 κ × 109 N χ Sc/Pr Ari
(cm) (mm) (g cm−3) (cm) (deg.) (g cm−3) (m2 s−1) (m2 s−1) (rad2 s−1)

§
A

.1

Nv1 2.00 0.2 — 18 0 1.018 1.0 1.43 0.5 10 700 55
Nv2 2.00 0.2 — 18 0 1.018 1.0 143 0.5 10 7 55
Nv3 0.50 — — 18 — 1.018 1.0 1.43 0.5 — 700 55
Nv4 2.00 0.2 1.0219 18 5 1.018 1.0 1.43 0.5 10 700 55

§
A

.3

Nv5 1.05 1.0 1.0224 7.875 1 1.015 1.0 1.43 0.5 10 700 88
Nv6 1.05 1.8 1.0225 7.875 1 1.015 1.0 143 0.5 6 700 115
Nv7 1.70 2.8 1.0219 12.75 1 1.015 1.0 1.43 0.5 6 700 226

TABLE 3. Summary of the parameters for numerical simulations used as validations
(labeled NvX with X being a number).

sphere moving at a fixed speed as a reference case (already studied in Hanazaki et al.
(2009b, 2015)). This configuration allows us to compare the density and velocity
in the jet for the same conditions (i.e. angle, velocity, etc) as a higher number of
points around the disk is used. Additional computations have been done for numerical
validation; the details of these additional computations are described in table 3. Since
the objects have a fixed velocity, there is a precise value of the Froude and Reynolds
numbers for each run, Re= 40 (respectively 25) and Fr= 0.2 (respectively 4) for the
disks (respectively sphere).

The results for the disk at two values of the Prandtl number are shown in figure 13,
at time Nt/2π' 0.8 (t= 20 s) after the start of motion. This time is chosen since it
corresponds approximately to the time at which the instability in orientation occurs
in the case of a freely settling disk (see run Nv4 below). Three different fields
are displayed (velocity, density perturbation and its Laplacian), extracted along a
horizontal line which is a half-radius away from the centre of the disk. As can be
seen for all quantities, the grid resolution of d/128 is sufficient to get accurate values
of velocity and density perturbation, although a resolution of d/200 is needed for the
Laplacian of density to be properly resolved at Pr= 700.

As time evolves, the jet in the wake of the disk gets thinner until it reaches a
steady state. To verify this behaviour, we investigate the evolution of the jet radius,
which is defined as the half-width at half-maximum of ∇2ρ ′ along a horizontal line
one radius away from the centre of the disk, similarly to Hanazaki et al. (2015). We
find the jet radius reaches a steady state at time of Nt/2π = 11 for Pr = 700, and
Nt/2π = 3 for Pr = 7. while the sphere case is steady at Nt/2π ' 3, which is in
agreement with the observations in Hanazaki et al. (2015). Concerning the radius of
the jet, the steady value reached R/d = 6 × 10−3 and 3 × 10−2 for the disk in Nv1
and Nv2 respectively; and R/d = 10−2 for the sphere, which is consistent with the
prediction of (Fr/2RePr)1/2 in Hanazaki et al. (2015).

We now compare those results with the case of a freely settling disk (Nv4) in
the next section, with the same physical parameters. In order to investigate the effect
of grid resolution on the disk’s settling velocity, various grid resolutions are utilized
in both horizontal and vertical directions (see figure 14a) for run Nv4 described in
table 3. For the highest grid resolution, we use 256 grid points per disk diameter in
the horizontal direction and 256 grid points per disk diameter in the vertical direction.
This resolution is not sufficient to resolve fully the density perturbations developing
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FIGURE 13. Distributions of (a,d) vertical velocity, (b,e) density perturbation and
(c,f ) Laplacian of density perturbation along a horizontal line within the settling plane
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(z= 0.25d). Both showcases are demonstrated at 20 s for run Nv1 (Pr= 700) at the top
and run Nv2 (Pr= 7) at the bottom.
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Numerical tests for (a) grid resolution for the settling parameters in run Nv4; (b) domain
dependence for the settling parameters in run N8.

in the jet at the rear of the disk when reaching a steady state, but it should remain
sufficient for this scenario due to the temporal evolution of the instability which occurs
before the jet gets very thin. When t ∼ 20 s (Nt/2π∼ 2), the instability in terms of
disk rotation occurs. The simulation results from 128 grid points per disk diameter in
the horizontal and vertical directions are almost identical to the highest resolution. The
orientation of the settling disk undergoes instability before the jet reaches steady state.
Therefore, the jet thickness at the time of instability is wider than a steady jet and this
resolution is sufficient to describe the instability. Overall, for horizontal and vertical
resolutions of d/128, the relative error observed is 4 % for the density perturbation
and 2 % for the vertical velocity (not shown here).
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FIGURE 15. Comparison of numerical simulations Nv5, 6 and 7 with experimental runs
E2, 5 and 7 respectively, in terms of velocity (a–c) and orientation angle of the disk (d–f )
as a function of the normalized fluid density ρ?.

As a final remark, the central-difference scheme used for discretization of the
diffusion term in our simulations is a second-order accurate scheme whereas the
QUICK scheme used for discretization of the convection term has a third-order
accuracy. Therefore, the overall accuracy remains as second order, which is consistent
with our error test (not shown).

A.2. Domain dependence test
We investigate the effect of domain size on the problem for a run similar to N8 in the
main part of the manuscript. The simulation result of angular velocity with time for
a domain size of 4d× 4d× 20d is compared to that for a domain size of 8d× 8d×
20d and 16d × 16d × 20d (see figure 14b), where d is the disk’s radius. In addition,
the simulations all provide a critical number Arc of 152. For all simulations, we use
a width of 4d. We should note that the purpose of the numerical simulation results
is to understand the flow physics associated with phases 1 (quasi-steady state) and
2 (onset of the orientation instability). Here, the corresponding Reynolds number is
approximately 26 at the onset of the instability.

A.3. Direct comparison with experiments
We have simulated three different runs with physical parameters identical to
experiments. We show direct comparison of these results with experiments. Runs
Nv5, 6 and 7 (see table 3) correspond to experimental runs E2, E5 and E7
(see table 1). For each case plotted in figure 15, we follow the dynamics in
terms of the non-dimensional velocity U/Ug and the angle as a function of
ρ? = 1 − (ρd − ρ(z))/(ρd − ρ0), with Ug = √(ρd/ρ0 − 1)gh a gravitational settling
velocity. Each numerical run is initiated with the disk near the exact experimental
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FIGURE 16. (a) Value of Ar versus Re for the overall dynamics of all experimental disks
and (b) 2(Ar/Re)2 versus CS

D prescribed by (4.3) for all experimental disks. The dashed
black line in (b) indicates the equality 2(Ar/Re)2 =CS

D.

release location, although not visible in the experiment (red lines start at values of
ρ? ' 0.4). Due to the long duration of these computations, only the early dynamics
of the instability is reproduced (blue lines end before ρ? = 1).

Overall, the agreement between numerical simulations and experiments is good.
The quasi-steady settling (phase 1) is well reproduced, and the initiation of the
orientation instability occurs at very similar locations and with the same dynamics.
These results confirm the validity of our approach, they are also in agreement with
the results obtained for the estimate of the stratified drag coefficient in § 4.2, and the
instability dynamics of the orientation of the disk in §§ 4.3 and 5.3.

Appendix B. Relation between the Archimedes and Reynolds numbers

Although it is common to discuss the dynamics of moving objects according to
the Reynolds number, the Archimedes number is a more convenient non-dimensional
parameter since it can be prescribed without knowing the velocity of the object.
Figure 16(a) provides the evolution of Re and Ar over the 3 phases of the overall
dynamics of all experimental disks. Figure 16(b) validates the discussion in § 4.2
leading to (4.3) by testing the relation 2(Ar/Re)2 =CS

D in phase 1.

Appendix C. Equilibrium orientation of an unbalanced disk in a stratified fluid

We consider the unbalanced disk shown in figure 17, with the prescribed orientation
compared to the laboratory frame (O, x, y, z) given by the intrinsic and precession
angles, ψ and α, respectively, where the centre of the geometry is located at O. The
axes of the frame associated with the disk, (O, x1, y1, z1), are parallel to the principal
axes of the inertia tensor. Indeed, the density of the disk ρd is constant for each half of
the disk (ρd and ρd(1+ ε)), as indicated by the grey shading. We neglect the nutation
of the disk due to the symmetry of the problem.

We define the following rotation matrices

A=
cosψ − sinψ 0

sinψ cosψ 0
0 0 1

 and B=
1 0 0

0 cos α − sin α
0 sin α cos α

 , (C 1a,b)
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z1
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x1¥

z

x

O y

å

FIGURE 17. Uneven disk made of two half-disks in the laboratory frame (x, y, z). The
tilted frame (x1, y1, z1) fixed to the disk is aligned with the principal axes of the inertia
tensor. The densities of the white and grey halves are ρd and ρd(1+ ε), respectively.

such that we can relate the two frames byx
y
z

= BA

x1
y1
z1

 . (C 2)

The disk is immersed in a linearly stratified fluid whose density is defined as

ρ(z)= ρ0

(
1− N2z

g

)
= ρ0 − N2ρ0

g
[z1 cos α + sin α(x1 sinψ + y1 cosψ)], (C 3)

where (C 2) is used to express z in terms of the tilted coordinates.
We study the torque resulting from the buoyancy force on the disk, which is given

by

Mb =
∫∫∫

D
OM ∧ [ρd(x, y, z)− ρ(z)]g d3V. (C 4)

By considering the computation in the tilted frame and switching to cylindrical
coordinates, we can rewrite (C 4) as

Mb =
∫ h/2

−h/2

∫ d/2

0

∫ 2π

0
OM1 ∧ [ρd(θ1)− ρ(r1, θ1, z1)]g r1 dr1 dθ1 dz1, (C 5)

where OM1= r1er1 + z1ez1 and x1= r1 cos θ1 and y1= r1 sin θ1. The density distribution
of the disk ρd(θ1) is defined as

ρd(θ)=
{
ρd(1+ ε) for θ ∈ [0,π]
ρd for θ ∈ [π, 2π]. (C 6)

The gravitational acceleration in the tilted frame is given as g = −g(cos α ez1 +
sin α sinψ ex1 + sin α cosψ ey1

). This leads to the following expression for the vector
product in (C 5)

OM1 ∧ g= g(r1 cos α eθ1 + r1 sin α(sinψ sin θ1 − cosψ cos θ1) ez1 − z1 sin α ex). (C 7)

We now consider the integral in (C 5) which can be decomposed in the following
manner,

Mb =
∫ h/2

−h/2

∫ d/2

0

∫ π

0
[ρd(1+ ε)− ρ0] OM1 ∧ g r1 dr1 dθ1 dz1︸ ︷︷ ︸

I1

+ · · ·
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α (deg.) 5 10 15 25 45 80

−ε ∗ 104 0.187 0.372 0.555 0.907 1.52 2.11

TABLE 4. Solutions (ε, α) of (C 14) for a disk with d= 14 mm, χ = 8 in a stratified
fluid with N = 0.5 rad s−1 and ρ0 = ρd (g= 9.81 m2 s−1).

∫ h/2

−h/2

∫ d/2

0

∫ 2π

π

(ρd − ρ0)OM1 ∧ g r1 dr1 dθ1 dz1︸ ︷︷ ︸
I2

+ · · ·

∫ h/2

−h/2

∫ d/2

0

∫ 2π

0
ρ0N2[z1 cos α + r1 sin α(sinψ cos θ1+cosψ sin θ1)]OM1 ∧ g r1 dr1 dθ1 dz1︸ ︷︷ ︸

I3

.

(C 8)

Integrals I1 and I2 are complimentary and depend only on the distribution of density,
whereas I3 is only due to the stratification. The first two terms in (C 8) lead to

I1 =− 1
12 [ρd(1+ ε)− ρ0]ghd3(cos α ex1 − sin α sinψez1), (C 9)

and
I2 = 1

12(ρd − ρ0)ghd3(cos α ex1 − sin α sinψez1), (C 10)

such that
I1 + I2 =− 1

12ρdεghd3(cos α ex1 − sin α sinψez1). (C 11)

We now compute the term in the torque due to the presence of the stratified fluid.
After some manipulations, I3 in (C 8) can be written as

I3 =− π

64
ρ0N2hd4 sin α cos α

(
1+ 4

3χ 2

)
ex. (C 12)

In the end, the torque of the unbalanced disk in a stratified fluid is

Mb =− 1
12
ρdεghd3(cos α ex1 − sin α sinψez1)−

π

128
sin(2α)ρ0N2hd4

(
1+ 4

3χ 2

)
ex.

(C 13)
We can discuss the balance between the effect of the uneven density distribution and
the stratification in (C 13) for the case ψ=0[π] without loss of generality. If ψ 6=0[π],
the induced torque in the direction of ez1 leads to the rotation of the disk until ψ =π

(stable orientation with the heaviest part of the disk at the lowest depth).
If ψ = 0[π], for a given stratification and geometry, the torque in (C 13) is in the

direction of ex= ex1 , but can be positive or negative based on the signs of ε and α. It
is possible to find an equilibrium tilted state, solution of Mb = 0, for an unbalanced
disk if the distribution of mass satisfies

ε =−3π

16
ρ0

ρd

N2d
g

(
1+ 4

3χ 2

)
sin α. (C 14)
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Based on the orientation in figure 17, the stable orientation indeed occurs for negative
(respectively positive) values of α if ε is positive (respectively negative). Table 4 gives
some examples for the pairs (ε, α) for a disk with d = 14 mm, χ = 8 in a stratified
fluid with N = 0.5 rad s−1 and ρ0 = ρd. For this choice of parameters, comparable to
the values studied in the manuscript, one can notice small values of ε are required for
the disk to be nearly balanced. The disk used in our experiments have measured values
of α in the range 1◦–65◦ (cf. figure 8 in § 4), corresponding to an uneven distribution
of mass with ε 6 10−4.
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