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Abstract

In this paper we study a finite-fuel two-dimensional degenerate singular stochastic control
problem under regime switching motivated by the optimal irreversible extraction problem
of an exhaustible commodity. A company extracts a natural resource from a reserve
with finite capacity and sells it in the market at a spot price that evolves according to a
Brownian motion with volatility modulated by a two-state Markov chain. In this setting,
the company aims at finding the extraction rule that maximizes its expected discounted
cash flow, net of the costs of extraction and maintenance of the reserve. We provide
expressions for both the value function and the optimal control. On the one hand, if the
running cost for the maintenance of the reserve is a convex function of the reserve level,
the optimal extraction rule prescribes a Skorokhod reflection of the (optimally) controlled
state process at a certain state and price-dependent threshold. On the other hand, in the
presence of a concave running cost function, it is optimal to instantaneously deplete the
reserve at the time at which the commodity’s price exceeds an endogenously determined
critical level. In both cases, the threshold triggering the optimal control is given in terms
of the optimal stopping boundary of an auxiliary family of perpetual optimal selling
problems with regime switching.
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1. Introduction

Since the seminal work of Brennan and Schwartz [6], both the literature in applied mathe-
matics and that of economics has seen numerous contributions on optimal extraction problems
of nonrenewable resources under uncertainty. In some of these contributions the extraction
problem is formulated as an optimal timing problem (see, e.g. [11] and [34] and the references
therein); in some as a combined absolutely continuous/impulse stochastic control problem
(see, e.g. [5] and [23]); and in others as a stochastic optimal control problem only with classical
absolutely continuous controls (see [1] and [12], among many others), but with commodity price
dynamics possibly described by a Markov regime switching model (see, e.g. [21]). The latter
kind of dynamics, first introduced by Hamilton [20], may indeed help to explain boom and bust
periods of commodity prices in terms of different regimes in a unique stochastic process.
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672 G. FERRARI AND S. YANG

In this paper we provide the solution to a stochastic irreversible extraction problem in the
presence of regime shifts in the underlying commodity spot price process. The problem we
have in mind is that of a company extracting continuously in time a commodity from a reserve
with finite capacity, and selling the natural resource in the spot market. The reserve level can be
decreased at any time at a given proportional cost, following extraction policies which do not
need to be rates. Moreover, the company faces a running cost (e.g. a cost for the maintenance of
the reserve) that is dependent on the reserve level. The company aims at finding the extraction
rule that maximizes the expected discounted net cash flow in the presence of market uncertainty
and macroeconomic cycles. The latter are described through regime shifts in the volatility of
the commodity spot price dynamics.

We set up the optimal extraction problem as a finite-fuel two-dimensional degenerate singular
stochastic control problem under Markov regime switching. It is two-dimensional because for
any regime i the state variable consists of the value of the spot price x and the level of the
reserve y. It is a problem of singular stochastic control with finite fuel since extraction does
not need to be performed at rates, and the commodity reserve has a finite capacity. Finally, it is
degenerate since the state variable describing the level of the reserve is purely controlled, and
does not have any diffusive component.

While the literature on optimal stopping problems under regime switching is relatively rich
(see, e.g. [4], [7], [16], [18], and [36]), that on singular stochastic control problems with regime
switching is still limited. We refer the reader to, e.g. [26], [27], [33], and [38] where the optimal
dividend problem of actuarial science was formulated as a one-dimensional problem under
Markov regime switching. If we then further restrict our attention to singular stochastic control
problems with a two-dimensional state space and regime shifts, to the best of the authors’
knowledge [19] is the only other paper available in the literature. The authors of that work
addressed an optimal irreversible investment problem in which the growth and the volatility of
the decision variable jump between two states at independent exponentially distributed random
times. However, although the authors of [19] provided a detailed discussion on the structure
of the candidate solution and on the economic implications of regime switching for capital
accumulation and growth, they did not confirm their guess by a verification theorem.

In this paper, with the aim of a complete analytical study, we assume that the commodity
spot price X evolves according to a Bachelier model with regime switching between two states.
We show that the optimal extraction rule is of threshold type, and we provide the expression of
the value function. The choice of an arithmetic dynamics for the spot price might be justified also
at the modeling stage. Indeed, Geman [15] showed that for certain commodities an arithmetic
dynamics fits a historical time series better than a mean-reverting one. Moreover, it was recently
observed that some commodities can be traded at negative prices; see [13]. This happened, e.g.
to propane prices in Edmonton (Canada) in June 2015.

The Hamilton–Jacobi–Bellman (HJB) equation associated to the optimal extraction problem
takes the form of a system of two coupled variational inequalities with state-dependent gradient
constraints. The coupling is through the transition rates of the underlying continuous-time
Markov chain ε, and it makes the problem of finding an explicit solution much more difficult
than in the standard case without regime switching. We associate to the singular control
problem a family of auxiliary optimal stopping problems for the Markov process (X, ε). Such
a family is parametrized through the initial reserve level y. We solve the related free-boundary
problem, and we characterize the geometry of stopping and continuation regions. As is usual
in optimal stopping theory, we show that the first time at which the underlying process leaves
the continuation region is an optimal stopping rule. For any given and fixed y, such a time
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Optimal extraction with regime switching 673

takes the form of the first hitting time of X to a regime-dependent boundary x∗
i (y), i = 1, 2.

These boundaries are the unique solutions to a system of nonlinear algebraic equations derived
by imposing the smooth-fit principle.

Under the assumption that the running cost function is either strictly convex or concave in
the reserve level, we show that the value function of the optimal extraction problem can be
stated in terms of the value function of the auxiliary (family of) optimal stopping problems.
Moreover, we prove that the optimal extraction policy is triggered by the optimal stopping
boundaries x∗

i (y), i = 1, 2. However, the behavior of the optimal control, and the regularity
of the value function, significantly change when passing from a strictly convex running cost to
a concave one.

On the one hand, if the running cost is a strictly convex function of the reserve level, we
show that at any time the optimal extraction policy keeps the optimally controlled reserve level
below a certain critical value b∗ with minimal effort, i.e. according to a Skorokhod reflection.
Such a threshold depends on the spot price and on the market regime, and it is the inverse
of the optimal stopping boundary x∗

i (·) previously determined. Also, we prove that, for any
regime i = 1, 2, the value function of the optimal extraction problem is a C2,1-solution to the
associated HJB equation, and it is given as the integral, with respect to the controlled state
variable, of the value function of the auxiliary optimal stopping problem.

On the other hand, if the running cost is a concave function of the reserve level, the optimal
extraction rule prescribes the instantaneous depletion of the reserve at the time at which the
commodity’s price in regime i = 1, 2 exceeds the critical level x∗

i (y). As a consequence of
such a bang–bang nature of the optimal policy—not extract or extract all—for any regime
i = 1, 2 the value function belongs only to the class C0(R × [0, 1]) ∩ C1,1(R × (0, 1]) with a
second-order derivative with respect to x that is bounded on any compact subset of R × (0, 1].

Although optimal controls of the reflecting and bang–bang type have already appeared in
the literature on two-dimensional degenerate singular stochastic control problems (see, e.g. [8]
and [9], and the references therein), to the best of the authors’ knowledge this is the first paper
in which these two different behaviors of the optimal control arise in a model with Markov
regime switching.

The study of the auxiliary family of optimal stopping problems performed in this paper is of
interest in its own right. Indeed, each stopping problem takes the form of a perpetual optimal
selling problem under regime switching which we completely solve. It is worth noting that most
of the papers dealing with optimal stopping problems with regime switching, and following a
guess-and-verify approach, assume the existence of a solution to the smooth-fit equations and
additional properties of the candidate value function in order to perform a verification theorem;
see, e.g. [18, Theorem 3.1], and [36, Theorems 3 and 5]. An abstract and nonconstructive
approach, based on a thorough analysis of the related variational inequality, was adopted by
Bensoussan et al. [4]. Here, instead, we construct a solution to the free-boundary problem,
and we then prove all the properties needed to verify that such a solution is actually the value
function of our optimal stopping problem with regime switching; see our Theorems 3.1 and 3.2
below.

Although not solvable in closed form, the system of nonlinear algebraic equations charac-
terizing the optimal stopping boundaries—hence the optimal extraction policy—can be solved
numerically with ease. This fact allows us to compare the optimal extraction boundaries in the
cases of with and without regime switching, and thus to draw interesting economic conclusions;
see Section 5. In particular, we show that, in the presence of macroeconomic cycles, the
company is more reluctant (respectively, favourable) to extract and then sell the commodity,
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relative to the case in which the market was always in the regime with the lowest (respectively,
highest) volatility.

The rest of the paper is organized as follows. In Section 2 we formulate the optimal extraction
problem, we introduce the associated HJB equation, and we discuss the solution approach.
The family of optimal stopping problems is then solved in Section 3, whereas the optimal
control is provided in Section 4. A comparison with the optimal extraction rule that one would
find in the no-regime-switching case, as well as some economic conclusions, are contained in
Section 5. Appendix A.1 collects the proofs of some results of Section 3, whereas Appendix A.2
contains the auxiliary results needed in the paper.

2. Problem formulation and solution approach

2.1. The optimal extraction problem

Let (�, F , P) be a complete probability space, rich enough to accommodate a one-dimen-
sional Brownian motion {Wt, t ≥ 0} and a continuous-time Markov chain {εt , t ≥ 0} with
state space E := {1, 2}, and with irreducible generator matrix

Q :=
(−λ1 λ1

λ2 −λ2

)
for some λ1, λ2 > 0,

where λ1 and λ2 are transition rates. The Markov chain ε jumps between the two states at
exponentially distributed random times, and the constant λi is the rate of leaving state i = 1, 2.
We take ε independent of W and denote by F := {Ft , t ≥ 0} the filtration jointly generated
by W and ε, as usual augmented by P-null sets.

We assume that the spot price of the commodity evolves according to a Bachelier model [2]
with regime switching; i.e.

dXt = σεt dWt, t > 0, X0 = x ∈ R, (2.1)

where for every state i = 1, 2, σi > 0 is a known finite constant. From the modeling point of
view, the choice of an arithmetic dynamics might be justified by noting that certain commodities
can be traded at negative spot prices (see, e.g. [13]), and do not show a mean-reverting behavior;
see, e.g. [15].

The process (X, ε) is a strong Markov process (see [37, Remark 3.11]) and we set P(x,i)(·) :=
P(· | X0 = x, ε0 = i), and denote by E(x,i) the corresponding expectation operator. From [37,
Section 3.1] we also know that (X, ε) is regular, in the sense that the sequence of stopping
times {βn, n ∈ N} with βn := inf{t ≥ 0 : |Xt | = n}, is such that limn↑∞ βn = +∞, P(x,i)-a.s.
(where we abbreviate almost surely to ‘a.s.’).

The level of the commodity reserve satisfies

dY ν
t = − dνt , t > 0, Y ν

0 = y ∈ [0, 1].
Taking y ≤ 1, we model the fact that the reserve has a finite capacity, normalized to 1 without
loss of generality. Here νt represents the cumulative amount of commodity extracted up to
time t ≥ 0. We say that an extraction policy is admissible if, given y ∈ [0, 1], it belongs to the
nonempty convex set

Ay := {ν : � × R+ 	→R+, (νt (ω) := ν(ω, t))t≥0 is nondecreasing, left-continuous,

F-adapted with y − νt ≥ 0 for all t ≥ 0, ν0 = 0, P-a.s.}. (2.2)

https://doi.org/10.1017/apr.2018.31 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.31


Optimal extraction with regime switching 675

Moreover, we let P(x,y,i)(·) := P(· | X0 = x, Y0 = y, ε0 = i) and E(x,y,i) is the corresponding
expectation operator.

While extracting, the company faces two types of cost:

• an extraction cost that we take proportional through a constant c > 0 to the amount of
commodity extracted;

• a running cost, e.g. a holding cost for the maintenance of the reserve.

The latter is measured by a function f of the reserve level satisfying the following assumption.

Assumption 2.1. We assume that f : R → R+ is increasing, continuous on [0, 1], and such
that f (0) = 0. Moreover, one of the following two conditions is satisfied:

(I) y 	→ f (y) is strictly convex and continuously differentiable on [0, 1];
(II) y 	→ f (y) is concave on [0, 1] and continuously differentiable on (0, 1].
Assumption 2.1 will be standing throughout this paper.

Remark 2.1. (i) From an economic point of view, a running cost function that is concave on
[0, 1] reflects economies of scale in the size of the operation. On the other hand, a running cost
function convex on [0, 1] seems to be more appropriate for a company facing diseconomies
of scale.

(ii) The requirement that f (0) = 0 holds without loss of generality, since if f (0) = fo > 0
then we can always set f̂ (y) := f (y) − fo and write f (y) = f̂ (y) + fo, so that the firms’s
optimization problem (see (2.4) below) remains unchanged up to an additive constant.

(iii) Cost functions of the form f (y) = αoy
2 +βoy for some αo, βo > 0, f (y) = yγo for some

γo ∈ (0, 1), or f (y) = αy for α > 0, clearly meet Assumption 2.1.

Following an extraction policy ν ∈ Ay and selling the extracted amount in the spot market at
price X, the expected discounted cash flow of the company, net of extraction and maintenance
costs, is

Jx,y,i(ν) := E(x,y,i)

[ ∫ ∞

0
e−ρt (Xt −c) dνt −

∫ ∞

0
e−ρtf (Y ν

t ) dt

]
, (x, y, i) ∈ O, (2.3)

where ρ > 0 is a given discount factor and O := R × [0, 1] × {1, 2}. Throughout this paper,
for t > 0 and ν ∈ Ay , we will make use of the notation

∫ t

0 e−ρs(Xs − c) dνs to indicate the
Stieltjes integral

∫
[0,t)

e−ρs(Xs − c) dνs with respect to ν. As a byproduct of Lemma A.4 (see
Appendix A.2), the functional (2.3) is well defined and finite for any ν ∈ Ay .

The company aims at choosing an admissible extraction rule that maximizes (2.3); i.e. it
faces the optimization problem

V (x, y, i) := sup
ν∈Ay

Jx,y,i(ν), (x, y, i) ∈ O. (2.4)

Note that if y = 0 then no control can be exerted, i.e. A0 = {ν ≡ 0} and, therefore, V (x, 0, i) =
Jx,0,i (0) = 0 for any (x, i) ∈ R × {1, 2}.

Problem (2.4) falls into the class of singular stochastic control problems, i.e. problems in
which admissible controls do not need to be absolutely continuous with respect to the Lebesgue
measure as functions of time; see [14, Chapter VIII] and [31] for an introduction. In particular,
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it is a finite-fuel two-dimensional degenerate singular stochastic control problem under Markov
regime switching. It is degenerate because the state process Y is purely controlled, and does not
have a diffusive component. Moreover, it is of finite-fuel type since the controls stay bounded.

Remark 2.2. (i) In the literature on optimal extraction it is common to consider the problem of
a company maximizing the total expected profits, net of the total expected costs of extraction
(see, e.g. [21] and [29]); i.e. (in our formulation) maximizing E[∫ ∞

0 e−ρt (Xt − c) dνt ]. In (2.3)
we also have the term E[∫ ∞

0 e−ρtf (Y ν
t ) dt] in order to account for the possible running costs

incurred by the company, e.g. for the maintenance of the reserve. However, as discussed in
Remark 4.1, our results carry over to the f ≡ 0 case as well.

(ii) Due to the convexity of Ay , and the linearity of ν 	→ Y ν , if y 	→ f (y) is strictly convex
on [0, 1], then the functional Jx,y,i(·) is strictly concave on Ay , and (2.4) is a well-posed
maximization problem of a concave functional. On the other hand, if y 	→ f (y) is concave on
[0, 1] then Jx,y,i(·) is convex on Ay . We will see in Section 4 how the convexity/concavity of f

will impact on the behavior of the optimal control, and on the regularity of the value function.

Remark 2.3. Since the extraction rule adopted by the company does not affect the price of the
commodity, our model takes into consideration a price-taker company. Allowing for a direct
instantaneous effect of the extraction policy on the price dynamics, our problem would share
a similar mathematical structure with the problem of optimal execution in algorithm trading,
where an investor sells a large number of stock shares over a given time horizon and his/her
actions have impact on the stock price; see, e.g. [17] for a recent formulation of the optimal
execution problem involving singular controls. We leave the analysis of the optimal extraction
problem with price impact as an interesting future research topic.

2.2. The HJB equation and a first verification theorem

In light of classical results in stochastic control (see, e.g. [14, Chapter VIII]), we expect that
for any i = 1, 2, the value function V (·, ·, i) suitably satisfies the HJB equation

max{(G − ρ)U(x, y, i) − f (y), (x − c) − Uy(x, y, i)} = 0 for (x, y) ∈ R × (0, 1] (2.5)

and with boundary condition U(x, 0, i) = 0. Here G is the infinitesimal generator of (X, ε).
It acts on functions h : R × {1, 2} → R with h(·, i) ∈ C2(R) for any given and fixed i = 1, 2
as

Gh(x, i) := 1
2σ 2

i hxx(x, i) + λi(h(x, 3 − i) − h(x, i)). (2.6)

It is worth noting that, due to (2.6), equation (2.5) is actually a system of two variational
inequalities with state-dependent gradient constraints, coupled through the transition rates λ1
and λ2. In the next preliminary verification result we see that any suitable solution to (2.5)
provides an upper bound for the value function V .

Theorem 2.1. For i = 1, 2, let U(·, ·, i) ∈ C1,1(R×(0, 1)) be such that Uxx(·, ·, i) ∈ L∞
loc(R×

(0, 1)), U(x, 0, i) = 0, x ∈ R, and |U(x, y, i)| ≤ K(1 + |x|) for any (x, y) ∈ R × [0, 1] and
for some K > 0. Then if U solves (2.5) in the almost every (a.e.) sense, we have U ≥ V on O.

Proof. Fix (x, y, i) ∈ O, and take arbitrary R > 0 and T > 0. Set τR := inf{t ≥ 0 : Xt /∈
(−R, R)}, and let 0 ≤ η1 < η2 < · · · < ηN ≤ τR ∧ T be the random times of the jumps of ε

in the interval [0, τR ∧ T ) (clearly, the number N of those jumps is random as well). Note that
by the regularity of U we can approximate U (uniformly on compact subsets of R × (0, 1)) by
a sequence of functions {U(m)}m≥1 such that U(m)(·, ·, i) ∈ C∞,1(R× (0, 1)) for any i = 1, 2;
see, e.g. the proof of [14, Chapter VIII, Theorem 4.1(a)], or the proof of [22, Theorem 2.7.9] for
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this kind of procedure. Then pick an admissible control ν and apply Itô–Meyer’s formula for
semimartingales (see [25, pp. 278–301]) to the process (e−ρtU(m)(Xt , Y

ν
t , εt ))t≥0 on each of

the intervals [0, η1), (η1, η2), . . . , (ηN , τR ∧ T ). Piecing together all the terms as in the proof
of [32, Lemma 3, p. 104] (see also [35, Lemma 2.4] for a similar idea of the proof), recalling
that U solves (2.5), and taking limits as m ↑ ∞, we obtain

U(x, y, i)

≥ E(x,y,i)[e−ρ(τR∧T )U(XτR∧T , Y ν
τR∧T , ετR∧T )]

− E(x,y,i)

[∫ τR∧T

0
e−ρsf (Y ν

s ) ds

]
+ E(x,y,i)

[∫ τR∧T

0
e−ρsUy(Xs, Y

ν
s , εs) dνs

]
− E(x,y,i)

[ ∑
0≤s<τR∧T

e−ρs(U(Xs, Y
ν
s+, εs) − U(Xs, Y

ν
s , εs) − Uy(Xs, Y

ν
s , εs)�Ys)

]
,

where �Ys := Ys+−Ys = −�νs := −(νs+−νs), and the expectation of the stochastic integral
vanishes since Ux is bounded on (x, y, i) ∈ [−R, R] × [0, 1] × {1, 2}.

Now, noting that any admissible control ν can be written as the sum of its continuous part
and of its pure jump part, i.e. dν = dνcont + �ν, we have

U(x, y, i) ≥ E(x,y,i)[e−ρ(τR∧T )U(XτR∧T , Y ν
τR∧T , ετR∧T )]

− E(x,y,i)

[∫ τR∧T

0
e−ρsf (Y ν

s ) ds

]
+ E(x,y,i)

[∫ τR∧T

0
e−ρsUy(Xs, Y

ν
s , εs) dνcont

s

]
− E(x,y,i)

[ ∑
0≤s<τR∧T

e−ρs(U(Xs, Y
ν
s+, εs) − U(Xs, Y

ν
s , εs))

]
.

Due to

U(Xs, Y
ν
s+, εs) − U(Xs, Y

ν
s , εs) = −

∫ �νs

0
Uy(Xs, Y

ν
s − z, εs) dz, (2.7)

and since U satisfies the HJB equation (2.5), we obtain

U(x, y, i) ≥ E(x,y,i)[e−ρ(τR∧T )U(XτR∧T , Y ν
τR∧T , ετR∧T )] − E(x,y,i)

[∫ τR∧T

0
e−ρsf (Y ν

s ) ds

]
+ E(x,y,i)

[∫ τR∧T

0
e−ρs(Xs − c) dνcont

s +
∑

0≤s<τR∧T

e−ρs(Xs − c)�νs

]
= E(x,y,i)[e−ρ(τR∧T )U(XτR∧T , Y ν

τR∧T , ετR∧T )]

+ E(x,y,i)

[∫ τR∧T

0
e−ρs(Xs − c) dνs −

∫ τR∧T

0
e−ρsf (Y ν

s ) ds

]
.
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By Hölder’s inequality, (2.1), and Itô’s isometry, we have

E(x,y,i)[e−ρ(τR∧T )|XτR∧T |]
≤ E(x,y,i)[e−2ρ(τR∧T )]1/2

E(x,y,i)[|XτR∧T |2]1/2

≤ √
2E(x,y,i)[e−2ρ(τR∧T )]1/2

(
|x|2 + E(x,y,i)

[∣∣∣∣ ∫ τR∧T

0
σεu dWu

∣∣∣∣2])1/2

≤ √
2E(x,y,i)[e−2ρ(τR∧T )]1/2(|x|2 + (σ 2

1 ∨ σ 2
2 )T )1/2.

The previous estimate, together with the linear growth property of U , then imply that

E(x,y,i)[e−ρ(τR∧T )U(XτR∧T , Y ν
τR∧T , ετR∧T )]

≥ −CE(x,y,i)[e−ρ(τR∧T )] − √
2CE(x,y,i)[e−2ρ(τR∧T )]1/2(|x|2 + (σ 2

1 ∨ σ 2
2 )T )1/2

for some constant C > 0. Hence,

U(x, y, i) ≥ −CE(x,y,i)[e−ρ(τR∧T )] − √
2CE(x,y,i)[e−2ρ(τR∧T )]1/2(|x|2 + (σ 2

1 ∨ σ 2
2 )T )1/2

+ E(x,y,i)

[∫ τR∧T

0
e−ρs(Xs − c) dνs

]
− E(x,y,i)

[∫ τR∧T

0
e−ρsf (Y ν

s ) ds

]
.

(2.8)

When taking limits as R → ∞, we have τR ∧ T → T , P(x,y,i)-a.s. by the regularity of (X, ε).
By Lemma A.4 (see Appendix A.2), the integrals on the right-hand side of (2.8) are uniformly
integrable. We can thus invoke Vitali’s convergence theorem to take limits as R ↑ ∞ in (2.8),
and then as T ↑ ∞ to obtain

U(x, y, i) ≥ E(x,y,i)

[∫ ∞

0
e−ρs(Xs − c) dνs −

∫ ∞

0
e−ρsf (Y ν

s ) ds

]
. (2.9)

Since (2.9) holds for any ν ∈ Ay , we have U(x, y, i) ≥ V (x, y, i). Hence, U ≥ V on O by
the arbitrariness of (x, y, i) ∈ O. �
2.3. The solution approach

In this paper we solve problem (2.4) in the following two cases (see Assumption 2.1 and
Remark 2.2):

(I) y 	→ f (y) is strictly convex on [0, 1] (see Section 4.1);

(II) y 	→ f (y) is concave on [0, 1] (see Section 4.2).

The case of a running cost that is neither convex nor concave on [0, 1] needs a separate analysis,
and it is left as an interesting open problem; see [8] and [9] for singular stochastic control
problems in which the running cost is neither convex nor concave.

We will follow a guess-and-verify approach by finding in each of the two previous cases a
suitable solution to (2.5) and then verifying its optimality through a verification theorem. As a
byproduct, we will also obtain the optimal control rule. We will see that in both (I) and (II)
the solution to (2.4) is given in terms of the solution to the parameter-dependent (as y ∈ (0, 1]
enters only as a parameter) optimal stopping problem with regime switching, i.e.

u(x, i; y) := sup
τ≥0

E(x,i)[e−ρτ (Xτ − θ(y))]. (2.10)
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In (2.10) the optimization is taken over all P(x,i)-a.s. finite F-stopping times; moreover, θ(y)

is a given suitable real number that depends on the initial level of the reserve y through the
running cost function f . In particular,

θ(y) :=

⎧⎪⎪⎨⎪⎪⎩
c − f ′(y)

ρ
if case (I) holds,

c − 1

ρ

f (y)

y
if case (II) holds.

To obtain a heuristic justification of the relation between problems (2.4) and (2.10), we argue
as follows. On the one hand, formally differentiating (2.5) with respect to y inside the region
where (G − ρ)V (x, y, i) − f (y) = 0, we see that, for any i = 1, 2, Vy should identify with an
appropriate solution to the variational inequality

max{(G − ρ)ζ(x, i; y) − f ′(y), x − c − ζ(x, i; y)} = 0 (2.11)

for x ∈ R and any given y ∈ [0, 1].
As well as (2.5), note also that (2.11) is actually a system of variational inequalities. In fact,

it is the variational inequality that we expect to be associated to the family of optimal stopping
problem with regime switching, i.e.

sup
τ≥0

E(x,i)

[
e−ρτ (Xτ − c) −

∫ τ

0
e−ρsf ′(y) ds

]
. (2.12)

By evaluating the time integral in (2.12), we easily see that (2.12) can be expressed as

sup
τ≥0

E(x,i)

[
e−ρτ

(
Xτ − c + f ′(y)

ρ

)]
− f ′(y)

ρ
,

which is clearly equivalent to (2.10) when θ(y) = c − f ′(y)/ρ.
A differential connection between the value functions of a singular control problem and of

an optimal stopping problem is commonly observed in singular control problems in which the
payoff functional to be maximized is concave with respect to the control variable; see, e.g. [3]
and the references therein. In light of Remark 2.2 we then expect that Vy = u in case (I); i.e.
when f is (strictly) convex.

On the other hand, optimal stopping problem (2.10) can also arise if we restrict the opti-
mization in (2.4) to all the controls of the following purely discontinuous bang–bang type: for
some F-stopping time τ and for any given y ∈ [0, 1], νt = 0 for any t ≤ τ , and νt = y for any
t > τ . Indeed, following such a policy, and optimizing with respect to the time of the reserve’s
depletion τ , we arrive at the optimal stopping problem

sup
τ≥0

E(x,i)

[
e−ρτ (Xτ − c)y −

∫ τ

0
e−ρsf (y) ds

]
,

which easily becomes

y sup
τ≥0

E(x,i)

[
e−ρτ

(
Xτ − c + 1

ρ

f (y)

y

)]
− f (y)

ρ
.

The latter is clearly related to (2.10) when θ(y) = c − f (y)/ρy.
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We expect that a similar connection to problem (2.4) (and therefore the optimality of a
policy prescribing the instantaneous depletion of the reserve at a suitable stopping time) holds
in case (II). Indeed, in such a case f is concave and, therefore, the marginal holding cost of the
reserve decreases.

Supported by the previous heuristic discussion, in the next section we will solve problem
(2.10) when θ(y) is a given constant. In particular, we will show that the solution to (2.10)
is triggered by suitable regime-dependent stopping boundaries x∗

i (y), y ∈ (0, 1], that we
will characterize as the unique solutions to a system of nonlinear algebraic equations. These
boundaries will then play a crucial role in the construction of the optimal control in both cases
(I) and (II) (see Sections 4.1 and 4.2, respectively).

3. The associated family of optimal selling problems

In this section we solve the parameter-dependent optimal stopping problem with regime
switching (2.10). This result is of interest in its own right since (2.10) takes the form of an
optimal selling problem in a Bachelier model with regime switching, and with a transaction
cost θ(y) that parametrically depends on y ∈ (0, 1]. In the rest of this section, y ∈ (0, 1] is
given and fixed.

Some preliminary properties of u are stated in the next proposition, the proof of which can
be found in Appendix A.1. These properties of u will be important later when we construct the
solution to (2.10).

Proposition 3.1. Recall (2.10). There exists a constant K(y) > 0 such that for any (x, i) ∈
R × {1, 2},

(i) u(x, i; y) ≥ x − θ(y);

(ii) |u(x, i; y)| ≤ K(y)(1 + |x|).
In line with the standard theory of optimal stopping (see, e.g. [28]), we expect u of (2.10) to

suitably satisfy the variational inequality

max{(G − ρ)w(x, i; y), x − θ(y) − w(x, i; y)} = 0, (x, i) ∈ R × {1, 2}, (3.1)

for any given y ∈ (0, 1], and where G is defined in (2.6). Also, we define the continuation and
stopping regions of (2.10) as

C := {(x, i) ∈ R × {1, 2} : u(x, i; y) > x − θ(y)},
S := {(x, i) ∈ R × {1, 2} : u(x, i; y) = x − θ(y)},

respectively. Given the structure of the optimal stopping problem (2.10), we suppose that

C := {(x, 1) : x < x∗
1 (y)} ∪ {(x, 2) : x < x∗

2 (y)} (3.2)

for some thresholdx∗
i (y), i = 1, 2, such thatx∗

i (y) > θ(y), i = 1, 2, depending parametrically
on y ∈ (0, 1].

In our problem, three cases are possible:

(A) σ1 < σ2;

(B) σ1 = σ2;

(C) σ1 > σ2.
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We expect that the higher the volatility, the more the stopper would like to wait in order to
benefit from possibly larger values of X; see [24] and [11] for this effect in the context of real
options. Hence, in light of (3.2), we conjecture that:

• in case (A) we have x∗
1 (y) < x∗

2 (y);

• in case (B) we have x∗
1 (y) = x∗

2 (y);

• in case (C) we have x∗
1 (y) > x∗

2 (y).

We now solve (3.1) in cases (A) and (B). Case (C) is completely symmetric to case (A) and
can be treated with similar arguments. For the sake of brevity we therefore omit its discussion.
Then, by a verification argument, we will show that the solution w to (3.1) satisfies w ≡ u. As
a byproduct we will also provide the optimal stopping rule τ ∗.

3.1. Case (A): σ1 < σ2

Given the previous conjecture, here we suppose that x∗
1 (y) < x∗

2 (y), and we rewrite (3.1) in
the form of a free-boundary problem. That is, we aim at finding
(w(x, 1; y), w(x, 2; y), x∗

1 (y), x∗
2 (y)) that satisfies the following relations:

1
2σ 2

i wxx(x, i; y) − ρw(x, i; y) + λi(w(x, 3 − i; y) − w(x, i; y))

= 0, x < x∗
1 (y), i = 1, 2,

1
2σ 2

2 wxx(x, 2; y) − ρw(x, 2; y) + λ2(w(x, 1; y) − w(x, 2; y))

= 0, x ∈ (x∗
1 (y), x∗

2 (y)),

(3.3)

w(x, 1; y) =
{

x − θ(y) for x∗
1 (y) ≤ x ≤ x∗

2 (y),

x − θ(y) = w(x, 2; y) for x ≥ x∗
2 (y).

(3.4)

Moreover, from (3.1), w(·, 1; y) and w(·, 2; y) should also satisfy, for any i = 1, 2,

1
2σ 2

i wxx(x, i; y) − ρw(x, i; y) + λi(w(x, 3 − i; y) − w(x, i; y)) ≤ 0 for a.e. x ∈ R,

w(x, i; y) ≥ x − θ(y) for x ∈ R.
(3.5)

Recalling that σi > 0 and λi > 0, i = 1, 2, let α1 < α2 < 0 < α3 < α4 be the roots of the
fourth-order equation �1(α)�2(α) − λ1λ2 = 0 (see Lemma A.1) with

�i(α) := − 1
2σ 2

i α2 + ρ + λi, i = 1, 2.

We then note that the first equation of (3.3) is actually a system of two second-order ordinary
differential equations (ODEs). Hence, transforming such a system into a system of four first-
order ODEs, we see that its general solution is

w(x, 1; y) = A1(y)eα1x + A2(y)eα2x + A3(y)eα3x + A4(y)eα4x,

w(x, 2; y) = B1(y)eα1x + B2(y)eα2x + B3(y)eα3x + B4(y)eα4x
(3.6)

for any x < x∗
1 (y), x∗

1 (y) to be found, and where

Bj (y) := �1(αj )

λ1
Aj(y) = λ2

�2(αj )
Aj (y), j = 1, 2, 3, 4,
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with Aj(y) to be determined. Since the value function (2.10) diverges at most linearly (see
Proposition 3.1), we set A1(y) = 0 = A2(y), so that also B1(y) = 0 = B2(y).

On the other hand, the solution to the second equation of (3.3) and the first equation of (3.4)
is given on (x∗

1 (y), x∗
2 (y)) by

w(x, 1; y) = x − θ(y), w(x, 2; y) = B5(y)eα5x + B6(y)e−α5x + λ2

(
x − θ(y)

ρ + λ2

)
(3.7)

with α5 =
√

2(ρ + λ2)/σ
2
2 , and for some B5(y) and B6(y) to be determined.

Finally, for any x ≥ x∗
2 (y), we have (see the second equation of (3.4))

w(x, 1; y) = x − θ(y) = w(x, 2; y). (3.8)

It now remains to find the constants A3(y), A4(y), B5(y), B6(y), and the two threshold
values x∗

1 (y), x∗
2 (y). To accomplish this we impose the condition that w(·, 1; y) is continuous

with continuous first-order derivative at x = x∗
1 (y), and that w(·, 2; y) is continuous with

continuous first-order derivative at x = x∗
1 (y) and x = x∗

2 (y). In the optimal stopping literature
these regularity requirements are the so-called continuous fit (C0-regularity) and smooth fit
(C1-regularity) conditions. Then, from (3.6)–(3.8), we obtain the nonlinear system

A3(y)eα3x
∗
1 (y) + A4(y)eα4x

∗
1 (y) = x∗

1 (y) − θ(y), (3.9a)

α3A3(y)eα3x
∗
1 (y) + α4A4(y)eα4x

∗
1 (y) = 1, (3.9b)

B3(y)eα3x
∗
1 (y) + B4(y)eα4x

∗
1 (y) = B5(y)eα5x

∗
1 (y) + B6(y)e−α5x

∗
1 (y) + λ2

(
x∗

1 (y) − θ(y)

ρ + λ2

)
,

(3.9c)

α3B3(y)eα3x
∗
1 (y) + α4B4(y)eα4x

∗
1 (y) = α5B5(y)eα5x

∗
1 (y) − α5B6(y)e−α5x

∗
1 (y) + λ2

ρ + λ2
,

(3.9d)

B5(y)eα5x
∗
2 (y) + B6(y)e−α5x

∗
2 (y) + λ2

(
x∗

2 (y) − θ(y)

ρ + λ2

)
= x∗

2 (y) − θ(y), (3.9e)

α5B5(y)eα5x
∗
2 (y) − α5B6(y)e−α5x

∗
2 (y) + λ2

ρ + λ2
= 1. (3.9f)

Solving (3.9a) and (3.9b) with respect to A3(y) and A4(y), we obtain, after some simple
algebra,

A3(y) =
[
α4(x

∗
1 (y) − θ(y)) − 1

α4 − α3

]
e−α3x

∗
1 (y),

A4(y) =
[

1 − α3(x
∗
1 (y) − θ(y))

α4 − α3

]
e−α4x

∗
1 (y).

(3.10)

Analogously, the solutions to (3.9e) and (3.9f), given in terms of the unknown x∗
2 (y), are

B5(y) = ρ

ρ + λ2

[
e−α5x

∗
2 (y)(1 + α5(x

∗
2 (y) − θ(y)))

2α5

]
,

B6(y) = ρ

ρ + λ2

[
eα5x

∗
2 (y)(α5(x

∗
2 (y) − θ(y)) − 1)

2α5

]
.

(3.11)
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Finally, substituting (3.10) and (3.11) into (3.9c) and (3.9d), recalling that B3(y) =
(�1(α3)/λ1)A3(y) and B4(y) = (�1(α4)/λ1)A4(y), we find, after some algebra, that (x∗

1 (y),

x∗
2 (y)) should satisfy

F1(x
∗
1 (y), x∗

2 (y); y) = 0 and F2(x
∗
1 (y), x∗

2 (y); y) = 0, (3.12)

where we have set

F1(u, v; y) := ρ

ρ + λ2

[
(v − θ(y)) cosh(α5(v − u)) − 1

α5
sinh(α5(v − u))

]
+ a1(u − θ(y)) + a2,

F2(u, v; y) := ρ

ρ + λ2
[cosh(α5(v − u)) − α5(v − θ(y)) sinh(α5(v − u))]

+ a3(u − θ(y)) + a4

with ai := ai(ρ, λ1, λ2, σ1, σ2), i = 1, 2, 3, 4, given by

a1 := −α4�1(α3) − α3�1(α4)

λ1(α4 − α3)
+ λ2

ρ + λ2
, (3.13a)

a2 := �1(α3) − �1(α4)

λ1(α4 − α3)
, (3.13b)

a3 := α3α4

λ1(α4 − α3)
[�1(α4) − �1(α3)], (3.13c)

a4 := α3�1(α3) − α4�1(α4)

λ1(α4 − α3)
+ λ2

ρ + λ2
. (3.13d)

Note that a1 < 0, a2 > 0, a3 < 0, and a4 > 0 by Lemma A.2.
Since we expect, from (2.10), that x∗

i (y), i = 1, 2, are such that x∗
2 (y) > x∗

1 (y) ≥ θ(y), it
is natural to check to see if (3.12) admits a solution in (θ(y), ∞)× (θ(y), ∞). So far we do not
know about the existence, and uniqueness, of such a solution. To investigate this fact, we define
z∗

1(y) := x∗
1 (y) − θ(y) and z∗

2(y) := x∗
2 (y) − x∗

1 (y), so that x∗
2 (y) − θ(y) = z∗

1(y) + z∗
2(y),

and we note that with such a definition the explicit dependence with respect to y disappears
in (3.12). We can thus drop the y-dependence in z∗

i (y), i = 1, 2, and set (z∗
1, z

∗
2) as the solution,

if it exists, of the equivalent system

G1(u, v) = 0 and G2(u, v) = 0 for u, v ≥ 0 (3.14)

with

G1(u, v) :=
(

a1 + ρ

ρ + λ2
cosh(α5v)

)
u − ρ

ρ + λ2

[
1

α5
sinh(α5v) − v cosh(α5v)

]
+ a2,

G2(u, v) :=
(

a3 − ρα5

ρ + λ2
sinh(α5v)

)
u − ρ

ρ + λ2
[vα5 sinh(α5v) − cosh(α5v)] + a4.

Proposition 3.2. Let ẑ2 be the unique positive solution to

a1 + ρ

ρ + λ2
cosh(α5v) = 0, v ≥ 0,

https://doi.org/10.1017/apr.2018.31 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.31


684 G. FERRARI AND S. YANG

with a1 as in (3.13a) and α5 =
√

2(ρ + λ2)/σ
2
2 . Then there exists a unique couple (z∗

1, z
∗
2)

solving (3.14) in (0, ∞) × (0, ẑ2) if and only if σ 2
1 < σ 2

2 . Moreover, z∗
1 is such that

− a2

a1 + ρ/(ρ + λ2)
< z∗

1 < −ρ/(ρ + λ2) + a4

a3
.

Proof. The proof is in four steps.
Step 1. Note that the function

r(v) := ρ

ρ + λ2

[
1

α5
sinh(α5v) − v cosh(α5v)

]
− a2, v ≥ 0,

is strictly decreasing and, therefore, strictly negative for any v ≥ 0 since r(0) = −a2 < 0; see
Lemma A.2.

Step 2. Now we prove that

h(v) = 0, h(v) := a1 + ρ

ρ + λ2
cosh(α5v), v ≥ 0,

admits a unique solution ẑ2 > 0. For this, it suffices to note that v 	→ h(v) is strictly increasing
with limv→∞ h(v) = +∞, and that

h(0) = a1 + ρ

ρ + λ2
= −ρ + σ 2

1 α3α4/2

λ1
< 0.

The last inequality in the previous equation follows by using (A.24).
Step 3. Using step 2, for any v ∈ [0, ẑ2) we can write (3.14) in the equivalent form

u = M1(v), M1(v) − M2(v) = 0

with

M1(v) :=
(

ρ

ρ + λ2

[
1

α5
sinh(α5v) − v cosh(α5v)

]
− a2

)
×

(
a1 + ρ

ρ + λ2
cosh(α5v)

)−1

,

M2(v) :=
(

ρ

ρ + λ2
[vα5 sinh(α5v) − cosh(α5v)] − a4

)
×

(
a3 − ρα5

ρ + λ2
sinh(α5v)

)−1

,

(3.15)

where we have also used the fact that a3 − (ρα5/(ρ + λ2)) sinh(α5v) �= 0 on [0, ∞) is a3 < 0;
see again Lemma A.2.

The numerator of M1 in (3.15) is strictly negative on v ≥ 0 by step 1. Using this fact, and
noting that a1 + (ρ/(ρ + λ2)) cosh(α5v) < 0 on [0, ẑ2), by a direct calculation we observe that
v 	→ M1(v) strictly increases on [0, ẑ2), and it is such that limz↑ẑ2 M1(v) = +∞.

Also, employing (A.23) and (A.25), and the definitions of α3 and α4, we can check that

M1(0) − M2(0) = 1

a3

(
ρ

ρ + λ2
+ a4

)
− a2

a1 + ρ/(ρ + λ2)
< 0 ⇐⇒ σ 2

1 < σ 2
2 .
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We now claim (and prove later) that v 	→ M2(v) strictly decreases in [0, ẑ2], so that v 	→
M1(v)−M2(v) strictly increases on [0, ẑ2) and diverges to +∞ as z approaches ẑ2. Combining
all these facts, we conclude that there exists a unique z∗

2 ∈ (0, ẑ2) solving M1(v)−M2(v) = 0.
Hence, z∗

1 = M1(z
∗
2) (or, equivalently, z∗

1 = M2(z
∗
2)), and z∗

1 > 0 since M1(v) ≥ M1(0) > 0
on [0, ẑ2).

Moreover, since M1(·) is strictly increasing, M2(·) is strictly decreasing on [0, ẑ2), and
z∗

2 < ẑ2, we have M1(0) < z∗
1 < M2(0), i.e.

0 < − a2

a1 + ρ/(ρ + λ2)
< z∗

1 < −ρ/(ρ + λ2) + a4

a3
. (3.16)

Step 4. To complete the proof we need to show that v 	→ M2(v) is strictly decreasing in
[0, ẑ2]. By direct calculations we can see that the latter monotonicity property holds if

− ρ

ρ + λ2
cosh(α5v) + a3v < 0 on [0, ẑ2].

This holds since a3 < 0. �
Since, by Proposition 3.2, there exists a unique couple (z∗

1, z
∗
2) solving (3.14) in (0, ∞) ×

(0, ẑ2) if and only if σ 2
1 < σ 2

2 , the latter condition is taken as a standing assumption throughout
the rest of this section.

Corollary 3.1. There exists a unique couple (x∗
1 (y), x∗

2 (y)) ∈ (θ(y), +∞) × (θ(y), +∞)

solving (3.12). Moreover, it is such that x∗
2 (y) > x∗

1 (y).

Proof. By Proposition 3.2, there exists a unique couple (z∗
1, z

∗
2) solving (3.14) in (0, ∞) ×

(0, ẑ2). Since z∗
1 = x∗

1 (y)− θ(y) and z∗
2 = x∗

2 (y)−x∗
1 (y), we have x∗

1 (y) = z∗
1 + θ(y) > θ(y)

and x∗
2 (y) = z∗

2 + x∗
1 (y) > x∗

1 (y) > θ(y). �
In Theorem 3.1 below we prove that (w(x, 1; y), w(x, 2; y), x∗

1 (y), x∗
2 (y)) is a solution to

the free-boundary problem (3.3)–(3.5). The proof is quite long and technical, and for this reason
we postpone it to Appendix A.1.

Theorem 3.1. (The candidate value function.) Let (x∗
1 (y), x∗

2 (y)) with x∗
2 (y) > x∗

1 (y) be the
unique solution to (3.12) in (θ(y), +∞) × (θ(y), +∞). Define A3(y) and A4(y) as in (3.10),
B3(y) := (�1(α3)/λ1)A3(y) and B4(y) := (�1(α4)/λ1)A4(y), and B5(y) and B6(y) as
in (3.11). Then the functions

w(x, 1; y) :=
{

A3(y)eα3x + A4(y)eα4x, x ≤ x∗
1 (y),

x − θ(y), x ≥ x∗
1 (y),

(3.17)

and

w(x, 2; y) :=

⎧⎪⎪⎨⎪⎪⎩
B3(y)eα3x + B4(y)eα4x, x ≤ x∗

1 (y),

B5(y)eα5x + B6(y)e−α5x + λ2

(
x − θ(y)

ρ + λ2

)
, x∗

1 (y) ≤ x ≤ x∗
2 (y),

x − θ(y), x ≥ x∗
2 (y),

(3.18)

are such thatw(·, i; y) ∈ C1(R)withwxx(·, i; y) ∈ L∞
loc(R) for any i = 1, 2, and |w(x, i; y)| ≤

κi(y)(1 + |x|) for some κi(y) > 0.
Moreover, (w(x, 1; y), w(x, 2; y), x∗

1 (y), x∗
2 (y)) is a solution to the free-boundary problem

(3.3)–(3.5).
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We now verify the actual optimality of the candidate value function of Theorem 3.1. The
proof of this result can be found in Appendix A.1.

Theorem 3.2. (The verification theorem.) Let C = {(x, 1) : x < x∗
1 (y)}∪{(x, 2) : x < x∗

2 (y)}.
Then, for w as in Theorem 3.1 and for u as in (2.10), we have w = u on R × {1, 2} and

τ ∗ := inf{t ≥ 0 : (Xt , εt ) �∈ C}, P(x,i)-a.s.,

is an optimal stopping time.

3.2. Case (B): σ1 = σ2

In this section we study the case in which σ1 = σ2 =: σ . We conjecture that this is
equivalent to the case without regime switching, in which the optimal stopping problem under
consideration is

q(x; y) := sup
τ≥0

Ex[e−ρτ (Xτ − θ(y))]. (3.19)

Here Xt = x + σWt , t ≥ 0, and Ex denotes the expectation under Px(·) := P(· | X0 = x).
Although (3.19) is a standard optimal stopping problem, the authors were unable to find a

precise solution in the literature. Therefore, here we simply provide the main ideas needed in
order to solve it, and we leave the details to the interested reader.

By standard theory, for any y ∈ [0, 1] the value function q(·; y) should identify with a
suitable solution of the variational inequality

max
{ 1

2σ 2ζxx(x; y) − ρζ(x; y), x − θ(y) − ζ(x; y)
} = 0, x ∈ R. (3.20)

From (3.19), we can expect that the stopping region for this problem is of the form [x∗(y),

+∞) for some x∗(y) > θ(y) to be determined. Indeed, for the stopper it is profitable to stop
the process X when its level is sufficiently large (but finite, due to discounting). By (3.20),
in the (candidate) continuation region (−∞, x∗(y)) the value function should identify with a
solution to the ODE 1

2σ 2ζxx(x; y) − ρζ(x; y) = 0, that grows at most linearly when x ↓ −∞
(this last condition is due to the linear structure with respect to x of the expected reward on the
right-hand side of (3.19)). Hence, ζ(x; y) = A(y) exp((

√
2ρ/σ)x) for some A(y) > 0 to be

determined. Then, imposing the condition that ζ(·; y) is continuous with continuous first-order
derivative at the point x = x∗(y) leads to a system of two equations for the two unknowns
(A(y), x∗(y)). Solving such a system, and then performing a standard verification argument,
it follows that the value function of (3.19) is

q(x; y) :=
⎧⎨⎩

σ√
2ρ

exp

(√
2ρ

σ
(x − x∗(y))

)
, x ≤ x∗(y),

x − θ(y), x ≥ x∗(y),

(3.21)

where the free boundary is

x∗(y) := σ√
2ρ

+ θ(y) > θ(y). (3.22)

Finally, by noting that for G as in (2.6), Gq = 1
2σ 2qxx , and arguing as in the proof of

Theorem 3.2, we are now in a position to prove the following result.
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Theorem 3.3. Assume that σ1 = σ2 =: σ , let x∗(y) be given by (3.22), and q as in (3.21). Then
the value function of (2.10) is such that u ≡ q. Moreover, letting C = {(x, i) ∈ R×{1, 2} : x <

x∗(y)}, the stopping time

τ ∗ := inf{t ≥ 0 : (Xt , εt ) �∈ C}, P(x,i)-a.s.,

is optimal.

4. The optimal extraction policy

In this section we provide the solution to the finite-fuel singular stochastic control problem
(2.4) in terms of the solution to the optimal stopping problem with regime switching (2.10).
In particular, we consider separately the two cases (I) y 	→ f (y) strictly convex on [0, 1], and
(II) y 	→ f (y) concave on [0, 1]: see Assumption 2.1. It turns out that the optimal extraction
rule is qualitatively different across these two cases.

4.1. Case (I): y �→ f (y) strictly convex on [0, 1]
Assume that y 	→ f (y) fulfills condition (I) of Assumption 2.1. For any y ∈ [0, 1], let θ(y)

in (2.10) be such that

θ(y) := c − f ′(y)

ρ
,

and note that with such a choice of θ all the results of Section 3 remains valid for y ∈ [0, 1].
By Corollary 3.1, we know that x∗

1 (y) = z∗
1 + θ(y) and x∗

2 (y) = z∗
2 + x∗

1 (y) (see also (3.22)
in the x∗

1 (y) = x∗
2 (y) = x∗(y) case). Since y 	→ f (y) is continuously differentiable and

strictly convex on [0, 1], it follows that for any i = 1, 2, y 	→ x∗
i (y) is continuous and strictly

decreasing on [0, 1], and it has an inverse with respect to y. For i = 1, 2, we then define

b∗
i (x) :=

⎧⎪⎨⎪⎩
1, x ≤ x∗

i (1),

(x∗
i )−1(x), x ∈ (x∗

i (1), x∗
i (0)),

0, x ≥ x∗
i (0),

(4.1)

and we observe that b∗
i : R → [0, 1] is continuous and decreasing. Note that also the case in

which x∗
1 (y) = x∗

2 (y)—i.e. case (B) of Section 3.2—can be accommodated into (4.1). Indeed,
in such a case we simply have b∗

1 = b∗
2.

We now provide a candidate value function for problem (2.4). To this end, for u as in
Theorems 3.2 or 3.3, we introduce the function

F(x, y, i) :=
∫ y

0
u(x, i; z) dz − f (y)

ρ
. (4.2)

Proposition 4.1. The function F introduced in (4.2) is such that F(·, ·, i) ∈ C2,1(R × [0, 1])
for any i = 1, 2. Moreover, for i = 1, 2, there exist constants Ci > 0 and κi > 0 such that

|F(x, y, i)| + |Fy(x, y, i)| ≤ Ci(1 + |x|) and |Fx(x, y, i)| + |Fxx(x, y, i)| ≤ κi (4.3)

for (x, y) ∈ R × [0, 1].
Proof. From (3.17) and (3.18), and from (3.21) (upon recalling also Theorems 3.2 and 3.3), it

is easy to verify that u is of the form u(x, i; y) = ζi(y)Gi(x)+ηi(y)Hi(x) for some continuous
functions ζi , ηi , Gi , and Hi . Thus, it follows that (x, y) 	→ F(x, y, i) and (x, y) 	→ Fy(x, y, i)
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are continuous on R × [0, 1]. Also, from (3.17) and (3.18), and from (3.21), we can see that
for any x in a bounded set K ⊂ R and for any i = 1, 2, the derivatives |ux | and |uxx | are at
least bounded by a function FK(y) ∈ L1(0, 1). It follows that to determine Fx and Fxx we can
invoke the dominate convergence theorem and evaluate derivatives inside the integral in (4.2)
to obtain

Fx(x, y, i) =
∫ b∗

1(x)∧y

0
ux(x, i; z) dz+

∫ b∗
2(x)∧y

b∗
1(x)∧y

ux(x, i; z) dz+
∫ y

b∗
2(x)∧y

ux(x, i; z) dz (4.4)

and

Fxx(x, y, i) =
∫ b∗

1(x)∧y

0
uxx(x, i; z) dz +

∫ b∗
2(x)∧y

b∗
1(x)∧y

uxx(x, i; z) dz, (4.5)

where the second integrals on the right-hand side of (4.4) and (4.5) are equal to 0 in the b∗
1 = b∗

2
case. Therefore, F(·, ·, i) ∈ C2,1(R × [0, 1]) for i = 1, 2, by (3.17) and (3.18), (3.21),
Theorems 3.2 and 3.3, and the continuity of b∗

i (·); see (4.1). Finally, the bounds (4.3) follow
from (3.17) and (3.18), (3.21), (4.2), and (4.4) and (4.5). �

In the next result we see that F solves the HJB equation (2.5).

Proposition 4.2. For all (x, y, i) ∈ R × (0, 1] × {1, 2}, F is a classical solution to (2.5).
Moreover, it satisfies the boundary condition F(x, 0, i) = 0 for (x, i) ∈ R × {1, 2}.

Proof. First of all we observe that for any (x, y, i) ∈ O, we have, from (4.2),

Fy(x, y, i) = u(x, i; y) − f ′(y)

ρ
≥ x − c, (4.6)

where the last inequality follows from the fact that u(x, i; y) ≥ x − θ(y) = x − c + f ′(y)/ρ.
In particular, for any i = 1, 2, we have equality in (4.6) on {(x, y) ∈ R × [0, 1] : x ≥ x∗

i (y)}.
For any fixed i = 1, 2, take y ∈ [0, 1] and x ∈ R such that Fy(x, y, i) > x − c, i.e.

y < b∗
i (x), and note that thanks to Proposition 4.1, we can write

(G − ρ)F (x, y, 1) =
∫ y

0
(G − ρ)u(x, 1; z) dz + f (y) = f (y),

and

(G − ρ)F (x, y, 2) =
∫ y∧b∗

1(x)

0
(G − ρ)u(x, 2; z) dz +

∫ y∧b∗
2(x)

y∧b∗
1(x)

(G − ρ)u(x, 2; z) dz + f (y)

= f (y).

The last equalities in the above equations follow from the fact that u solves the free-boundary
problem (3.3)–(3.5); see Theorems 3.1 and 3.2, and also Theorem 3.3 in the x∗

1 (y) = x∗
2 (y) =

x∗(y) case.
On the other hand, for arbitrary (x, y, i) ∈ O, we note that (see (4.1))

(G − ρ)F (x, y, i) =
∫ b∗

1(x)∧y

0
(G − ρ)u(x, i; z) dz +

∫ b∗
2(x)∧y

b∗
1(x)∧y

(G − ρ)u(x, i; z) dz

+
∫ y

b∗
2(x)∧y

(G − ρ)u(x, i; z) dz + f (y)

≤ f (y),
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since, again, u solves the free-boundary problem (3.3)–(3.5). Hence, F solves (2.5). Moreover,
recalling that f (0) = 0, it is straightforward to see from (4.2) that F(x, 0, i) = 0 for any
(x, i) ∈ R × {1, 2}. �

Satisfying (2.5) and the boundary condition F(x, 0, i) = 0 for (x, i) ∈ R × {1, 2}, F is
clearly a candidate value function for problem (2.4). We now introduce a candidate optimal
control process. Let (x, y, i) ∈ O, recall b∗

i of (4.1), and consider the process

ν∗
0 = 0, ν∗

t =
[
y − inf

0≤s<t
b∗
εs

(
Xs

)]+
, t > 0, (4.7)

where [·]+ denotes the positive part.

Proposition 4.3. The process ν∗ of (4.7) is an admissible control.

Proof. Recall (2.2). For any given and fixed ω ∈ �, t 	→ ν∗
t (ω) is clearly nondecreasing

and such that Y ν∗
t (ω) ≥ 0 for any t ≥ 0, since b∗

i (x) ∈ [0, 1] for any x ∈ R. Moreover,
since (X, ε) is right-continuous with left limits (see [37, Lemma 3.6]) and (x, i) 	→ b∗

i (x) is
continuous, t 	→ ν∗

t (ω) is left-continuous. Finally, the F-progressive measurability of (X, ε)

and the measurability of b∗ imply that ν∗ is F-progressively measurable by [10, Theorem IV.33],
whence F-adapted. �

Process ν∗ is the minimal effort needed to have Y ν∗
t ≤ b∗

εt
(Xt ) at any time t . In particular,

it is a standard result (see, e.g. [8, Proposition 2.7] and the references therein for a proof in a
similar setting) that ν∗ of (4.7) solves the Skorokhod reflection problem

(i) Y ∗
t ≤ b∗

εt
(Xt ), P(x,y,i)-a.s. for each t > 0;

(ii)
∫ T

0 1{Y ∗
t <b∗

εt
(Xt )} dν∗

t = 0, P(x,y,i)-a.s. for all T ≥ 0,

where Y ∗ := Y ν∗
. In Figure 1 we present an illustration of the (candidate) optimal policy ν∗.

Theorem 4.1. (The verification theorem.) The control ν∗ of (4.7) is optimal for problem (2.4),
and F of (4.2) is such that F ≡ V .

Proof. Since F is a classical solution to the HJB equation due to Proposition 4.2, we have
F ≥ V on O by Theorem 2.1. We now show that we actually have F = V on O, and that ν∗
of (4.7) is optimal for problem (2.4).

If y = 0 then F(x, 0, i) = 0 = V (x, 0, i). Then take (x, i) ∈ R × {1, 2}, y ∈ (0, 1],
set Y ∗ := Y ν∗

with ν∗ as in (4.3), and define ϑ := inf{t ≥ 0 : ν∗
t = y} and τR := inf{t ≥

0 : Xt /∈ (−R, R)}, P(x,i)-a.s. for some R > 0. Also, let 0 ≤ η1 < η2 < · · · < ηN ≤ τR ∧ ϑ

be the random times of jumps of ε in the interval [0, τR ∧ ϑ) (clearly, the number N of those
jumps is random as well). Given the regularity of F , we can apply Itô–Meyer’s formula for
semimartingales (see [25, pp. 278–301]) to the process (e−ρtF (Xt , Y

∗
t , εt ))t≥0 on each of the

intervals [0, η1), (η1, η2), . . . , (ηN , τR ∧ T ). Piecing together all the terms, we obtain

F(x, y, i) = E(x,y,i)[e−ρ (τR∧ϑ)F (XτR∧ϑ , Y ∗
τR∧ϑ , ετR∧ϑ)]

− E(x,y,i)

[∫ τR∧ϑ

0
e−ρs(G − ρ)F (Xs, Y

∗
s , εs) ds

]
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Figure 1: Adopting the terminology of [19], the boundaries b∗
i , i = 1, 2, split the state space into the

inaction region (y < b∗
1(x)), transient region (b∗

1(x) < y < b∗
2(x)), and action region (y > b∗

2(x)). When
the initial state is (x, y, i) ∈ O with y < b∗

i (x), we observe a Skorokhod reflection of (X, Y ∗, ε) at b∗
i in

the vertical direction up to when all the fuel is spent. If the system is reflected at the upper boundary at
a time of regime switch, ν∗ prescribes an immediate jump of Y ∗ from the upper to the lower boundary
(whenever they are different). This plot was obtained using MATLAB® to solve the nonlinear system
(3.14) when f (y) = 1

3 (ey − 1) and with σ1 = 0.38, σ2 = 1.9, λ1 = 1.7, λ2 = 0.44, ρ = 1
3 , and c = 1

2 .

+ E(x,y,i)

[∫ τR∧ϑ

0
e−ρsFy(Xs, Y

∗
s , εs) dν∗,cont

s

]
− E(x,y,i)

[ ∑
0≤s<τR∧ϑ

e−ρs(F (Xs, Y
∗
s+, εs) − F(Xs, Y

∗
s , εs))

]
. (4.8)

Here ν∗,cont denotes the continuous part of ν∗.
Recall (2.7), and the fact that (G − ρ)F (x, y, i) = −f (y) for y < b∗

i (x) and Fy(x, y, i) =
x − c for y ≥ b∗

i (x). Furthermore, note that ν∗ solves the Skorokhod reflection problem and,
therefore, {t : dν∗

t (ω) > 0} ⊆ {t : Y ∗
t (ω) ≥ b∗

εt (ω)(Xt (ω))} for any ω ∈ �. Combining these
facts and using (4.8), we obtain

F(x, y, i) = E(x,y,i)

[
e−ρ (τR∧ϑ)F (XτR∧ϑ , Y ∗

τR∧ϑ , ετR∧ϑ) −
∫ τR∧ϑ

0
e−ρsf (Y ∗

s ) ds

+
∫ τR∧ϑ

0
e−ρs(Xs − c) dν∗

s

]
. (4.9)

As R → ∞, τR → ∞ and, clearly, τR ∧ ϑ → ϑ, P(x,y,i)-a.s. Moreover, we can use the linear
growth property of F (see (4.3)) and Lemma A.3 to apply the dominated convergence theorem,
leading to

lim
R↑∞ E(x,y,i)[e−ρ (τR∧ϑ)F (XτR∧ϑ , Y ∗

τR∧ϑ , ετR∧ϑ)] = E(x,y,i)[e−ρϑF (Xϑ, Y ∗
ϑ , εϑ)] = 0.
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Finally, we also note that since dν∗
s ≡ 0 and f (Y ∗

s ) ≡ 0 for s > ϑ , the integrals in (4.9) may
be extended beyond ϑ up to +∞ in order to obtain

F(x, y, i) = E(x,y,i)

[∫ ∞

0
e−ρs(Xs − c) dν∗

s −
∫ ∞

0
e−ρsf (Y ∗

s ) ds

]
= Jx,y,i(ν

∗).

Then F ≡ V and ν∗ is optimal. �

4.2. Case (II): y �→ f (y) concave on [0, 1]
Assume now that y 	→ f (y) satisfies condition (II) of Assumption 2.1, and for y ∈ (0, 1],

take θ(y) in (2.10) such that

θ(y) := c − 1

ρ

f (y)

y
.

Recall now u of (2.10), and for any (x, y, i) ∈ O, define the function

W(x, y, i) := yu(x, i; y) − 1

ρ
f (y). (4.10)

In the next result we show that W identifies with a suitable solution to the HJB equation (2.5).

Proposition 4.4. We have W(x, 0, i) = 0 for all (x, i) ∈ R × {1, 2}, and there exists K > 0
such that |W(x, y, i)| ≤ K(1 + |x|) on O. Moreover, for any i = 1, 2,

W(·, ·, i) ∈ C0(R × [0, 1]) ∩ C1,1(R × (0, 1])

with Wxx(·, ·, i) ∈ L∞
loc(R × (0, 1]), and it satisfies the HJB equation (2.5) in the a.e. sense.

Proof. We provide a proof only for W(x, y, 1) in the x∗
1 (y) < x∗

2 (y) case, since similar
arguments can be employed to deal with all the other cases. The proof comprises four steps.

Step 1. By Proposition 3.1 (see, in particular, the last line in (A.2)), we can write

|W(x, y, 1)| ≤ y|u(x, 1; y)| + 1

ρ
f (y)

≤ y[2|θ(y)| + κ(1 + |x|)]
≤ y[2c + κ(1 + |x|)] + 3

ρ
f (y) for some κ > 0. (4.11)

Taking the limit as y ↓ 0, and recalling that f (0) = 0, we obtain W(x, 0, i) = 0 for all
(x, i) ∈ R × {1, 2}. Also, from (4.11) we see that the monotonicity of f (·) and the fact that
y ≤ 1 imply that there exists K > 0 such that |W(x, y, i)| ≤ K(1 + |x|) on O.

Step 2. As for the claimed regularity of W(·, ·, 1), from (4.10) we have W ∈ C0,0(R×[0, 1]).
Also, from (3.21) and Theorem 3.2, it follows that Wx(·, ·, 1) is uniformly continuous on
open sets of the form (−R, R) × (δ, 1) for δ > 0 and arbitrary R > 0. Hence, Wx(·, ·, 1)

has a continuous extension to R × (0, 1] that we denote again by Wx(·, ·, 1). Moreover,
Wxx(·, ·, 1) ∈ L∞

loc(R × (0, 1]).
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We now prove that Wy(·, ·, 1) ∈ C0(R × (0, 1]). A direct differentiation of (4.10), and the
use of (3.21), yields that for any y ∈ [δ, 1], δ > 0 arbitrary,

Wy(x, y, 1) = u(x, 1; y) + yuy(x, 1; y) − 1

ρ
f ′(y)

=

⎧⎪⎪⎨⎪⎪⎩
A3(y)eα3x[1 − α3yθ ′(y)]

+A4(y)eα4x[1 − α4yθ ′(y)] − 1

ρ
f ′(y) for x < x∗

1 (y),

x − c for x > x∗
1 (y).

(4.12)

By using (3.10) and exploiting the continuity of x∗
1 (·) (due to the continuity of θ(·)), we can

check that y 	→ Wy(x, y, 1) is continuous on [δ, 1] for any x ∈ R. Also, it follows that
x 	→ Wy(x, y, 1) is continuous on R uniformly with respect to y ∈ [δ, 1]. In particular, by
using once more the expressions for A3(y) and A4(y) (see (3.10)), we have limζ↓0 Wy(x

∗
1 (y)−

ζ, y, 1) = x∗
1 (y) − c uniformly with respect to y ∈ [δ, 1]. Hence, Wy(·, ·, 1) is continuous on

R × (0, 1] by the arbitrariness of δ > 0.
Step 3. We now show that Wy(x, y, 1) ≥ x−c for any (x, y) ∈ R×(0, 1]. Since this clearly

holds on x > x∗
1 (y) (see (4.12)), we consider only x < x∗

1 (y). We show that Wyx(x, y, 1) ≤ 1
on {(x, y) ∈ R × (0, 1] : x < x∗

1 (y)}, as this fact together with Wy(x
∗
1 (y)−, y, 1) = x∗

1 (y) − c

imply that Wy(x, y, 1) ≥ x − c on that set. By differentiating Wy(x, y, 1) with respect to x on
{(x, y) ∈ R × (0, 1] : x < x∗

1 (y)}, we find that

Wyx(x, y, 1) − 1 = ux(x, 1; y) − 1 + yuyx(x, 1; y).

Theorem 3.2 together with step 2 of the proof of Theorem 3.1 imply that ux(x, 1; y) − 1 ≤ 0
for any x < x∗

1 (y), y ∈ (0, 1]. Moreover, recalling that x∗
1 (y) = z∗

1 + θ(y) (see Corollary 3.1)
and (3.10), by simple algebra it follows from (3.17) that yuyx(x, 1; y) = −yθ ′(y)uxx(x, 1; y)

for any x < x∗
1 (y) and y ∈ (0, 1]. However, by Theorem 3.2 and step 2 of the proof of

Theorem 3.1, we have uxx(x, 1; y) ≥ 0 for x < x∗
1 (y), whereas

−yθ ′(y) = 1

ρ

[
f ′(y)y − f (y)

y

]
≤ 0,

by the assumed concavity of f . Hence, Wyx(x, y, 1) − 1 ≤ 0 on {(x, y) ∈ R × (0, 1] : x <

x∗
1 (y)} and, therefore, Wy(x, y, 1) ≥ x − c on that set.

Step 4. By Theorems 3.1 and 3.2, it follows that (u(x, 1; y), u(x, 2; y), x∗
1 (y), x∗

2 (y)) solve
the free-boundary problem (3.3)–(3.5) and, in particular, (G − ρ)u(x, 1; y) ≤ 0 for a.e. x ∈
R and all y ∈ (0, 1], and with equality for x < x∗

1 (y). It thus follows from (4.10) that
(G − ρ)W(x, 1; y) ≤ f (y) for a.e. x ∈ R and for any y ∈ (0, 1] with equality for x < x∗

1 (y).
Combining the results of the previous steps, the proof is completed. �
Recall that the stopping time

τ ∗ = inf{t ≥ 0 : Xt ≥ x∗
εt
(y)}, P(x,i)-a.s.,

is optimal for (2.10), and for any y ∈ (0, 1], define the admissible extraction rule

ν�
t :=

{
0, t ≤ τ ∗,
y, t > τ ∗.

(4.13)

This policy acts to instantaneously deplete the reserve at time τ ∗.
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Theorem 4.2. (The verification theorem.) The admissible control ν� of (4.13) is optimal for
problem (2.4) and W ≡ V .

Proof. Since W solves the HJB equation in the a.e. sense due to Proposition 4.2, we have
W ≥ V on O by Theorem 2.1. We now show that we actually have W = V on O, and that ν�

of (4.13) is optimal for problem (2.4).

Let (x, y, i) ∈ R × (0, 1] × {1, 2}, and set Y �
t := Y

y,ν�

t = y − ν�
t with ν� as in (4.13).

Given the regularity of W , we can apply Itô–Meyer’s formula for semimartingales (see [25,
pp. 278–301]) following the approximation argument discussed at the beginning of the proof
of Theorem 2.1. We then find that

W(x, y, i) = E(x,y,i)

[
e−ρτ∗

W(Xτ∗ , Y �
τ∗ , ετ∗) −

∫ τ∗

0
e−ρsf (Y �

s ) ds

]
+ E(x,y,i)

[∫ τ∗

0
e−ρsWy(Xs, Y

�
s , εs) dν�,cont

s

]
− E(x,y,i)

[ ∑
0≤s<τ∗

e−ρs(W(Xs, Y
�
s+, εs) − W(Xs, Y

�
s , εs))

]

= E(x,y,i)

[
e−ρτ∗

W(Xτ∗ , Y �
τ∗ , ετ∗) −

∫ τ∗

0
e−ρsf (Y �

s ) ds

]
. (4.14)

Here ν�,cont denotes the continuous part of ν�. Moreover, we have used the fact that
(G−ρ)W(Xs, Y

�
s , εs) = f (Y �

s ) for any s ≤ τ ∗, and that the terms in the second and third lines
of (4.14) are equal to 0 since (Xs, Y

�
s , εs) = (Xs, y, εs) for s ≤ τ ∗.

On the other hand, (4.13) and the optimality of τ ∗ for problem (2.10) imply that

E(x,y,i)[e−ρτ∗
W(Xτ∗ , Y �

τ∗ , ετ∗)] = E(x,y,i)[e−ρτ∗
W(Xτ∗ , y, ετ∗)]

= E(x,y,i)

[
e−ρτ∗

(
yu(Xτ∗ , y, ετ∗) − 1

ρ
f (y)

)]
= E(x,y,i)

[
e−ρτ∗

(
yXτ∗ − yθ(y) − 1

ρ
f (y)

)]
= E(x,y,i)[e−ρτ∗

(Xτ∗ − c)y]
= E(x,y,i)

[∫ ∞

0
e−ρs(Xs − c) dν�

s

]
. (4.15)

Also,

E(x,y,i)

[∫ τ∗

0
e−ρsf (Y �

s ) ds

]
= E(x,y,i)

[∫ ∞

0
e−ρsf (Y �

s ) ds

]
, (4.16)

since f (Y �
s ) = f (0) for any s > τ ∗, and f (0) = 0 by assumption.

Now, using (4.15) and (4.16) in the last line of (4.14) yields W(x, y, i) = Jx,y,i(ν
�) ≤

V (x, y, i). Hence, W = V and ν� is optimal. �
Remark 4.1. It is worth noting that the results of this subsection also hold in the case of a
running cost function of the form f (y) = αy for some α ≥ 0. In particular, in such a case
θ(y) = c −α/ρ and does not depend on y, so that the value function u of the auxiliary optimal
stopping problem is also y-independent. Thus, it follows that W of (4.10) can be expressed as
W(x, y, i) = yu(x, i) − α/ρ, and it is immediate that it satisfies the HJB equation (2.5) in the
a.e. sense.
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In fact, when f (y) = αy, α ≥ 0, simple algebra and an integration by parts allow us to
express the functional (2.3) as

J(x,y,i)(ν) = −αy

ρ
+ E(x,y,i)

[∫ ∞

0
e−ρt

(
Xt − c + α

ρ

)
dνt

]
, (x, y, i) ∈ O, ν ∈ Ay,

(4.17)
which is linear with respect to the control variable. Given the discounting, from (4.17) we could
then expect that the company instantaneously depletes the reserve as soon as the spot price is
sufficiently high (but finite), in particular larger than c − α/ρ.

Remark 4.2. Note that we have V (x, y, i) < 0 for small enough y and for all x ≥ x∗
i (y)

and i = 1, 2, if the Inada condition limy↓0 f ′(y) = +∞ holds. To see this, first note that
x∗
i (y) = constant + θ(y) (see the proof of Corollary 3.1), together with the Inada condition,

yield limy↓0 x∗
i (y) = −∞ by l’Hôpital’s rule. This, in particular, implies that, for small

enough y, and for all x ≥ x∗
i (y) and i = 1, 2, we have V (x, y, i) = y(x∗

i (y) − c) < 0
(although V (x, 0, i) = 0 for (x, i) ∈ R × (0, 1)).

5. A comparison to the no-regime-switching case

It is quite immediate to solve our optimal extraction problem when there is no regime
switching. In particular, in this case it can be checked that for any (0, 1] the optimal extraction
boundary is

x#(y) := σ√
2ρ

+ θ(y)

=

⎧⎪⎪⎨⎪⎪⎩
σ√
2ρ

+ c − 1

ρ
f ′(y) if f satisfies (I) of Assumption 2.1,

σ√
2ρ

+ c − 1

ρ

f (y)

y
if f satisfies (II) of Assumption 2.1.

(5.1)

Consequently, if f satisfies (I) of Assumption 2.1 and, in particular, it is strictly convex on
[0, 1], the optimal extraction rule can be expressed as

ν#
t :=

[
y − inf

0≤s<t
b#(Xs)

]+
, t > 0, ν#

0 = 0, (5.2)

where b#(·) denotes the inverse of x#(·). On the other hand, if f satisfies (II) of Assumption 2.1
and, therefore, it is concave on [0, 1], it is optimal to extract according to the following policy:

ν#
t :=

{
0, t ≤ τ #,

y, t > τ #,

with τ # := inf{t ≥ 0 : Xt ≥ x#(y)}.
A first observation worth noting is that x# = x∗ with x∗ as in (3.22). To understand this,

recall that in Section 3.2 we found that the two regime-dependent boundaries x∗
i , i = 1, 2,

coincide and are given by (3.22) if and only if σ1 = σ2. In such a case the price process
does not jump and it therefore behaves as if without regime switching. In such a setting it
is reasonable to obtain the same optimal selling price that we would obtain in the absence of
regime shifts.
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Figure 2: The dashed curves represent b#
i (x), i = 1, 2, the optimal extraction boundary (5.1) of the single

regime case when the volatility is σi . The solid curves are the optimal extraction boundaries (b∗
1, b∗

2) when
there is regime switching in the spot price process. To generate this plot with MATLAB we have taken

f (y) = 1
3 (ey − 1) with σ1 = 0.38, σ2 = 1.9, λ1 = 1.7, λ2 = 0.44, ρ = 1

3 , and c = 1
2 .

Although qualitatively similar to (5.2), the optimal extraction rule (4.7) exhibits an important
feature which is not present in the single regime case. Indeed, ν∗ of (4.7) jumps at the moment
of regime shift from state 2 to state 1, thus implying a lump sum extraction at those instants.
This fact is not seen in (5.2) where a jump can happen only at the initial time. We also refer the
reader to the detailed discussion in [19].

It is also interesting to see how the presence of regime shifts is reflected into the optimal
extraction boundaries. We study this in case (I) (i.e. for a strictly convex running cost function),
and we present our findings in Figure 2.

In Figure 2 we take the strictly convex running cost f (y) = 1
3 (ey − 1), and we plot the

optimal boundaries in the case of regime switching, b∗
i , i = 1, 2 (solid curves), and in the case

of a single regime, b#
i with volatility σi, i = 1, 2 (dashed curves). Taking σ1 < σ2, we observe

that under macroeconomic cycles the value at which the reserve level should be kept is higher
than the one at which it would be kept if the volatility remained at σ1. On the other hand, the
value at which the reserve level should be maintained when macroeconomic cycles are present
is lower than the one at which it would be kept if the volatility remained at σ2. To some extent,
this fact can be thought of as an average effect of the regime switching. For example, if the
market volatility assumes at any time the highest value possible (i.e. it is always equal to σ2),
then the company would be more reluctant to extract and sell the commodity in the spot market
relative to the case in which the volatility could jump to the lower value σ1. A symmetric
argument applies to explain b#

1 < b∗
i , i = 1, 2.

Appendix A

A.1. Some proofs from Section 3

Proof of Proposition 3.1. The first claim immediately follows by taking the admissible
τ = 0. As for the second property, let τ be an F-stopping time and note that by an integration
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by parts, we can write

e−ρτ (Xτ − θ(y)) = (x − θ(y)) −
∫ τ

0
ρe−ρs(Xs − θ(y)) ds +

∫ τ

0
e−ρsσεs dWs. (A.1)

Denoting Mt := ∫ t

0 e−ρsσεs dWs, t ≥ 0, and recalling the boundedness of σε· , M is uniformly
bounded in L2(�, P(x,i)) and, therefore, P(x,i)-uniformly integrable. Hence, taking expecta-
tions in (A.1), applying the optional stopping theorem (see [30, Theorem 3.2]), and then taking
absolute values, we obtain

|E(x,i)[e−ρτ (Xτ − θ(y))]| ≤ |x| + |θ(y)| + E(x,i)

[∫ ∞

0
ρe−ρs |Xs − θ(y)| ds

]
≤ 2(|x| + |θ(y)|) +

∫ ∞

0
ρe−ρs

E(x,i)

[∣∣∣∣ ∫ s

0
σεu dWu

∣∣∣∣2]1/2

ds

≤ 2(|x| + |θ(y)|) + (σ 2
1 ∨ σ 2

2 )1/2
∫ ∞

0
ρ
√

se−ρs ds

≤ K(y)(1 + |x|) for some K(y) > 0. (A.2)

Equation (2.1), Tonelli’s theorem, and Hölder’s inequality imply the second step above, whereas
the third and fourth steps are guaranteed by Itô’s isometry. The second claim of the proposition
then easily follows from (A.2). �

Proof of Theorem 3.1. The proof follows in five steps.
Step 1. The fact that w(·, i; y) ∈ C1(R) for i = 1, 2 follows by construction. It is also

easy to verify from (3.17) and (3.18) that w(·, i; y), i = 1, 2, grows at most linearly and that
wxx(·, i; y) is bounded on any compact subset of R.

We now show that (w(x, 1; y), w(x, 2; y), x∗
1 (y), x∗

2 (y)) solve the free-boundary problem
(3.3)–(3.5). Since (w(x, 1; y), w(x, 2; y), x∗

1 (y), x∗
2 (y)) satisfy (3.3) and (3.4) by construction,

then it suffices to prove that (3.5) also is fulfilled. This part of the proof requires several estimates
and it is organized in the next steps. In particular, steps 2–4 below are devoted to showing that
w(x, i; y) ≥ x − θ(y) for x ∈ R and i = 1, 2. On the other hand, in step 5 we show that
1
2σ 2

i wxx(x, i; y) − ρw(x, i; y) + λi(w(x, 3 − i; y) − w(x, i; y)) ≤ 0 for a.e. x ∈ R, and for
any i = 1, 2.

Step 2. Now we show that w(x, 1; y) ≥ x − θ(y) for any x ∈ R. This clearly holds
with equality by (3.17) for any x ≥ x∗

1 (y). To prove the claim when x < x∗
1 (y), we

show that w(·, 1; y) is convex therein. Indeed, such a property, together with the fact that
wx(x

∗
1 (y), 1; y) − 1 = 0, implies that wx(x, 1; y) − 1 ≤ 0 for any x < x∗

1 (y). Hence,
w(x, 1; y) ≥ x − θ(y) for x < x∗

1 (y) since also w(x∗
1 (y), 1; y) − (x∗

1 (y) − θ(y)) = 0.
To complete, we thus need to show that w(·, 1; y) is convex on x < x∗

1 (y). We accomplish
this in the following way. For any x < x∗

1 (y), from (3.17) we have

wxx(x, 1; y)(α4 − α3) = α2
3(α4(x

∗
1 (y) − θ(y)) − 1)eα3(x−x∗

1 (y))

+ α2
4(1 − α3(x

∗
1 (y) − θ(y)))eα4(x−x∗

1 (y)), (A.3)

and we want to prove that wxx(x, 1; y) ≥ 0. To this end, note that after some calculations we
arrive at

α2
3(α4(x

∗
1 (y)−θ(y))−1)+α2

4(1−α3(x
∗
1 (y)−θ(y))) = (α4−α3)[α4+α3−α3α4(x

∗
1 (y)−θ(y))],

(A.4)
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and also

− 1

a3

(
ρ

ρ + λ2
+ a4

)
− 1

α3
≤ 1

α4
. (A.5)

Then recall that x∗
1 (y) − θ(y) = z∗

1, use the upper bound for z∗
1 given in (3.16), and substitute

(A.5) into (A.4) to obtain (α4 − α3)[α4 + α3 − α3α4(x
∗
1 (y) − θ(y))] ≥ 0.

By (A.4), the latter implies that

α2
4(1 − α3(x

∗
1 (y) − θ(y))) ≥ −α2

3(α4(x
∗
1 (y) − θ(y)) − 1),

which, substituted back into (A.3), yields

wxx(x, 1; y)(α4 − α3) ≥ α2
3(α4(x

∗
1 (y) − θ(y)) − 1)[eα3(x−x∗

1 (y)) − eα4(x−x∗
1 (y))]. (A.6)

But now the right-hand side of (A.6) is nonnegative due to (3.16), (A.5), and the fact that
α3 < α4 but x < x∗

1 (y). Hence, wxx(x, 1; y) ≥ 0 for any x < x∗
1 (y) and, therefore, w(·, 1; y)

is convex on that region.
Step 3. In this step we prove that w(x∗

1 (y), 2; y) ≥ x∗
1 (y) − θ(y) and wx(x

∗
1 (y), 2; y) ≤ 1.

These estimates will be needed in the next step to show that w(x, 2; y) ≥ x − θ(y) for any
x ∈ R.

From (3.18) and using the fact that

B3(y) = �1(α3)

λ1
A3(y), B4(y) = �1(α4)

λ1
A4(y),

with A3(y) and A4(y) as in (3.10), we easily obtain

w(x∗
1 (y), 2; y) = �1(α3)[α4(x

∗
1 (y) − θ(y)) − 1]

λ1(α4 − α3)
+ �1(α4)[1 − α3(x

∗
1 (y) − θ(y))]

λ1(α4 − α3)

and

wx(x
∗
1 (y), 2; y) = α3�1(α3)[α4(x

∗
1 (y) − θ(y)) − 1]

λ1(α4 − α3)
+ α4�1(α4)[1 − α3(x

∗
1 (y) − θ(y))]

λ1(α4 − α3)
.

Recalling that �i(z) = − 1
2σ 2

i z2 + ρ + λi, i = 1, 2, a simple calculation yields

w(x∗
1 (y), 2; y) = −σ 2

1 (α3 + α4)/2 + (x∗
1 (y) − θ(y))(σ 2

1 α3α4/2 + ρ + λ1)

λ1
, (A.7)

wx(x
∗
1 (y), 2; y) = α4�(α4) − α3�(α3)

λ1(α4 − α3)
+ α3α4σ

2
1 (x∗

1 (y) − θ(y))(α4 + α3)

2λ1
. (A.8)

It is now matter of algebraic manipulation to show that

σ 2
1 (α3 + α4)

σ 2
1 α3α4 + 2ρ

= − a2

a1 + ρ/(ρ + λ2)
, (A.9)

and

−ρ/(ρ + λ2) + a4

a3
= 2λ1

α3α4σ
2
1 (α4 + α3)

[
1 + α3�1(α3) − α4�1(α4)

λ1(α4 − α3)

]
. (A.10)
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Then recalling that x∗
1 (y) − θ(y) = z∗

1, by (3.16), (A.9), and (A.10), we obtain

σ 2
1 (α3 + α4)

σ 2
1 α3α4 + 2ρ

≤ x∗
1 (y) − θ(y) ≤ 2λ1

α3α4σ
2
1 (α4 + α3)

[
1 + α3�(α3) − α4�(α4)

λ1(α4 − α3)

]
. (A.11)

By using the inequality on the left-hand side of (A.11) in (A.7), and the inequality on the right-
hand side of (A.11) in (A.8), we find w(x∗

1 (y), 2; y) ≥ x∗
1 (y) − θ(y) and wx(x

∗
1 (y), 2; y) ≤ 1,

respectively.
Step 4. We now show that w(x, 2; y) ≥ x − θ(y) for x < x∗

2 (y) (and, therefore, for any
x ∈ R due to the second part of (3.4)).

On x ∈ (−∞, x∗
1 (y)) ∪ (x∗

1 (y), x∗
2 (y)), from (3.3) we have

1
2σ 2

2 wxx(x, 2; y) + λ2(w(x, 1; y) − w(x, 2; y)) − ρw(x, 2; y) = 0.

Setting ŵ(x, i; y) := w(x, i; y) − (x − θ(y)), i = 1, 2, it follows that on (−∞, x∗
1 (y)) ∪

(x∗
1 (y), x∗

2 (y)),

1
2σ 2

2 ŵxx(x, 2; y) + λ2(ŵ(x, 1; y) − ŵ(x, 2; y)) − ρŵ(x, 2; y) = ρ(x − θ(y)). (A.12)

We now show that ŵ(x, 2; y) ≥ 0 separately in the two cases:

(i) x ∈ (−∞, x∗
1 (y));

(ii) x ∈ (x∗
1 (y), x∗

2 (y)).

(i) For x ∈ (−∞, x∗
1 (y)), we can differentiate (A.12) once more with respect to x so as to

obtain

1
2σ 2

2 ŵxxx(x, 2; y) + λ2(ŵx(x, 1; y) − ŵx(x, 2; y)) − ρŵx(x, 2; y) = ρ.

Setting τ1 := inf{t ≥ 0 : (X, ε) /∈ D1}, P(x,i)-a.s., where D1 := {(x, i) ∈ R × {1, 2} : x <

x∗
1 (y)}, an application of Itô’s formula (possibly with a standard localization argument) leads to

ŵx(x, 2; y) = E(x,i)

[
e−ρτ1ŵx(Xτ1 , ετ1; y) −

∫ τ1

0
e−ρsρ ds

]
≤ E(x,i)[e−ρτ1ŵx(Xτ1 , ετ1; y)]
= E(x,i)[e−ρτ1ŵx(Xτ1 , ετ1; y)1{ετ1=1}]

+ E(x,i)[e−ρτ1ŵx(Xτ1 , ετ1; y)1{ετ1=2}] for any x < x∗
1 (y). (A.13)

Now recall that ŵx(x
∗
1 (y), 1; y) = wx(x

∗
1 (y), 1; y)−1 = 0 and that, by step 3, ŵx(x

∗
1 (y), 2;

y) = wx(x
∗
1 (y), 2; y) − 1 ≤ 0. Then the fact that τ1 < +∞, P(x,i)-a.s. (by the recurrence

property of (X, ε); see [37, Theorem 4.4(i)] with k > 0, α ∈ (0, 1), c1 = c2 therein) allows us
to conclude from (A.13) that ŵx(x, 2; y) ≤ 0 for any x < x∗

1 (y). This, in turn, implies that
w(x, 2; y) ≥ x − θ(y) for any x < x∗

1 (y) since w(x∗
1 (y), 2; y) ≥ x∗

1 (y) − θ(y) again by the
results of step 3.

(ii) Now take x ∈ (x∗
1 (y), x∗

2 (y)) and define τ1,2 := inf{t ≥ 0 : (X, ε) /∈ D1,2}, P(x,i)-a.s.,
where D1,2 := {(x, i) ∈ R × {1, 2} : x∗

1 (y) < x < x∗
2 (y)}. By arguments similar to those

employed in (i), but now using ŵx(x
∗
2 (y), 2; y) = 0 and ŵx(x

∗
1 (y), 2; y) ≤ 0 (see step 3),

and ŵx(x
∗
2 (y), 1; y) = 0 = ŵx(x

∗
1 (y), 1; y) by construction, we obtain ŵx(x, 2; y) ≤ 0 for

any x ∈ (x∗
1 (y), x∗

2 (y)). Hence, we have ŵ(x, 2; y) ≥ 0 for any x ∈ (x∗
1 (y), x∗

2 (y)) since
ŵ(x∗

2 (y), 2; y) = 0.
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By combining (i) and (ii) we have thus proved that w(x, 2; y) ≥ x − θ(y) for any x ∈
(−∞, x∗

1 (y)) ∪ (x∗
1 (y), x∗

2 (y)). However, we already know, by step 3, that w(x∗
1 (y), 2; y) ≥

x∗
1 (y) − θ(y) and, therefore, we can conclude that w(x, 2; y) ≥ x − θ(y) for any x < x∗

2 (y).
In steps 2, 3, and 4 we have shown that w(x, i; y) ≥ x−θ(y) for x ∈ R and i = 1, 2. We now

turn to prove that we also have 1
2σ 2

i wxx(x, i; y)−ρw(x, i; y)+λi(w(x, 3−i; y)−w(x, i; y)) ≤
0 for a.e. x ∈ R and i = 1, 2.

Step 5. (i) We start by showing that

1
2σ 2

2 wxx(x, 2; y) − ρw(x, 2; y) + λ2(w(x, 1; y) − w(x, 2; y)) ≤ 0 for a.e. x ∈ R. (A.14)

This holds with equality for any x < x∗
2 (y) by construction. For x > x∗

2 (y), we have
w(x, 1; y) = x − θ(y) = w(x, 2; y), so that (A.14) reads −ρ(x − θ(y)) ≤ 0. But now
the latter inequality holds since ρ > 0 and x∗

2 (y) > θ(y) by Corollary 3.1.
(ii) We now check that we also have

1
2σ 2

1 wxx(x, 1; y) − ρw(x, 1; y) + λ1(w(x, 2; y) − w(x, 1; y)) ≤ 0 for a.e. x ∈ R. (A.15)

Again, it suffices to show that the previous holds for x > x∗
1 (y), as it is verified with equality

by construction on (−∞, x∗
1 (y)).

If x > x∗
2 (y) then w(x, 2; y) = x − θ(y) = w(x, 1; y) and (A.15) holds since ρ > 0 and

x∗
2 (y) > θ(y) by Corollary 3.1.

To complete the proof, we consider the x ∈ (x∗
1 (y), x∗

2 (y)) case. On such an interval, we
have again w(x, 1; y) = x − θ(y) and, therefore, (A.15) is verified on (x∗

1 (y), x∗
2 (y)) if

w(x, 2; y) ≤ ρ + λ1

λ1
w(x, 1; y). (A.16)

In step 4 we have shown that wx(x, 2; y) − 1 ≤ 0 for any x ∈ (x∗
1 (y), x∗

2 (y)), from which we
have

w(x, 2; y) − w(x, 1; y) = w(x, 2; y) − (x − θ(y))

≤ w(x∗
1 (y), 2; y) − (x∗

1 (y) − θ(y))

= w(x∗
1 (y), 2; y) − w(x∗

1 (y), 1; y),

where the fact that w(x, 1; y) = x − θ(y) for any x ≥ x∗
1 (y) has been used. Therefore, on

(x∗
1 (y), x∗

2 (y)),

w(x, 2; y) ≤ w(x∗
1 (y), 2; y) − w(x∗

1 (y), 1; y) + w(x, 1; y). (A.17)

However, by the convexity of w(·, 1; y) proved in step 2, we have

− ρw(x, 1; y) + λ1(w(x, 2; y) − w(x, 1; y))

≤ 1
2σ 2

1 wxx(x, 1; y) − ρw(x, 1; y) + λ1(w(x, 2; y) − w(x, 1; y))

= 0 for any x < x∗
1 (y),

and this yields

w(x, 2; y) ≤ ρ + λ1

λ1
w(x, 1; y), x < x∗

1 (y). (A.18)

Then, taking limits as x ↑ x∗
1 (y), we obtain from (A.18) and the continuity of w(·, i; y),

w(x∗
1 (y), 2; y) ≤ ρ + λ1

λ1
w(x∗

1 (y), 1; y), (A.19)

https://doi.org/10.1017/apr.2018.31 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.31


700 G. FERRARI AND S. YANG

and we conclude from (A.17) and (A.19) that, for any x ∈ (x∗
1 (y), x∗

2 (y)),

w(x, 2; y) ≤ ρ + λ1

λ1
w(x∗

1 (y), 1; y) − w(x∗
1 (y), 1; y) + w(x, 1; y) ≤ ρ + λ1

λ1
w(x, 1; y),

where the fact that w(x∗
1 (y), 1; y) = x∗

1 (y) − θ(y) ≤ (x − θ(y)) = w(x, 1; y) for any
x > x∗

1 (y) implies the last step. Hence, (A.16) holds on (x∗
1 (y), x∗

2 (y)) and, therefore, (A.15)
is also satisfied on that interval. �

Proof of Theorem 3.2. The proof follows in two steps.
Step 1. Fix (x, i) ∈ R × {1, 2}, let τ be an arbitrary P(x,i)-a.s. finite stopping time, and set

τR := inf{t ≥ 0 : Xt /∈ (−R, R)}, P(x,i)-a.s. for R > 0. Then let 0 ≤ η1 < η2 < · · · < ηN) ≤
τ ∧ τR be the random times of jumps of ε in the interval [0, τ ∧ τR) (clearly, the number N

of these jumps is random as well) and, given the regularity of w(·, i; y) for any i = 1, 2
(see Theorem 3.1), apply Itô–Tanaka’s formula (see, e.g. [30, Chapter VI, Proposition 1.5,
Corollary 1.6 and the remarks following]) between consecutive jumps of ε from time 0 up to
time τ ∧ τR . Piecing together all the terms as in the proof of [32, Lemma 3, p. 104] (see also
the proof idea of [35, Lemma 2.4]), we obtain

w(x, i; y) = E(x,i)[e−ρ(τ∧τR)w(Xτ∧τR
, ετ∧τR

; y)]
− E(x,i)

[∫ τ∧τR

0
e−ρs(G − ρ)w(Xs, εs; y) ds

]
≥ E(x,i)[e−ρ(τ∧τR)w(Xτ∧τR

, ετ∧τR
; y)]

≥ E(x,i)[e−ρ(τ∧τR)(Xτ∧τR
− θ(y))]. (A.20)

In (A.20) we have used the fact that w solves the free-boundary problem (3.3)–(3.5) (see
Theorem 3.1), and the fact that the stochastic integral over the interval [0, τ ∧ τR) vanishes
under expectation since wx is bounded for (x, i, y) ∈ [−R, R] × {1, 2} × [0, 1].

But now {e−ρ(τ∧τR)Xτ∧τR
, R > 0} is a P(x,i)-uniformly integrable family by Lemma A.3,

hence observing that if R ↑ ∞ then τ ∧ τR ↑ τ a.s. by the regularity of (X, ε) (see [37,
Section 3.1]), we can then take limits as R ↑ ∞ in (A.20) and invoke Vitali’s convergence
theorem to obtain

w(x, i; y) ≥ E(x,i)[e−ρτ (Xτ − θ(y))].
Since τ was arbitrary, w(x, i; y) ≥ supτ≥0 E(x,i)[e−ρτ (Xτ − θ(y))] = u(x, i; y).

Step 2. To prove the reverse inequality, i.e. w(x, i; y) ≤ u(x, i; y), take τ = τ ∗ in the
previous arguments and note that (G − ρ)w(x, i; y) = 0 on C. Then taking limits as R ↑ ∞,
we obtain

w(x, i; y) = E(x,i)[e−ρτ∗
w(Xτ∗ , ετ∗; y)] = E(x,i)[e−ρτ∗

(Xτ∗ − θ(y))],
where the last equality follows from the fact that τ ∗ < +∞, P(x,i)-a.s. by the recurrence
of (X, ε); see [37, Theorem 4.4]. Therefore, w(x, i; y) ≤ u(x, i; y), whence w(x, i; y) =
u(x, i; y) and optimality of τ ∗. �
A.2. Some auxiliary results

Lemma A.1. For i = 1, 2 and α ∈ R, let �i(α) := − 1
2σ 2

i α2 +ρ +λi . Then there exist unique
α1 < α2 < 0 < α3 < α4 satisfying the fourth-order equation

�1(α)�2(α) − λ1λ2 = 0. (A.21)
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Proof. We provide a proof of this claim in our setting for the sake of completeness; see also
[16, Remark 2.1] and [33, Lemma 3.1] for related results. Using the definition of �i, i = 1, 2,
we can express (A.21) as

1
4σ 2

1 σ 2
2 α4 − [ 1

2σ 2
1 (ρ + λ2) + 1

2σ 2
2 (ρ + λ1)

]
α2 + (ρ + λ1)(ρ + λ2) − λ1λ2 = 0,

and letting

ao := 1
4σ 2

1 σ 2
2 , bo := 1

2σ 2
1 (ρ + λ2) + 1

2σ 2
2 (ρ + λ1), co := (ρ + λ1)(ρ + λ2) − λ1λ2,

we can check that

b2
o − 4aoco = [ 1

2 (σ 2
1 (ρ + λ2) − σ 2

2 (ρ + λ1))
]2 + λ1λ2σ

2
1 σ 2

2 > 0.

Hence, there exist two solutions β1 and β2 to the second-order equation aoβ
2 − boβ + co = 0,

and they are such that 0 < β2 < β1 since aoco > 0. Thus, it follows that

−α1 := √
β1 =: α4 and − α2 := √

β2 =: α3

solve (A.21) and satisfy α1 < α2 < 0 < α3 < α4. �
Lemma A.2. Let ai, i = 1, 2, 3, 4, be defined as in (3.13a)–(3.13d). Then we have a1 < 0,
a2 > 0, a3 < 0, and a4 > 0.

Proof. Noting that �i(α) = − 1
2σ 2

i α2 + ρ + λi, i = 1, 2, is a strictly decreasing function
of α, the fact that α3 < α4 implies a2 > 0 and a3 < 0.

As for a1, from (3.13a) recall that

a1 = −α4�1(α3) − α3�1(α4)

λ1(α4 − α3)
+ λ2

ρ + λ2
. (A.22)

By using the explicit expression of �i(α), i = 1, 2, direct calculations lead to

α4�1(α3) − α3�1(α4) = ( 1
2σ 2

1 α3α4 + ρ + λ1
)
(α4 − α3), (A.23)

which substituted into (A.22) yields

a1 = −σ 2
1 α3α4/2 + ρ + λ1

λ1
+ λ2

ρ + λ2
< −σ 2

1 α3α4/2 + ρ

λ1
< 0. (A.24)

We conclude by showing that a4 > 0. It is matter of simple algebra to show that

α3�1(α3) − α4�1(α4) = (α4 − α3)
[ 1

2σ 2
1 (α3α4 + α2

3 + α2
4) − (ρ + λ1)

]
, (A.25)

which used in the expression for a4 of (3.13d) allows us to write

a4 = σ 2
1 (α3α4 + α2

3 + α2
4)/2 − (ρ + λ1)

λ1
+ λ2

ρ + λ2
. (A.26)

Since α3 and α4 solve �1(α)�2(α) = λ1λ2, by Vieta’s formulae we deduce that

α2
3 + α2

4 = 2σ 2
1 (ρ + λ2) + 2σ 2

2 (ρ + λ1)

σ 2
1 σ 2

2

. (A.27)
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Noting that α3α4 > 0, and using (A.27) in (A.26), we obtain

a4 >
σ 2

1 (α2
3 + α2

4)/2 − (ρ + λ1)

λ1
>

1

λ1

[
σ 2

1 σ 2
2 (ρ + λ1)

σ 2
1 σ 2

2

− (ρ + λ1)

]
= 0,

thus completing the proof. �

Lemma A.3. Fix (x, i) ∈ R × {1, 2}, let τ be an arbitrary P(x,i)-a.s. finite stopping time,
and for R > 0 set τR := inf{t ≥ 0 : Xt /∈ (−R, R)}, P(x,i)-a.s. Then the family of random
variables {e−ρ(τ∧τR)Xτ∧τR

, R > 0} is P(x,i)-uniformly integrable.

Proof. By an integration by parts, we have, due to (2.1),

e−ρ(τ∧τR)Xτ∧τR
= x −

∫ τ∧τR

0
ρe−ρsXs ds +

∫ τ∧τR

0
e−ρsσεs dWs.

On the one hand, by Hölder’s inequality and Itô’s isometry, we obtain

E(x,i)

[∫ ∞

0
ρe−ρs |Xs | ds

]
≤ |x| +

∫ ∞

0
ρe−ρs

E(x,i)

[∣∣∣∣ ∫ s

0
σεu dWu

∣∣∣∣2]1/2

ds

≤ |x| + (σ 2
1 ∨ σ 2

2 )1/2
∫ ∞

0
ρ
√

se−ρs ds

< ∞. (A.28)

Hence,
∫ ∞

0 ρe−ρs |Xs | ds ∈ L1(�, P(x,i)).
On the other hand, the continuous martingale {∫ t

0 e−ρsσεs dWs, t ≥ 0} is bounded in
L2(�, P(x,i)) since

E(x,i)

[∣∣∣∣ ∫ t

0
e−ρsσεs dWs

∣∣∣∣2]
≤ (σ 2

1 ∨ σ 2
2 )

∫ ∞

0
e−2ρs ds

and, therefore, (see [30, Chapter IV, Proposition 1.23]) for any R > 0,

E(x,i)

[∣∣∣∣ ∫ τ∧τR

0
e−ρsσεs dWs

∣∣∣∣2]
= E(x,i)

[∫ τ∧τR

0
e−2ρsσ 2

εs
ds

]
≤ (σ 2

1 ∨ σ 2
2 )

∫ ∞

0
e−2ρs ds.

Hence, the family {| ∫ τ∧τR

0 e−ρsσεs dWs |, R > 0} is bounded in L2(�, P(x,i)) as well, and thus
uniformly integrable. This fact, together with (A.28), in turn implies uniform integrability of
the family {e−ρ(τ∧τR)Xτ∧τR

, R > 0}. �

Lemma A.4. Let (x, y, i) ∈ O and denote by T the set of F-stopping times. Then for any
ν ∈ Ay , the families of random variables{∫ τ

0
e−ρu(Xu − c) dνu, τ ∈ T

}
and

{ ∫ τ

0
e−ρuf (Y ν

u ) du, τ ∈ T

}
are P(x,y,i)-uniformly integrable.

Proof. We prove the uniform integrability of the first family of random variables by showing
that it is uniformly bounded in L2(�, P(x,y,i)). Let τ be any given and fixed stopping time
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of F, take any ν ∈ Ay , and note that an integration by parts leads to∫ τ

0
e−ρu(Xu − c) dνu

= e−ρτ (Xτ − c)ντ +
∫ τ

0
ρe−ρu(Xu − c)νu du −

∫ τ

0
e−ρuνuσεu dWu, (A.29)

where (2.1) has been employed. However, we also have

e−ρτ (Xτ − c)ντ = ντ

[
x − ce−ρτ −

∫ τ

0
ρe−ρuXu du +

∫ τ

0
e−ρuσεu dWu

]
. (A.30)

Denoting by K > 0 a suitable constant possibly depending on x and y, but not on τ , which
may change from line to line, we obtain, from (A.29) and (A.30),∣∣∣∣ ∫ τ

0
e−ρu(Xu − c) dνu

∣∣∣∣2

≤ K

[
1 +

∫ ∞

0
ρe−ρu|Xu|2 du +

∣∣∣∣ ∫ τ

0
e−ρuσεu dWu

∣∣∣∣2

+
∣∣∣∣ ∫ τ

0
e−ρuνuσεu dWu

∣∣∣∣2]
≤ K

[
1 +

∫ ∞

0
ρe−ρu

∣∣∣∣ ∫ u

0
e−ρsσεs dWs

∣∣∣∣2

du +
∣∣∣∣ ∫ τ

0
e−ρuσεu dWu

∣∣∣∣2

+
∣∣∣∣ ∫ τ

0
e−ρuνuσεu dWu

∣∣∣∣2]
, (A.31)

where we exploit the boundedness of ν ∈ Ay . In (A.31), Jensen’s inequality was used in
the first step for the integrals with respect to ρe−ρu du, whereas the last step employs (2.1).
Taking expectations in (A.31), using Itô’s isometry, noting that σ 2

εt
≤ σ 2

1 ∨ σ 2
2 a.s., and that any

admissible control is bounded by 1, we obtain

E(x,y,i)

[∣∣∣∣ ∫ τ

0
e−ρu(Xu − c) dνu

∣∣∣∣2]
≤ K

[
1 + (σ 2

1 ∨ σ 2
2 )

∫ ∞

0
ρe−ρu(1 + u) du

]
, (A.32)

which, in turn, proves the first claim.
Uniform integrability of the second family follows by noting that for any F-stopping time τ

and any ν ∈ Ay , we have

0 ≤
∫ τ

0
e−ρuf (Y ν

u ) du ≤
∫ ∞

0
e−ρuf (1) du ≤ f (1)

ρ
,

where we have used the fact that f (·) is nonnegative and increasing, and that Y ν
t ≤ 1 a.s. �
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