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ABSTRACT

The production of three-dimensional (3D) digital meshes of surface and computed tomographic (CT) data has become widespread in
morphometric analyses of anthropological and archaeological data. Given that processing methods are not standardized, this leaves
questions regarding the comparability of processed and digitally curated 3D datasets. The goal of this study was to identify those pro-
cessing parameters that result in the most consistent fit between CT-derived meshes and a 3D surface model of the same human mandible.
Eight meshes, each using unique thresholding and smoothing parameters, were compared to assess whole-object deviations, deviations
along curves, and deviations between specific anatomical features on the surface model when compared with the CT scans using a suite of
comparison points. Based on calculated gap distances, the mesh that thresholded at “0” with an applied smoothing technique was found
to deviate least from the surface model, although it is not the most biologically accurate. Results have implications for aggregated studies
that employ multimodal 3D datasets, and caution is recommended for studies that enlist 3D data from websites and digital repositories,
particularly if processing parameters are unknown or derived for studies with different research foci.

Keywords: archaeoinformatics, computational archaeology, geometric morphometrics, digital humanities, museum studies

La producción de mallas digitales tridimensionales (3D) de superficie e información tomográfica computarizada (TC) se ha generalizado en
los analisis morfométricos de datos antropológicos y arqueológicos. Dado que los métodos de procesamiento no están estandarizados
quedan dudas sobre la comparabilidad de conjuntos de datos 3D procesados y curados digitalmente. El objetivo de este estudio fue
identificar los parámetros de procesamiento que tienen la compatibilidad más consistente entre mallas derivadas de TC y un modelo de
superficie 3D de la misma mandibula humana. Fueron comparadas ocho mallas cada una con parámetros únicos de umbralización y
suavizado, para evaluar las desviaciones de todo el objeto, las desviaciones a lo largo de las curvas y las desviaciones entre características
anatómicas específicas en el modelo de superficie, en comparación con cada una de las tomografías computarizadas utilizando un conjunto
de puntos de comparación. Con base en las distancias de separación calculadas, aunque no las más precisas desde el punto de vista
biológico, se encontró que la malla con umbral en “0” con una técnica de suavizado aplicada se desvía menos de la superficie modelo. Los
resultados tienen implicaciones para los estudios agregados que emplean conjuntos de datos 3D multimodales y se recomienda
precaución para los estudios que incluyen datos 3D de sitios web y repositorios digitales, especialmente si los parámetros de procesa-
miento son desconocidos o derivados de estudios con diferentes focos de investigación.

Palabras clave: arqueoinformática, arqueología computacional, morfometría geométrica, humanidades digitales, estudios de museo

Analyses of three-dimensional (3D) data are increasingly widespread
in paleoanthropology, bioanthropology, bioarchaeology, and
archaeology (Adams et al. 2013; Friess 2012; Shott 2014; Slice 2007;
Tocheri 2009). With advances in virtual anthropology (for a
review, see Weber 2015), studies have begun to stray from tradi-
tional linear methods (e.g., caliper distances), and 3D data collection
methods are regularly employed to include surface scanning (laser,
structured light, etc.), computed tomographic (CT) imaging (Franklin

et al. 2016), and MicroScribe data (Menéndez 2017). The fusion of
traditional and geometric morphometrics is similarly a topic of
considerable interest (Robinson and Terhune 2017).

Three-dimensional data exhibit several advantages over traditional
caliper measurements. For instance, CT imaging captures data
associated with internal structures (e.g., paranasal sinuses; Butaric
2015; Rae and Koppe 2002) or diploë/trabecular bone patterning
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(e.g., Chirchir et al. 2017; Copes and Kimbel 2016). Advanced geo-
metric morphometric methods can be applied to any 3D mesh, in
some cases capturing more variation with shape data compared to
linear measures (Bookstein et al. 2004; Gunz and Mitteroecker 2013).
Distorted and/or fragmentary fossils and cultural materials can be
virtually reconstructed prior to analysis (Balzeau et al. 2010; Godinho
and O’Higgins 2017; Gunz et al. 2009; White 2015; Zollikofer and
Ponce de Leon 2005). Those data associated with scanned objects
can be digitally curated for future use and shared through digital
repositories (e.g., MorphoSource, Open Science Framework [OSF],
GitHub, Figshare, Zenodo, the Open Research Scan Archive [ORSA],
Open Context, the Digital Archaeological Record [tDAR], or virtual
museum collections; Bruno et al. 2010; Isler et al. 2006; Kuzminsky
and Gardiner 2012; Selden et al. 2020, 2021; Selden, Perttula et al.
2014; Shearer et al. 2017).

The latter point is of particular interest because it minimizes the
need to handle fragile specimens, saves time and fiscal resources
for researchers and museum/collection personnel, fosters the
advancement of next-generation research through ease of shar-
ing, encourages collaboration among researchers and institutions,
and can increase accessibility to the general public (Allison 2008;
Douglass et al. 2017; Means 2015, 2017; Selden, Means et al. 2014;
Wachowiak and Karas 2013; Weber 2015). Virtual databases have
allowed for the continuation of research during the COVID-19
pandemic, during which time museum travel—and travel in gen-
eral—has largely been limited or restricted. It stands to reason that
as the number of data-sharing endeavors increases, efforts to
incorporate 3D data collected and processed using different
modalities will increase as well. When mixing digitally rendered
meshes generated from CT and surface scan data—or even dif-
ferent scanners within the same modality, such as between dif-
ferent 3D laser scanners—the question of whether those meshes
are directly comparable is of considerable importance.

Consequently, numerous studies have investigated quality control
and reliability by comparing digital and linear measures taken
using various modalities (Fourie et al. 2011; Stephen et al. 2015;
Stull et al. 2014). For example, when comparing CT and traditional
caliper-collected data among skeletal studies, linear distances
obtained from CT scans were found to be as reliable as those
collected by hand (Koppe and Nagai 1995; Koppe and
Schumacher 1992; Márquez and Laitman 2008; Montgomery et al.
1979; Zonneveld et al. 1989). Similar results have been undertaken
to compare caliper measures to data collected with MicroScribes
(Menéndez 2017; Stephen et al. 2015) and laser scanners
(Evgenikou and Georgopoulos 2015). Additional studies have
investigated inter-methodological reliability in the collection of
landmarks and distances among different sources (Algee-Hewitt
and Wheat 2016; Katz and Friess 2014; Shearer et al. 2017; Sholts
et al. 2011; Tzou et al. 2014). For example, Robinson and Terhune
(2017) tested both inter-observer and inter-method error rates in a
mixed-method study. Even though they specifically found that
inter-method error rates overlapped with normal levels of variance
among their samples, the authors cautioned researchers when
using data compiled from multiple observers and technologies.

Although they are informative for a wide range of methodological
techniques, analyses rarely investigate or discuss the importance
of differential post-processing. Even though Robinson and
Terhune (2017:64) were exhaustive in capturing inter-observer and
inter-method error rates using four data collection methods to

analyze variance at multiple levels, the details of their post-
processing techniques are scarce. Furthermore, they mention that
when processing microCT data, the “thresholding tool was
employed to remove extraneous material from the scans [and was]
manually adjusted until only bone [was] selected” (Robinson and
Terhune 2017:64). Although they assume this subjective method
would not have a significant impact on the morphology of the
external surface bone, it was conceded that differences in the
effect of thresholding settings are worthy of further investigation
(Robinson and Terhune 2017:64).

More recently, Stock and colleagues (2020) investigated the
effects of different processing techniques in segmentation of CT
scans when modeling human pelvic bones. Ultimately, these
authors noted that a small degree in varying threshold levels do
not significantly alter measures on the 3D models. More impor-
tant, they found that a consistent methodological approach across
observers for segmentation and smoothing techniques is essential
for precise data collection. They further note the need for addi-
tional error-based studies to test for quality control in using
digitally derived data.

This investigation builds on recent efforts to explore variation
introduced by different modalities of 3D scanners (Shearer et al.
2017), and the purpose of the current study is to assess whether
meshes generated by CT and surface scanners can be pooled
together for mixed-method studies as a means of increasing
sample sizes—and if so, whether specific post-processing tech-
niques should be followed. Given that several recent studies
investigate inter-observer and inter-method error rates using
linear dimensions (for a recent review, see Robinson and Terhune
2017), we focus solely on post-processing techniques of 3D data.

METHODS
This study focused on post-processing techniques for a single
object using two primary 3D data-capturing technologies: CT and
surface (structured light) scans. The specimen used in the analysis
is a mandible from the Mesolithic Wadi Halfa Collection (B11-2-
15904). Original data collection involved CT and surface scanning
of the Wadi Halfa Collection for a larger, ongoing project
investigating the evolutionary craniofacial changes of these
individuals and neighboring populations. During the develop-
ment of that larger project, questions regarding mixed-modalities
in image processing developed, leading to the current project.
This mandible, versus other cranial bones, was chosen for the
current study based on its complex geometry (including a broken
condyle) and varying matrix densities (bone vs. enamel), which
may impact CT-processing techniques.

The Wadi Halfa remains, as represented by the mandible pre-
sented here, were excavated with the full support of the Sudanese
government from 1963 to 1964. This excavation was funded by the
then largest international (UNESCO) salvage program ever
assembled. Following its recovery and subsequent analyses, the
osteological material was safely and securely housed at University
of Colorado Boulder, where only qualified scholars were allowed
access to it. In 2018, the Wadi Halfa Mesolithic collection was
moved to Arizona State University, where it is housed today. For
extensive background information on the collection and excava-
tion, see Greene and Armelagos (1972).
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CT Scanning and Processing
Scanning of the mandible was conducted at the Department of
Radiology, Anschutz Medical Campus of University of Colorado
Denver, using a Philips Gemini TF TOG 64 CT scanner with the
following parameters: kVp140 mA30, 152FOV, and 0.625mm slice
thickness. Resulting files were saved as 16-bit DICOMs using
VGStudio 2.2.

Although often ignored (for an exception, see Stock et al. 2020),
post-processing is a particularly important step in the analysis of
CT images. Several studies have demonstrated that selecting the
appropriate window level and thresholding technique is vital for
creating accurate 3D models of the original item (Schwartz et al.
1998; Spoor et al. 1993; Ullrich et al. 1980). There are various
parameters and steps associated with CT post-processing that
are dependent on material type (for step-by-step reviews, see
Spoor et al. 2000; Weber and Bookstein 2011). As a result,
scanning parameters may differ if one is investigating bony
elements versus denser elements such as enamel or fossil
matrix. This process is further confounded when analyzing an
object with mixed materials, such as crania and mandibles that
contain both bone and enamel. Additional post-processing of
the mesh involves the decision to apply a smoothing factor (or
not), to simplify the mesh (or not) to reduce the number of
poly-faces in the mesh, and to remove additional artifacts (or not)
from the mesh.

A total of eight isosurface meshes were rendered from the CT
scan data in Amira 5.6 (Stalling et al. 2005) using different post-
processing techniques (Table 1). Differences in mesh creation
were based on variable threshold levels and the application, or
not, of a smoothing technique. CT images are represented by 3D
stacks of pixels—that is, voxels, where varying shades of gray
related to the degree of radiation intensity are assigned numeric
values called Hounsfield units. In most cases, materials with the
lowest densities (typically air) appear as darker grays or black and
are represented by low numeric values, whereas materials with
higher densities (e.g., bone, enamel, fossilised matrix, etc.) are
usually lighter gray to white and are represented by higher
numeric values (Prossinger et al. 2003; Spoor et al. 2000). The
lighter gray and white values of bone are not always easy to dis-
tinguish from the darker gray and black values of air. This is
because slightly varying shades can be challenging for the human
eye to decipher, resulting in blurred versus sharp air-to-bone
(or other material) boundaries (Weber and Bookstein 2011).

Subjectively deciding where the air-to-bone boundary exists can
result in artificial size differences among CT scan data. Therefore,
the first step in creating accurate 3D meshes is to identify air versus
the object in question (e.g., bone, rock/clay, etc.) through estab-
lishing a thresholding parameter. A higher threshold number
results in less of the object being rendered (creating artificially thin
areas and/or holes), whereas a lower threshold number results in
more aspects of the object being rendered (perhaps artificially
bloating or increasing the size of the object). To address this, the
half-maximum-height (HMH) technique was previously developed
to determine this boundary objectively (Schwartz et al. 1998;
Spoor et al. 1993; Ullrich et al. 1980). This technique averages the
minimum and maximum values for the CT number across the
boundary in question (e.g., air-bone, enamel-dentin). The number
—essentially the midpoint value—is used to discriminate between
air and bone, or other materials of interest, objectively.
Consequently, when creating a mesh, all voxels corresponding to
that threshold parameter will remain in the mesh, whereas voxels
lower than that number will effectively be removed.

Four thresholding techniques were applied to create isosurfaces
in Amira, using the isosurface tool. An isosurface represents a
mesh of polygons that corresponds to grayscale values within the
set thresholding parameters. It is important to note that, much like
in surface scanning, isosurfaces only render external elements of
the object. For meshes 1 and 2 (abbreviated as M1 and M2 in
Table 1) a neutral threshold value of 0 was used so that any voxel
lower than 0 was not rendered into the isosurface. This is the
random, default setting in Amira. For meshes 3 and 4 (M3, M4) a
threshold of −500 was applied. This threshold was subjectively
determined in Amira to remove the underlying towel and
CT-scanner bed (lower density objects) on which the mandible
rested, while keeping the mandibular elements visible. The
remaining two thresholding parameters for meshes 5–8 (M5–M8)
were determined using the HMH technique. To identify the
appropriate HMH numbers, the CT scan was uploaded to ImageJ
1.50i (http://imagej.nih.gov/ij/), where the maximum and minimum
gray values were recorded using the line-measurement tool, fol-
lowing several studies (Butaric 2015; Coleman and Colbert 2007).
First, 20 measurements were collected across the mandibular
bone-air transition and averaged to obtain an HMH value appro-
priate for bone (M5, M6). Then, 20 measurements were collected
across the enamel-air boundary and averaged to obtain an HMH
value appropriate for enamel (M7, M8). These HMH values were
used to create two additional isosurfaces in Amira. Following the

TABLE 1. Isosurface Thresholds Used in the Analysis.

Mesh CT Threshold Smoothed? Description

M1 0 Yes midpoint thresholding; Amira default

M2 0 No
M3 −500 Yes based on subjective viewinga

M4 −500 No

M5 562 Yes HMH thresholding based on mandible body-air boundary
M6 562 No

M7 634 Yes HMH thresholding based on the enamel-air boundary

M8 634 No
a Removed underlying towel and artifacts while keeping object visible.
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creation of the four isosurfaces, the generate surface tool in Amira
was applied to each, and all four meshes were exported as a
stereolithographic file (.stl) for the analyses.

Copies of these meshes were also subjected to the smoothing tool
in Amira (four iterations, lambda 0.9), reducing the noise between
the mesh poly-faces. The four smoothed meshes were exported
as.stl files, resulting in a total of eight comparative meshes (Table 1).
All meshes were subsequently imported into Geomagic Studio
2014 (3D Systems Inc.) to remove additional artifacts produced
during processing and to address issues associated with folded/
non-manifold poly-faces and small tunnels/holes. To ensure that
processing across the models remained objectively the same at this
step, the Mesh Doctor function was used to automate the process.
These eight models comprise the test.

Surface Scan Processing and Modeling
In addition to the CT scans, the mandible (B11-2-15904) was also
scanned with a Creaform GoSCAN 20. Following scanner opti-
mization and shutter-speed configuration, scan data were col-
lected atop a flat turntable at a 0.1 mm resolution with positioning
targets required for increased accuracy. The mesh was cleaned in
VXmodel 8.1.1, ridding it of isolated patches, self-intersections,
spikes, small holes, singular vertices, creased edges, narrow tri-
angles, outcropping triangles, narrow bridges, and non-manifold
triangles. The point cloud associated with the unprocessed scan
data was saved and exported as an.stl file prior to post-processing
(Weyrich et al. 2004).

Surface scan data (Georgopoulos et al. 2010; Mahmoud et al.
2015) were subsequently imported to Geomagic Design X (Dx),
where an additional check for mesh errors was used to address
potential issues with non-manifold poly-vertices, folded poly-
faces, dangling poly-faces, small clusters, small poly-faces, non-

manifold poly-faces, crossing poly-faces, and small tunnels. Due
to the limitations of surface scanning, areas of the mesh asso-
ciated with the mental foramina were cut, and the mesh boundary
was edited prior to alignment. Following alignment, scan data
were saved, and an object file (.obj) was exported for use as a 3D
figure (Figure 1).

Following data collection, the mandible was modeled in Dx using
a custom patch network designed to capture the detail of the
mesh in a surface model. Three-dimensional contour curves
were applied along high curvature areas that were used as the
basis for the initial layout of the custom patch network. The first
iteration of the patch network enlisted an auto estimation for the
number of patches necessary, which was subsequently refined
through a series of iterative comparisons between the surface
model and the mesh by moving between Dx and Geomagic
Control X (Cx).

Throughout the design and layout process for the patch network,
each iteration of the freeform surface model was exported to Cx to
identify areas of the surface model’s design that exceeded the
specified—arbitrary—tolerance (0.1mm, the same as post-
processed mesh resolution) and required revision. Development of
the final surface model was an iterative process resulting in a total
of three revisions, yielding a freeform surface model where 100% of
the surface model is within the 0.1mm tolerance of the mesh.
Revisions to the custom patch network were conducted by
shuffling patch groups, editing, and inserting splines. The final
freeform surface model was then exported to Cx for comparisons
with the processed CT-rendered model. Although surface scan
data were used as the control, that is not meant to convey a
measure of accuracy or precision. Instead, these data are used to
identify the CT post-processing method that yields a mesh with the
smallest deviation between the surface model and CT-generated
data.

FIGURE 1. Surface scan data (with texture) for Mesolithic mandible B11-2-15904 from the Kulubnarti collection illustrating
(a) anterior, (b) right buccal, (c) superior, (d) posterior, (e) left buccal, and (f) inferior views. The full-size figure can be viewed and
downloaded at GitHub, and the 3D mesh generated by the surface scanner can be viewed interactively on Sketchfab.
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Computer-Aided Inspection
Cx was used to compare the topology of the surface model
(nominal data) against that of the eight CT meshes (measured
data; Selden 2017; Selden and Jones 2021; Figure 2). Measured
data was compared against the nominal data (Li and Gu 2004;
Minetola et al. 2015; Obeidat and Raman 2008; Poniatowska
2012) to identify the method of CT post-processing that best fits
with the surface model based on the percentage of the 3D mesh
that meets with a prespecified—arbitrary—tolerance (0.3 mm;
Budzik et al. 2016; Wong et al. 2006; Yogi et al. 2014). Once
identified, a series of two-dimensional (2D) slices were generated
for the CT mesh that best fit with the surface scan to further clarify
the character of the geometric shapes associated with gap
distances.

A total of 33 reference points were populated on the mesh in Dx
(Figure 3). These points were placed in the vicinity of man-
dibular landmarks (e.g., menton) and were selected specifically
due to their use in an unrelated study of the Mesolithic
Kulubnarti mandibles (Galland et al. 2016). The reference points
were saved as an initial graphics exchange specifications (IGES)
file and imported to Cx as comparison points, where they were
used to assess deviations between the surface model and CT
meshes at known locations of analytical importance. Note that
comparison points associated with the fractured left condyle of
the mandible were not reflected here because they were in the
geometric morphometric study (Galland et al. 2016). A number
of methods have been proposed to reconstruct (Benazzi et al.
2009; Senck et al. 2015) or otherwise account for missing data in
geometric morphometrics (Arbour et al. 2014; Couette and
White 2010; Neubauer et al. 2012; Senck et al. 2013; Zelditch
et al. 2012), none of which were used here. Instead, comparison
points were placed atop the area of the fracture, which afforded
an opportunity to explore how a region of highly variable
geometry would compare between the surface model and the
CT meshes.

RESULTS
Comparisons are limited to the topology of the surface model due
to the fact that it is not possible to capture interior structures with
a surface scanner. It is, however, possible to compare the top-
ology of the CT mesh against that of the surface scan by limiting
the analysis to the topology of the surface model.

Mesh Comparison (3D Compare)
The 3D comparisons of the surface model across the eight CT
meshes suggest that the M1 HMH 0 smooth mesh (in tolerance
[InTol] 93.92%) and the M2 HMH 0 mesh (InTol 93.80%) correlate
best with the surface model when the entirety of the mandible
geometry—100% sampling ratio—is compared (Table 2). CT
meshes M3 and M4 HMH −500 smooth and HMH −500 demon-
strate the lowest tolerance levels (InTol 62.20% for both), so they
correspond least to the surface scan. Additional comparisons
indicate that high gap distances occur primarily in regions
between dentition and around the mental foramina. Deviations
also occur on the anterior rami and condyles, particularly in the
area of the fractured left condylar neck (Figure 4).

The histogram in Figure 4 illustrates the Gaussian distribution for
the number of errors over the whole deviation. The graph is split
into six segments: 1σ at 31% from the average to the maximum
deviation in each direction, 2σ at 69% from the average to the
maximum deviation in each direction, and 3σ at 93.3% from the
average to the maximum deviation in each direction. The average
(AVG) is the sum of all deviations divided by the number of all
deviations, and the RMS is the square root of all squared devia-
tions divided by the number of all deviations (sometimes referred
to as the “effective deviation”). In tolerance (InTol) and out tol-
erance (OutTol) percentages indicate the percentage of devia-
tions in or out of the given tolerance, and over tolerance (OverTol)
and under tolerance (UnderTol) percentages indicate the

FIGURE 2. Surface model (left) contrasted with CT point cloud (center) and gap distances between the surface model and CT
mesh (right). Inspection tolerance was altered to 0.05mm to more dramatically illustrate deviations that occur between the mesh
and surface model for this figure. The full-size figure can be viewed and downloaded at GitHub.
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percentage of deviations over (positive direction) or under
(negative direction) the tolerance range.

2D Sectioning (2D Compare)
The 2D comparison was generated for four sections of HMH 0
smooth at or very near locations on the mesh where comparison

points—based on landmarks used by a previous study—were later
applied (Table 3). Each section articulates with a specific curve,
where semilandmarks (equidistant or otherwise) might be applied.
For each of the 2D compare sections, two call-outs were added to
illustrate the maximum measures of over/under tolerance. The
single exception to the call-outs occurs in 2D compare 3, where
gap distances associated with the mental foramina were of inter-
est. In the case of 2D compare 3, the call-outs were issued for the
two highest deviations that occur under the ± 0.3 mm tolerance.

Through sectioning the specific CT mesh found to best fit the
surface scan, variation between the surface scan and the HMH 0
smooth mesh was calculated. Even in the most ideal cases, some
areas of the mesh may not be well suited for semilandmarks. For
example, it would take substantial effort to identify areas of the
left fractured condylar neck, left anterior ramus, left mandibular
foramen, and both mental foramina where landmarks and semi-
landmarks would be deemed acceptable for inclusion in a formal
analysis. However, a number of other areas remain on the HMH 0
smooth mesh that are likely suitable for use in a mixed-method
analysis, but final placement would be dependent on the specifics
of the research question.

FIGURE 3. Location of the 33 landmarks used in Galland and colleagues (2016; Supplemental Data), which were populated on the
surface model in Dx and imported as comparison points to Cx. The full-size figure can be viewed and downloaded at GitHub.

TABLE 2. Results of 3D Comparison between Surface Scan
and CT Meshes.

CT Mesh InTol (%) OutTol (%) OverTol (%) UnderTol (%)

M1 93.9161 6.0839 3.3545 2.7294

M2 93.8012 6.1988 3.4278 2.7710

M3 62.1989 37.8011 35.7474 2.0537
M4 62.2542 37.7458 35.8639 1.8819

M5 90.5318 9.4682 8.6902 0.7779

M6 88.3977 11.6023 10.8934 0.7090
M7 87.4393 12.5607 11.9468 0.6139

M8 87.4647 12.5353 11.8925 0.6428
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Comparison Points
Figure 3 illustrates the placement of comparison points, and
Figure 5 demonstrates the gap distance for comparison points
between the surface model (reference position) and each of the
eight meshes (measured position) in Cx. Gap distances were
recorded (Table 4; Supplemental Data), and results are listed in
order for the eight post-processing methods. Comparison points
placed on the gnathion, gonion, and pogonion showed low
(in tolerance) gap distances, whereas other anatomical regions
demonstrated gap distances that were above tolerance for at least
one of the CT meshes.

Comparison points placed around landmarks across the different
CT meshes did not correspond well, with several exhibiting gap
distances above the ± 0.3 mm tolerance. The CT meshes that best
correspond with the repurposed constellation of comparison
points were M1 and M2 (HMH 0 smooth and HMH 0). For
these meshes, only three comparison points extend beyond the ±

0.3 mm tolerance: condylon tip (L), condylon medial (L), and
mental foramen (L). It is important to reiterate, however, that the
two measures atop the left condyle were collected in the area of a
fracture, so this result is not unexpected (see discussion below).
The meshes displaying the highest gap distances were the M3 and
M4 CT meshes (HMH −500 smooth and HMH −500). It is worth
noting that although mesh topology for M3 and M4 does vary in
terms of the 3D compare analyses, gap distances for comparison
points were exactly the same. Results for the M5–M8 meshes are
also similar in terms of which landmarks extended beyond the
median and maximum tolerance. In total, four landmarks remain
below the median tolerance for all meshes (pogonion, gnathion,
gonion [R], and gonion [L]), and only one landmark included a gap
distance reaching only the median tolerance (ramus-a [R]). For the
remainder of the comparison points, at least one extended
beyond the maximum tolerance for all CT meshes (Table 4).

DISCUSSION
Eight CT meshes were digitally rendered using different thresh-
olding parameters, then compared to a single 3D surface model
to identify the post-processing method for CT scans that produces
the smallest gap distances in terms of surface topology (3D
comparisons), the sections most suitable for landmark and/or
semilandmark placement (2D section comparisons), and the
smallest gap distances in terms of landmark placement (com-
parison point analyses). All three analyses demonstrate that post-
processing methods impact the comparability of the 3D meshes
that are the primary data source used in studies of 3D geometric
morphometrics. Consequently, if one is conducting a mixed-

FIGURE 4. Comparison between the surface model and the thresholding methods (isosurfacing) for HMH 500 (M4). Regions of
mesh topology in green represent the geometry of Mesolithic mandible B11-2-15904 within the ± 0.3 mm tolerance. 3D com-
parison results associated with the HMH 500 smooth (M3) and HMH 500 (M4) meshes exhibited the highest deviations from the
surface model. The full-size figure can be viewed and downloaded at GitHub.

TABLE 3. Results of Sectioning (2D Compare) for HMH 0
Smooth in High-Deviation Regions of the Surface Scan / CT

Mesh near the Locations of Landmark Data.

2D compare InTol (%) OutTol (%) OverTol (%) UnderTol (%)

2D compare 1 56.2259 43.7741 41.7202 2.0539

2D compare 2 88.5312 11.4688 4.8290 6.6398

2D compare 3 93.9781 6.0219 0.6691 5.3528
2D compare 4 80.0948 19.9052 14.2180 5.6872
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method study, incorporating those analyses employed here would
be beneficial to identify which post-processing techniques yield
the most consistent mixed-method dataset needed to address a
specific research question while also highlighting those aspects of
mesh geometry most suitable for landmark and semilandmark
application in more advanced studies. As detailed below, it is
recommended that unprocessed data be made available in
addition to processed 3D meshes, making it possible to
achieve consistent data processing for studies where reuse is
possible, as well as replication studies where the processed
mesh can be used.

Mesh Comparison (3D Compare)
Results indicate that the neutral CT-mesh M1, HMH 0 smooth, is
the best match to the surface model in terms of overall model
composition; however, this result does not necessarily mean that

the HMH 0 smooth mesh is the most biologically accurate. As
mentioned previously, numerous studies (Schwartz et al. 1998;
Spoor et al. 1993; Ullrich et al. 1980) have demonstrated that
post-processing techniques, which include the HMH technique for
objectively determining appropriate thresholding values
depending on the material involved, are extremely important
for obtaining accurate models and measurements. Despite
this, studies enlisting CT meshes continue to use subjective
methods and/or do not provide additional processing
information.

It is likely that the appropriate post-processing methods for one
study will not translate across multiple studies, given that research
interests tend to be wide ranging. With this in mind, it is recom-
mended that researchers pay particular attention when selecting
the appropriate processing method. If mixed-method data cannot
be avoided, preliminary comparative analyses that contrast results

FIGURE 5. Surface model and comparison points contrasted with CT mesh HMH 0, illustrating the locations for measured
positions and gap vectors associated with locations used in an unrelated geometric morphometric analysis (Galland et al. 2016;
Supplemental Data). Green points denote a comparison point within tolerance; yellow points indicate a comparison point within
tolerance, but above/below ± 0.15mm; and red/blue boxes indicate a comparison point beyond the ± 0.3 mm tolerance.
Importantly, these are not landmark-to-landmark measures; instead, they reflect the gap distance between the surface model and
CT mesh at the location of the comparison point on the surface model. The full-size figure can be viewed and downloaded at
GitHub.
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of differential post-processing techniques may be warranted.
When obtaining CT, laser, structured light, et cetera from websites
and digital repositories, it is important that post-processing
methods—or stages—be thoroughly identified, understood, and
communicated and that these data be provided with each (see
Boyer et al. [2017] for a recent review of MorphoSource; see
Lebrun and Orliac [2017] for a recent review of MorphoMuseuM).
In cases of 3D data, it is best to use the original files where pos-
sible (e.g., .tiff stacks, analyze files, DICOMs, etc.), as opposed to
simply posting processed models/meshes. This would ensure that
models and meshes can be rendered in a manner that yields
consistent outputs for a specific project (Stock et al. 2020). For
example, a project that is focused on dentition may use different
thresholding techniques compared to that of a project focused on
mandibular bone, femur, pelvis, et cetera.

2D Sectioning (2D Compare)
Although it is an important first step, the complex variability for
two or more specimens identified through the first comparison
(3D compare) requires two-dimensional sectioning, where gap
distances can be further scrutinized, illustrated, and clarified. The
contribution of the 2D compare results may be of particular
importance prior to the application of semilandmarks (Bookstein
1991; Gunz et al. 2005) and sliding semilandmarks used to analyze
the morphological variability among specific, well-defined curves
(Bookstein 1997; Bookstein et al. 1999). The 2D compare sections
illustrate specific areas of topology between the model and the
mesh that are potentially problematic. For example, the 2D
comparisons illustrate that areas of highly complex morphology
may not be suitable locations for landmarks in a mixed-method

TABLE 4. Gap Distances between Points at Landmarks Applied to the Surface Scan Contrast with the Post-Processed CT Meshes.

CMP1 M1 M2 M3 M4 M5 M6 M7 M8

Infradentale 0.2102 0.1980 0.8376 0.8376 0.0177 0.0040 −0.0327 −0.0380
Pogonion 0.1039 0.1039 0.1391 0.1391 −0.0285 −0.0284 −0.0444 −0.0440
Gnathion 0.0492 0.0400 0.0282 0.0282 −0.0968 −0.1175 −0.1226 −0.1388
Mandibular orale −0.3123 −0.2804 −0.1671 −0.1671 −0.8656 −1.4265 −0.8968 −0.8860
Condylon lateral (R) 0.0018 −0.0155 0.2077 0.2077 −0.2104 −0.2174 −0.3048 −0.2231
Condylon medial (R) 0.1970 0.1987 0.8456 0.8456 0.0359 0.0212 0.0175 0.0028

Condylon tip (R) 0.2646 0.2548 0.7939 0.7939 0.1371 0.1328 0.1113 0.1114

Condylon tip (L) 0.3994 0.4374 0.6508 0.6508 0.2929 0.3474 −1.3983 0.2749
Condylon medial (L) −0.7729 −0.8551 0.5884 0.5884 −1.3955 −1.3200 0.2443 −1.4029
Condylon lateral (L) 0.0588 0.0669 0.4530 0.4530 −0.0948 −0.0660 −0.1211 −0.1137
Mandibular foramen (L) −0.1578 −0.1501 −0.0310 −0.0310 −0.4135 −0.1154 −0.4518 −0.5055
Mandibular foramen (R) −0.0908 −0.1584 −0.3432 −0.3432 −0.2536 −0.2413 −0.2675 −0.2661

M3-lateral posterior (L) −0.0631 −0.0789 0.5405 0.5405 −0.2241 −0.2489 −0.2452 −0.2716

M3-lateral posterior (R) 0.2286 0.1974 1.0348 1.0348 0.0213 0.0157 0.0038 −0.0056
M1M2 lateral (L) 0.1781 0.1640 0.6065 0.6065 −0.0065 −0.0270 −0.0217 −0.0462
M1M2 lateral (R) −0.0860 −0.0628 0.3406 0.3406 −0.4628 −0.3485 −0.3469 -0.3778

CP3 lateral (R) −0.2290 −0.2020 0.0696 0.0696 −0.5577 −0.5415 −0.6697 −0.6833
CP3 lateral (L) 0.0665 0.0914 0.5026 0.5026 −0.1306 −0.1262 −0.1501 −0.1468
Mental foramen (R) −0.4002 −0.1847 −0.9968 −0.9968 −0.6075 −0.7322 −0.6367 −0.7859
Mental foramen (L) −0.4711 −0.4646 −0.9352 −0.9352 NR NR NR NR
Coronion (L) 0.2252 0.2366 0.5418 0.5418 0.1066 0.1085 0.0866 0.0928

Coronion (R) 0.0589 0.0480 0.3684 0.3684 −0.0420 −0.0662 −0.0697 −0.0803
Ramus-a (R) 0.1165 0.1147 0.2853 0.2853 0.0068 −0.0009 −0.0046 −0.0143
Ramus-a (L) 0.2185 0.2170 0.3651 0.3651 0.0906 0.0913 0.0817 0.0770

Ramus-p (R) 0.2626 0.2531 0.5859 0.5859 0.1163 0.0895 0.0940 0.0698

Ramus-p (L) 0.0661 0.0647 0.3943 0.3943 −0.0533 −0.0649 −0.0693 −0.0809
Sigmoid notch (R) 0.2204 0.2262 0.8613 0.8613 0.1201 0.0958 0.0963 0.0711

Sigmoid notch (L) 0.2085 0.2244 0.6433 0.6433 0.0578 0.0949 0.0358 0.0771

Linguale 0.2191 0.2313 0.8063 0.8063 0.0186 0.0282 0.0105 0.0027
Alveolus-p (L) 0.1127 0.1035 0.4710 0.4710 −0.0393 −0.0656 −0.0519 −0.0840
Alveolus-p (R) 0.1294 0.1415 0.4371 0.4371 −0.0196 0.0042 −0.0307 −0.0141
Gonion (R) 0.1350 0.1288 0.0266 0.0266 0.0317 0.0250 0.0077 0.0125
Gonion (L) 0.0549 0.0474 0.1231 0.1231 −0.0414 −0.0476 −0.0555 −0.0580

Notes: CMP1 = comparison point; M1 = HMH 0 smooth; M2 = HMH 0; M3 =HMH -500 smooth; M4 = HMH -500; M5 = HMH 562 smooth; M6 = HMH 562; M7 = HMH
634 smooth; M8 = HMH 634; NR =No Result. Gap distances for points above the 0.3 mm tolerance are indicated in italics, and those above the 0.15 median are
indicated in bold. See also Supplemental Data.
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dataset. Following identification of post-processing tools that
result in the lowest gap distance between meshes and sections,
landmark and semilandmark constellations can be refined.

Comparison Points
Identifying comparison points that should not be used as posi-
tions for landmarks or semilandmarks is as important as identify-
ing those to use, given that the mesh topology in some regions
will likely be better suited for a mixed-method approach than
others. Those placed in areas of complex geometry—particularly
areas with deeper structures associated with dentition, mental
foramina, and fractures/breaks—deviate most (similar to results
found in the 2D and 3D compare analyses). This could reflect the
fact that surface scanning is limited to surface topography, whereas
CT scans also capture elements of internal morphology. However, it
is noteworthy that an analysis of a fully intact mandible may result in
measures for comparison points on both condyles that are within
tolerance, similar to those on the intact right condyle.

With this in mind, it is acknowledged that comparison points
would not normally be placed on a broken specimen; instead, that
area of the mesh would be virtually reconstructed (Benazzi et al.
2009; Godinho and O’Higgins 2017; Gunz et al. 2009; White 2015;
Zollikofer and Ponce de Leon 2005), mirrored (Couette and White
2010), or otherwise treated as missing (Arbour et al. 2014; Couette
and White 2010; Neubauer et al. 2012; Senck et al. 2013). However,
placement of landmarks on the broken neck of the left condyle in
this study provides interesting insights into potential problems
associated with the application of comparison points—or land-
marks—for mixed-method studies of complex geometric struc-
tures. Perhaps not surprisingly, these results suggest that CT scans
may be better suited for analyses of deeper crevices (dentition),
cranial sutures, foramina, fractures, and other biological structures
at the point of transition from external to internal morphology.
This finding is similar to that of Stock and colleagues (2020), who
emphasized the importance of precise processing techniques when
viewing complex anatomy, including the epiphyseal plates of sub-
adult materials. The implications here are that the use of 3D scans or
low thresholding that artificially “bloat” models may not pick up on
the finer details, leading to erroneous biological interpretations. The
current study did not specifically test how varying threshold levels or
post-processing would affect results in an actual comparative study.
Such analyses would be important avenues of future research.
Additional avenues of research could involve investigating areas of
“noise,” including the use of varying post-processing techniques in
combination with different scanners on a single item (e.g., utilizing
two different CT scanners or two different 3D surface scanners).

These results represent one approach to identifying variation in
mixed-methods datasets and demonstrate the need to compare
data produced using different collection and post-processing
methods prior to analysis. The comparative methodological
approach can be tailored to aid in the gradual refinement of
post-processing workflows when used for a single scanner
coupled with omnifarious post-processing methods, algorithms,
and settings used to collect, process, and model 3D scan data
(see Selden 2017:22–23, Figure 2; Selden and Jones 2021; Selden,
Means et al. 2018: Figure 4). To fully comprehend the complexities
of the results, it is recommended that data be compared prior to
formal analyses, allowing analysts to identify and further scrutinize
specific areas of meshes that may prove problematic. Additional

studies that compare modeling applications for skeletal objects
(e.g., an entire cranium or post-cranial elements), cultural materials
(e.g., ceramics, lithics; sensu Selden 2018a, 2018b, 2019, 2021;
Selden, Dockall et al. 2018; Selden et al. 2020), and proposed curve
and patch elements associated with the addition and incorporation
of semilandmarks or sliding semilandmarks will add important
insights to the gradual identification of those processing techniques
most appropriate for a wider range of mixed-method studies.

CONCLUSION
Comparative studies of 3D data processed using different hard-
ware and software are necessary to comprehend the ambiguity
introduced through the use of different post-processing methods.
This is of particular import when the models and/or meshes used
were produced for another analysis, perhaps with very different
goals and data-collection protocols. Scan data curated in digital
archives or databases warrant additional scrutiny because con-
textual and scan-specific metadata are neither standardized nor
required (see Davies et al. 2017; Niven and Richards 2017), and too
often these details are not included in the description or summary.
Although it may be tempting to quickly download and import 3D
mesh data generated for another study, it is best to request the
unprocessed data and spend the time necessary to identify the
post-processing methods that are best suited to the research
question. Note that the successful identification of a post-
processing workflow that achieves the smallest gap distance/devi-
ation in one study may not represent the correct—or most appro-
priate—choice for another study, given that variable research
questions tend to focus on different elements of mesh topology.

For analyses that employ a mixed-method approach using 3D data
from digital repositories, websites, or other investigators, the tests
needed to identify specific post-processing protocols will depend
on the research design and question. In most cases, it is best to
begin by identifying post-processing protocols that result in the
most consistent whole-object variability across the mesh sample
using 3D comparisons that provide a general overview of areas
that may not compare well across the sample, and therefore may
need to be avoided in a landmark-based geometric morphometric
study. The analysis of 2D sections could be used to investigate
potential challenges associated with a specific curve (archaeology)
or biological feature (anthropology) as a means of determining
whether or not it is suitable for semilandmark placement. Finally,
the use of comparison points provides a means of assessing vari-
ation at specific locations on the mesh in advance of formal analysis
to determine whether or not those locations are suitable for land-
marks or other point-based measurements.
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