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A study of fully developed plane turbulent channel flow subject to spanwise system
rotation through direct numerical simulations is presented. In order to study both the
influence of the Reynolds number and spanwise rotation on channel flow, the Reynolds
number Re=Ubh/ν is varied from a low 3000 to a moderate 31 600 and the rotation
number Ro = 2Ωh/Ub is varied from 0 to 2.7, where Ub is the mean bulk velocity,
h the channel half-gap, ν the viscosity and Ω the system rotation rate. The mean
streamwise velocity profile displays also at higher Re a characteristic linear part with
a slope near to 2Ω , and a corresponding linear part in the profiles of the production
and dissipation rate of turbulent kinetic energy appears. With increasing Ro, a distinct
unstable side with large spanwise and wall-normal Reynolds stresses and a stable side
with much weaker turbulence develops in the channel. The flow starts to relaminarize
on the stable side of the channel and persisting turbulent–laminar patterns appear at
higher Re. If Ro is further increased, the flow on the stable side becomes laminar-like
while at yet higher Ro the whole flow relaminarizes, although the calm periods might
be disrupted by repeating bursts of turbulence, as explained by Brethouwer (Phys. Rev.
Fluids, vol. 1, 2016, 054404). The influence of the Reynolds number is considerable,
in particular on the stable side of the channel where velocity fluctuations are stronger
and the flow relaminarizes less quickly at higher Re. Visualizations and statistics
show that, at Ro = 0.15 and 0.45, large-scale structures and large counter-rotating
streamwise roll cells develop on the unstable side. These become less noticeable and
eventually vanish when Ro rises, especially at higher Re. At high Ro, the largest
energetic structures are larger at lower Re.

Key words: rotating turbulence, turbulence simulation, turbulent flows

1. Introduction
Turbulent plane channel flow subject to rotation about the spanwise direction

displays several phenomena of interest to engineering applications, turbulence
modelling (Jakirlić, Hanjalić & Tropea 2002; Smirnov & Menter 2009; Arolla
& Durbin 2013; Hsieh, Biringen & Kucala 2016) and subgrid-scale modelling in
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Spanwise rotating channel flow 425

large-eddy simulation (Marstorp et al. 2009; Yang et al. 2012). Effects of rotation
on flow and turbulence are in this case non-trivial. Channel flow is unaffected by
rotation if fluid motions are two-dimensional and perpendicular to the rotation axis
(Tritton 1992); for example, laminar Poiseuille flow and waves perpendicular to the
rotation axis are not influenced (Brethouwer et al. 2014). Yet, it is well-established
that spanwise rotation strongly influences Reynolds stresses, anisotropy and structures,
and the mean velocity profile in plane turbulent channel flow (Johnston, Halleen &
Lezius 1972). Rotation effects are therefore obviously related to three-dimensional
turbulent processes.

A useful parameter when discussing rotation effects on turbulent shear flows is
the ratio of background and mean shear vorticity. For a unidirectional shear flow
with mean velocity U(y) in the x-direction and shear vorticity −dU/dy rotating with
angular velocity Ω about the z-axis, this ratio is given by

S=−
2Ω

dU/dy
. (1.1)

When S> 0 the mean shear and background vorticity have the same sense of rotation
and rotation is cyclonic, whereas when S< 0 they have the opposite sense and rotation
is anticyclonic. Displaced particle analysis (Tritton 1992), rapid distortion theory, large-
eddy and direct numerical simulation (DNS) of rotating homogeneous turbulent shear
flow demonstrate that turbulence is damped if S > 0 and S < −1 and augmented if
−1< S< 0 (Salhi & Cambon 1997; Brethouwer 2005).

Experiments of fully developed turbulent plane channel flow subject to spanwise
rotation by Johnston et al. (1972) at Re = Ubh/ν = 5750, Ro = 2Ωh/Ub 6 0.21 and
Re= 17 500, Ro6 0.081, and by Nakabayashi & Kitoh (2005) at Re6 2750 and Ro6
0.056, where Ub is the bulk mean velocity, h channel half-width, ν viscosity and Ω
rotation rate, have shown that turbulence is suppressed on one side of the channel
where S> 0 and augmented on the other side where −1< S< 0, in accordance with
the discussion above. These sides are from now on called the stable and unstable side,
respectively.

DNS of spanwise rotating channel flow have been carried out by Kristoffersen &
Andersson (1993) at Reτ = 194 and Ro 6 0.5, Lamballais, Lesieur & Métais (1996)
at Re = 2500 and Ro 6 1.5, Nagano & Hattori (2003) at Reτ = 150 and Roτ 6 5,
corresponding to Ro . 0.3, and Liu & Lu (2007) at Reτ = 194 and Roτ 6 7.5,
corresponding to Ro . 0.5. Here, Reτ and Roτ are based on the friction velocity
instead of Ub. Yang et al. (2012) have performed DNS of rotating channel flow at
Re = 7000 and Ro 6 0.6 to validate their large-eddy simulations. These DNS were
broadly consistent with the experimental observations and show that at sufficiently
high Ro the flow becomes laminar-like on the stable side owing to the strong
suppression of turbulence. The asymmetry of the Reynolds stresses induces a skewed
mean velocity profile and differences in the shear stresses on the two walls. Another
notable feature is the appearance of a region in the channel where the mean velocity
profile is linear with a slope dU/dy ≈ 2Ω , i.e. S ≈ −1, implying that the absolute
mean vorticity is nearly zero. Spanwise rotation also affects turbulence anisotropy
since wall-normal fluctuations are typically strongly augmented on the unstable side
(Kristoffersen & Andersson 1993), again in line with DNS of rotating homogeneous
shear flow (Brethouwer 2005). Another consequence of spanwise system rotation is
the emergence of large streamwise roll cells at certain values of Ro induced by the
Coriolis force, as shown by experiments and DNS (Johnston et al. 1972; Kristoffersen
& Andersson 1993; Dai, Huang & Xu 2016).
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426 G. Brethouwer

Higher Ro was considered by Grundestam, Wallin & Johansson (2008), who have
performed DNS of spanwise rotating channel flow at Reτ = 180 and Ro 6 2.49.
Besides one-point statistics, they studied the effect of rotation on turbulent structures
and Reynolds stress budgets. They observed that, at higher Ro, turbulence was also
weak on the unstable side, suggesting that the flow fully relaminarizes at sufficiently
high Ro. This can be understood from the fact that in Poiseuille flow S>0 and S6−1
everywhere in the channel if Ro > 3.0. A more rigorous stability analysis shows that
all modes with spanwise wavenumber β 6= 0 are linearly stable for Ro > Roc in
plane Poiseuille flow with spanwise rotation (Wallin, Grundestam & Johansson 2013).
The critical rotation number Roc is a monotonic function of Re, i.e. Roc = 2.80 for
Re = 10 000 and Roc→ 3.0 for Re→∞. DNS confirms that the flow relaminarizes
when Ro→ Roc (Wallin et al. 2013).

However, Tollmien–Schlichting (TS) waves with a wave vector normal to the
rotation axis are unaffected by spanwise rotation and become linearly unstable in
plane Poiseuille flow if Re> 3848 (Schmid & Henningson 2001). DNS indeed reveal
TS wave instabilities resulting in a continuous cycle of turbulent bursts if Ro ' Roc
and the flow is basically laminar (Wallin et al. 2013). However, absence of turbulence
is not a prerequisite for TS instabilities, as shown by Brethouwer et al. (2014), who
have observed cyclic bursts of intense turbulence triggered by an unstable TS wave
in DNS at Re = 20 000 and Ro = 1.2 when turbulence is strong on the unstable
side. An extensive study of DNS of spanwise rotating channel flow reveals that these
cyclic turbulent bursts and TS wave instabilities show up in a quite wide range of Re
and Ro, including cases with overall weak turbulence as well as strong continuous
turbulence on the unstable side (Brethouwer 2016). The observed TS instability
growth was compared with the predictions of linear stability theory and analysed in
detail.

DNS at Reτ = 180 and a wide range of Ro were also performed by Xia, Shi &
Chen (2016). They studied various one-point statistics and observed a linear part
in the profile of the streamwise Reynolds stress production at sufficiently high Ro.
Another study of spanwise rotating channel flow was performed by Yang & Wu
(2012), who have carried out DNS at Reτ = 180 and performed a helical wave
decomposition. This shows that at low Ro, energy concentrates in large-scale modes,
presumably streamwise roll cells, while at higher Ro, energy accumulates at smaller
scales. In DNS with periodic boundary conditions these roll cells appear as pairs
of counter-rotating vortices. Dai et al. (2016) have detected roll cells, sometimes
called Taylor–Görtler vortices, in DNS at Re = 2800 and 0.1 6 Ro 6 0.5 and
Re = 7000 and Ro = 0.3, and studied their effect on the turbulence. They found
that, somewhat counter-intuitively, turbulence is enhanced on the unstable side in
the low-wall-shear-stress region where the fluid is pumped away from the wall by
the counter-rotating roll cells. Hsieh and Biringen have carried out DNS of rotating
channel flow at Reτ ≈ 200 with 0 6 Ro 6 0.5 and Reτ ≈ 400 with Ro = 0.2 with
varying domain sizes. At low Reτ they observed that when the spanwise domain
was too small to capture a full pair of counter-rotating roll cells, the mean velocity
profiles and Reynolds stresses were incorrect, illustrating that the roll cells have a
significant impact on the momentum transfer and turbulence. At higher Reτ , the mean
velocity and Reynolds stresses changed significantly when the spanwise domain size
was reduced from 2πh to πh.

These previous studies of spanwise rotating channel flow were mostly limited to low
Reynolds numbers, Reτ 6 194, meaning that the influence of the Reynolds number
on the statistics, turbulent structures and relaminarization on the stable side can be
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significant. Exceptions are the experiments of Johnston et al. (1972) and DNS of Dai
et al. (2016) and Hsieh & Biringen (2016) at somewhat higher Re, albeit limited to
moderate Ro. It is therefore not completely clear if the previous observations have
been influenced by the low Re. I have carried out DNS of plane turbulent channel flow
subject to spanwise rotation at higher Reynolds numbers than in previous studies with
Re up to 31 600 and a wide range of Ro. My aim is to assess the influence of spanwise
rotation on the mean velocity, one-point statistics and Reynolds stress budgets at these
higher Re. With these simulations I will investigate whether the effects of rotation
on the mean flow and turbulence discussed above are either generic or influenced
by the Reynolds number. Another goal is to study the relaminarization of the flow
on the stable channel side at high Ro and turbulence structures, and examine if roll
cells exist in rotating channel flow at these higher Re. Some previous observations
of the flow structures and relaminarization may have been affected by the limited
computational domains that were often used in the numerical studies. In the present
study, I therefore use larger computational domains and study the structures through
visualizations, two-point correlations and spectra. Finally, the effect of Re on the flow
statistics and structures is studied at a fixed Ro. The present study is also motivated
by the need for higher-Re data of rotating channel flow for turbulence modelling.

2. Numerical method and parameters
The velocity u in the DNS is governed by the incompressible Navier–Stokes

equations

∂u
∂t
+ u · ∇u=−∇p+

1
Re
∇

2u− Ro(ez × u), ∇ · u= 0, (2.1)

where ez is the unit vector in the z-direction and p the pressure, including the
centrifugal acceleration. The equations are non-dimensionalized by the mean bulk
velocity Ub and channel half-gap h; time t is thus given in terms of a convection
time h/Ub. Streamwise, wall-normal, spanwise coordinates are denoted by x, y, z,
respectively, and boundary conditions are periodic in the streamwise and spanwise
directions and no-slip at the walls. A sketch of the geometry is shown in Brethouwer
(2016). In the present DNS y=−1 and 1 correspond to the wall on the unstable and
stable channel side, respectively.

Equations (2.1) are solved with a pseudo-spectral code with Fourier expansions in
the homogeneous x- and z-direction and Chebyshev polynomials in the y-direction
(Chevalier et al. 2007), and the spatial resolution is similar to in previous channel
flow DNS (Lee & Moser 2015). In all runs, the flow rate and thus Re was kept
constant by adapting the mean pressure gradient. Re is varied from 3000 up to 31 600
and Ro from 0 (non-rotating) to approximately Roc, which is between 2.67–2.87 for
this range of Re. In most DNS, the streamwise and spanwise domain size are either
12πh× 10.5h or 8πh× 3πh, but in some DNS the domain size was chosen differently
to accommodate TS instabilities, as explained in Brethouwer (2016), but this variation
has little effect on results presented here. The runs are sufficiently long to reach a
statistically stationary state in all DNS. Parameters of the DNS at Re= 3000–31 600
are listed in table 1. The friction velocity is calculated as uτ =[u2

τu/2+u2
τ s/2]

1/2, where
uτu and uτ s are the friction velocity of unstable and stable channel side, respectively
(Grundestam et al. 2008). With this definition the mean dimensional pressure gradient
∂P/∂x=ρu2

τ/h, where ρ is the fluid density. Reu
τ and Res

τ are Reynolds numbers based
on uτu and uτ s, respectively, and Roτ = 2Ωh/uτ . The DNS studied here are basically
the same as those reported in Brethouwer (2016).
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428 G. Brethouwer

Reb Ro Reτ Reu
τ Res

τ Roτ Lx/h× Lz/h Nx ×Ny ×Nz

31 600 0 1505 1505 1505 0 12π× 10.5 6144× 577× 3456
31 600 0.45 1213 1445 925 11.7 12π× 10.5 4608× 481× 2560
31 600 0.9 822 988 613 34.6 12π× 10.5 3072× 385× 1728
31 600 1.2 562 670 428 67.4 12π× 10.5 2048× 257× 1152

30 000 1.5 415 462 363 108 8π× 3π 1024× 193× 768
30 000 2.1 319 318 319 198 8π× 4.8π 864× 161× 864
30 000 2.4 302 306 298 238 8π× 3π 640× 193× 512
30 000 2.7 301 302 300 269 7.5π× 3π 432× 161× 384

20 000 0 1000 1000 1000 0 8π× 3π 2560× 385× 1920
20 000 0.15 976 1107 825 3.1 8π× 3π 2304× 385× 1728
20 000 0.45 800 964 594 11.2 8π× 3π 2048× 361× 1536
20 000 0.65 700 851 505 18.6 8π× 3π 1920× 321× 1440
20 000 0.9 544 677 365 33.1 8π× 3π 1536× 257× 1152
20 000 1.2 423 501 326 56.7 8π× 3π 1152× 217× 864
20 000 1.5 333 370 292 90.0 29.4× 4π 864× 193× 768
20 000 2.1 259 265 252 162 8π× 3π 512× 161× 432

10 000 0 544 544 544 0 8π× 3π 1152× 193× 864
10 000 0.45 435 535 304 10.3 8π× 3π 1024× 193× 768
10 000 0.9 339 416 240 26.5 8π× 3π 768× 161× 576
10 000 1.2 277 325 219 43.3 8π× 3π 576× 129× 432
10 000 1.5 226 249 199 66.5 16π× 6π 1280× 161× 960
10 000 1.8 196 207 185 91.6 16π× 6π 1024× 129× 768
10 000 2.1 182 186 178 115 16π× 6π 640× 129× 512

5 000 0 297 297 297 0 8π× 3π 576× 109× 432
5 000 0.15 277 326 217 2.7 8π× 3π 576× 109× 432
5 000 0.45 251 310 174 8.9 8π× 3π 512× 109× 384
5 000 0.9 214 258 159 21.0 8π× 3π 432× 109× 320
5 000 1.2 182 211 148 32.9 8π× 3π 384× 97× 288
5 000 1.5 154 170 137 48.6 8π× 3π 320× 97× 240
5 000 1.8 137 144 129 65.8 27× 3π 288× 97× 216
5 000 2.1 128 130 125 82.2 8π× 3π 256× 97× 192

3 000 0 190 190 190 0 8π× 3π 320× 97× 256
3 000 0.15 179 213 138 2.5 8π× 3π 320× 97× 256
3 000 0.45 174 211 127 7.8 8π× 3π 320× 97× 256
3 000 0.9 153 181 118 17.7 8π× 3π 256× 97× 216
3 000 1.2 134 154 112 26.8 8π× 3π 216× 97× 180
3 000 1.5 117 128 105 38.6 8π× 3π 192× 97× 144

TABLE 1. DNS parameters: Nx, Ny and Nz are the number of modes in the streamwise,
wall-normal and spanwise direction, and Lx and Lz, are the streamwise and spanwise
computational domain size, respectively.

3. Flow visualizations
Before discussing flow statistics and spectra, visualizations are presented to get

an understanding of the main flow characteristics. In all following two-dimensional
visualizations the complete domain is shown. Figure 1(a–d) shows plots of the
instantaneous streamwise velocity in an x–z plane close to wall on the stable side
at Re = 31 600 and Ro 6 1.2. Structures with a width of O(h) are vaguely visible
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(a)

(b)

(c)

(d)

(e)

FIGURE 1. (Colour online) Visualizations of the instantaneous streamwise velocity in an
x–z plane at y+≈ 5 on the stable channel side. Dark colours signify high velocities. Re=
31 600 and (a) Ro = 0, (b) Ro = 0.45, (c) Ro = 0.9, (d) Ro = 1.2. (e) Re = 20 000 and
Ro= 0.45.

at Ro = 0 (figure 1a), indicating near-wall turbulence modulation by large-scale
outer structures (Mathis, Hutchins & Marusic 2009). In rotating channel flow,
turbulence becomes progressively weaker on the stable side with increasing rotation
speeds. At low rotation rates, the flow is fully turbulent on the stable side, but at

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

52
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.526


430 G. Brethouwer

Ro = 0.45 it is no longer fully turbulent and regions with small-scale turbulence as
well as regions where turbulence is mostly absent can be seen in figure 1(b). The
regions with small-scale turbulence have a weakly visible oblique band-like structure
with an angle of approximately 30◦ to the flow direction. Similar oblique patterns
have been observed in, for example, transitional plane Couette flow (Barkley &
Tuckerman 2007; Duguet, Schlatter & Henningson 2010) as well as in other flows
with some stabilizing force like stratified open channel flow, magnetohydrodynamic
channel flow and rotating Couette flows (Brethouwer, Duguet & Schlatter 2012)
and stratified Ekman layers (Deusebio et al. 2014). In rotating channel flow the
turbulent–laminar patterns exist only on the stable side since the other side is fully
turbulent. The turbulent–laminar patterns are not transitional but persist in time, like
in the aforementioned studies.

When Ro is raised to 0.9 the turbulent fraction becomes smaller and the turbulent
regions appear as spots and bounded band-like oblique structures (figure 1c), while
at Ro = 1.2 and higher no small-scale turbulence is present and only weak larger-
scale fluctuations are seen on the stable channel side (figure 1d). In the latter case,
a continuous cycle of strong turbulent bursts with a long period of O(1000h/Ub) on
the stable side occurs caused by a linear TS wave instability (Brethouwer 2016) and
a vague imprint of the TS wave is visible in figure 1. At other times the TS wave is
often more prominent.

At a lower Re = 20 000 the flow is fully turbulent on the stable channel side at
Ro = 0.15 (shown later), whereas at Ro = 0.45 one distinct oblique turbulent and
laminar banded pattern can be observed (figure 1e). At the same Ro, but a higher
Re = 31 600 in a DNS with a larger domain, turbulent–laminar patterns are more
numerous but less explicit (figure 1b). Although the angle of the oblique pattern in
figure 1(e) is determined by the periodic boundary conditions and the domain size, it
is similar to the angle of the patterns seen in figure 1(b,c) and the oblique patterns
in other flow cases (Duguet et al. 2010; Brethouwer et al. 2012). Duguet & Schlatter
(2013) argue that the obliqueness of the patterns is caused by a large-scale flow with
a non-zero spanwise velocity. In previous DNS of rotating channel flow discussed in
the Introduction, such patterns have not been observed, which is likely owing to the
use of fairly limited computational domains.

However, in a certain Re–Ro range Johnston et al. (1972) observed laminar flows
interspersed with turbulent spots on the stable channel side in their experiments,
confirming that such transitional flows are found at lower Ro and Re. In DNS
at Re = 7000 and Ro = 0.3, Dai et al. (2016) observed quasi-periodic behaviour
of the wall shear stress and turbulence intensity on the stable side because the
flow continuously alternated between laminar-like and intermittent with large-scale
streamwise bands with either turbulent or laminar features. They attributed this
quasi-periodic behaviour to the dynamics of the streamwise roll cells in their DNS.
Streamwise turbulent–laminar bands, as observed by Dai et al. (2016), are not
seen in the present DNS, which may be related to the size of the computational
domain. On the other hand, strong quasi-periodic variations of the wall shear stress
and turbulence intensity are observed in some of the present DNS, but these were
caused by a linear instability of a TS-like wave, as explained in Brethouwer (2016).
This quasi-periodic behaviour is not observed in all but one DNS without this
linear instability. The exception is the DNS at Re = 10 000 and Ro = 0.45, where
large variations of approximately 30 % are seen in the wall shear stress on the
stable channel side. Visualizations (not shown here) reveal that these variations are
related to quasi-periodically growing and decaying turbulent spots on this side. When
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(a)

(b)

(c)

(d ) (e)

FIGURE 2. (Colour online) Isocontours of (a) λ2 = −9 at Re = 31 600 and Ro = 0.9,
(b) λ2 =−2.25 at Re= 31 600 and Ro= 1.2, (c) λ2 =−0.45 at Re= 30 000 and Ro= 2.1
(side views, stable channel side is at the top) and close up at isocontours of (d) λ2=−5.6
at Re= 31 600 and Ro= 0.9, (e) λ2=−2.25 at Re= 31 600 and Ro= 1.2. The isosurfaces
are coloured with streamwise velocity. The velocity increases from blue to red.

the wall shear stress reaches a minimum, the spots almost disappear. Large cyclic
variations in the wall shear stress have also been observed in DNS of transitional
strongly stratified channel and plane Couette flows (Garcia-Villalba & del Álamo
2011; Deusebio, Caulfield & Taylor 2015), but these variations disappeared when
the computational domain was enlarged, indicating that this behaviour is strongly
affected by the size of domain. DNS of spanwise rotating channel flow by Hsieh
& Biringen (2016) confirm that the intermittency on the stable channel side can be
strongly influenced by the computational domain size when the flow is transitional
there.

Continuing with the present cases, if Ro > 0.9 and Re = 20 000 or lower, no
turbulent spots or band-like structures are seen like in figure 1(c), illustrating that Re
effects can be appreciable, as discussed in more detail later. Only weak larger-scale
fluctuations are observed on the stable side at high Ro, as illustrated in figure 1(d).
However, in a number of cases the calm periods on the stable side are interrupted by
violent bursts of turbulence triggered by a linear instability, as explained before.

Figure 2 shows λ2 isocontours at three different Ro (Jeong & Hussain 1995)
coloured with the streamwise velocity to identify vortices. The strongly turbulent
unstable side of the channel with intense vortices obviously shrinks with Ro. Between
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the unstable side with strong turbulence, and clearly identifiable vortices and stable
side with weak turbulence, a seemingly sharp and flat border exists (figure 2a–c),
as was noted by Johnston et al. (1972), although when Ro = 0.9 some areas with
vortices corresponding to the patterns in figure 1(c) can still be seen on the stable
side. Rotation promotes the formation of streamwise vortices on the unstable side
(Dai et al. 2016), especially in the region where the absolute mean vorticity is
approximately zero (Lamballais et al. 1996). Indeed, close ups of the vortices on
the border between the unstable and stable channel side at Ro = 0.9 and 1.2 in
figure 2(d,e) reveal elongated streamwise vortices and, remarkably, packages of
hairpin vortices which are detached from the wall. The red colour signifies that
hairpin vortices are mostly found near the streamwise velocity maximum on the
border between the unstable and stable channel side. At higher Ro, vortices including
the head of the hairpin vortices become increasingly aligned with the streamwise
direction, and hairpin vortices, as discussed by Adrian (2007), become less explicitly
visible (not shown here). Yang & Wu (2012) argued that the Coriolis force reduces
the inclination angle of the vortices and favours their streamwise elongation on the
unstable side, whereas on the stable channel side this force impedes this streamwise
elongation. Lamballais et al. (1996) observed that vortices become aligned with the
flow direction with Ro, and remarked that, especially in the region where the absolute
mean vorticity is approximately zero, streamwise vortex stretching is promoted. These
findings are broadly consistent with the present visualizations.

Large, steady streamwise roll cells induced by the Coriolis force have been observed
on the unstable side in several experimental and numerical studies of rotating channel
flow (Dai et al. 2016). Steady means here that they have a relatively long lifetime,
although in the experiments of Johnston et al. (1972) the roll cells changed in time,
whereas in a DNS by Kristoffersen & Andersson (1993) they were more coherent and
stationary at Ro= 0.15 and spanned the whole channel.

Visualizations of the instantaneous wall-normal velocity field in the present DNS
are shown in figure 3. Narrow elongated streaks with positive wall-normal velocity
away from the wall in a wall parallel x–z plane on the unstable side (figure 3a) and
regions with alternating positive and negative wall-normal velocity in a cross-stream
y–z plane at Ro = 0.15 and Re = 20 000 (figure 3d) indicate the presence of large
streamwise roll cells on the unstable side that extend up to the border between the
unstable and the stable side. The structures are long, but not as coherent as in the
DNS by Kristoffersen & Andersson (1993) since they appear to break up or split at
some places. Possible reasons for the reduced coherency can be the higher Re and the
larger computational domain in the present study, which puts fewer constraints on the
dynamics of the structures through the periodic boundary conditions.

The clustering of intense vortices in streamwise near-wall streaks seen in figure 3(g)
show that the roll cells modulate the near-wall dynamics on the unstable side. Dai
et al. (2016) observed in their DNS of spanwise rotating channel flow that turbulence
and vortices on the unstable side are stronger in the regions where the fluid is
pumped away from the wall by the counter-rotating roll cells and the local mean
wall shear stress has a minimum, but this augmentation was weaker at a higher Re.
The higher vorticity was found to be caused by the Coriolis term and strong vortex
stretching. This apparently contrasts the effect of large-scale motions in non-rotating
wall flows. Experiments by Talluru et al. (2014) suggest the presence of large-scale
counter-rotating vortices in turbulent boundary layer flow. They show that turbulence
is weaker in the near-wall regions, where the fluid is pumped away from the wall by
these vortices and the local wall shear stress has a minimum, and stronger where the
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(a)

(b)

(c)

(d)

(e)

( f )

(g)

FIGURE 3. (Colour online) Visualizations of the instantaneous wall-normal velocity in an
x–z plane (a) at y=−0.5 and Re= 20 000, Ro= 0.15, (b) at y=−0.5 and Re= 31 600,
Ro = 0.45, (c) at y = −0.75 and Re = 31 600, Ro = 0.9 and in a y–z plane at (d) Re =
20 000, Ro = 0.15, (e) Re = 31 600, Ro = 0.45, ( f ) Re = 31 600, Ro = 0.9. Dark colours
signify positive velocities. (g) Isocontours of λ2=−36 at Re= 20 000 and Ro= 0.15 near
the wall on the unstable side. The flow is from bottom left to upper right corner.

large-scale motions induce a high wall shear stress, in agreement with Agostini &
Leschziner (2016). The different effect of large-scale motions in non-rotating versus
rotating wall flows is presumably a result of the Coriolis term, which affects both
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(a)

(b)

FIGURE 4. (Colour online) Visualization of the instantaneous wall-normal velocity for
Re= 30 000 and Ro= 2.7 in a (a) y–z plane and in an (b) x–z plane at y=−0.8. Colour
scale ranges from v =−0.021–0.021 in (b).

the Reynolds stresses and vorticity. Roll cells in rotating flows are likely also more
coherent and steady, and induce stronger wall-normal velocities.

Streaks with positive wall-normal velocity (figure 3b) and large-scale regions with
positive and negative wall-normal velocity (figure 3e) at Ro = 0.45 and Re = 31 600
indicate roll cells, but they seem to be smaller and less coherent than at Ro = 0.15.
Streaky structures with a positive wall-normal velocity are also seen in figure 3(c)
in the DNS at Ro = 0.9, but it is not clear if these upward and downward motions
seen in figure 3( f ) can be interpreted as signs of roll cells. The spacing and form
of the streaks indicate that the roll cells, if they exist, are smaller and less coherent
than at lower Ro. Roll cells also became smaller in the DNS of rotating channel
flow at Re = 2800 by Dai et al. (2016) when Ro was raised from 0.1 to 0.5. Signs
of roll cells are visible in the DNS at Ro = 0.45 and 0.9, but for lower Re (not
shown here). When Ro = 1.2 or higher, no visible signs of roll cells are found at
Re= 20 000 and 31 600. However, at Re= 5000, visualizations hint at the existence of
roll cells, and Grundestam et al. (2008) observed them at Ro= 1.27 and Reτ = 180.
These observations suggest that, at lower Re, roll cells exist up to higher Ro. A more
quantitative study of the structures in rotating channel flow is presented in § 7.

At higher Ro the unstable turbulent side becomes smaller and smaller and the flow
tends to fully laminarize if Ro approaches Roc (Wallin et al. 2013). Yet, even if Ro→
Roc, streamwise and oblique modes are still unstable as a result of rotation, according
to linear stability theory (Brethouwer 2016), and some of the largest linearly unstable
modes become noticeable in the DNS when turbulence becomes weak on the unstable
channel side. Figure 4 shows the resulting typical oblique waves on the unstable side
in a DNS at Re= 30 000 and Ro= 2.7, close to Roc = 2.87 for this Re. The waves
are quite weak, i.e. the wall-normal velocity is approximately 2 %–3 % of Ub in this
case.

4. Flow statistics
In this section, one-point statistics of the flow are presented and the effects of

rotation are discussed. As mentioned before, linearly unstable TS waves cause strong
recurring bursts of turbulence on a long time scale in some DNS. The instabilities
and bursts are the topic of another study (Brethouwer 2016), and therefore not
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FIGURE 5. (Colour online) Mean velocity profiles scaled by Ub. (a) Re= 31 600. ——,
Ro= 0; – – –, Ro= 0.45; · · · · · ·, Ro= 0.9; – · – · –, Ro= 1.2. (b) Re= 30 000. ——, Ro=
1.5; – – –, Ro = 2.1; · · · · · ·, Ro = 2.4; – · – · –, Ro = 2.7. Slopes with S = −1 are shown
by straight red lines.

discussed in detail here. However, it should be noted that they significantly affect
flow structures and turbulence, especially around the bursting moment and on the
stable side where the bursts are most intense. Time series of, for instance, the
volume-averaged turbulent kinetic energy Km show distinct sharp peaks as a result of
the bursts, while in the calm periods between the bursts the same quantity shows only
small to moderate variations, see e.g. figure 3(b) in Brethouwer et al. (2014). I have
excluded the burst periods when computing the statistics by excluding the periods
with distinct peaks in Km caused by the linear instability. The statistics are thus based
on the long relatively calm periods of O(100h/Ub) between the bursts when Km only
shows small to moderate variations and the turbulence does not appear to be strongly
influenced by the instability. The reason for excluding these bursts periods from the
statistics is that the bursts are not the subject of this study and that the bursts would
obscure the direct effect of rotation on the turbulence. Besides, the bursts occur on a
very long time scale of O(1000h/Ub), which makes it practically impossible to obtain
reasonable converged statistics if they are included, and they cannot be predicted
by Reynolds stress and two-equation turbulence models. Brethouwer (2016) lists all
the cases when bursts happen. At Re = 30 000–31 600, linear instabilities and bursts
develop when Ro > 1.2. In the next parts, U is the mean streamwise velocity and u,
v, w are the streamwise, wall-normal and spanwise velocity fluctuation, respectively.
An overline implies temporal and spatial averaging in the homogeneous directions.

Figure 5 shows mean streamwise velocity profiles scaled by Ub at the highest
Re considered for Ro up to 2.7. As in previous studies of turbulent channel flow
subject to spanwise rotation (e.g. Kristoffersen & Andersson 1993; Grundestam et al.
2008; Xia et al. 2016), the mean velocity profile becomes asymmetric and develops
an extended linear region where the slope dU/dy ' 2Ω , i.e. S ' −1, implying an
absolute mean vorticity close to zero. If Ro 6 1.5 the velocity on the unstable side
goes down, while on the stable side it goes up, since the turbulence becomes stronger
and weaker on the unstable and stable side, respectively, as will be shown later. At
higher Ro, the profile becomes more and more parabolic-like, and beyond Ro = 2.4
the linear slope region disappears and the velocity profile approaches a laminar
Poiseuille profile, as in the DNS by Grundestam et al. (2008) and Xia et al. (2016).

Profiles of the root-mean-square (r.m.s.) of the streamwise, wall-normal and
spanwise velocity fluctuations, u+, v+ and w+, respectively, and the Reynolds shear
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FIGURE 6. (Colour online) R.m.s. profiles of (a) streamwise, (b) wall-normal (c) spanwise
velocity fluctuations and (d) uv profiles in wall units. Re = 31 600 and (——) Ro = 0,
(– – –) Ro= 0.45, (· · · · · ·) Ro= 0.9, (– · – · –) Ro= 1.2. Re= 30 000 and (——, red) Ro=
1.5, (– – –, red) Ro= 2.1.

stress uv+ normalized by uτ [u2
τu/2+ u2

τ s/2]
1/2 for Ro up to 2.1 are shown in figure 6.

The results are for the highest Re considered here, 31 600 and 30 000. Note that for
Ro > 1.2 the flow is subject to a TS wave instability, resulting in intense bursts of
turbulence at this Re (Brethouwer 2016), but these periods with turbulent bursts are
excluded as much as possible when computing the statistics, as mentioned before.
The statistics are thus based on the long calm periods between the bursts.

Figure 6 shows that rotation causes a reduction of the turbulence intensity on
the stable side, as expected (Johnston et al. 1972). Especially for the wall-normal
component (figure 6b) this reduction is apparent, while for the other two velocity
components it becomes most notable for Ro > 1.2. The turbulence on the unstable
channel side displays a more complex behaviour. The peak of u+ first rises with Ro
but then declines if Ro > 0.45, whereas w+, and especially v+, grow strongly with
Ro, and only start to notably decline when Ro > 1.5. At higher Ro, turbulence is
progressively suppressed (not shown here) and the flow approaches more and more a
laminar Poiseuille flow, as observed for the mean flow. Rotation thus has not only a
marked influence on the turbulence intensity but also on its anisotropy, as in rotating
homogeneous shear flows (Brethouwer 2005). The observed trends are in qualitative
agreement with DNS of rotating channel flow at lower Re (Grundestam et al. 2008).
The maximum of v+ is near the wall at Ro= 0, but remarkably far from the wall on
the unstable side at Ro= 0.45, which may be due to the presence of roll cells, while
at higher Ro it approaches the wall again.
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From the mean momentum balance for rotating channel flow follows

−uv + ν
dU
dy
= u2

τu − u2
τ (y+ 1), (4.1)

where the velocities are dimensional. The sum of the viscous and turbulent shear
stresses is thus linear in y but is shifted owing to the difference in the wall shear
stresses on the unstable and stable channel sides in the rotating flow cases. These
stresses are naturally higher on the unstable side owing to the more intense turbulence.
When viscous stresses are negligible the uv+ profile is also linear in y according
to (4.1). From this equation it follows that in the part of the channel where ν dU/dy'
2νΩ =U2

bRo/Re the turbulent shear stress is approximated as

uv ' u2
τ (y+ 1)− u2

τu +U2
b

Ro
Re
. (4.2)

This shows that the uv+ profile is linear in y and has a unit slope even if viscous
stresses are not negligible (Xia et al. 2016). Figure 6(d) confirms that on the unstable
side the uv+ profiles have a unit slope. The turbulent momentum transfer shifts
progressively towards the unstable side with Ro, and for Ro > 1.2 it is in fact
negligible on the stable side where viscous stresses dominate. On the unstable side
the magnitude of uv+ starts to decline when Ro > 0.9, and is small for Ro > 2.1.
Viscous shear stresses are significant on the strongly turbulent unstable channel side
at higher Ro because of the steep mean velocity gradient. If the total shear stress
is estimated as u2

τ , it follows that on the unstable side where dU/dy' 2Ω the ratio
between viscous and total stresses is approximately Ro Re/Re2

τ . From that it follows
that the viscous contribution grows with Ro and is approximately 12 % and 26 % at
Re= 31 600 and Ro= 1.2 and 1.5, respectively, and even higher at the same Ro but
lower Re. Once Ro & 2.0, viscous stresses dominate also on the unstable side.

To investigate in more detail the turbulence near the wall on the unstable channel
side, I present in figure 7 r.m.s.-profiles of the streamwise, wall-normal and spanwise
velocity fluctuations, u∗, v∗ and w∗, respectively, in viscous wall units of the unstable
side using a logscale for y∗. Velocity fluctuations are thus scaled by uτu and y∗ =
(y+ 1)uτu/ν since uτu appears to be the most relevant quantity very close to the wall.
Note that uτu can deviate quite significantly from uτ , see table 1. The peak of u∗ on
the unstable side declines and moves towards smaller y∗ with Ro, whereas the peaks of
v∗ and w∗ grow with Ro until Ro= 1.5 and then decline. This reduction and growth,
respectively, are caused by an energy redistribution from streamwise to wall-normal
fluctuations by the Coriolis term and pressure–strain correlations in the Reynolds stress
equations, as will be shown later. The peak of w∗ moves towards the wall with Ro,
whereas that of v∗ is found far away from the wall at Ro= 0.45 and comes closer to
the wall with increasing Ro. The profile of w∗ has two peaks for Ro> 1.2 which are
accompanied by a double peak in the spectra, as shown later.

The skewness of the streamwise velocity S(u) and wall-normal velocity fluctuations
S(v) are presented in figure 8. Profiles of S(u) and S(v) at lower Re are presented by
Hsieh & Biringen (2016). S(u) is typically negative away from the wall in non-rotating
channel flow owing to ejections of low-speed fluid (Kim, Moin & Moser 1987). In
rotating channel flow, S(u) becomes considerably more negative near the wall at Ro=
0.45 and 0.9 on the unstable side, except very near the wall. This could be caused by
a reduction of sweeping events of high-speed flow towards the wall as a consequence
of rotation (Kristoffersen & Andersson 1993). On the other hand, the analysis by Dai
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FIGURE 7. (Colour online) R.m.s. profiles of (a) streamwise, (b) wall-normal and
(c) spanwise velocity fluctuations in wall units of the unstable side. Re = 31 600 and
(——) Ro= 0, (– – –) Ro= 0.45, (· · · · · ·) Ro= 0.9, (– · – · –) Ro= 1.2. Re= 30 000 and
(——, red) Ro= 1.5, (– – –, red) Ro= 2.1.

et al. (2016) indicates that under the influence of rotation the streaks become stronger
on the unstable side, at least up to moderate Ro, which implies more or intenser
ejections. The roll cells, observed before, could also play a role. If Ro > 0.9, S(u)
becomes less negative near the wall, which can be related to the weaker streaks and
related ejections at high Ro, as suggested by Lamballais, Métais & Lesieur (1998).
Further away from the wall, S(u) attains small values in the rotating cases compared
to the non-rotating case, indicating that sweeping and ejection events are significantly
altered by rotation. S(v) has a large positive value near the wall on the unstable side
at Ro = 0.45 compared to Ro = 0, which is likely caused by roll cells that induce
high-speed wall-normal velocity away from the wall. Similar behaviour of S(v) was
observed in the experiments by Nakabayashi & Kitoh (2005). Large positive values of
S(v), indicating events with large positive wall-normal velocities, are also found in all
rotating cases on the unstable side, quite close to the position where the slope of U
begins to deviate from 2Ω . At Ro=1.2 and 1.5, S(u) has large values at slightly larger
y, near the position where U has its maximum value. The reason for the large values
of S(u) and S(v) around these positions is not fully clear, but visualizations suggest
that large values of v are found near the streamwise vortices visualized in figure 2.
The large S(u) could be related to the hairpin vortices seen in figure 2, since positive
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FIGURE 8. (Colour online) Skewness of (a) u and (b) v. Re= 31 600 and (——) Ro= 0,
(– – –) Ro= 0.45, (· · · · · ·) Ro= 0.9, (– · – · –) Ro= 1.2. Re= 30 000 and (——, red) Ro=
1.5.

values of u are found above the head of such hairpin vortices (Christensen & Adrian
2001; Adrian 2007).

The flatness of the wall-normal velocity F(v) attains extreme values in non-rotating
channel flow very near the wall as a result of intense near-wall vortices (Lenaers
et al. 2012). The present DNS show that, with faster rotation, F(v) on the unstable
channel side decays monotonically with Ro, suggesting that intense near-wall vortices
are suppressed.

5. Influence of the Reynolds number
In this section, the influence of the Reynolds number on rotating channel flow at a

fixed Ro is examined and shown to be significant. In a later section, this influence on
the flow structures found on the unstable channel side is investigated.

Figure 9 shows profiles of the mean velocity U/Ub and fluctuations v+ at Ro=0.15,
0.45 and 0.9 for three to four Re. In all cases a region with a linear mean velocity
profile where S ' −1 can be readily recognized, demonstrating once more that the
appearance of a region with a zero absolute mean vorticity is a fundamental feature
of rotating channel flow. Its extent and the closeness of dU/dy to 2Ω do not show
much variation with Re, and the same applies to the maximum value of v+ on the
unstable channel side. On the other hand, Re has an obvious influence on the mean
velocity profile as well as v+ on the stable channel side where, at higher Re, v+ is
considerably larger.

This Reynolds number effect is also observed in visualizations of the instantaneous
streamwise velocity in a plane parallel and close to the wall on the stable channel side.
At Ro= 0.15 and Re= 20 000 the flow is fully turbulent on the stable channel side
(figure 10a), whereas at a lower Re= 3000 the flow is largely laminar and contains
only some turbulent spots (figure 10b), resulting in much lower turbulence levels on
the stable channel side (figure 9b). At Ro = 0.45 and Re = 31 600 a large fraction
of the flow on the stable side is turbulent and turbulent–laminar patterns develop, as
shown before in figure 1(b), whereas at the same Ro but lower Re = 5000 the flow
is predominantly laminar and only one turbulent spot can be observed (figure 9c).
At a lower Re = 3000 the spot is even smaller. Also at Ro = 0.9 and Re = 31 600,
regions with small-scale turbulence can be observed (figure 1c), but these regions with
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FIGURE 9. (Colour online) (a) Mean velocity profiles scaled by Ub and (b) r.m.s. of v
in wall units at Ro = 0.15 and ——, Re = 20 000; – – –, red, Re = 5000; · · · · · ·, blue,
Re= 3000. (c) Mean velocity profiles scaled by Ub and (d) r.m.s. of v in wall units at
Ro=0.45 and ——, Re=31 600; – – –, red, Re=20 000; · · · · · ·, blue, Re=10 000; – · – · –,
green, Re= 5000. (e) and ( f ) are the same as (c) and (d), respectively, but for Ro= 0.9.
The straight black line has a slope S=−1.

small-scale turbulence are completely absent at lower Re (not shown here). Re thus
has a marked influence on the flow, especially on the stable channel side, with a
growing turbulent fraction and stronger turbulence at fixed Ro when Re gets higher.
In the present study, oblique turbulent–laminar patterns have only been observed at
higher Re. A speculation is that they also exist at low Re, although at a lower Ro
when the stabilizing Coriolis force is less strong. But at a lower Re they can have a
longer wavelength, as indicated by Brethouwer et al. (2012), implying that very large
computational domains are required to resolve them.
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(a)

(b)

(c)

FIGURE 10. (Colour online) Visualizations of the instantaneous streamwise velocity in
an x–z plane at y+ ≈ 5 on the stable channel side. Dark colours signify high velocities.
(a) Ro = 0.15 and Re = 20 000, (b) Ro = 0.15 and Re = 3000 and (c) Ro = 0.45 and
Re= 5000.

Profiles of the r.m.s. of the velocity fluctuations in terms of wall units of the
unstable side, i.e. velocity fluctuations scaled by uτu and y∗= yuτu/ν, for different Ro
and Re are not presented here. However, the peak of the streamwise and spanwise
fluctuations in general increases with Re at fixed Ro, whereas the maximum of the
wall-normal fluctuations is quite independent of Re but moves towards larger y∗ with
Re.

The volume-averaged turbulent kinetic energy Km scaled by U2
b , mean wall shear

stresses τ u
w and τ s

w on the unstable and stable channel sides, respectively, and skin
friction coefficient Cf = τw/(ρU2

b/2) with τw = (τ
u
w + τ

s
w)/2 are shown in figure 11 at

different Ro and Re. Figure 11(a) shows that overall the turbulence intensity decays
with Ro at fixed Re, and becomes very weak at high Ro, with similar trends for all Re.
The data of Xia et al. (2016) are also included in the figure, and show first a 15 %
growth in Km/U2

b until Ro= 0.44, and then a quite similar decay as in the other cases;
but note that in their DNS series Reτ = 180 and constant, and therefore Re varies.
The difference in τw on the stable and unstable side first grows substantially with
Ro until its maximum found at approximately Ro= 0.9, with the highest τw naturally
occurring on the unstable side, but then diminishes and disappears at high Ro when
the flow becomes laminar (figure 11b). Again, the trends are similar at different Re,
but the maximum difference appears at lower Ro when Re is lower, and is smaller
at the highest Re, possibly because the flow relaminarizes less fast on the stable side
at higher Re, as discussed before. The skin friction Cf decays monotonically with Ro,
like Km, and nearly equals the value for laminar Poiseuille flow for Ro> 2.4 at all Re
(figure 11c).
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FIGURE 11. (Colour online) (a) Km/(U2
b), (b) τ u

w/τw (upper curves) and τ s
w/τw, (c) Cf .

◦—◦, Re = 31 600; @—@, Re = 30 000; ∗– – –∗ (red), Re = 20 000; 1· · ·1 (blue), Re =
10 000; ∇– · – · –∇ (green), Re = 5000; —— (green), Reτ = 180 (Xia et al. 2016). The
horizontal line in (c) represents Cf for a laminar Poiseuille flow.

6. Balances
In this section, the balance terms in the transport equations of the turbulent

kinetic energy and Reynolds stresses are studied. Grundestam et al. (2008) have also
presented budgets for rotating channel flow, although only for one high Ro = 1.5
when the turbulence is very weak, while Xia et al. (2016) have only presented
production terms. The present study contributes with a study of several budget terms
at a significantly higher Re covering a wide Ro range.

From (4.2) it follows that the production of turbulent kinetic energy in the part of
the channel, where dU/dy' 2Ω is approximately (see also Xia et al. 2016)

PK =−uv
dU
dy
'−2uvΩ =−uv

Ub

h
Ro'

[
u2
τu − u2

τ (y+ 1)−U2
b

Ro
Re

]
Ub

h
Ro. (6.1)

Consequently,

hPK

u2
τUbRo

'−(y+ 1)+
(

uτu

uτ

)2

−

(
Ub

uτ

)2 Ro
Re
. (6.2)

Thus, the profile of PK scaled with u2
τUbRo/h= (u4

τ/ν)(Roτ/Reτ ), where u4
τ/ν is the

usual viscous wall unit scaling, is expected to be approximately linear in y with a
slope −1 in the part of the channel where dU/dy' 2Ω .

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

52
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.526


Spanwise rotating channel flow 443

Figure 12(a) shows PK scaled by u2
τUbRo/h for Ro up to 2.1. The DNS results for

Ro= 0 are included and scaled by 0.45u2
τUb/h, i.e. the same scaling as used for the

Ro=0.45 case. The profiles of PK in the rotating cases show, as expected, a significant
linear part with a −1 slope. In this part, the scaled PK follows closely the prediction
given by the right-hand side of (6.2). Similar linear profiles of PK were observed in
DNS of rotating channel flow at Reτ =180 by Xia et al. (2016). Near the maximum of
U, slight negative values of PK are observed at some Ro, as in a DNS by Grundestam
et al. (2008), which implies that some energy is transferred from turbulence to the
mean flow in this region. The maximum value of PK near the wall on the unstable
side scales instead with viscous wall units since the peak of PK lies between 0.244
and 0.248 for Ro 6 1.5 when scaled by u4

τu/ν (figure 12b).
In shear flows, the dissipation rate of turbulent kinetic energy, ε, is often

approximately equal to the production of turbulent kinetic energy, PK , which suggests
that ε, like PK , scales with u2

τUbRo/h. Figure 12(c) affirms that, in rotating channel
flow, profiles of ε, scaled by u2

τUbRo/h, display a linear part. The DNS results for
Ro = 0 are again included and scaled by 0.45u2

τUb/h. The slopes at Ro = 0.45 and
Ro = 2.1 deviate from −1, but in the other three rotating cases they follow closely
the prediction given by the right-hand side of (6.2). For Ro > 0.9, PK and ε are in
fact strikingly similar in the outer layer on the unstable channel side, much more
so than at Ro = 0. The close balance between PK and ε implies that the sum of
turbulent, pressure and viscous diffusion in the equation for turbulent kinetic energy
is small compared to PK and ε. In terms of wall units, PK and ε are large on the
unstable side away from the wall in the rotating cases compared to the Ro= 0 case,
whereas on the stable side both are very small if Ro > 1.2.

The observed scaling of PK and ε with u2
τUbRo/h suggests that this scaling is

meaningful as well for the budget terms in the balance equation for the Reynolds
stresses. This equation reads

∂uiuj

∂t
+Uk

∂uiuj

∂xk
= Pij + εij +Cij +Πij +Dij, (6.3)

where the terms on the right-hand side are the production, dissipation, Coriolis,
pressure–strain and diffusion term, respectively (Grundestam et al. 2008). The Coriolis
terms in the equation for uu, vv, ww and uv stresses are Cuu= 4uvΩ , Cvv =−4uvΩ ,
Cww = 0 and Cuv = 2(vv − uu)Ω , respectively. These terms do not perform work but
transfer energy between the Reynolds stress components (Kawata & Alfredsson 2016).
Note that Puu = 2PK .

Figure 12(d) shows the production of uv Reynolds stresses, Puv = −vv dU/dy,
scaled by u2

τUbRo/h. Also in this figure and figure 13, data for Ro= 0 are included
using the scaling 0.45u2

τUb/h to make a comparison with data of rotating channel
flow possible. The profiles of Puv show less spreading than when using the ordinary
wall unit scaling, and also reveal an approximately linear slope on the unstable side
if Ro > 0.9. On the stable side, Puv is significant at Ro = 0.45 but negligible for
Ro > 1.2.

The Coriolis terms in the balance equations of the uu and vv Reynolds stresses
are Cuu= 2uv/u2

τ and Cvv =−2uv/u2
τ =−Cuu, respectively, when scaled by u2

τUbRo/h.
Profiles of uv/u2

τ were already presented in figure 6(d). From these profiles it follows
that on the unstable side the Coriolis term transfers energy from uu to the vv

component in rotating channel flow. On the stable side it is the other way around for
Ro= 0.45 and 0.9, whereas it is small in the other cases.
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FIGURE 12. (Colour online) (a) PK scaled by u2
τUbRo/h and (b) PK scaled by u4

τu/ν. (c) ε,
(d) Puv , (e) Ptot

uu = Puu + Cuu and ( f ) Ptot
uv = Puv + Cuv , scaled by u2

τUbRo/h. Re = 31 600
and (——) Ro= 0, (– – –) Ro= 0.45, (· · · · · ·) Ro= 0.9, (– · – · –) Ro= 1.2. Re= 30 000
and (——, red) Ro= 1.5, (– – –, red) Ro= 2.1.

If dU/dy' 2Ω , Puu '−4uvΩ =−Cuu, which means that the Coriolis term closely
balances the production term and, consequently, the dissipation term approximately
balances the pressure–strain term in the equation for the uu component since the
transport terms are small. This is confirmed by the DNS but not shown here. In
fact, the sum Pij + Cij ≡ Ptot

ij may be considered as a total production term. When
dU/dy ' 2Ω , Ptot

uu ' 0, Ptot
vv ' Puu and Ptot

ww ' 0, since Puu ' −Cuu = Cvv as explained
above, and Pvv = Pww = Cww = 0. Figure 12(e) shows Ptot

uu scaled by u2
τUbRo/h and

confirms that in a large part of a rotating channel flow it is nearly zero. Thus, in
a non-rotating flow, production feeds energy in the uu component and then energy
is redistributed to the other components. By contrast, in rotating channel flow on
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FIGURE 13. (Colour online) (a) Πuu, (b) Πvv , (c) Πww and (d) Πuv scaled by u2
τUbRo/h.

Lines used as in figure 12.

the unstable side, Ptot
ij feeds energy mainly in the vv component and pressure–strain

correlations redistribute this energy to the uu and ww components. This may explain
the strong wall-normal velocity fluctuations observed in rotating channel flow on the
unstable side. Very near the wall on the unstable side, energy is still fed into the uu
component. The same applies to the stable side for Ro= 0.45 and 0.9, but if Ro> 1.2
the sum is nearly zero. Note that Ptot

uu is slightly negative in rotating channel flow in
a region around the maximum of U.

When scaled by u2
τUbRo/h, Cuv = (vv − uu)/u2

τ . The total production Ptot
uv scaled

by u2
τUbRo/h, shown in figure 12( f ), is balanced by Πuv since the dissipation and

diffusion terms are relatively small in a large part of the channel, in particular on the
unstable side. On the unstable side, Ptot

uv scaled is negative, but it becomes less negative
for Ro> 0.9. On the stable side, it is positive at Ro= 0.45 and negative at larger Ro,
meaning that it destroys uv correlations, leading to the low turbulent shear stresses on
the stable side observed before.

Pressure–strain correlations Πuu, Πvv, Πww and Πuv scaled by u2
τUbRo/h are

presented in figure 13. When Ro = 0, energy is transferred from uu to vv and
ww, whereas in the rotating cases energy is transferred from vv to uu and ww by
pressure–strain correlations on the unstable side, except very close to the wall, where
Πuu is still negative. Especially at high Ro, Πww is large, which explains the strong
spanwise fluctuations in rapidly rotating channel flows. On the stable side there is a
significant energy transfer from uu to the other two components by pressure–strain
correlations for Ro 6 0.9. At larger Ro, Πuu and Πvv are small but not negligible on
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the stable side, while Πuv is positive (figure 13d) and approximately balanced by the
Coriolis term Cuv, as discussed before. The slope of the pressure–strain profiles on
the unstable side is also approximately linear for Ro> 0.9 and scales with u2

τUbRo/h.
Turbulent velocity fluctuations are not insignificant on the stable side (figure 6),

although PK is very small there for Ro>1.2. Grundestam et al. (2008) have suggested
that the turbulence on the stable side is forced by the turbulence on the unstable side
through the pressure diffusion term of the vv component which then redistributes the
energy through pressure–strain correlations. The pressure diffusion of vv indeed has
a small positive value (not shown here) and figure 13(a,b) show that, albeit small,
Πvv is negative and Πuu positive at Ro= 1.2 and 1.5 on the stable side. The latter is
approximately balanced by a negative Ptot

uu .

7. Spectra and two-point correlations
In order to study the effect of rotation on turbulence structures in a quantitative

way, Kristoffersen & Andersson (1993), Alvelius (1999) and Grundestam et al. (2008)
computed two-point correlations at Reτ = 180–194. Kristoffersen and Andersson
observed that the spanwise near-wall streak spacing in wall units narrows with Ro,
whereas Alvelius observed the opposite trend. Generally, relatively short streamwise
two-point correlations of streamwise fluctuations on the unstable side and relatively
long correlations on the other laminar-like side were observed when the channel was
rotating. At low Ro, Kristoffersen and Andersson and Alvelius were also able to
notice an impact of Taylor–Görtler vortices on correlations on the unstable side.

Here, I present spanwise two-point correlations of the wall-normal velocity
fluctuations as well as spectra, since they better reveal the impact of rotation on
the different flow scales, especially the large scales which are known to become
important at higher Re in wall flows (Smits, McKeon & Marusic 2011). Spectra of
the streamwise velocity fluctuations are presented, since these most clearly reveal the
presence of large-scale motions in non-rotating wall flows, as well as spectra of the
spanwise and wall-normal velocity fluctuations, since these may uncover the presence
of roll cells. The presented cospectra give information on the scales that contribute to
the momentum transfer and production of turbulent kinetic energy. The focus is on
the strongly turbulent unstable side of the channel. Spectra and two-point correlations
are less instructive for the stable side when relaminarization occurs. First, I consider
the trends with Ro and next with Re.

7.1. Spectra at Re= 20 000
Spanwise premultiplied energy spectra, kzΦuu, kzΦvv and kzΦww of the streamwise,
wall-normal and spanwise velocity fluctuations, respectively, and cospectra, kzΦuv, at
Re= 20 000 are shown in figure 14. Streamwise premultiplied energy spectra, kxΦuu,
kxΦvv and kxΦww of the streamwise, wall-normal and spanwise velocity fluctuations,
respectively, and cospectra, kxΦuv, at Re = 20 000 are shown in figure 15. Spectra
are shown for Ro = 0, 0.15, 0.45 and 0.9, and are presented as functions of the
wall distance y∗ = (y+ 1)uτu/ν and the spanwise and streamwise wavelength λ∗z and
λ∗x , respectively, both scaled in term of the viscous length scale of the unstable side,
l∗ = ν/uτu. The red dashed line in each plot indicates scales with a wavelength h.
Spectra are scaled with their maximum values, which are given in terms of uτu in
table 2.

Roll cells produce significant wall-normal and spanwise motions in rotating channel
flow, as shown, for example, by Dai et al. (2016), and that can be expected to lead
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FIGURE 14. (Colour online) Maps of premultiplied one-dimensional energy spectra as
function of spanwise wavelength λ∗z and distance from the wall y∗ at Re = 20 000 for
Ro= 0 (a,b), Ro= 0.15 (c,d), Ro= 0.45 (e, f ) and Ro= 0.9 (g,h). (a,c,e,g) Shows kzΦuu
(black lines) and cospectra kzΦuv (blue dashed lines and colours). (b,d, f,h) Shows kzΦvv

(blue dashed lines and colours) and kzΦww (black lines). Contour levels from innermost
to outermost are 0.94, 0.8, 0.6, 0.4, 0.28, 0.2, 0.1 and 0.05. Spectra are scaled with their
maximum value. The straight black dashed line follows the relation y= 0.1λz.
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Re Ro kz
Φuu

u2
τu

?

kz
Φvv

u2
τu

?

kz
Φww

u2
τu

?

kz
Φuv

u2
τu

?

kx
Φuu

u2
τu

?

kx
Φvv

u2
τu

?

kx
Φww

u2
τu

?

kx
Φuv

u2
τu

?

20 000 0 3.83 0.56 0.73 0.58 2.13 0.40 0.66 0.28
20 000 0.15 3.85 0.75 1.00 0.57 2.15 0.32 0.56 0.28
20 000 0.45 3.01 1.60 1.39 0.49 1.89 0.59 0.64 0.27
20 000 0.9 1.67 2.13 1.86 0.46 1.24 1.04 0.95 0.29

5 000 0 — 0.50 0.64 — — 0.33 0.57 —
5 000 0.45 — 1.61 1.32 — — 0.61 0.61 —
5 000 0.9 — 2.50 1.85 — — 1.16 0.96 —

TABLE 2. Maximum values of the premultiplied one-dimensional energy spectra.
Superscript ? means the maximum value of the quantity. The spectra are scaled with the
friction velocity of the unstable side, uτu.

to energetic large-scale modes in the spectra of the spanwise, and especially the wall-
normal velocity, away from the wall. I therefore interpret distinctly energetic large-
scale modes in the spanwise kzΦvv and kzΦww spectra as well as in the streamwise
kxΦvv spectra as signs of roll cells. If there are n pairs of counter-rotating roll cells
in the computational domain, which has a spanwise size of Lz = 3πh in these DNS,
the spanwise spectrum kzΦvv can be expected to have a peak at λz = 3πh/n.

In non-rotating channel flow the spanwise spectra reveal, besides the streaks at λ∗z ≈
100 indicated by the near-wall peak in kzΦuu, the signature of large wide structures
of wavelength λz ≈ h in kzΦuu and kzΦuv further away from the wall (figure 14a),
like in the DNS by Lee & Moser (2015). In the streamwise spectra kxΦuu and kxΦuv,
energetic peaks are seen at λ∗x ≈ 1000 near the wall, related to the near-wall cycle
(Monty et al. 2009). In the outer layer, weakly energetic large-scale structures with
wavelengths λx ≈ πh to 4πh are observed in kxΦuu and kxΦuv (figure 15a), which
become more energetic at higher Re (Lee & Moser 2015).

The near-wall peak in the spanwise spectrum kzΦuu and streamwise spectrum kxΦuu
changes little in the rotating cases if Ro6 0.45, so that a change of the streak spacing
induced by rotation, as suggested by Kristoffersen & Andersson (1993) and Alvelius
(1999), cannot be confirmed. However, at Ro= 0.15, kzΦvv has three peaks caused by
near-wall structures of wavelength λ∗z ≈ 150 around y∗ = 50 and large structures with
wavelengths λz ≈πh/2 and λz ≈πh (the latter indicated by the green dashed line) in
the outer layer of the unstable side far away from the wall at y≈−0.3 (figure 14d).
A strong large-scale peak is also observed in kzΦww at wavelength λz ≈ πh in the
outer layer. The energetic large-scale modes in the outer layer at λz ≈ πh are almost
certainly a consequence of three pairs of counter-rotating roll cells of spanwise size
πh/2 seen previously in figure 3(a). The other peak in kzΦvv at λz=πh/2 shows that
there also smaller large-scale structures, possibly roll cells that are half the size of the
largest ones, indicating that there might be roll cells of different sizes. Scales with
the maximum possible streamwise wavelength, i.e. λx = Lx, are obviously energetic
according to the streamwise spectra in figure 15(c,d), implying that at least some of
the roll cells span the whole domain in the streamwise direction.

At a higher Ro = 0.45, the peaks in the spanwise spectra kzΦvv, kzΦww have,
compared to the spectra at Ro= 0, clearly shifted towards larger scales (figure 14f ),
and those of the streamwise spectra kxΦvv, kxΦww to a streamwise wavelength
λx≈8πh/3 (figure 15f ) in the outer layer. The energetic large-scale modes observed in
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FIGURE 15. (Colour online) Maps of premultiplied one-dimensional energy spectra as
function of streamwise wavelength λ∗x and distance from the wall y∗ at Re = 20 000 for
Ro= 0 (a,b), Ro= 0.15 (c,d), Ro= 0.45 (e, f ) and Ro= 0.9 (g,h). (a,c,e,g) Shows kxΦuu
(black lines) and cospectra kxΦuv (blue dashed lines and colours). (b,d, f,h) Shows kxΦvv

(blue dashed lines and colours) and kxΦww (black lines). Contour levels from innermost
to outermost are 0.94, 0.8, 0.6, 0.4, 0.28, 0.2, 0.1 and 0.05. Spectra are scaled with their
maximum value.
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the spanwise spectrum kzΦvv at λz ≈ 3πh/8 and y≈−0.5 are not present at Ro= 0;
therefore, I interpret them as the signatures of roll cells. Two-point correlations,
presented later, provide further evidence that they exist. The roll cells are smaller
than at Ro= 0.15 and do not appear to span the whole streamwise domain according
to the streamwise spectra, since the peak in the streamwise kxΦvv is at λx < Lx. These
observations are consistent with the results shown by the visualizations in figure 3
earlier. Dai et al. (2016) also noted that the roll cell diminished in size with Ro
in their DNS at a much lower Re = 2800. In the present DNS, energetic wide and
long structures in terms of outer units are observed as well in the spanwise and
streamwise spectra Φuu, and especially the cospectra Φuv at Ro= 0.45, and even more
so at Ro = 0.15 in the outer layer (figures 14c,e and 15c,e), showing that the roll
cells induce large-scale momentum transfer.

Previous studies have found strong support for the hypothesis that the logarithmic
region of wall-bounded turbulent flows is populated by attached eddies (Perry &
Chong 1982) whose size grows with y, see e.g. Smits et al. (2011) and Hwang
(2015). Some evidence of attached eddies can indeed be found in the present
spanwise spectrum kzΦuu and cospectrum kzΦuv of the non-rotating channel flow
(figure 14a), since they show that size of the structures grows with the distance to
the wall in the logarithmic region. The cospectrum follows roughly the linear relation
y= 0.2λz− 1 shown by the straight black dashed line in the figure, indicating that the
size of eddies is approximately proportional to the distance to the wall, in agreement
with the attached eddy hypothesis (Hwang 2015). The spanwise spectra kzΦuu and
cospectra kzΦuv at Ro= 0.15 and 0.45 (figure 14c,e) show similar characteristics, with
growing scales as y increases. The cospectrum also follows in these cases roughly
the linear relation y = 0.2λz − 1. This provides support for the idea that rotating
wall-bounded flows are also populated by attached eddies, at least up to moderate
rotation rates.

At higher rotation rates, large-scale structures become progressively less energetic
and smaller. At Ro= 0.9 no energetic large-scale structures are seen in the spanwise
spectra kzΦuu and kzΦuv, while kzΦvv has a peak at spanwise wavelength λz≈πh/6 in
the outer layer at y≈−0.8 (figure 14g,h). The streamwise spectrum of the streamwise
velocity kxΦuu has still a near-wall peak and that of the wall-normal velocity kxΦvv

has an outer peak at streamwise wavelength λx ≈ 2πh/5, while the spectrum of
the spanwise velocity kxΦww has two energetic peaks: an outer peak at streamwise
wavelength λx ≈ πh/5 and a near-wall peak at λx ≈ 4πh/5 (figure 15g,h). Energetic
large-scale roll cells are thus not present according to the spectra – correspondingly,
no large structures like roll cells are observed in visualizations, and there are
fewer energetic large-scale motions that contribute to momentum transfer than in
a non-rotating channel flow.

Similar observations (not shown for brevity) are made at yet higher Ro, i.e. no
energetic wide or long structures are present according to the spectra and cospectra in
terms of outer units. The peak in the spanwise spectrum kzΦvv shifts towards shorter
wavelengths and the double peak in the streamwise spectrum kxΦww persists. The
double peak is also observed in the r.m.s. profiles (figure 6c). The spanwise spectra
kzΦuu and kzΦuv still have a spectral peak at λ∗z ≈ 100, but the peak moves closer
to the wall in terms of viscous wall units. The streamwise spectra kxΦuu and kxΦuv
have a spectral peak at λx ≈ h when Ro > 0.9, but in terms of the viscous wall units
the structures become shorter. This means that the near-wall streaky structures move
closer to the wall and become shorter, in agreement with the results of Lamballais
et al. (1998), but they do not clearly confirm their finding that these structures
become weaker at high Ro.
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According to the spanwise spectrum kzΦuu and cospectrum kzΦuv at Ro = 0.9
(figure 14g), the structures do not become much larger when the distance to the wall
increases, and at higher Ro the scales appear to grow even less with y. The absence
of structures whose size grows with the distance to the walls when Ro & 0.9 implies
that attached eddies are much less prominent in very rapidly rotating wall-bounded
flows. This suggests that the interaction between the inner and outer layer is weak at
high Ro. Pressure and turbulent diffusion of turbulent kinetic energy are accordingly
very small on the unstable side in that case.

Spectra at Re= 20 000 and Ro= 0.15 at the stable side of the channel (not shown
here) show that the roll cells observed on the unstable side do not deeply penetrate
the stable channel side, although the study by Dai et al. (2016) shows that they
occasionally can become larger and may even affect the flow up to the wall at the
stable channel side. The spectra also show energetic near-wall modes at λ∗z ≈ 100 and
λ∗x ≈ 800, as on the unstable side, implying that the near-wall cycle is maintained. On
the other hand, although the flow is fully turbulent on the stable side at this low Ro,
the spectra on the stable channel side reveal no or much less energetic large-scale
modes than at Ro= 0, showing that cyclonic rotation weakens large-scale structures in
wall-bounded flows. This agrees with the observation that in plane Couette flow even
very weak cyclonic spanwise rotation eliminates large-scale structures (Komminaho,
Lundbladh & Johansson 1996).

7.2. Reynolds number dependence
In several other DNS studies of spanwise rotating channel flow, large streamwise roll
cells or Taylor–Görtler vortices have been found and examined, as mentioned before.
Kristoffersen & Andersson (1993), Lamballais et al. (1998), Dai et al. (2016) and
Hsieh & Biringen (2016) have observed them in DNS at Reτ 6 200 and Ro 6 0.5.
Hsieh and Biringen have observed them also at Reτ =406 and Ro=0.2. It is important
that the roll cells are properly resolved since flow statistics deviate significantly if
they are suppressed (Hsieh & Biringen 2016). Helical spectra computed from DNS
at Reτ = 180 by Yang & Wu (2012) suggest large roll cells if 0.03 6 Ro 6 0.57,
with the strongest signal at Ro= 0.15. The size of the roll cells appears to diminish
with Ro for Ro > 0.15, and there is no sign that they exist at Ro= 0.94 and higher.
On the other hand, visualizations and spanwise two-point correlations computed by
Grundestam et al. (2008) at Reτ = 180 indicate that roll cells are present at Ro= 1.27,
but the statistics show that the roll cells are non-stationary and do not have a long
correlation length in the streamwise direction, and their size appears to be smaller
than at lower Ro.

Thus, there is strong evidence that large roll cells exist in spanwise rotating channel
flow at low Reynolds numbers for Ro . 0.6. At higher Ro, roll cells are less certain
and more difficult to detect owing to their unsteadiness, but there are indications
of their occurrence (Grundestam et al. 2008). Spectra presented before reveal large
streamwise roll cells in a DNS at Re = 20 000 and Ro = 0.15, and clearly hint
at their occurrence at Ro = 0.45, but at Ro = 0.9 and higher there is no strong
evidence of their presence. This suggests that, at lower Reynolds numbers, roll cells
exist in a wider Ro range. Note, that in previous DNS of rotating channel flow the
computational domain size was 4π × 2π in the streamwise and spanwise directions,
respectively, or less, which is smaller than in the present DNS. This may influence
the size and enhance the coherency of the roll cells, especially in combination with
periodic boundary conditions. Indeed, in the DNS by Kristoffersen & Andersson
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(1993) at Ro = 0.15 the roll cells were very steady, whereas in the experiments by
Johnston et al. (1972) the boundary conditions were different and the roll cells were
much more unsteady.

To answer more unequivocally whether at low Re roll cells exist in a wider Ro
range than at higher Re, I have computed premultiplied one-dimensional spanwise
and streamwise spectra of the wall-normal and spanwise velocity fluctuations at
Re = 5000 for Ro = 0, 0.15, 0.45 and 0.9, see figure 16. The wavelength and the
distance to the wall is, as in the previous spectra, scaled by the viscous length scale
of the unstable side, l∗= ν/uτu, and the spectra are scaled with their maximum value,
see table 2. The red dashed line marks again scales with a wavelength h. Spanwise
two-point correlations of the wall-normal velocity fluctuations Rvv = v(x+ z)v(x)/vv
at Re=3000, 5000 and 20 000 and various Ro have also been calculated. If streamwise
vortices are present, Rvv is expected to display negative correlations with a minimum
at a separation distance that is approximately equal to the mean vortex diameter.
Accordingly, in non-rotating channel flow, Rvv has a minimum at z∗ ≈ 25 near the
wall as a result of near-wall streamwise vortices (Kim et al. 1987). The two-point
correlations are shown at the unstable channel side at the wall-normal position, where
Rvv approximately has the largest negative values and thus the signs of the roll cells
are most clear. In all cases, the mean velocity profile is approximately linear at this
position. The domain size is the same in all DNS used to compute the spectra and
two-point correlations.

At Ro = 0.15 and Re = 5000, the spanwise spectrum kzΦww has a peak at
λz = πh (indicated by the green dashed line) while the peak of kzΦvv extends
from approximately λz = πh/2 to πh (figure 16c) and the streamwise spectra reveal
structures that span the whole streamwise domain (figure 16d). Spectra at Re= 3000
are not shown for brevity, but at Ro= 0.15 they show a peak at spanwise wavelengths
λz = πh and a lesser one at 3πh/5. This indicates, similarly as at Re = 20 000, roll
cells with a size of πh/2 and smaller ones. By comparing figure 16(e, f ) with
figure 16(a,b), it can be concluded that, at Ro = 0.45, wider and longer structures
exist on the unstable channel side than at Ro = 0, implying that large roll cells are
present. The spectral peaks in the spanwise kzΦvv and streamwise spectrum kxΦvv are
at λz≈ 3πh/8 and λx ≈ 2πh, respectively. At similar wavelengths, peaks are found in
the spectra at Re= 20 000, as shown before, and Re= 3000.

The spectra suggest that the roll cells at Ro= 0.15 as well as at Ro= 0.45 have a
similar size for Re = 3000–20 000. This is confirmed by the two-point correlations.
At Ro = 0.15, Rvv is clearly negative for 0.5 . z . 2, and its minimum, which is
a measure of the mean vortex diameter, is at approximately the same z at all three
Reynolds numbers (figure 17a). The spectra suggest roll cells with a diameter πh/2 as
well as smaller ones, and that appears to be consistent with the two-point correlations
which suggest roll cells with a mean diameter of approximately h. Also Rvv at Ro=
0.45 has a minimum at approximately the same z at all three Re (figure 17b). The
spectra indicate that the roll cells have a mean diameter of approximately 3πh/16, in
agreement with the two-point correlations.

These results indicate that for Re= 3000–20 000 the size of the roll cells is smaller
at Ro=0.45 than at Ro=0.15, but approximately independent of Re. The size πh/2 of
the largest roll cells at Ro= 0.15 indicated by the spanwise spectra is consistent with
the size observed in the DNS by Kristoffersen & Andersson (1993) and Yang & Wu
(2012) at the same Ro. Yang and Wu also observed smaller roll cells and found that
the size of the roll cells becomes smaller with Ro for Ro> 0.15, again consistent with
the present results. Also the DNS by Dai et al. (2016) at Re= 2800 show that the roll
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FIGURE 16. (Colour online) Maps of premultiplied one-dimensional spanwise and
streamwise energy spectra at Re= 5000 for Ro= 0 (a,b), Ro= 0.15 (c,d), Ro= 0.45 (e, f )
and Ro= 0.9 (g,h). (a,c,e,g) Shows spanwise spectra kzΦvv (blue dashed lines and colours)
and kzΦww (black lines). (b,d, f,h) Shows streamwise spectra kxΦvv (blue dashed lines and
colours) and kxΦww (black lines). Contour levels from innermost to outermost are 0.94,
0.8, 0.6, 0.4, 0.28, 0.2, 0.1 and 0.05. Spectra are scaled with their maximum value.
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FIGURE 17. (Colour online) Spanwise two-point correlations of the wall-normal velocity
fluctuations at (a) Ro= 0.15 and Re= 20 000 and y=−0.41, Re= 5000 and y= 0, and
Re = 3000 and y = 0; (b) Ro = 0.45 and Re = 20 000 and y = −0.54, Re = 5000 and
y=−0.55, and Re= 3000 and y=−0.5; (c,d) Ro= 0.9 and Re= 20 000 and y=−0.83,
Re= 5000 and y=−0.75, and Re= 3000 and y=−0.75; (e, f ) Ro= 1.2 and Re= 20 000
and y=−0.92, Re= 5000 and y=−0.83, and Re= 3000 and y=−0.75. In (a,b,c,e) z is
scaled by h and in (d, f ) z∗ = z/l∗. (——, black) Re= 20 000, (——, red) Re= 5000 and
(——, green) Re= 3000.

cells become smaller when Ro increases from 0.1 to 0.5. On the other hand, the size
πh/2 of the roll cells in the DNS by Hsieh & Biringen (2016) at Ro= 0.5 and Reτ ≈
200 is considerably larger than in the present DNS at Ro=0.45. This difference might
be related to the more restricted computational domain used by Hsieh and Biringen.
Besides, they only show visualizations of the time-averaged velocity field, and these
naturally emphasize the largest, most steady structures.

At a higher Ro = 0.9, the peak in the spanwise spectrum kzΦvv shifts towards a
smaller λz≈ 3πh/13 at Re= 5000 (figure 16g) and λz≈ 3πh/11 at Re= 3000, which
is at a larger wavelength than at Re = 20 000 (figure 14h). The large structures are
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also considerably longer in terms of outer units at lower Re, see figure 16(h) versus
figure 15(h). The minimum in Rvv shifts towards smaller z at higher Re (figure 17c),
confirming that at Ro = 0.9 the large scales become smaller at higher Re. The two-
point correlations (figure 17e) and spectra (not shown here) show that at Ro= 1.2 the
differences are even more pronounced. The size of the large flow structures in terms
of outer units shrinks monotonically with Re, and this trend continues at higher Ro.
On the other hand, if the separation distance z is scaled by the viscous length scale l∗,
the two-point correlations differ considerably at Ro= 0.9 (figure 17d) and lower Ro,
but much less at Ro= 1.2 (figure 17f ) and higher Ro. The two-point correlations at
Re=3000 and Re=5000 show in fact an almost perfect collapse. Thus, the size of the
largest scales continues to decrease with Ro, but for Ro > 0.9 it becomes dependent
on Re as well. Whether these largest structures can be considered to be typical roll
cells is not clear since the roll cells and typical near-wall streamwise vortices become
less distinguishable at high Ro and low Re. The two-point correlations suggest that
their size starts to display a viscous wall unit scaling and therefore may not have the
same physical origin as at lower Ro.

8. Conclusions

The present numerical study of fully developed plane turbulent channel flow subject
to system rotation about the spanwise direction covers a wide range of parameters
with Re between 3000 and 31 600 and Ro between 0 and 2.7. At all Re, and for a
wide range of Ro, the mean streamwise velocity profile has a linear part with a slope
dU/dy ' 2Ω , implying that this mean zero-absolute-vorticity state is independent of
the Reynolds number. This zero-absolute-vorticity state has also been found in low
Reynolds number and approximately in transitional rotating channel flow (Iida et al.
2010; Wall & Nagata 2013) and in laminar and turbulent plane Couette flow subject to
anticyclonic rotation (Gai et al. 2016; Kawata & Alfredsson 2016). In all these other
cases, the flow is dominated by large streamwise roll cells. Hsieh & Biringen (2016)
found that when roll cells are suppressed in DNS of rotating turbulent channel flow
by decreasing the spanwise domain size, the slope of the mean velocity profile dU/dy
deviates from 2Ω , pointing out that it is important to resolve the roll cells. In the
present study, the zero-absolute-vorticity state also exists at high Ro when the flow is
turbulent but roll cells are absent or small, proving that roll cells are not a prerequisite.
Some possible explanations for the zero-absolute-vorticity state have been proposed
(Hamba 2006; Kawata & Alfredsson 2016), but none rigorous. Because of the linear
mean velocity slope, profiles of the production and dissipation rate of turbulent kinetic
energy and some of the budget terms in the Reynolds stress equations show a linear
part as well. In this part of the unstable channel side, basically all energy is fed into
the wall-normal Reynolds stress component when the production and Coriolis term are
considered together. The energy is then redistributed to the streamwise, and especially
the spanwise Reynolds stress component, through pressure–strain correlations.

Through visualizations, one-dimensional spectra and two-point correlations, the
influence on rotation on turbulence structures is investigated. A distinct unstable
side with intense turbulence and vortical structures, and a stable side with much
weaker turbulence, develops in the channel with an apparent sharp border between
the two sides. If Ro approaches 0.45 the flow at higher Re partly relaminarizes on
the stable side of the channel, and oblique turbulent–laminar patterns develop which
resemble the oblique band-like structures found in transitional Couette and channel
flows at low Reynolds numbers (Duguet et al. 2010; Tuckerman et al. 2014). It is
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quite remarkable that such patterns exist in rotating channel flow at a significantly
higher Re. The study by Brethouwer et al. (2012) suggests that turbulent–laminar
patterns similar to those found in my DNS at Ro= 0.45 and Re= 20 000–31 600 also
exist at lower Re, but at a lower Ro, and that the patterns most likely have a longer
wavelength at lower Re. This implies that the patterns may appear at low Re in DNS
of rotating channel flow if very large computational domains are used.

If Ro is raised further in the present DNS, the turbulent fraction of the flow on
the stable side goes down, and eventually the flow relaminarizes there. The unstable
part of the channel with strong turbulence diminishes in size with Ro, and when the
rotation rate is sufficiently high the whole flow becomes laminar. However, as shown
by Brethouwer (2016), a linear instability can develop in rapidly rotating channel
flows, causing a continuous cycle of turbulent bursts.

The influence of Re is investigated and found to be significant. At fixed Ro,
Reynolds stresses are noticeably stronger on the stable side of the channel at higher
Re. When Ro 6 0.9, the flow is partly or fully turbulent on the stable channel side
at higher Re, whereas at lower Re the turbulent fraction of the flow is significantly
smaller and the flow tends to relaminarize faster. Therefore, care has to be exercised
when drawing general conclusions from lower Reynolds number studies of rotating
channel flow. Attention should also be paid to the size of the computational domain,
since that may have a significant influence on large-scale structures like roll cells and
the relaminarization of the stable channel side.

On the unstable side of the channel, large counter-rotating streamwise roll cells are
observed at Ro = 0.15 and 0.45. The roll cells become smaller and less noticeable,
and eventually disappear if Ro is increased. This trend is stronger at higher Re, since
at high Ro the large-scale modes, which are possibly related to roll cells, are larger at
lower Re. This suggests that, at low Re, roll cells may exist in a wider Ro range, but
note there is yet no way to unambiguously determine if roll cells exist. The spectra
also indicate that at lower Ro the unstable channel side is populated by attached
eddies, whereas these appear to be absent at higher Ro, indicating that the interaction
between the inner and outer layer is weak in rapidly rotating channel flows.

The present case gives some general insights into the effect of rotation on wall-
bounded flows. It is also valuable for turbulence modelling since the influence of
rotation in turbulence is still difficult to model. Even for large-eddy simulation it
could be a demanding case because correctly predicting the relaminarization of rapidly
rotating channel flow may pose a challenge.
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