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This paper presents an analytic solution for the sound generated by an unsteady gust
interacting with a semi-infinite flat plate with a serrated leading edge in a background
steady uniform flow. Viscous and nonlinear effects are neglected. The Wiener–Hopf
method is used in conjunction with a non-orthogonal coordinate transformation and
separation of variables to permit analytical progress. The solution is obtained in
terms of a modal expansion in the spanwise coordinate; however, for low- and
mid-range incident frequencies only the zeroth-order mode is seen to contribute to
the far-field acoustics, therefore the far-field noise can be quickly evaluated. The
solution gives insight into the potential mechanisms behind the reduction of noise for
plates with serrated leading edges compared to those with straight edges, and predicts
a logarithmic dependence between the tip-to-root serration height and the decrease of
far-field noise. The two mechanisms behind the noise reduction are proposed to be
an increased destructive interference in the far field, and a redistribution of acoustic
energy from low cut-on modes to higher cut-off modes as the tip-to-root serration
height is increased. The analytic results show good agreement in comparison with
experimental measurements. The results are also compared against nonlinear numerical
predictions where good agreement is also seen between the two results as frequency
and tip-to-root ratio are varied.

Key words: acoustics, aeroacoustics

1. Introduction
Leading-edge noise is generated by the unsteady wakes of a forward rotor row

impinging on a rearward stator row within an aeroengine. It is well known as a
dominant source of aircraft noise (Peake & Parry 2012) and as such has sparked a
large amount of research aimed at understanding and controlling noise levels (Amiet
1975; Goldstein & Atassi 1976; Myers & Kerschen 1995; Lockard & Morris 1998;
Ayton & Chaitanya 2017). Recent interest in silent owl flight has led to research in a
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number of aerofoil adaptations as a way to reduce aerofoil–turbulence interaction noise
as discussed by Lilley (1998). The leading-edge comb (Graham 1934) appears as a
serration to the leading edge of the wing, and through experimental (Chaitanya et al.
2016; Geyer et al. 2016) and numerical investigations (Haeri, Kim & Joseph 2015;
Kim, Haeri & Joseph 2016) has been seen as an effective way to reduce leading-edge
noise. Despite these results, it is still not fully understood why the serrated edge is
such an effective way to reduce leading-edge noise, therefore analytic solutions for
simple leading-edge interaction noise models are sought to illuminate the physical
noise-reduction mechanisms within the flow, and hence aid in designing optimal
leading-edge geometries for silent blade operation.

Current analytic models for leading-edge serrations, such as the gust–interaction
noise model of Lyu & Azarpeyvand (2017) or the sound scattering model of Huang
(2017), typically rely on standard Fourier series expansions in the spanwise coordinate
(along which the serration lies) and iterative or numerical techniques to eventually
solve the final governing equations. A downside of this is that it becomes difficult
to extract precise information from the solutions as to why a reduction of noise
is possible, as one cannot pick apart the final solution to determine when and
where each term has come from. Solutions from the iterative method using the
Schwarzschild technique (Lyu & Azarpeyvand 2017) predict that the noise reduction
for rapidly serrated edges may differ from those predicted experimentally (Chaitanya
et al. 2016) since it is typical that experimentally noise is measured in a restricted
arc centred above the plate. This misses the far upstream and downstream directions;
the solution (Lyu & Azarpeyvand 2017) predicts that the acoustic directivity pattern
is significantly distorted by rapid serrations, which could result in larger or smaller
pressure magnitudes at shallower angles than the effects seen directly above the plate
(at observer angle θ = 90◦).

Both Lyu & Azarpeyvand’s (2017) analytical and Chaitanya et al.’s (2016)
experimental results suggest that phase interference in the scattered field is key
to noise reduction for rapidly serrated edges, and a greater noise reduction is possible
for more rapidly serrated edges due to an increased destructive interference. However,
if the far field were to experience a region of destructive interference it would be
natural to assume there could be a corresponding region of constructive interference.
The analytic solution obtained via Green’s functions for the sound generated by
individual vortices interacting with a wavy leading edge by Mathews & Peake (2018)
indicates certain leading-edge profiles do increase noise as opposed to reducing it.
Key to an increase or decrease in noise is the relative angle between the vortex path
and the leading edge, which is also an important factor for swept leading edges
(Adamczyk 1974). Huang (2017), who uses a Wiener–Hopf approach, proposes a
reduction of far-field noise due to a cut-off of the scattered frequency, as is the case
for the swept edge (Adamczyk 1974); however, similarly to Lyu & Azarpeyvand
(2017), it is difficult to infer this conclusion directly from the mathematics as the
details are unfortunately hidden by the complexity surrounding the Fourier series
expansions and numerical Wiener–Hopf factorisation.

This paper attempts to provide a simpler analytic solution for the noise generated
by a serrated leading edge, which can be used to understand the mechanisms allowing
for noise reduction. We avoid the need for any numerical steps during the calculation
of the far-field pressure by using a sequence of variable transformations to convert
the governing equation and boundary conditions into a form suitable for solving
analytically using the Wiener–Hopf technique. We also avoid the need for numerically
factorising the Wiener–Hopf kernel. This approach follows the work of Envia (1988),
who considered the effects of blade sweep in a finite-span channel with rigid walls.
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FIGURE 1. Uniform steady flow in the x direction with unsteady convective gust
perturbation interacts with a rigid plate y= 0 with serrated edge x= cF(z).

The layout of this paper is as follows. The governing equation and boundary
conditions for the problem are given in § 2 along with the required transformation
of coordinates to allow for a simple solution. The solution is found in § 3 using
separation of variables and the Wiener–Hopf technique. Section 4 contains results for
the scattered acoustic far field which we compare to numerical simulations adapted
from Turner & Kim (2017). A brief discussion of the adapted numerical method used
is given in § 4.5. We discuss the conclusions of this paper in § 5.

2. Formulation of the problem
We consider the interaction of a convective unsteady gust in uniform flow of Mach

number M over a semi-infinite flat plate with a serrated leading edge. To simplify
the problem we consider a single wavelength of the serration, thus the blade lies in
the region y = 0, x > cF(z), 0 6 z 6 1 as depicted in figure 1. Here c is a positive
real constant parametrising the so-called ‘tip-to-root’ height of the serration (which is
given by c/2). We non-dimensionalise lengths by the wavelength of the serration, and
velocities by the far upstream steady velocity. Pressure is non-dimensionalised with
respect to the far upstream steady density and velocity.

We suppose the serration is single-frequency, therefore define

F(z)=


z, z ∈ [0, 1

4),
1
2 − z, z ∈ ( 1

4 ,
3
4),

z− 1, z ∈ ( 3
4 , 1].

(2.1)

Note that the channel boundaries are located at serration midpoints to ensure any
effects of the sharp tip and root at z= 1/4, 3/4 are fully accounted for and the edges
do not interfere with these key features.

The unsteady gust incident from far upstream takes the form

vg =Aeik1x+ik2y+ik3z−iωt, (2.2)

where the amplitude, A= (A1, A2, A3)
T, is constant.

We consider two cases for the scattered field: (i) the channel has rigid walls thus
there is a single wavelength serrated blade in a duct; and (ii) the channel has periodic
boundary conditions. In both cases we set A3 = 0, and as we are dealing with an
infinitely thin plate the only amplitude term from the gust present in our problem
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will be A2, which for simplicity we set to unity. Case (i) allows us to compare the
effects of a serrated edge against that of a swept edge in a channel (Envia 1988),
whilst case (ii) allows us to consider a spanwise-infinite plate with a periodic serrated
leading edge.

We decompose the unsteady flow field into a convective gust part and an acoustic
response part, v = vg + va, and write the response as va = ∇G. We suppose G is
harmonic in time ∼ e−iωt and therefore spatially satisfies the convected Helmholtz
equation,

β2 ∂
2G
∂x2
+
∂2G
∂y2
+
∂2G
∂z2
+ 2ikM

∂G
∂x
+ k2G= 0, (2.3)

where β2
= 1−M2 and k=ω/c0 with c0 the speed of sound of the background steady

flow. Since the gust convects with the background flow, we require k= k1M. The zero
normal velocity boundary condition on the aerofoil surface requires

∂G
∂y

∣∣∣∣
y=0

=−eik1x+ik3z x> cF(z). (2.4a)

We also impose continuity of the potential upstream

1G|y=0 = 0 x< cF(z). (2.4b)

Finally, in case (i) the rigid channel walls require

∂G
∂z

∣∣∣∣
z=0,1

= 0, (2.5a)

or case (ii) the periodic conditions yield

G|z=0 =G|z=1eiαk3,
∂G
∂z

∣∣∣∣
z=0

=
∂G
∂z

∣∣∣∣
z=1

eiαk3, (2.5b,c)

where α is a real constant enforcing the level of periodicity of the problem, e.g. if
α =−1 the solution must be periodic over one serration wavelength or if α =−1/2
the solution must be periodic over two serration wavelengths. We will restrict results
in this paper to α=−1 but retain the parameter in our calculations to allow a future
study on varying the periodicity of the solution.

To simplify the governing equation, (2.3), we apply a convective transform,

h=G(x, y, z)eik1M2x/β2
, (2.6)

to eliminate the convective terms. The resulting governing equation and boundary
conditions for h(x, y, z) are

β2 ∂
2h
∂x2
+
∂2h
∂y2
+
∂2h
∂z2
+

(
k1M
β

)2

h= 0, (2.7a)

∂h
∂y

∣∣∣∣
y=0

=−ei(k1/β
2)x+ik3z x> cF(z), (2.7b)

1h|y=0 = 0 x< cF(z), (2.7c)

accompanied by the option of a rigid vertical wall condition (case i) or periodic
condition (case ii) on z= 0, 1 as before.
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This set of equations, (2.7), forms a mixed boundary condition problem in regions
x ≷ cF(z), therefore we wish to employ the Wiener–Hopf technique. However, to
make this problem more amenable to the Wiener–Hopf technique we wish to shift
the two regions to some ξ ≷ 0, making them independent of the spanwise variable.
To do so we perform the following transformation of coordinates (adapted from the
transformation used by Envia (1988) for a swept edge):

ξ =

√
1− γ 2

β
x− γF(z), (2.8a)

η= y, (2.8b)
ζ = z, (2.8c)

γ =
c√

β2 + c2
. (2.8d)

The transformed governing equation becomes

∇
2
ξ,η,ζh− 2γF′(ζ )

∂2h
∂ξ∂ζ

+ (dM)2h= γ
(
δ

(
ζ −

3
4

)
− δ

(
ζ −

1
4

))
∂h
∂ξ
, (2.9a)

where we set d= k1/β and use δ(x) to denote the Dirac delta function arising due to
the discontinuities in F′(ζ ) at the peaks and roots of the serration. Note that the right-
hand side equals γF′′(ζ )∂h/∂ξ , and derivatives of F are formally weak derivatives.

The boundary conditions become

∂h
∂η

∣∣∣∣
η=0

=−eiκξ+ik3ζeiκγF(ζ ) ξ > 0, (2.9b)

where κ = d/
√

1− γ 2,
1h|η=0 = 0 ξ < 0, (2.9c)

and either for the rigid walls of case (i),(
∂h
∂ζ
− γF′(ζ )

∂h
∂ξ

)
ζ=0,1

= 0, (2.9d)

or for the periodic conditions of case (ii),

G|ζ=0 =G|ζ=1eiαk3,
∂G
∂ζ

∣∣∣∣
ζ=0

=
∂G
∂ζ

∣∣∣∣
ζ=1

eiαk3 . (2.9e,f )

We have now completed the formulation of the mathematical model, which we shall
solve in the following section.

3. Analytic solution

We solve (2.9) by applying a Fourier transform in the ξ variable,

H(λ, η, ζ )=
∫
∞

−∞

h(ξ , η, ζ )eiλξ dξ, (3.1)
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and separating the solution H(λ, η, ζ ) = Y(λ, η)Z(λ, ζ ) with separation constant χ̃ .
This results in governing equations

Y ′′ + ((dM)2 − λ2
− χ̃ 2)Y = 0, (3.2)

and

Z′′ + 2iγ λF′(ζ )Z′ + χ̃ 2Z =−iλγ
(
δ

(
ζ −

3
4

)
− δ

(
ζ −

1
4

))
Z, (3.3)

for the η and ζ dependencies.
We solve (3.3) by considering an ansatz of the form

Z(λ, ζ )= e−iγ λF(ζ )(A(λ) cos(χζ )+ B(λ) sin(χζ )), (3.4)

which is found to satisfy (3.3) when χ 2
=λ2γ 2

+ χ̃ 2. This yields solutions for Y given
by

Y(λ, η)= sgn(η)e−|η|
√

1−γ 2
√
λ2−w2

, (3.5)

where

w2
=
(dM)2 − χ 2

1− γ 2
. (3.6)

To determine suitable values for χ and a relationship between A(λ) and B(λ)
we must apply the boundary conditions to Z at ζ = 0, 1. These give rise to a
modal expansion of the solution indexed by n. Using the rigid-walled condition,
equation (2.9d), yields

Z(λ, ζ )= An(λ)Zn(λ, ζ )= e−iγ λF(ζ )An(λ) cos(nπζ ), χ = nπ, n ∈Z, (3.7a,b)

whilst the periodic condition, equation (2.9e, f ), yields

Z(λ, ζ )= An(λ)Zn(λ, ζ )= e−iγ λF(ζ )An(λ)e−ik3αζe2inπζ , χ =±k3α + 2nπ, n ∈Z.
(3.8a,b)

We must now determine the An(λ) using the η = 0 boundary conditions and the
Wiener–Hopf method. We can write the general solution as

H(λ, η, ζ )=
∑

n

An(λ) sgn(η)e−|η|
√

1−γ 2
√
λ2−w2

nZn(λ, ζ ), (3.9)

where the Zn are given in either (3.7) or (3.8). The upstream continuity condition,
equation (2.9c), tells us that An(λ) is a positive half-Fourier transform only, therefore
is analytic in the upper half-λ-plane which we denote by a superscript + (analyticity
in the lower half plane is similarly denoted by a superscript −).

The zero normal velocity condition, equation (2.9b), upon applying the Fourier
transform becomes

∂H
∂η
(λ, 0, ζ )=K+(λ, ζ )+U−(λ, ζ ), (3.10)

where
K+(λ, ζ )=−

i
λ+ κ

eiκγF(ζ )+ik3ζ (3.11)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

58
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.583


Leading-edge serrations 521

and U−(λ, ζ ) is an unknown function which is analytic in the lower half-λ-plane.
Using (3.9) we obtain

−

∑
n

√
1− γ 2

√
λ2 −w2

nA+n (λ)Zn(λ, ζ )=−
i
λ+ κ

eiκγF(ζ )+ik3ζ +U−(λ, ζ ). (3.12)

The functions Zn(λ, ζ ) are orthogonal over the range ζ ∈ [0, 1] with respect to their
Schwartz conjugates thus we can use them as a basis for expanding our known and
unknown functions. In particular U−(λ, ζ ) can be expressed as

U−(λ, ζ )=
∑

n

Dn(λ)Zn(λ, ζ ) (3.13)

and we write eiκγF(ζ )+ik3ζ as

eiκγF(ζ )+ik3ζ =

∑
n

En(λ)Zn(λ, ζ ). (3.14)

The functions En(λ) arise because of the spanwise form of the normal velocity on
the plate and are given in appendix A. If we suppose, like Envia (1988), that the
normal velocity just upstream of the plate must have a similar spanwise ζ dependence,
then by linearity each A+n and each D−n must contain a factor of En(λ). (To assume this
we must also neglect any boundary layer effects due to the channel walls at ζ = 0, 1.
We believe this is a suitable assumption as we are interested not in the effects of the
channel walls, but solely in the effects of the serration.)

We factor out En in our Wiener–Hopf equation to obtain√
1− γ 2

√
λ2 −w2

nÃ+n (λ)=
i
λ+ κ

+ D̃n(λ), (3.15)

where
Ã+n En = A+n , D̃−n En =D−n . (3.16a,b)

The En(λ) are entire, therefore we can factor them out of the terms A+n and D−n
without affecting the domain of analyticity.

We rearrange (3.15) to give√
1− γ 2

√
λ+wnÃ+n (λ)=

i
λ+ κ

1
√
λ−wn

−
D−n (λ)
√
λ−wn

. (3.17)

The left-hand side is analytic in the upper half-λ-plane, and the unknown term on
the right-hand side is analytic in the lower half-λ-plane. By additively splitting the
known term on the right-hand side into two functions, F+n +F−n , that are analytic in the
appropriate half-planes, we can apply Liouville’s theorem to solve for Ã+n (λ) giving

Ã+n (λ)=
F+n (λ)√

1− γ 2
√
λ+wn

, (3.18)

with
F+n (λ)=

i
λ+ κ

1
√
−κ −wn

, (3.19)
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hence

H(λ, η, ζ )= sgn(η)
∑

n

F+n (λ)En(λ)e−|η|
√

1−γ 2
√
λ2−w2

n√
1− γ 2

√
λ+wn

Zn(λ, ζ ). (3.20)

We invert the Fourier transform and obtain the far-field (r � 1) acoustics by
applying the method of steepest descents to give

h(r, θ, z)∼
∑

n

eπi/4F+n (−wn cos θ)En(−wn cos θ)
(1− γ 2)3/4

√
π

cos
(
θ

2

)

×
ei
√

1−γ 2wnr

√
r

Zn(−wn cos θ, z)e−iγwn cos θF(z), (3.21)

where (r, θ, z) are standard cylindrical polar coordinates with origin corresponding to
Cartesian origin x= y= z= 0. For simplicity, we write (3.21) as

h(r, θ, z)∼
∑

n

Bn(θ, z)
ei
√

1−γ 2wnr

√
r

, (3.22)

where we refer to the Bn as the scattered modes with frequencies
√

1− γ 2wn. We
recall the definition of wn in (3.6) and see that for sufficiently large n these modes
are cut-off, therefore practically we only need to sum a finite number of terms in
(3.22) to calculate this far-field expression.

To obtain the acoustic pressure, we use the relation

p=−
(
∂h
∂x
−

ik1

β2
h
)

e−ik1M2x/β2
, (3.23)

which in the far field, r� 1, using (3.22) yields

p(r, θ, z)∼
∑

n

i
(

k1

β2
−

√
1− γ 2wn

)
Bn(θ, z)

ei
√

1−γ 2wnr

√
r

. (3.24)

This completes our analytic solution of the scattered field.

4. Results
In this section we present far-field noise results for both the rigid-walled channel

and periodic channel. To do so, we define a spanwise-averaged far-field pressure, as

Da(r, θ)=
∫ 1

0
|p(r, θ, z)|2 dz, (4.1)

where p(r, θ, z) is given by (3.24). We evaluate this numerically, using Mathematica’s
inbuilt NIntegrate feature. We only sum a finite number of terms from (3.24)
corresponding to the cut-on terms with wn ∈R. The number of cut-on terms depends
on the gust wavenumber components, k1,3, and the Mach number of the background
flow, M. Figure 2 illustrates a variation in |p(r, θ, z)|2 with spanwise location, z.
Different spanwise locations can produce different directivity patterns at different
magnitudes due to interference between different Bn modes. We see in figure 2 that
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FIGURE 2. (Colour online) Polar plot of 103
|p(10, θ, z)|2 compared to the span average,

103Da(10, θ), and straight-edge, c= 0, results, for blades in a rigid-walled channel. In all
cases M = 0.3, k3 = 0, k1 = 10. Serrated blades have c= 1.

the spanwise-averaged pressure recovers the cardioid pattern typically associated
with a straight-edge interaction, and we believe the spanwise average gives the best
indication of the overall noise generated in the channel.

The layout of this results section is as follows. First in § 4.1 we replicate the results
from Envia (1988) for a swept blade in a rigid-walled channel and compare to our
serrated blade in a channel. Second in § 4.2 we present results for the far-field noise
from a serrated edge in a periodic channel, and we discuss how the far-field results
are affected by the channel wall conditions, with attention given to noise generated
by gusts with both zero and non-zero spanwise wavenumbers, k3. By noting the
importance of the spanwise wavenumber on the far-field sound, in § 4.3 we integrate
over a spectrum of k3 values to compare the far-field power spectral density calculated
analytically to that measured experimentally from Narayanan et al. (2015). We use
the analytic results to infer noise-reduction mechanisms for the serrated leading edge
in § 4.4. Finally in § 4.5 we compare the analytic results against numerical predictions.

4.1. Spanwise-averaged far-field pressure in a rigid-walled channel
Here we compare the spanwise average directivity for a serrated blade in a channel
to a swept blade in a channel (known from Envia (1988)) in figure 3. We see that the
swept blade is more effective at reducing the far-field noise than the serration across
all frequency ranges as the gradient of the edges (sweep angle or serration tip-to-root
height) increase. To understand this we consider the individual modes contributing to
the solutions in each case.

In figure 4 we plot the amplitude of the modes, |Bn(θ, z)|, from (3.24), contributing
to the scattered field for k1 = 50, c = 1. We choose a very high frequency as this
permits more scattered modes. We clearly see that the modes for the swept blade
are more oscillatory, thus encounter a greater destructive interference than the modes
for the serrated edge. This is to be expected as the greatest horizontal distance
between points for the swept blade is twice that of the serrated edge (the swept
edge effectively has F(z) = z rather than our definition of (2.1)), and indeed the
effective oscillations seen for the swept blade are twice those seen for the serrated
edge (compare figure 5 to figure 4a). This equivalence between the zeroth modes
does not occur for higher modes, as these account for more complicated leading-edge
geometry effects, and none of the modes are equivalent if k3 6= 0 as the modal
expansions are heavily dependent on k3 (spanwise variations in the flow expanded in
different spanwise bases certainly should not be equivalent). We also note that the
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FIGURE 3. Polar plot of the spanwise-average directivity, 103Da(r, θ) as given by (4.1),
for r= 10, M= 0.3, k3= 0. Large dashed, c= 0; dashed, c= 0.5; dot-dashed, c= 1; dotted,
c= 2; solid, c= 5.

oscillations in the modes decreases with increasing mode number; the zeroth mode is
the most oscillatory. This is to be expected given that for mid-frequency interactions
(such as k1= 5) only the zeroth mode propagates to the far field yet we see a highly
oscillatory directivity for large c. Note that the second mode, B2, for case (i) has a
coefficient of zero (as indeed do all B2(2n+1) for n= 0, 1, . . . ).
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FIGURE 4. Polar plot of the magnitude of the nth mode, 104
|Bn(θ, z)|, as defined in

(3.24), at mid-span point z= 0.5, for M = 0.3, k3 = 0, k1 = 50.
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FIGURE 5. Polar plot of 104
|B0(θ, 0.5)| for M = 0.3, k3 = 0, k1 = 25 for a swept blade

in a rigid channel.
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FIGURE 6. Polar plot of the spanwise-average directivity, 103Da(r, θ) as given by (4.1),
for case (ii) (periodic channel) with r= 10, M= 0.3, k3= 0. Large dashed, c= 0; dashed,
c= 0.5; dot-dashed, c= 1; dotted, c= 2; solid, c= 5.

4.2. Spanwise-averaged far-field pressure in a periodic channel
We now consider the spanwise-average directivity, Da(r, θ), for the periodic case (ii).
In figure 6 we plot Da(r, θ) over the same range of frequency and serration height as
figure 3 when k3 = 0. We see great similarity between the two figures since for low
and mid-range frequencies only the zeroth-order mode propagates to the far field, and
these contributions are the same when k3= 0 (they yield the same E0 coefficients). For
higher frequencies (illustrated by k1 = 10), or when k3 6= 0 we expect to see different
behaviour between cases (i) and (ii) as the En coefficients contributing to the far-field
acoustics are no longer identical.

In figure 7 we compare cases (i) and (ii) when k3 6= 0. For the periodic boundary
conditions of case (ii) a non-zero k3 can cut off all scattered frequencies wn, but this
is not true in the rigid-walled case (i). This cut-off is similar to a spanwise-infinite
straight edge and is therefore not specifically a feature of the serration. Note that when
cut-off the results only include the first six modes. For the cases that are not cut-off,
the periodic serrated edge (case ii), shows the ability to increase noise versus a straight
edge (c = 0) for large k1 and similar sized k3 (figure 7d) when c 6 1; however, a
reduction of noise occurs for c > 2. The walled serration, case (i), sees little noise
reduction in similar circumstances (figure 7c), but only exhibits a consistent noise
increase with increasing c when k3 is significantly larger than k1. We note that for
high k1 and (relative) small k3, such as figure 7(a,b), the periodic serration results in
a slightly greater reduction of far-field noise than the walled serration.

Overall we see that serrations either in a rigid-walled channel or periodic channel
reduce gust interaction noise with increasing serration heights. Some increases of noise
can also occur for low tip-to-root heights.
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FIGURE 7. Polar plot of the spanwise-average directivity, 103Da(r, θ) as given by (4.1),
for r= 10, M= 0.3. Large dashed, c= 0; dashed, c= 0.5; dot-dashed, c= 1; dotted, c= 2;
solid, c= 5.

4.3. Far-field power spectral density for periodic channel
In the previous sections we have considered the far-field noise at fixed k3 values.
In this section we integrate over a spectrum of k3 values to calculate the far-field
power spectral density (PSD) and compare to experimental measurements from
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FIGURE 8. (Colour online) Comparison of far-field PSD for two serrated leading edges.
Solid lines give the analytic results, dashed lines give the experimental measurements.

Narayanan et al. (2015). We use an upstream spectrum defined by

Φ(∞)(k1, k3)=
k2

1/k
2
e + k2

3/k
2
e

(1+ k2
1/k2

e + k2
3/k2

e)
7/3
, (4.2)

where

ke =

√
πΓ (5/6)
Γ (1/3)Lt

, (4.3)

and Lt = 0.6 is the non-dimensionalised length scale of turbulence. The far-field PSD
is thus defined as

PSD=
∫
∞

−∞

|p(r, θ, z)|2Φ(∞)(k1, k3) dk3. (4.4)

Large k3 values have been seen to cut off the scattered field, thus in practice when
numerically evaluating this quantity from the analytic expression for p, we integrate
only over a finite range of k3 corresponding to cut-on modes.

In figure 8 we compare the analytic predictions for the PSD to experimental
measurements from Narayanan et al. (2015), taken at θ =π/2, and mid-span z= 0.5.
The serrations correspond to c = 2, 4. We see very good agreement between the
analytic and experimental results at mid-range frequencies, indicating that the simple
analytic model is capturing all of the key physics behind the noise reductions. We
do not expect good agreement at low frequencies due to the dominance of jet noise
in the experimental measurements. Similarly at very high frequencies trailing-edge
noise dominates the experimental measurements, thus we do not expect agreement
for frequencies beyond approximately 104 Hz.

We note that whilst the straight-edge analytic PSD is non-oscillatory (as expected
for a single scattering location, the leading edge), the serrated PSD results oscillate
with increasing frequency. This indicates that the destructive interference effect
discussed at fixed k3 values for the individual modes, Bn, remains true for a spectrum
of k3 values.

4.4. Noise-reduction mechanisms
The mathematical solution allows us to see that the reduction occurs due to two key
properties. First, the interference between terms in the modal expansion coefficients,
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En(−wn cos θ), which depend on both wavenumber components k1 and k3, and the
tip-to-root ratio of the serration. Generally, destructive interference occurs; however,
constructive interference can also occur at fixed k3 values and in these cases we see
the increase of overall far-field noise. Second, a redistribution energy towards higher
modes for large serration heights.

We illustrate these two properties for periodic case (ii) by considering the modal
expansion terms (for simplicity when k3 = 0) given by

En =

4(−1)ns sin
(

s+ 2nπ

4

)
(s+ 2nπ)(s− 2nπ)

, (4.5)

where s = γ (κ + λ). When evaluating in the far field, we set λ = −wn cos θ , hence
s= k1cβ−2(1−M cos θ). The interference is clearly represented by the oscillatory sine
term, which oscillates with varying (reduced) frequency, k1, and with varying tip-to-
root ratio, c.

For small serration heights, s→ 0, E0→ 1 and En6=0→ 0 (which is what would be
obtained if we did a modal expansion when F(z)= 0 for a straight edge). For large s,
when s�m, Em→ 0, but for s=O(m), Em 6= 0, thus the low En coefficients tend to
zero whilst the higher modes which do not propagate to the far field do not tend to
zero. Thus there is a redistribution of acoustic energy towards cut-off modes, hence
the far-field noise decreases.

This simple formula for the modal terms, (4.5), also allows us to predict the rate of
noise reduction for increasing tip-to-root ratio. In particular, for large serration heights,
c � 1, En ∼ c−1, therefore the far-field noise reduction in decibels is logarithmic,
∼ log10(c), which is as predicted via the numerical and experimental investigations of
Narayanan et al. (2015). This additional noise-reduction mechanism (the redistribution
of energy between modes) ensures that even if a constructive interference is occurring
in the modal expansion terms, the overall combination of the two mechanisms leads
to one observing an overall decrease of noise in the far field (except at low values of
c for which the redistribution is less effective).

The modal coefficients arise due to the expansion of the normal velocity on the
leading edge. If the leading edge were straight (spanwise-infinite), the expansion of a
single-frequency normal velocity would be into a Fourier series with a single viable
mode, eik3ζ , as if we just factored the ζ dependence from the problem. For a serrated
edge, the term eiκγF(ζ ) must be decomposed into the modal basis, which is now not a
simple Fourier series but also dependent on γF(ζ ), and requires multiple modes each
of which have coefficients dependent on γ and k3, allowing for individual modes to
have a destructive interference and a redistribution of energy among different modes.

4.5. Numerical results
In addition to the comparison of the analytic predictions to experimental results
(figure 8), here we compare the analytic results, for convective gust plate interaction,
to numerical results using an adapted method first presented in Turner & Kim
(2017). The original incident field in Turner & Kim (2017) was that of a line vortex
which we anticipate to produce different final results. It is however expected that
given both incident fields represent upstream turbulence, they will yield qualitatively
similar far-field predictions. We shall first use them to obtain numerical results in
the two cases of (i) a walled channel and (ii) a periodic channel; we shall compare
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qualitatively with the analytic predictions. This will show that a range of different
models of turbulence can be used to qualitatively predict the same effects. Different
models of incoming turbulence are beneficial as different approaches (e.g. analytical
or numerical) are best suited to different incident fields. Second, we shall implement a
numerical incident gust model in line with the analytical solution to directly compare
the results for periodic channels. In the following sections we briefly outline the
numerical procedure.

4.5.1. Description of the numerical solution approach
The current numerical solutions are achieved by using the same approach published

recently by Turner & Kim (2017). The adjustments made for this particular work
are to change the leading-edge serration geometry from a sinusoidal to a sawtooth,
to implement the periodic condition on the spanwise boundaries, and to alter the
incident field. The current computation employs full three-dimensional compressible
Euler equations in a conservative form transformed onto a generalised coordinate
system:

∂

∂t

(
Q
J

)
+

∂

∂ξi

(
Fj

J
∂ξi

∂xj

)
=−

c0

Lc

S
J
, (4.6)

where c0 is the ambient speed of sound, Lc is a characteristic length scale (Lc = 10,
i.e. 10 times the serration wavelength in this paper), and the indices i = 1, 2, 3 and
j = 1, 2, 3 denote the three dimensions. In (4.6), the conservative variable and flux
vectors are given by

Q= [ρ, ρu, ρv, ρw, ρet]
T,

Fj = [ρuj, (ρuuj + δ1jp), (ρvuj + δ2jp), (ρwuj + δ3jp), (ρet + p)uj]
T,

}
(4.7)

where ξi = {ξ, η, ζ } are the generalised coordinates, xj = {x, y, z} are the Cartesian
coordinates, δij is the Kronecker delta, uj = {u, v, w}, et = p/[(γ − 1)ρ] + ujuj/2 and
γ = 1.4 for air. In the current set-up, ξ , η and ζ are body-fitted coordinates along the
grid lines in the streamwise, vertical and lateral directions, respectively. The Jacobian
determinant of the coordinate transformation (from Cartesian to body-fitted) is given
by J−1

= |∂(x, y, z)/∂(ξ, η, ζ )| (Kim & Morris 2002). The extra source term S on the
right-hand side of (4.6) is arranged to implement a non-reflecting sponge condition
which is detailed in Kim, Lau & Sandham (2010a,b).

The governing equations given above are solved by using high-order accurate
numerical methods specifically developed for aeroacoustic simulations on structured
grids as discussed in Turner & Kim (2017). The computational domain is a cuboid
that covers 4.5Lc (including the sponge layers) in the upstream, vertical and
downstream directions from the mean leading-edge position. The spanwise length
is equal to the serration wavelength. The domain is filled with a structured grid that
is uniform in the majority of the domain, except in the sponge zone and the local
area nearest to the leading edge. A high grid density is maintained in the acoustic
field in order to accurately capture the high-frequency components (at least eight cells
per gust wavelength and ten cells per acoustic wavelength in the upstream direction at
the frequency of k1= 10 in this paper). In total, 22 million grid cells (768× 448× 64)
are used in the current numerical simulations.

The computation is parallelised via domain decomposition and message passing
interface (MPI) approaches. The compact finite difference schemes and filters used
are implicit in space due to the inversion of pentadiagonal matrices involved,
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which requires a precise and efficient technique for the parallelisation in order
to avoid numerical artefacts that may appear at the subdomain boundaries. A
recent parallelisation approach based on quasi-disjoint matrix systems (Kim 2013)
offering super-linear scalability is used in the present paper. The entire domain is
decomposed and distributed onto 336 separate processor cores (12 × 14 × 2 in the
streamwise, vertical and spanwise directions, respectively). The parallel computation
has successfully been carried out in the IRIDIS-4 computer cluster at the University
of Southampton.

4.5.2. Prescribed spanwise vortex model
The current numerical simulation employs a spanwise vortex model prescribed as an

initial condition, instead of a harmonic vortical gust used for the analytical solution.
This approach has an advantage of having a wide range of frequency responses in
a single simulation as opposed to running multiple separate simulations each for a
single-frequency gust. The vortex model is based on a vector potential function:

ψ(x)=
ε

2π
c0R

( r
R

)3/2
exp

[
1−

1
2

( r
R

)2
]

ez with r=
√
(x− x0)2 + y2, (4.8)

where R is a representative length scale of the vortex and ez is a unit vector in the
spanwise direction. The velocity field is created by taking the curl of the vector
potential, which provides a divergence-free initial condition:

u(x)=∇×ψ(x)=ψ(x)
{

M∞ +
y
R
σ(x) , −

x− x0

R
σ(x) , 0

}
, (4.9)

σ(x)= 1−
3R2

(x− x0)2 + y2
, (4.10)

where x0 is the initial streamwise position of the vortex. The pressure and density are
determined by assuming an isentropic flow with its total enthalpy conserved:

ρ(x)= ρ∞

[
1−

γ − 1
2

(
ψ(x)
c0R

)2
]
, p(x)= p∞

[
ρ(x)
ρ∞

]γ
. (4.11a,b)

The subscript ‘∞’ denotes the free-stream condition. The free-stream Mach number
is set to M∞ = 0.3 for the current simulations. The free parameters R and ε in (4.8)
are set to R = 0.05Lc and ε = 0.08, which results in the largest vertical velocity
perturbation to reach 5 % of the free-stream velocity.

4.5.3. Prescribed gust model
A prescribed periodic gust model is also used in the current numerical simulations

in order to allow for a direct comparison between the numerical results with the
analytic ones in the same scenario. The gust function used in the simulations is
identical to (2.2) where k2 = k3 = A1 = A3 = 0 and A1 = 0.01c0, hence purely vertical
velocity perturbations as a function of k1 (streamwise gust wavenumber). The gust
is introduced into the computational domain through the sponge layer – via the
source term S in (4.6) – in the upstream boundary region, of which the details of
the implementation are described in Kim et al. (2010a,b). Unlike the vortex model
introduced above, the gust model contains only one frequency for each simulation
case, hence is not suitable for discussion of the frequency spectra. It is intended
to compare the sound directivity at certain frequencies between the numerical and
analytical solutions.
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FIGURE 9. Polar plot of the spanwise-average directivity multiplied by frequency,
k1Dn(r, θ), found numerically with incident vortex and r = 10, M = 0.3, k3 = 0, c = 4.
Dashed, k1 = 1; dotted, k1 = 5; solid, k1 = 10.

4.5.4. Comparison of numerical and analytical results
We first compare the numerical results using the original vortex model from case (i)

to those from case (ii) in figure 9, for fixed serration height with c= 4, for varying
frequencies, k1 = 1, 5, 10. We define Dn(r, θ) as the equivalent spanwise-average
directivity to the analytically defined Da(r, θ), and multiply by the frequency to
ensure details at k1 = 10 can be viewed. It is clear that both case (i) and case (ii)
show very similar acoustic directivities in figure 9 for k1= 1, 5, which is as predicted
analytically by comparing the results in figures 3 and 6. Through the analytic solution
we are able to attribute this to the fact that at these frequencies there is only one
scattered mode, and for zero spanwise wavenumber these modes are identical for
cases (i) and (ii). For k1= 10 the directivities differ, also as predicted by the analytic
results. Evident too in figure 9 is the trend of increasing k1 increasing the modulation
of the far field, which is found analytically.

We next directly compare the numerical and analytical directivity patterns for
incident gusts on a logarithmic scale by plotting 10 log10(108Dn,a(r, θ)) in figure 10.
The value of 108 is included to ensure all plotted values are positive and visible. We
see good agreement between the results, but some discrepancies at larger frequencies
which we attribute to the nonlinear effects present in the numerical model; it is known
from Turner & Kim (2017) that horseshoe vortices form at the leading-edge serration
when exposed to an unsteady incident field, and these effects only occur for non-zero
serration heights. These horseshoe vortices modify the strength of the acoustic sources
at the tip and root of the serration, which in turn causes the tip-and-root interference
to be less effective (and therefore numerically there is a disappearance of the perfect
cancellations present at certain observer angles in the analytic solution of the far-field
pressure). This nonlinear effect is not present in the linear analytic model. These
nonlinear effects become larger for larger values of k1 and c.

Finally, to compare the two results over a wider range of frequencies, we now
consider the far-field sound pressure level (SPL) measured in dB averaged over a
cylinder at radius r= 10, as a function of reduced frequency k1. This is defined as

SPL= 10 log10

(
1
π

∫ π

0

∫ 1

0
|p(10, θ, z)|2 dz dθ

)
. (4.12)

We integrate over θ ∈ [0, π] to capture all oscillatory effects of the far-field
directivity which we know are affected by nonlinear features in the numerical results.
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FIGURE 10. (Colour online) Polar plot of the (scaled) logarithmic spanwise-average
directivity, 10 log10(108Dn,a(r, θ)) calculated numerically (solid) and analytically (dashed),
for different serration height parameters: c= 0 (black), c= 2 (red), c= 4 (blue).
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FIGURE 11. (Colour online) Comparison of the k3 = 0 SPL calculated numerically for a
line vortex (solid) and analytically for an incident gust (dashed), for c= 0 (black), c= 2
(red), c= 4 (blue), c= 8 (magenta).

Analytically we restrict ourselves to k3 = 0 (and thus do not include a turbulent
spectrum). We compare to the numerical line vortex model which has no spanwise
variation in the incident field. We see very good agreement between the analytic
and numerical results in figure 11. The very low frequencies do not agree well as
the method of steepest descents required k1r� 1, and this assumption breaks down
for small k1. As expected, the highest c results (c = 8) compare least favourably,
particularly at high frequencies, again due to the influence of nonlinear effects
accounted for in the numerical model.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

58
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.583


534 L. J. Ayton and J. W. Kim

5. Conclusion
This paper has presented an analytic solution for the sound generated by a

convective gust interacting with a flat plate with a serrated edge. The plate is in
a channel with either rigid walls, or a periodic condition such that the result mimics
that of a spanwise semi-infinite blade with leading-edge serration. The solutions
follow the method used by Envia (1988) who considered a swept blade in a channel
with rigid walls and employed the Wiener–Hopf technique.

The solutions for rigid and periodic walls both predict overall a decrease in
far-field acoustic pressure as the height of the serration in increased; however,
for low-frequency incident gusts the reduction of noise is much smaller than
at higher frequencies, as is known from experimental, numerical and analytical
results (Haeri et al. 2015; Chaitanya et al. 2016; Lyu & Azarpeyvand 2017). There
is little difference between the rigid or periodic cases when the gust has zero
spanwise wavenumber, k3 = 0, indicating the key parameters are the gust streamwise
wavenumber, k1, and the greatest distance between points along the leading edge,
namely the tip-to-root distance, c/2. All of these features are also replicated in
numerical results. The numerical method shows good agreement for the far-field SPL
versus frequency, k1, for a range of serration heights, c. This indicates that the key
noise-reduction mechanisms can be appropriately modelled by the simple analytical
solution which uses an incident gust.

The analytical solution relies on a modal decomposition of the incident and
scattered fields; however, this is not simply a Fourier series expansion, but a modal
expansion which depends intrinsically on the leading-edge geometry. Because of
this choice of modal basis, the expansion coefficients can be calculated analytically,
thus the acoustic pressure can be computed for any parameters incredibly quickly:
spanwise-average directivities can be plotted in approximately 6 s on a standard 4-core
desktop computer (via Mathematica). The modal coefficients also shed light on the
mechanisms behind the noise reduction, as we see they lead to two key features. First,
the coefficients are oscillatory, indicating interference in the acoustic pressure in the
far field. This interference is commonly destructive and reduces the scattered noise,
but in some cases of non-zero k3 has been seen to increase the scattered noise (i.e.
is constructive). Second, as the tip-to-root distance of the serration, c/2, increases,
the expansion coefficients vary, with lower modes tending to zero. Higher modes do
not tend to zero but are cut-off. Thus increasing the tip-to-root distance redistributes
acoustic energy from the lower (cut-on) modes to higher (cut-off) modes, hence
significant far-field noise reductions can be achieved for large tip-to-root distances.
This second noise-reduction mechanism means that even if a constructive interference
were to occur, an overall noise reduction would be observed in the far field.

The rate at which the cut-on modes decrease with increasing serration height is
proportional to 1/c, thus it is predicted that as c increases the reduction of noise
in decibels is logarithmic, ∼log10(c), as alluded to in Narayanan et al. (2015). A
logarithmic noise-reduction dependency indicates that continuing to increase the
tip-to-root serration height lessens the level of noise reduction. Therefore, since
increasing the tip-to-root height decreases aerodynamic performance, for a given
application of serrated leading edges, it is likely that an optimum serration height
yielding a significant noise reduction could be determined for a prescribed limited
decrease of aerodynamic performance. However obtaining further noise reductions,
whilst possible by further increasing the tip-to-root height, would be too costly on
aerodynamic performance. Other leading-edge designs, such as the hook structures
from Chaitanya et al. (2016) (comprising a sawtooth serration with an additional
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v-shaped cut in the root), could allow the same tip-to-root ratio as a simple serration,
but greater aerodynamic efficiency due to a greater leading-edge surface area.
Therefore much work is still needed to consider more complicated leading-edge
geometries and the potential for optimal noise reduction with minimal aerodynamic
impact.

Acknowledgements
The authors would like to acknowledge the support from EPSRC Fellowship

EP/P015980/1 (L.A.). Also, the authors would like to thank EPSRC for the
computational time made available on the UK supercomputing facility ARCHER
via the UK Turbulence Consortium (EP/R029326/1), and IRIDIS-4 at the University
of Southampton (J.W.K.) for the completion of the work.

Appendix A. Expansion coefficients, En(λ)

The expansion coefficients are obtained by

En = ε
−1
n

∫ 1

0
eiκγF(ζ )+ik3ζZn(λ̄, ζ ) dζ , (A 1)

where the overbar denotes the complex conjugate, and εn are normalisation coefficients

εn =

∫ 1

0
Zn(λ, ζ )Zn(λ̄, ζ ) dζ . (A 2)

When Zn is given by (3.7) (case i),

E0 =
2eik3/2

(k3 − s)(k3 + s)

(
(k3 − s) sin

[
k3

2

]
+ 2s sin

[
1
4
(k3 − s)

])
, (A 3)

En =
e−(is/4)

((k3 + s)2 − n2π2)((k3 − s)2 − n2π2)

×

[
2eis/4(1− (−1)neik3)(k3 + s)((k3 − s)2 − n2π2)

+ 4is(k2
3 − s2

+ n2π2) cos
[nπ

4

]
(ei/4(k3+2s)

− (−1)ne3ik3/4)

+ 8k3nπs sin
[nπ

4

]
(ei/4(k3+2s)

+ (−1)ne3ik3/4)
]
, (A 4)

where s= γ (κ + λ).
When Zn is given by (3.8) (case ii),

E0 =
2eiq/2

s2 − q2

(
2s sin

[
s− q

4

]
+ (s− q) sin

[q
2

])
, (A 5)

En =
−ie−is/4

(s+ 2nπ− q)(s− 2nπ+ q)
(2inse3iq/4(−1+ ei(s+2nπ−q)/2)

+ eis/4(eiq
− 1)(s+ 2nπ− q)), (A 6)

where q = k3(1 + α). We note that all singularities in these En are removable, thus
there are no poles.
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