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KRULL DIMENSION IN MODAL LOGIC
GURAM BEZHANISHVILL, NICK BEZHANISHVILL JOEL LUCERO-BRYAN, AND JAN VAN MILL

Abstract. We develop the theory of Krull dimension for S4-algebras and Heyting algebras. This leads
to the concept of modal Krull dimension for topological spaces. We compare modal Krull dimension
to other well-known dimension functions, and show that it can detect differences between topological
spaces that Krull dimension is unable to detect. We prove that for a 7-space to have a finite modal Krull
dimension can be described by an appropriate generalization of the well-known concept of a nodec space.
This, in turn, can be described by modal formulas zem,, which generalize the well-known Zeman formula
zem. We show that the modal logic S4.Z,, := S4 + zem, is the basic modal logic of 7 -spaces of modal
Krull dimension < 7, and we construct a countable dense-in-itself w-resolvable Tychonoff space Z, of
modal Krull dimension n such that S4.Z, is complete with respect to Z,. This yields a version of the
McKinsey-Tarski theorem for S4.Z,,. We also show that no logic in the interval [S4,,, |, S4.Z,,) is complete
with respect to any class of 7 -spaces.

§1. Introduction. Topological semantics of modal logic was pioneered by Tsao-
Chen [45], McKinsey [36], and McKinsey and Tarski [37]. The celebrated
McKinsey-Tarski theorem states that if we interpret modal diamond as closure
and hence modal box as interior, then S4 is the modal logic of any dense-in-
itself separable metric space. Rasiowa and Sikorski [42] showed that separability
can be dropped from the assumptions of the theorem. However, dropping the
dense-in-itself assumption may result in logics strictly stronger than S4. A complete
description of when a modal logic is the logic of a metric space was given in [5],
where it was shown that such logics form the chain:

S4 C S4.1 C S4.Grz C --- C S4.Grz,, C --- C S4.Grz,.

Here S4.1 = S4 + 0O p — OUp is the McKinsey logic, S4.Grz = S4 + O(0(p —
Op) — p) — p is the Grzegorczyk logic, and S4.Grz, = S4.Grz + bd,,. where

bd; = OLp1 — p1.
bdn+1 = Q(Dpn+1 A _‘bdn) — pn+1.
An important generalization of the class of metric spaces is the class of Tychonoff
spaces. It is a classic result of Tychonoff that these are exactly the spaces that up

to homeomorphism are subspaces of compact HausdorfT spaces (see, e.g.. [19,
Theorem 3.2.6]). Because of this important feature, the class of Tychonoff spaces is
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one of the most studied classes of spaces in topology. For a Tychonoff space X, it is
desirable to know the modal logic of X. This is a challenging open problem, and in
this paper we obtain some results in this direction.

In determining the modal logic of a Kripke frame §. the depth of § plays an
important role. It is well known (see. e.g.. [10. Proposition 3.44 and Theorem 5.17])
that the depth of an S4-frame § is < » iff § validates bd,,, and that S4,, := S4 4 bd,,
is the logic of the class of all S4-frames of depth < n. By Segerberg’s Theorem (see.
e.g., [10, Theorem 8.85]), S4,, and all its extensions are Kripke complete and have
the finite model property.

In this paper we present a topological analogue of the depth of an S4-frame.
This leads to a new concept of dimension in topology, which is closely related to
the concept of Krull dimension in algebra and geometry (see. for example, [18,
Chapter 8]). We recall that the Krull dimension of a commutative ring R is defined
as the supremum of the lengths of finite chains of prime ideals of R. Since the
spectrum Spec(R) of prime ideals of R topologized with the Zariski topology is
a spectral space, where the inclusion on prime ideals is the specialization order
of the Zariski topology, we can define the Krull dimension of a spectral space X
as the supremum of the lengths of finite chains in the specialization order of X.
By Stone duality [44], spectral spaces are dual to distributive lattices, which paves
the way to defining the Krull dimension of a distributive lattice L as the supremum
of the lengths of finite chains in (Spec(L), C). where Spec(L) is the Stone dual of L.
For different characterizations of the Krull dimension of distributive lattices see
[8.11,12,22,23] and the references therein.

If we define the Krull dimension of an arbitrary topological space X by means of
the specialization order of X, then to quote Isbell [29], the result is “spectacularly
wrong for the most popular spaces, vanishing for all non-empty Hausdorff spaces;
but it seems to be the only dimension of interest for the Zariski spaces of algebraic
geometry.” Isbell remedied this by proposing the definition of graduated dimension.
In this article we propose a different approach, which has its roots in modal logic.
This leads to the concept of modal Krull dimension. As we will see, this notion is
more refined. For example, every nonempty Stone space has Krull dimension and
graduated dimension 0. On the other hand. for each n (including co). there is a
Stone space X such that the modal Krull dimension of X is n. Thus, modal Krull
dimension provides a more refined classification of Stone spaces, and this extends
to spectral spaces and beyond.

We start by developing the Krull dimension for S4-algebras (also known as
closure algebras [37]. topological Boolean algebras [42]. and interior algebras [7]).
An S4-algebra 2 has Krull dimension < # if the spectrum of ultrafilters of 2 has
depth < n (see Definition 2.4). Since the spectrum of ultrafilters of 2 has depth < n
iff 2 validates bd, and S4, has the finite model property, it follows that S4,, is the
logic of the class of all S4-algebras of Krull dimension < 7.

We introduce the modal Krull dimension of a topological space X as the Krull
dimension of the S4-algebra of the powerset of X. We generalize the well-known
concept of a nodec space to that of an n-nodec space, and prove that if X is a
T)-space, then the modal Krull dimension of X is < n iff X is n-nodec. As was
shown in [3], the modal logic of the class of nodec spaces is the well-known Zeman
logic S4.Z. For each n > 0, we generalize the Zeman logic S4.Z to the n-Zeman
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logic S4.Z.,,, and show that S4.Z, is a proper extension of S4,.;. From this we
derive that S4,,.,; and indeed any logic in the interval [S4,.1.S4.Z,) is topolog-
ically incomplete for any class of T)-spaces. Therefore, there are infinitely many
modal logics that are topologically incomplete with respect to Tychonoff spaces.
Of course, all these logics are Kripke complete by Segerberg’s Theorem, and hence
also topologically complete with respect to classes of topological spaces that are
not 7 (indeed do not satisfy any separation axioms).

Consequently, S4.Z,,, and not S4,,,, is the basic logic of Tychonoff spaces of
modal Krull dimension < n. Moreover, it turns out that a version of the McKinsey-
Tarski theorem holds for S4.Z,,. Namely, for » > 1, we prove that S4.Z,, is the
logic of a countable dense-in-itself w-resolvable Tychonoff space Z,, of modal Krull
dimension n (the case of n = 0 is trivial since S4.Z, is the logic of any discrete
space).

This is technically the most challenging result of the paper. It is proved by identi-
fying a single S4-frame Q,,, | whose logic is S4.Z,,, and constructing Z,, so that Q.|
is an interior image of Z,. Since the depth of 9,1 is n + 1, this forces the modal
Krull dimension of Z, to be n: and since there is no bound on the cluster size of
Q,.11. this forces Z, to be w-resolvable. As Z,, is countable, we obtain that S4.Z,, has
the countable model property with respect to Tychonoff spaces, and this is the best
we can do since finite Tychonoff spaces are discrete, and hence S4.Z,, cannot have
the finite model property with respect to Tychonoff spaces. A complete description
of extensions of S4.Z, that are complete with respect to Tychonoff spaces remains
an open problem.

At the end of the paper, we utilize a close connection between S4-algebras and
Heyting algebras to develop the Krull dimension for Heyting algebras, and conclude
with a brief comparison of modal Krull dimension to other well-known topological
dimension functions.

§2. Krull dimension of S4-algebras. We start by recalling that Lewis’ well-known
modal system S4 is the least set of formulas in the basic modal language containing
the classical tautologies, the formulas

e [Ip — p,

o [Ip — Ulp,

e O(p = ¢q) — (Op — Og).
and closed under modus ponens W, substitution W, and necessita-
tion DL;.

Algebraic models of S4 are pairs 21 = (4, [1), where 4 is a Boolean algebra and
(0: A — Ais a unary function satisfying:

Oa < a,

Oa < 0O0a,

O(a Ab) =Oa ADOD,

a1 =1.

As usual, the dual of O is defined as 0a = —O—a foreach a € 4.

These algebras were introduced by McKinsey and Tarski [37], in the ¢ signature,
under the name of closure algebras. The name is motivated by the fact that ¢ gen-
eralizes the definition of closure in a topological space. They are also known under
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the name of topological Boolean algebras [42] and interior algebras [7]. Nowadays it
is common to call them S4-algebras.

The modal language is interpreted in an S4-algebra 21 by assigning to each
propositional letter an element of 2, interpreting the classical connectives as the
corresponding operations of the Boolean reduct of 2(, and the modal box as the
unary function [J. A modal formula ¢ is valid in 2, written 2 = ¢, provided ¢ is 1
under all assignments of the letters, and ¢ is satisfiable in 2 provided — is not valid
in 2. We say that ¢ is valid whenever ¢ is valid in every S4-algebra. It is well known
that ¢ is a theorem of S4 iff ¢ is valid.

Typical examples of S4-algebras come from topological and relational semantics
for S4. For a topological space X, let Iy and Cy be interior and closure in X,
respectively. When it is clear from the context, we drop the subscripts. It is easy
to see that the powerset algebra Ay = (p(X).Iy) is an S4-algebra, where p(X)
is the powerset of X. By the McKinsey-Tarski representation theorem [37], every
S4-algebra is represented as a subalgebra of 2y for some topological space X.

We recall that a Kripke frame is a pair § = (W, R), where W is a set and R is a
binary relation on W. If R is reflexive and transitive, then § is called an S4-frame.
It is well known that S4-frames provide relational semantics for S4, hence the name.
Given an S4-frame § = (W, R), w € W,and 4 C W, let

o Rlw]={ve W |wRv},

o [rd ={we W |R[w] C A4}

o OrA={w e W |Rw]NA# }.

Then the powerset algebra Az = (p(W ), Og) is an S4-algebra, and every S4-algebra
is represented as a subalgebra of 23 for some S4-frame § (see [20,31,34]).

Every S4-frame § = (W, R) can be thought of as a special topological space as
follows. Call U C W an R-upset if w € U implies R[w] C U (R-downsets are
defined dually). Let 7z be the collection of all R-upsets of §. Then 73 is a topology
on W in which closure is ¢ and every w € W has the least open neighborhood
R[w]. Such topological spaces are called Alexandroff spaces, and can alternatively
be described as the topological spaces in which intersections of arbitrary families of
opens are open. Conversely, every topological space X has its specialization order
R defined by setting xRy iff x € Cy({y}). It is easy to see that R is reflexive and
transitive, and so (X, R) is an S4-frame. Moreover, if X is Alexandroff, then opens in
X are exactly the R-upsets, and hence S4-frames are in one-to-one correspondence
with AlexandrofT spaces (see. e.g.. [1. p. 238]).

In [20], Esakia put together Stone duality for Boolean algebras with relational
representation of S4-algebras to obtain a full duality for S4-algebras. By Esakia
duality, the categories of S4-algebras and Esakia spaces are dually equivalent.!

DEFINITION 2.1. A Stone space is a zero-dimensional compact Hausdorff space,
and an Esakia space is an S4-frame § = (W, R) such that W is equipped with a
Stone topology satisfying

e R[w]is closed,

e U clopen implies (g U is clopen.

! An alternative duality for S4-algebras can be developed by means of descriptive S4-frames (see [27].
[10. Chapter 8]).
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The dual Esakia space of an S4-algebra 2l is the pair A, = (W, R). where W is
the Stone space of 4 and

wRv iff (Va € A)(da € w = a € v).

The dual S4-algebra of an Esakia space § = (W,R) is the S4-algebra F* =
(Clop(W).Og). where Clop(W) is the Boolean algebra of clopen subsets of W.
Then B : A — A" and e : §F — F*, are isomorphisms, where

Bla)={we W |aecwtande(w)={U € Clop(W) | w € U}.

In the finite case, the topology on an Esakia space becomes discrete, and we identify
finite Esakia spaces with finite S4-frames.

The modal language is interpreted in an Esakia space § by interpreting the modal
formulas in the dual S4-algebra §*. A modal formula ¢ is defined to be valid
(resp. satisfiable) in § exactly when ¢ is valid (resp. satisfiable) in §*. If ¢ is valid
in §, then we write § F .

Let 2 be an S4-algebra and 2. be the Esakia space of 2(. As is customary, we
adopt topological terminology and call a € 2 closed if a = Qa, open if a = Oa,
dense if Qa = 1. and nowhere dense if JOa = 0. The following is well known (and
easy to see):

a is closed iff B(a) is a clopen R-downset in 2.,
a is open iff B(a) is a clopen R-upset in 2L,
ais denseiff Orfa) = W,

a is nowhere dense iff Oz Qrp(a) = @.

The relativization of 2 to a € 20 is the S4-algebra 2(, whose underlying set is the
interval [0, ¢]. the meet and join in 2, coincide with those in 2, the complement
of b € 2, is given by a — b, the interior by ,b = a A J(a — b), and the closure
by Oub = a N Ob. If 24 = 2y is the powerset algebra of a topological space X and
Y C X, then the relativization of 2A to Y is the powerset algebra 2y of the subspace
Y of X .2 The relativization 2, is realized dually as the restriction of R to the clopen
subspace f(a) of .. In order to describe dually a connection between nowhere
dense elements and relativizations, we recall the notion of an R-maximal point.

DEFINITION 2.2, Let § = (W, R) be an S4-frame, U C W, and w € U. Then w
is an R-maximal point of U provided wRu and u € U imply uRw. We denote the
set of R-maximal points of U by maxz(U). If U = W, then we write maxz ().

It is well known (see, e.g.. [21. Section II1.2]) that in an Esakia space § = (W, R).

the set maxz(F) is a closed R-upset, and for each w € W there is v € maxg(gF)
such that wRwv.

LEMMA 2.3. Let A be an S4-algebra and 2L, be its Esakia space. Suppose a € 2
and d € U,. Then d is nowhere dense in U, iff p(d) N maxgf(a) = @, where Q is
the restriction of R to B(a).

Proor. Since 2, is an Esakia space and f(a) is clopen in . it is well known
(see, e.g.. [21, Section I11.2]) that § = (B(a).Q) is also an Esakia space.
As maxgfi(a) is a Q-upset of f(a). the condition f(d) N maxpf(a) = @

2Despite subscript being used to denote both a relativization of an S4-algebra 2( and the powerset
algebra of a space X . there is no ambiguity when 20 = 2(y because (U y)y = y.
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is equivalent to Qp[f(d)] N maxpf(a) = @, which in turn is equivalent to
Oo0olB(d)] N maxpf(a) = @. Since TpOp[f(d)] is a Q-upset of f(a). the last
condition is equivalent to Lo Og[f(d)] = @. Therefore, f(d) N maxgf(a) = @ iff
B(0,0.d) = @, which is equivalent to d being nowhere dense in 2A,. o

For an S4-frame § = (W, R). we write w Rv provided wRv and —(vRw). We call
a finite sequence {w; € W | 0 < i < n} an R-chain provided wiﬁwm forall i, and
define the length of the R-chain {w; € W | 0 < i < n} to be n — 1. Note that we
allow the empty R-chain which has length —1.

DEFINITION 2.4. Let 2l be an S4-algebra. Define the Krull dimension kdim(2() of
2 as the supremum of the lengths of R-chains in 2. If the supremum is not finite,
then we write kdim(2() = oo.

The definition of the length of an R-chain that we have adopted has its roots in
algebra. Modal logicians have used a similar concept of depth of a frame § = (W, R).
But in modal logic the length of an R-chain {w; € W | 0 < i < n} is typically
defined to be n. This notion of length is always one more than the notion of length
in algebra. The difference is whether we count the number of R-links in the R-chain
(as algebraists do) or the number of points in the R-chain (as modal logicians do).
Therefore, the Krull dimension of 2l is one less than the depth of 2, (provided the
Krull dimension of 2 is finite). Thus, kdim(2() = » iff depth(2(,) = n+1forn € w.

The following well-known lemma (see. e.g.. [10. Proposition 3.44]) measures the
bound on the depth of 2., and hence the bound on the Krull dimension of 2, by
means of the modal formulas bd,,.

LeMMA 2.5. Let 2 be a nontrivial S4-algebra and n > 1. Then depth(2,) < n iff
A E bd,.

It is relatively easy to describe when kdim(2() < 0. Recall that 2l is trivial if 0 = 1,
it is discrete if [ is the identity function, and it is an S5-algebra (or monadic algebra)
if a < OOa for all a € A. It is well known that 2 is trivial iff 2, = &, that 2
is discrete iff R is the identity, and that 2( is an S5-algebra iff R is an equivalence
relation.

LEmMMA 2.6. Let 2 be an S4-algebra.

1. kdim(2l) = —1iff A is the trivial algebra.

2. kdim(2() < 0 iff 2 is an S5-algebra.

3. kdim(21) = 0 iff 2 is a nontrivial S5-algebra.
4. If Ais discrete, then kdim(2) < 0.

Proor. (1) Suppose 2 is trivial. Then 2, = @. so the only R-chain in 2, is
the empty chain whose length is —1. Therefore, kdim() = —1. Conversely, if
kdim(2() = —1, then every R-chain in 2, has length —1. and hence is the empty
chain. Thus, 2, = &, and so 2l is the trivial algebra.

(2) Suppose 2l is an S5-algebra. Then R is an equivalence relation, so there are
no w.v € A, with wRv. Therefore, every R-chain in 2(, has length < 0. Thus,
kdim(2() < 0. Conversely, suppose kdim(2() < 0. Then every R-chain in 2, has
length < 0. Therefore, if xRy, then it cannot be the case that —=(yRx). Thus, R is
symmetric, and so 2l is an S5-algebra.

(3) This follows from (1) and (2).

(4) This follows from (2) since every discrete algebra is an S5-algebra. -
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REMARK 2.7.

1. Since not every S5-algebra is discrete, the converse of Lemma 2.6(4) does not
hold.

2. Suppose 2 is a subalgebra of 2y for some topological space X . If 2 consists
of clopen subsets of X, then 2 is discrete, and hence kdim(2() < 0.

By Lemma 2.6, whether the Krull dimension of 2( is < 0 can be determined
internally in 2, without accessing ... The goal of the remainder of this section is to
develop a pointfree description of the Krull dimension of 2 that does not require
the Esakia space of 2. In fact. we will prove that kdim(2() can be defined recursively

as follows.
DEFINITION 2.8.  The Krull dimension kdim(2() of an S4-algebra 2l can be defined
as follows:
kdim(2() = —1 if 2 is the trivial algebra,
kdim(2) <n if kdim(2(;) < n — 1 for every nowhere dense d € 2.
kdim(2) =n if kdim(2) < n and kdim() £ n — 1,

kdim(2) = co  if kdim(A) £ nforanyn = —1.0.1.2.....

To show that Definitions 2.4 and 2.8 are equivalent requires some preparation. For
now we refer to Definition 2.4 as the external Krull dimension and to Definition 2.8
as the internal Krull dimension of .

LemmA 2.9. Let 2 be an S4-algebra. a € A, and d € A,. If d is nowhere dense in
A, . then d is nowhere dense in .

ProoFr. Set u = OOd. Then
dANu=dAN00d <aNOOd <aANO(a — Od)
=aA0(a—= (andd)) =0,0.d =0.
Therefore, d < —u. Since u is open, —u is closed, so Od < —u, givingu A Od = 0.

Thus, u = 0, and hence d is nowhere dense in 2. -
DerINITION 2.10. Let n > 0 and ay.....,a,4 € 2. Define dy.....d,.1 and
€. . ...ey recursively as follows, where 0 < i < n:
dy=1,

ei = 0(0ai1 N d;).
diy1 = e —ajy.
Let n > 1. It is straightforward to see that if we interpret p; as a; for 1 <i < n,
then the formula —bd,, is interpreted as d,,, and the antecedent of bd, as e, ;.

LEMMA 2.11. Let n > 0, 2 be an S4-algebra, a;. ... .a,.1 € A, and dy. ..., d,
and ey, . . . . e, be defined as in Definition 2.10.

1. ey is nowhere dense in 2.
2. ejy is nowhere dense in U, for 1 <i < n.

ProoF. (1) Since ey = OOa is closed, we have
O00d; = 0O0(ey — a)) < O(eg — Oa;) = ey — O0a; < eg — ep = 0.

Therefore, d; is nowhere dense in 2(. This yields that Ca, A d) is nowhere dense in
2. Thus, e; = ¢(0as A dy) is nowhere dense in 2.
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(2) For 1 <i < n, we have ¢;11 < Od;j11 < Qe; = e;, and so0 ¢;41 € 2A,,. Since
eiv1 = O(0aj 2 Nd;y1), itis sufficient to show Cla; 2 A d; 1 is nowhere dense in 2., .
Because ¢; is closed in 2, we have (,,a = Qa for all a < ¢;. To see that Ja; 1 Ad;+
is nowhere dense in 2,,. let u be open in A, with u < O(a;o A diyq). We set
u' = u AOa;;y. Then u' is open in 2, and v’ < a;.1, so

u' ANOaja Ndipr = u' AOaji A (e — ajz)
<u' A(ej—aip) =u' — a1 =0.

Therefore, u’ A O(da; o A diy1) = 0. This together with v’ < u < O(Qaj Adigr)
yields that #’ = 0. Thus, u A Oa; ;1 = 0, and so u Aa; 1y Ad; = 0. But Oa; 1 Ad;
is dense in 2,,, giving that u = 0. Consequently, (a; 1> A d;+; is nowhere dense
in 2. B

The next lemma concerns the internal Krull dimension of an S4-algebra.
LEmMMA 2.12. Let A be an S4-algebra.

1. Fora € A, we have kdim(2(,) < kdim(2().
2. kdim(2) < n iff kdim(21,) < n — 1 for every closed nowhere dense d € 2.

ProoF. (1) If kdim(2A) = oo, then there is nothing to prove. Suppose
kdim(2() = n. Let d € 2, be nowhere dense in 2l,. By Lemma 2.9, d is nowhere
dense in 2. Since kdim(2() = n, we see that kdim(2(;) < n— 1. Because (2, )y = 4.
we conclude that kdim(2(,) < n. Thus, kdim(2(,) < kdim(2().

(2) One implication is trivial. For the other, let d be nowhere dense in 2.
Then Od is closed and nowhere dense in 2. Therefore, kdim(%lod) < n-—1.
Thus, (1) yields kdim(2l,;) = kdim((2¢4)s) < kdim(R(y4) < n — 1. Consequently,
kdim(21) < n. —|

We next recall the notion of an Esakia morphism between Esakia spaces.

DEFINITION 2.13. Suppose § = (W, R) and & = (V, Q) are Esakia spaces.

1. Amap f : W — V is a p-morphism provided R[f (w)] = f(R[w]) for all
we Ww.
2. An Esakia morphism is a continuous p-morphism f : W — V.

It is well known (see. e.g.. [21, Section 1V.3]) that Esakia morphisms correspond
dually to S4-algebra homomorphisms; thatis, 4 : A — 9B is an S4-algebra homo-
morphism iff 4, : B, — A, is an Esakia morphism, where i, (w) = A~ (w).
Moreover, A is 1-1 (resp. onto) iff /2, is onto (resp. 1-1).

We call an S4-frame § = (W, R) rooted if there is r € W with W = R[r]. We
refer to r as a root of §. In general, r is not unique. Let § = (W, R) be a finite rooted
S4-frame. It is well known [24, 30] that with § we can associate the Jankov—Fine
Jformula yz, which satisfies the following property:

x5 1s satisfiable in an Esakia space & iff there is an Esakia space €
and Esakia morphisms § < ¢ % & such that f isonto and g is 1-1.

Let §, = (W,.R) be the n-element chain, where W, = {wo,...,w,_1} and
w;Rw; iff j < i: see Figure 1.
We are ready to characterize the internal Krull dimension of an S4-algebra.
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I
w1
I Wp—2
Wp—1
FIGURE 1. The n-element chain.

THEOREM 2.14. Let 2 be a nontrivial S4-algebra and n > 1. The following are

equivalent:
1. kdim(®) <n —1.
2. There does not exist a sequence cy, ..., c, of nonzero closed elements of 21 such
that ¢y = 1 and c;11 is nowhere dense in 2, for eachi € {0,...,n — 1}.

3. 2 F bd,.

4. depth(2A,) < n.

5. AF AT i1

6. S is not isomorphic to a subalgebra of a homomorphic image of .
7

. There do not exist an Esakia space & and Esakia morphisms §, PN A
such that f is onto and g is 1-1.
8. &1 is not isomorphic to a subalgebra of .
9. Fu+1 is not an image of A under an onto Esakia morphism.

Proor. (1)=(2): Induction on n. Let n = 1. Since 2 is nontrivial, kdim(2() < 0
yields kdim(2() = 0. Therefore, for any nowhere dense d in 2. we have
kdim(2;) = —1, so 2y is trivial, and hence d = 0. Thus, 2 has no nonzero
closed nowhere dense elements, as required. Next let n > 1 and kdim(2() < n — 1.
Suppose there is a sequence ¢y, ..., ¢, of nonzero closed elements of 2 such that
¢o = 1 and ¢, is nowhere dense in 2, foreachi € {0,...,n — 1}. Thency,....¢c,
is a sequence of nonzero closed elements of 2., such that ¢;+; is nowhere dense in
2., foreachi € {1,...,n—1}. By the induction hypothesis, applied to 2., , we have
kdim(2l.,) > n — 1. Since ¢; is nowhere dense in 21 with kdim(2(.,) > n — 1, we
conclude that kdim(2() > n. This contradicts (1).

(2)=(3): If A ¥ bd,,. then there exist a;.....a, € 2 such that d,, # 0. where
d, is defined as in Definition 2.10. Put a,.; = 1 and let ey. . ... e, be defined as in

Definition 2.10. Observe that
en = O(Dan+l A dn) = O(Dl A dn) =0d, > d, 7£ 0.

Setco = 1land ¢; = ¢; for 1 < i < n. Then cy...., ¢p 18 a sequence of nonzero
closed elements in 2 such that ¢p = 1 and, by Lemma 2.11, ¢;;; is nowhere dense
in%A, foreachi € {0,...,n —1}.

(3)=-(1): Suppose that kdim(A) > n — 1. We define a decreasing sequence
by, ...,b, of closed elements in 2 such that b;;; is nowhere dense in 2, and
kdim(2p,,,) > (n—1)—(i+1). Set by = 1. If b; is already defined with kdim(2,,) >
(n—1)—1i,then by Lemma 2.12(2), there is a closed nowhere dense b; 1 € 2, such
that kdim(2,,,,) > (n — 1) — (i 4+ 1). Noting that kdim(2,,) > (n — 1) —n = —1,
it follows that 2, is not trivial, and hence b, # 0.

Let a; = —b; for1 < i < n. Let dy.....d, be defined from ay,....a, as in
Definition 2.10. We show that b; = d; foreach0 <i < n.Ifi = 0,thenby = 1 = dj.
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Next suppose that b; = d; for 0 < i < n, and show that b, = d;. Since a; is
open in 2, b;.; is nowhere dense in 2(;,, and b; is closed in 2, we have
biv1 = bi ANbit1 = O(bj — biy1) Abiyy = O(bi — biy1) — (—bit1)
= Oaiv1 Abi) — aipr = O(0aj Ad;) — aip) = digy.
Thus, d, = b, # 0. Since —bd, is interpreted in 2 as d,, we conclude that 2

refutes bd,,.
(3)<>(4)<>(8): This is well known: see Lemma 2.5 and [35, Lemma 2].
(5)<(7): This is the Jankov—Fine Theorem.
(6)<>(7): This follows from Esakia duality.
(6)=-(8): This is obvious.
(8)«<>(9): This follows from Esakia duality.
(4)=(7): This is obvious since 1-1 and onto Esakia morphisms do not increase the

depth. B

REMARK 2.15. Theorem 2.14 can be extended to include the trivial algebra by
letting bdy = L
As an immediate consequence, we obtain:

COROLLARY 2.16. The internal and external Krull dimensions of an S4-algebra
coincide, and so Definitions 2.4 and 2.8 are equivalent.

§3. Modal Krull dimension of topological spaces. As we pointed out in the intro-
duction, it is inadequate to define the Krull dimension of a topological space X
as the supremum of the lengths of finite chains in the specialization order of X.
Section 2 suggests that a more adequate definition would result by working with the
Krull dimension of y.

DErFINITION 3.1. Define the modal Krull dimension mdim(X) of a topological
space X as the Krull dimension of 2 y: that is, mdim(X) = kdim(2y ).

REMARK 3.2. Itisimmediate from Corollary 2.16 that the modal Krull dimension
of a topological space X can be defined recursively as follows:
mdim(X) = -1 if X =g,
mdim(X) <n if mdim(D) < n — 1 for every nowhere dense subset D of X,
mdim(X) =n if mdim(X) < »nand mdim(X) £ n — 1.
mdim(X) =occ if mdim(X) £ nforanyn = —1,0.1,2,....
LemMA 3.3. If'Y is a subspace of X , then mdim(Y) < mdim(X).
ProoF. By Lemma 2.12(1), mdim(Y) = kdim(2y) < kdim(2y) = mdim(X). -
LemMA 3.4. Let X be a topological space. Then mdim(X) < n iff for every closed
nowhere dense subset D of X we have mdim(D) < n — 1.
ProoF. Apply Lemma 2.12(2). =

To obtain an analogue of Theorem 2.14 for modal Krull dimension, we require
an analogue of the Jankov—Fine theorem for topological spaces. Let § = (W, R) be
a finite rooted S4-frame and choose any enumeration of W = {w; | i < n} in which
wy 1s a root of §. We recall [24] that the Jankov—Fine formula yz associated with §
is the conjunction of the following formulas:

L. po.
2. 0(po V-V pai).
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3. O(pi — —p;) for distinct i, j < n,

4. O(p; — Op;) whenever w; R w;, and

5. O(p; — —~Op;) whenever —~(w; R w;).

The modal language is interpreted in a topological space X by interpreting it in
the powerset algebra 2 y. A modal formula ¢ is defined to be valid (resp. satisfiable)
in X exactly when ¢ is valid (resp. satisfiable) in 2. If ¢ is valid in X, then we
write X F ¢. For a given valuation v and x € X, we write x F, ¢, or x F ¢ for
short, if ¢ is true at x under v.

An interior map between topological spaces X, Y is a continuous open map
f : X — Y.lItis well known (see. e.g.. [42, Section II1.3]) that the following are
equivalent:

e f:X — Y isinterior,

o f(Iyd)=1yf~'(4)forall4 C Y.

° f_l(CYA) = C)(f_l(A) forallA C Y.

We call Y an interior image of X if there is an onto interior map f : X — Y.
The next lemma generalizes [24, Lemma 1] to topological spaces.

LemMa 3.5. Let X be a topological space. Then yz is satisfiable in X iff § is an

interior image of an open subspace of X .

Proor. First suppose that § is an interior image of an open subspace U of X, say

via f : U — §. Let p; be interpreted as 4; := f~'(w;) wheni < n and as 4; := @
when i > n. Since 4y = f~'(wy) # @. there is x € U with x E py. We show that
XFyz.AsAgU---UA,—y = Uandx € U,weseethat x E O(po V-V py_1).

Suppose i # j. Because 4; N A; = @, we see that x £ O(p; — —p;). Suppose
w;Rw;. Then w; € Or{w;}. sosince f is interior, 4; = fHw;) C f*IOR{wj} =
Cyf~Yw;) = CyA; C CA;,where Cdenotes closurein X and Cy denotes closure
in the subspace U. Therefore, x F O(p; — Op;). Finally, suppose —(w; Rw;). Then
{w;}NOr{w;} = @. As f isinterior, this yields / ~!(w;)NCy f ~'(w;) = @. Thus,
AiNCyAd; =2.But 4;NCyAd; =A;NUNCA; = A; NCA;. SoA NCA4; =@.
which gives x £ O(p; — —~0p;). Consequently, yz is satlsﬁable at x in X.

Conversely suppose that yg is satisfied at some x € X by interpreting p; as
A; CX. Set

U=1 (UA,-) n () T((X\4)U(x\4))

i<n 0<i#j<n

n () I((X\d)uca)n () I((X\4)U(X\C4,)).

w; Rw; —(w; Rw;)
Then U is open and nonempty since x € Ao N U. Define f : U — § by setting
f () = w; provided y € A4; (fori < n). To see that f is well defined. let y € 4;NA4;.
Theny ¢ X\ C(4; NA4;) =I((X \ 4;) U(X \ 4;)). Therefore, it follows from the
definition of U thati = j, and so f is well defined.

To see that f is onto. since wy is a root of §. we have wy R w;, and so U C
(X \ 49) UCA4; forall j < n. Recalling that x € Ay N U, we get x € CA; for each
Jj < n.As U is open and contains x, we have U N 4; # @ for each j < n. Thus, f
is onto.

Finally, to see that f is interior, it is sufficient to show that f~1(¢ r{w;}) =
Cy f~'(w;)foreach j < n.Supposey € f~1(Or{w;}). Then f(y) Rw;. Assuming
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f(y) = w;, wehave y € 4; and y € (X \ 4;) UCA;, giving y € C4;. So y €
UNCA; = Cyd; = Cyf~Yw;). Conversely, suppose y ¢ f 1 (Or{w;}). Then
=(f(y) Rw;). Assuming f(y) = w;, wehavey € 4;and y € (X \ 4;)U(X \C4;).
yielding y € X \ CA;. Thus, y ¢ CA;. and hence y ¢ Cyd; = Cyf ' (w;).
Consequently, f is interior, and hence § is an interior image of an open subspace
of X. -

The next theorem is an analogue of Theorem 2.14 for modal Krull dimension,
and is the main result of this section.

THEOREM 3.6. Let X # @. n > 1, and §,y1 be the (n + 1)-element chain. The
following are equivalent:

1. mdim(X) <n—1.

2. There does not exist a sequence Fy, . . ., F, of nonempty closed subsets of X such
that Fy = X and F; is nowhere dense in F; for each i € {0,...,n — 1}.

3. X E bd,.

4. XF ATRE

5. §n41 is not an interior image of any open subspace of X .

6. Fuu1 is not an interior image of X .

PrOOF. (1)&(2)<(3)«<(4): This follows from the equivalence of Items (1), (2).
(3). and (5) of Theorem 2.14, Definition 3.1, the correspondence between relativiza-
tions and subspaces, and the fact that X and 20y validate exactly the same modal
formulas.

(4)<(5): We have X E —yg, ., iff 5,., is not satisfiable in X. This, by Lemma 3.5,
is equivalent to §,+1 not being an interior image of any open subspace of X.

(5)=(6): This is obvious.

(6)=(2): Suppose there is a sequence Fy. . ... F, of nonempty closed subsets of
X such that Fy = X and F;,; is nowhere dense in F; foreach i € {0,...,n — 1}.
We show that §, . is an interior image of X . Let F,,;; = &. Define f : X — W,
by f(x) = w; if x € F; \ Fiyy fori < n. Clearly f is well-defined and onto since
{F; \ F;41 | i < n} is a partition of X. Moreover, C(F; \ F;;1) = F; since F; is
closed in X and F;,; is nowhere dense in F; for i < n. Thus,

ST Or{w ) = £ Gwicw ) = (B \ Fr)
= F; = C(F; \ Fiz1) = Cf (w).

Consequently, f is an onto interior map, and hence §,,; is an interior image
of X. -

Section 7 contains a comparison of modal Krull dimension with other well-known
topological dimension functions. We conclude this section by calculating the modal
Krull dimension of some well-known spaces.

ExampLE 3.7.

1. It follows from the celebrated McKinsey-Tarski theorem [37,42] that every
finite rooted S4-frame is an interior image of any dense-in-itself metric space.
Let R, C. and Q denote the real line, the Cantor discontinuum, and the rational
line, respectively. It follows from Theorem 3.6 that each of R, C. Q has infinite
modal Krull dimension.

2. We view ordinals as topological spaces equipped with the interval topology
induced by the well order. Let n > 1. It is well known that the n-element chain
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is an interior image of the ordinal w”, and that the (n + 1)-element chain is
not an interior image of w”. By Theorem 3.6, mdim(w") = n — 1.

3. A reasoning similar to (2) yields that mdim(w” 4+ 1) = n and mdim(w® +1) =
oo. Since these ordinals are compact, and hence Stone spaces, we obtain the
examples alluded to in the introduction.

4. Let X be a nonempty Alexandroff space and let » > 1. By Theorem 3.6,
mdim(X) < n — 1iff X & bd,,. This together with the finite model property of
S4,, yields that S4,, is the logic of the class of all nonempty Alexandroff spaces
of modal Krull dimension < n — 1. Since every finite space is Alexandroff,
S4,, is also the logic of the class of all nonempty finite spaces of modal Krull
dimension < n — 1.

For T-spaces there is an alternate description of modal Krull dimension, which
is based on an appropriate generalization of the concept of a nodec space. This will
be discussed in the next section.

84. n-discrete algebras, n-nodec spaces, and n-Zeman formulas. In this section
we generalize the notion of a discrete S4-algebra to that of an n-discrete S4-algebra.
The topological counterpart of this generalization yields a generalization of the
concept of a nodec space. As was shown in [3], nodec spaces are modally definable
by the Zeman formula. We introduce n-Zeman formulas and show that they define
n-discrete S4-algebras and n-nodec spaces. We prove that a Tj-space X is n-nodec
iff mdim(X) < n. From this we derive that there are infinitely many modal logics
incomplete with respect to any class of 77-spaces.

DEerFINITION 4.1.  Let 2( be a nontrivial S4-algebra.

1. Call A O-discrete if 21 is discrete.
2. For n > 1, call A n-discrete if 2, is (n — 1)-discrete for each nowhere dense
a €.

ReEmARK 4.2. This definition can be extended to all S4-algebras by letting the
trivial S4-algebra to be (—1)-discrete.

In order to axiomatize n-discrete S4-algebras, we generalize the Zeman formula
zem = O0Op — (p — Op)

as follows.

DEFINITION 4.3. Set bdy = L, and for n > 0, define

zem, = p,i1 — O(bd, V pui1).
We call zem,, the n-Zeman formula, and we call
S4.7., := S4 + zem,,

the n-Zeman logic.

REMARK 4.4.

1. Aneasy induction shows that bd, and zem,, are Sahlqvist formulas (see. e.g.. [2.
Definition 3.1]). Therefore, S4,, and S4.Z,, are Sahlqvist logics. Thus, S4,, and
S4.Z,, are canonical, and hence Kripke complete (see. e.g.. [10, Section 10.3]
or [6. Sections 3.6 and 5.6]).
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2. Itiseasy to see that zemg is equivalent to p — Op, and hence S4.Z, is the logic
of (nontrivial) discrete S4-algebras. We will see shortly that zem is equivalent
to zem, and hence S4.Z, is the Zeman logic S4.Z := S4 + zem.

THEOREM 4.5. Let A be a nontrivial S4-algebra and n > 0. The following are
equivalent:

1. A is n-discrete.
2. A E zem,.
3. Thereis no chain w,+1 Rw, R w,_1 R--- Rwy; Rw in A, satisfying w, 11 # wy.
Proor. (1)=-(3): Suppose that 2 is n-discrete. If there is a chain
Wy anﬁwn_l ﬁ---ﬁwl ﬁwo

in 2L, satisfying w, 1 # w,. then we build inductively a decreasing sequence of
clopen R-downsets Ay, ..., A, of 2. such that w; ¢ 4,1, wi11 € A1, and A;41 N
maxgp(A4;) = @ for0 <i <n—1.Let Ay = W. Suppose 4, is already built. Since
w1 R w;. we have w;;1 ¢ R[maxg(4;) U {w;}]. Now maxg(4,) U {w,} is closed,
and it follows that R[maxg (A4;)U{w; }]is closed as well. So W'\ R[maxg(A4;)U{w;}]
is open and contains w; ;. Therefore, there is a clopen R-downset A4;,; such that
A,'+1 C A;, Wiyl € Ai+1, and A,'+1 n R[maxR(Ai) @] {w,}] =o. Letay.....a, €A
be such that f(a;) = A4; fori < n. Since 4;,| N maxp(4;) = @, Lemma 2.3 yields
that a;, is nowhere dense in 2, for i < n. Because 2 is n-discrete, 2, is (n — i)-
discrete for each i < n. So 2, is 0-discrete, and hence discrete. We show this is a
contradiction. Since w, # wy41, there is clopen A, of 2L, such that w, ¢ A,
and w41 € Ayi1.Set B = A, \ Ay+1. Then wy1 Rw, € B, sowyy1 € OrB\ B. Let
b € 2 be suc