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KRULL DIMENSION INMODAL LOGIC

GURAMBEZHANISHVILI, NICK BEZHANISHVILI, JOEL LUCERO-BRYAN, AND JAN VANMILL

Abstract. We develop the theory of Krull dimension for S4-algebras and Heyting algebras. This leads
to the concept of modal Krull dimension for topological spaces. We compare modal Krull dimension
to other well-known dimension functions, and show that it can detect differences between topological
spaces that Krull dimension is unable to detect. We prove that for a T1-space to have a finite modal Krull
dimension can be described by an appropriate generalization of the well-known concept of a nodec space.
This, in turn, can be described by modal formulas zemn which generalize the well-known Zeman formula
zem. We show that the modal logic S4.Zn := S4 + zemn is the basic modal logic of T1-spaces of modal
Krull dimension ≤ n, and we construct a countable dense-in-itself �-resolvable Tychonoff space Zn of
modal Krull dimension n such that S4.Zn is complete with respect to Zn . This yields a version of the
McKinsey-Tarski theorem for S4.Zn . We also show that no logic in the interval [S4n+1, S4.Zn) is complete
with respect to any class of T1-spaces.

§1. Introduction. Topological semantics of modal logic was pioneered by Tsao-
Chen [45], McKinsey [36], and McKinsey and Tarski [37]. The celebrated
McKinsey–Tarski theorem states that if we interpret modal diamond as closure
and hence modal box as interior, then S4 is the modal logic of any dense-in-
itself separable metric space. Rasiowa and Sikorski [42] showed that separability
can be dropped from the assumptions of the theorem. However, dropping the
dense-in-itself assumptionmay result in logics strictly stronger than S4. A complete
description of when a modal logic is the logic of a metric space was given in [5],
where it was shown that such logics form the chain:

S4 ⊂ S4.1 ⊂ S4.Grz ⊂ · · · ⊂ S4.Grzn ⊂ · · · ⊂ S4.Grz1.
Here S4.1 = S4 + �♦p → ♦�p is the McKinsey logic, S4.Grz = S4 + �(�(p →
�p)→ p)→ p is the Grzegorczyk logic, and S4.Grzn = S4.Grz+ bdn, where

bd1 = ♦�p1 → p1,
bdn+1 = ♦(�pn+1 ∧ ¬bdn)→ pn+1.

An important generalization of the class of metric spaces is the class of Tychonoff
spaces. It is a classic result of Tychonoff that these are exactly the spaces that up
to homeomorphism are subspaces of compact Hausdorff spaces (see, e.g., [19,
Theorem 3.2.6]). Because of this important feature, the class of Tychonoff spaces is
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one of the most studied classes of spaces in topology. For a Tychonoff space X , it is
desirable to know the modal logic of X . This is a challenging open problem, and in
this paper we obtain some results in this direction.
In determining the modal logic of a Kripke frame F, the depth of F plays an
important role. It is well known (see, e.g., [10, Proposition 3.44 and Theorem 5.17])
that the depth of an S4-frame F is ≤ n iff F validates bdn, and that S4n := S4+ bdn
is the logic of the class of all S4-frames of depth≤ n. By Segerberg’s Theorem (see,
e.g., [10, Theorem 8.85]), S4n and all its extensions are Kripke complete and have
the finite model property.
In this paper we present a topological analogue of the depth of an S4-frame.
This leads to a new concept of dimension in topology, which is closely related to
the concept of Krull dimension in algebra and geometry (see, for example, [18,
Chapter 8]). We recall that the Krull dimension of a commutative ring R is defined
as the supremum of the lengths of finite chains of prime ideals of R. Since the
spectrum Spec(R) of prime ideals of R topologized with the Zariski topology is
a spectral space, where the inclusion on prime ideals is the specialization order
of the Zariski topology, we can define the Krull dimension of a spectral space X
as the supremum of the lengths of finite chains in the specialization order of X .
By Stone duality [44], spectral spaces are dual to distributive lattices, which paves
the way to defining the Krull dimension of a distributive lattice L as the supremum
of the lengths of finite chains in (Spec(L),⊆), where Spec(L) is the Stone dual ofL.
For different characterizations of the Krull dimension of distributive lattices see
[8,11,12,22,23] and the references therein.
If we define the Krull dimension of an arbitrary topological space X by means of
the specialization order of X , then to quote Isbell [29], the result is “spectacularly
wrong for the most popular spaces, vanishing for all non-empty Hausdorff spaces;
but it seems to be the only dimension of interest for the Zariski spaces of algebraic
geometry.” Isbell remedied this by proposing the definition of graduated dimension.
In this article we propose a different approach, which has its roots in modal logic.
This leads to the concept of modal Krull dimension. As we will see, this notion is
more refined. For example, every nonempty Stone space has Krull dimension and
graduated dimension 0. On the other hand, for each n (including ∞), there is a
Stone space X such that the modal Krull dimension of X is n. Thus, modal Krull
dimension provides a more refined classification of Stone spaces, and this extends
to spectral spaces and beyond.
We start by developing the Krull dimension for S4-algebras (also known as
closure algebras [37], topological Boolean algebras [42], and interior algebras [7]).
An S4-algebra A has Krull dimension < n if the spectrum of ultrafilters of A has
depth≤ n (see Definition 2.4). Since the spectrum of ultrafilters ofA has depth≤ n
iff A validates bdn and S4n has the finite model property, it follows that S4n is the
logic of the class of all S4-algebras of Krull dimension < n.
We introduce the modal Krull dimension of a topological space X as the Krull
dimension of the S4-algebra of the powerset of X . We generalize the well-known
concept of a nodec space to that of an n-nodec space, and prove that if X is a
T1-space, then the modal Krull dimension of X is ≤ n iff X is n-nodec. As was
shown in [3], the modal logic of the class of nodec spaces is the well-known Zeman
logic S4.Z. For each n ≥ 0, we generalize the Zeman logic S4.Z to the n-Zeman
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logic S4.Zn, and show that S4.Zn is a proper extension of S4n+1. From this we
derive that S4n+1 and indeed any logic in the interval [S4n+1,S4.Zn) is topolog-
ically incomplete for any class of T1-spaces. Therefore, there are infinitely many
modal logics that are topologically incomplete with respect to Tychonoff spaces.
Of course, all these logics are Kripke complete by Segerberg’s Theorem, and hence
also topologically complete with respect to classes of topological spaces that are
not T1 (indeed do not satisfy any separation axioms).
Consequently, S4.Zn, and not S4n+1, is the basic logic of Tychonoff spaces of
modal Krull dimension≤ n. Moreover, it turns out that a version of theMcKinsey-
Tarski theorem holds for S4.Zn. Namely, for n ≥ 1, we prove that S4.Zn is the
logic of a countable dense-in-itself �-resolvable Tychonoff spaceZn of modal Krull
dimension n (the case of n = 0 is trivial since S4.Z0 is the logic of any discrete
space).
This is technically the most challenging result of the paper. It is proved by identi-
fying a single S4-frameQn+1 whose logic is S4.Zn, and constructingZn so thatQn+1
is an interior image of Zn. Since the depth of Qn+1 is n + 1, this forces the modal
Krull dimension of Zn to be n; and since there is no bound on the cluster size of
Qn+1, this forcesZn to be�-resolvable. AsZn is countable, we obtain thatS4.Zn has
the countable model property with respect to Tychonoff spaces, and this is the best
we can do since finite Tychonoff spaces are discrete, and hence S4.Zn cannot have
the finite model property with respect to Tychonoff spaces. A complete description
of extensions of S4.Zn that are complete with respect to Tychonoff spaces remains
an open problem.
At the end of the paper, we utilize a close connection between S4-algebras and
Heyting algebras to develop theKrull dimension forHeyting algebras, and conclude
with a brief comparison of modal Krull dimension to other well-known topological
dimension functions.

§2. Krull dimension of S4-algebras. We start by recalling that Lewis’ well-known
modal system S4 is the least set of formulas in the basic modal language containing
the classical tautologies, the formulas
• �p → p,
• �p → ��p,
• �(p → q)→ (�p → �q),

and closed under modus ponens ϕ, ϕ→�� , substitution ϕ(p1,...,pn)
ϕ(�1,...,�n)

, and necessita-
tion ϕ

�ϕ .
Algebraic models of S4 are pairs A = (A,�), where A is a Boolean algebra and

� : A→ A is a unary function satisfying:
• �a ≤ a,
• �a ≤ ��a,
• �(a ∧ b) = �a ∧�b,
• �1 = 1.
As usual, the dual of � is defined as ♦a = −�−a for each a ∈ A.
These algebras were introduced by McKinsey and Tarski [37], in the ♦ signature,
under the name of closure algebras. The name is motivated by the fact that ♦ gen-
eralizes the definition of closure in a topological space. They are also known under
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the name of topological Boolean algebras [42] and interior algebras [7]. Nowadays it
is common to call them S4-algebras.
The modal language is interpreted in an S4-algebra A by assigning to each
propositional letter an element of A, interpreting the classical connectives as the
corresponding operations of the Boolean reduct of A, and the modal box as the
unary function �. A modal formula ϕ is valid in A, written A � ϕ, provided ϕ is 1
under all assignments of the letters, and ϕ is satisfiable inA provided¬ϕ is not valid
in A. We say that ϕ is valid whenever ϕ is valid in every S4-algebra. It is well known
that ϕ is a theorem of S4 iff ϕ is valid.
Typical examples of S4-algebras come from topological and relational semantics
for S4. For a topological space X , let IX and CX be interior and closure in X ,
respectively. When it is clear from the context, we drop the subscripts. It is easy
to see that the powerset algebra AX = (℘(X ), IX ) is an S4-algebra, where ℘(X )
is the powerset of X . By the McKinsey-Tarski representation theorem [37], every
S4-algebra is represented as a subalgebra of AX for some topological space X .
We recall that a Kripke frame is a pair F = (W,R), whereW is a set and R is a
binary relation onW . If R is reflexive and transitive, then F is called an S4-frame.
It is well known that S4-frames provide relational semantics for S4, hence the name.
Given an S4-frame F = (W,R), w ∈W , and A ⊆W , let
• R[w] = {v ∈W | wRv},
• �RA = {w ∈W | R[w] ⊆ A},
• ♦RA = {w ∈W | R[w] ∩ A �= ∅}.
Then the powerset algebraAF = (℘(W ),�R) is anS4-algebra, and everyS4-algebra
is represented as a subalgebra of AF for some S4-frame F (see [20,31,34]).
Every S4-frame F = (W,R) can be thought of as a special topological space as
follows. Call U ⊆ W an R-upset if w ∈ U implies R[w] ⊆ U (R-downsets are
defined dually). Let �R be the collection of all R-upsets of F. Then �R is a topology
on W in which closure is ♦R and every w ∈ W has the least open neighborhood
R[w]. Such topological spaces are called Alexandroff spaces, and can alternatively
be described as the topological spaces in which intersections of arbitrary families of
opens are open. Conversely, every topological space X has its specialization order
R defined by setting xRy iff x ∈ CX ({y}). It is easy to see that R is reflexive and
transitive, and so (X,R) is anS4-frame.Moreover, ifX is Alexandroff, then opens in
X are exactly theR-upsets, and hence S4-frames are in one-to-one correspondence
with Alexandroff spaces (see, e.g., [1, p. 238]).
In [20], Esakia put together Stone duality for Boolean algebras with relational
representation of S4-algebras to obtain a full duality for S4-algebras. By Esakia
duality, the categories of S4-algebras and Esakia spaces are dually equivalent.1

Definition 2.1. A Stone space is a zero-dimensional compact Hausdorff space,
and an Esakia space is an S4-frame F = (W,R) such that W is equipped with a
Stone topology satisfying

• R[w] is closed,
• U clopen implies �RU is clopen.
1An alternative duality for S4-algebras can be developed by means of descriptive S4-frames (see [27],

[10, Chapter 8]).
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The dual Esakia space of an S4-algebra A is the pair A∗ = (W,R), whereW is
the Stone space of A and

wRv iff (∀a ∈ A)(�a ∈ w ⇒ a ∈ v).
The dual S4-algebra of an Esakia space F = (W,R) is the S4-algebra F∗ =
(Clop(W ),�R), where Clop(W ) is the Boolean algebra of clopen subsets of W .
Then � : A→ A∗∗ and ε : F→ F∗∗ are isomorphisms, where

�(a) = {w ∈W | a ∈ w} and ε(w) = {U ∈ Clop(W ) | w ∈ U}.
In the finite case, the topology on an Esakia space becomes discrete, and we identify
finite Esakia spaces with finite S4-frames.
The modal language is interpreted in an Esakia space F by interpreting the modal
formulas in the dual S4-algebra F∗. A modal formula ϕ is defined to be valid
(resp. satisfiable) in F exactly when ϕ is valid (resp. satisfiable) in F∗. If ϕ is valid
in F, then we write F � ϕ.
Let A be an S4-algebra and A∗ be the Esakia space of A. As is customary, we
adopt topological terminology and call a ∈ A closed if a = ♦a, open if a = �a,
dense if ♦a = 1, and nowhere dense if �♦a = 0. The following is well known (and
easy to see):

• a is closed iff �(a) is a clopen R-downset in A∗,
• a is open iff �(a) is a clopen R-upset in A∗,
• a is dense iff ♦R�(a) =W ,
• a is nowhere dense iff �R♦R�(a) = ∅.

The relativization of A to a ∈ A is the S4-algebra Aa whose underlying set is the
interval [0, a], the meet and join in Aa coincide with those in A, the complement
of b ∈ Aa is given by a − b, the interior by �ab = a ∧ �(a → b), and the closure
by ♦ab = a ∧ ♦b. If A = AX is the powerset algebra of a topological space X and
Y ⊆ X , then the relativization ofA toY is the powerset algebraAY of the subspace
Y ofX .2 The relativizationAa is realized dually as the restriction ofR to the clopen
subspace �(a) of A∗. In order to describe dually a connection between nowhere
dense elements and relativizations, we recall the notion of an R-maximal point.

Definition 2.2. Let F = (W,R) be an S4-frame, U ⊆ W , and w ∈ U . Then w
is an R-maximal point of U provided wRu and u ∈ U imply uRw. We denote the
set of R-maximal points of U by maxR(U ). If U =W , then we write maxR(F).

It is well known (see, e.g., [21, Section III.2]) that in an Esakia space F = (W,R),
the set maxR(F) is a closed R-upset, and for each w ∈ W there is v ∈ maxR(F)
such that wRv.

Lemma 2.3. Let A be an S4-algebra and A∗ be its Esakia space. Suppose a ∈ A
and d ∈ Aa. Then d is nowhere dense in Aa iff �(d ) ∩ maxQ�(a) = ∅, where Q is
the restriction of R to �(a).

Proof. Since A∗ is an Esakia space and �(a) is clopen in A∗, it is well known
(see, e.g., [21, Section III.2]) that F = (�(a), Q) is also an Esakia space.
As maxQ�(a) is a Q-upset of �(a), the condition �(d ) ∩ maxQ�(a) = ∅

2Despite subscript being used to denote both a relativization of an S4-algebra A and the powerset
algebra of a space X , there is no ambiguity whenA = AX because (AX )Y = AY .
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is equivalent to ♦Q[�(d )] ∩ maxQ�(a) = ∅, which in turn is equivalent to
�Q♦Q[�(d )] ∩ maxQ�(a) = ∅. Since �Q♦Q[�(d )] is a Q-upset of �(a), the last
condition is equivalent to �Q♦Q[�(d )] = ∅. Therefore, �(d ) ∩maxQ�(a) = ∅ iff
�(�a♦ad ) = ∅, which is equivalent to d being nowhere dense in Aa . �
For an S4-frame F = (W,R), we write w 	Rv provided wRv and ¬(vRw). We call
a finite sequence {wi ∈W | 0 ≤ i < n} an R-chain provided wi 	Rwi+1 for all i , and
define the length of the R-chain {wi ∈ W | 0 ≤ i < n} to be n − 1. Note that we
allow the empty R-chain which has length −1.
Definition 2.4. Let A be an S4-algebra. Define the Krull dimension kdim(A) of

A as the supremum of the lengths of R-chains in A∗. If the supremum is not finite,
then we write kdim(A) =∞.
The definition of the length of an R-chain that we have adopted has its roots in
algebra.Modal logicians have used a similar concept of depthof a frameF = (W,R).
But in modal logic the length of an R-chain {wi ∈ W | 0 ≤ i < n} is typically
defined to be n. This notion of length is always one more than the notion of length
in algebra. The difference is whether we count the number ofR-links in theR-chain
(as algebraists do) or the number of points in the R-chain (as modal logicians do).
Therefore, the Krull dimension of A is one less than the depth of A∗ (provided the
Krull dimension ofA is finite). Thus, kdim(A) = n iff depth(A∗) = n+1 for n ∈ �.
The following well-known lemma (see, e.g., [10, Proposition 3.44]) measures the
bound on the depth of A∗, and hence the bound on the Krull dimension of A, by
means of the modal formulas bdn.

Lemma 2.5. Let A be a nontrivial S4-algebra and n ≥ 1. Then depth(A∗) ≤ n iff
A � bdn.

It is relatively easy to describe when kdim(A) ≤ 0. Recall thatA is trivial if 0 = 1,
it is discrete if� is the identity function, and it is an S5-algebra (ormonadic algebra)
if a ≤ �♦a for all a ∈ A. It is well known that A is trivial iff A∗ = ∅, that A
is discrete iff R is the identity, and that A is an S5-algebra iff R is an equivalence
relation.

Lemma 2.6. Let A be an S4-algebra.

1. kdim(A) = −1 iff A is the trivial algebra.
2. kdim(A) ≤ 0 iff A is an S5-algebra.
3. kdim(A) = 0 iff A is a nontrivial S5-algebra.
4. If A is discrete, then kdim(A) ≤ 0.
Proof. (1) Suppose A is trivial. Then A∗ = ∅, so the only R-chain in A∗ is
the empty chain whose length is −1. Therefore, kdim(A) = −1. Conversely, if
kdim(A) = −1, then every R-chain in A∗ has length −1, and hence is the empty
chain. Thus, A∗ = ∅, and so A is the trivial algebra.
(2) Suppose A is an S5-algebra. Then R is an equivalence relation, so there are
no w, v ∈ A∗ with w 	Rv. Therefore, every R-chain in A∗ has length ≤ 0. Thus,
kdim(A) ≤ 0. Conversely, suppose kdim(A) ≤ 0. Then every R-chain in A∗ has
length ≤ 0. Therefore, if xRy, then it cannot be the case that ¬(yRx). Thus, R is
symmetric, and so A is an S5-algebra.
(3) This follows from (1) and (2).
(4) This follows from (2) since every discrete algebra is an S5-algebra. �
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Remark 2.7.
1. Since not every S5-algebra is discrete, the converse of Lemma 2.6(4) does not
hold.

2. Suppose A is a subalgebra of AX for some topological space X . If A consists
of clopen subsets of X , then A is discrete, and hence kdim(A) ≤ 0.

By Lemma 2.6, whether the Krull dimension of A is ≤ 0 can be determined
internally in A, without accessing A∗. The goal of the remainder of this section is to
develop a pointfree description of the Krull dimension of A that does not require
the Esakia space ofA. In fact, we will prove that kdim(A) can be defined recursively
as follows.

Definition 2.8. TheKrull dimension kdim(A) of an S4-algebraA can be defined
as follows:

kdim(A) = −1 if A is the trivial algebra,
kdim(A) ≤ n if kdim(Ad ) ≤ n − 1 for every nowhere dense d ∈ A,
kdim(A) = n if kdim(A) ≤ n and kdim(A) �≤ n − 1,
kdim(A) =∞ if kdim(A) �≤ n for any n = −1, 0, 1, 2, . . . .

To show thatDefinitions 2.4 and 2.8 are equivalent requires somepreparation.For
now we refer to Definition 2.4 as the external Krull dimension and to Definition 2.8
as the internal Krull dimension of A.
Lemma 2.9. Let A be an S4-algebra, a ∈ A, and d ∈ Aa . If d is nowhere dense in

Aa , then d is nowhere dense in A.
Proof. Set u = �♦d . Then

d ∧ u = d ∧�♦d ≤ a ∧�♦d ≤ a ∧�(a → ♦d )
= a ∧�(a → (a ∧ ♦d )) = �a♦ad = 0.

Therefore, d ≤ −u. Since u is open, −u is closed, so ♦d ≤ −u, giving u ∧ ♦d = 0.
Thus, u = 0, and hence d is nowhere dense in A. �
Definition 2.10. Let n ≥ 0 and a1, . . . , an+1 ∈ A. Define d0, . . . , dn+1 and
e0, . . . , en recursively as follows, where 0 ≤ i ≤ n:

d0 = 1,

ei = ♦(�ai+1 ∧ di),
di+1 = ei − ai+1.

Let n ≥ 1. It is straightforward to see that if we interpret pi as ai for 1 ≤ i ≤ n,
then the formula ¬bdn is interpreted as dn, and the antecedent of bdn as en−1.
Lemma 2.11. Let n ≥ 0, A be an S4-algebra, a1, . . . , an+1 ∈ A, and d0, . . . , dn+1
and e0, . . . , en be defined as in Definition 2.10.
1. e1 is nowhere dense in A.
2. ei+1 is nowhere dense in Aei for 1 ≤ i < n.
Proof. (1) Since e0 = ♦�a1 is closed, we have

�♦d1 = �♦(e0 − a1) ≤ �(e0 −�a1) = �e0 − ♦�a1 ≤ e0 − e0 = 0.
Therefore, d1 is nowhere dense in A. This yields that �a2 ∧ d1 is nowhere dense in
A. Thus, e1 = ♦(�a2 ∧ d1) is nowhere dense in A.
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(2) For 1 ≤ i < n, we have ei+1 ≤ ♦di+1 ≤ ♦ei = ei , and so ei+1 ∈ Aei . Since
ei+1 = ♦(�ai+2 ∧di+1), it is sufficient to show�ai+2 ∧di+1 is nowhere dense in Aei .
Because ei is closed in A, we have ♦ei a = ♦a for all a ≤ ei . To see that�ai+2 ∧ di+1
is nowhere dense in Aei , let u be open in Aei with u ≤ ♦(�ai+2 ∧ di+1). We set
u′ = u ∧�ai+1. Then u′ is open in Aei and u′ ≤ ai+1, so

u′ ∧�ai+2 ∧ di+1 = u′ ∧�ai+2 ∧ (ei − ai+1)
≤ u′ ∧ (ei − ai+1) = u′ − ai+1 = 0.

Therefore, u′ ∧ ♦(�ai+2 ∧ di+1) = 0. This together with u′ ≤ u ≤ ♦(�ai+2 ∧ di+1)
yields that u′ = 0. Thus, u ∧�ai+1 = 0, and so u ∧�ai+1 ∧ di = 0. But �ai+1 ∧ di
is dense in Aei , giving that u = 0. Consequently, �ai+2 ∧ di+1 is nowhere dense
in Aei . �
The next lemma concerns the internal Krull dimension of an S4-algebra.

Lemma 2.12. Let A be an S4-algebra.

1. For a ∈ A, we have kdim(Aa) ≤ kdim(A).
2. kdim(A) ≤ n iff kdim(Ad ) ≤ n − 1 for every closed nowhere dense d ∈ A.

Proof. (1) If kdim(A) = ∞, then there is nothing to prove. Suppose
kdim(A) = n. Let d ∈ Aa be nowhere dense in Aa . By Lemma 2.9, d is nowhere
dense inA. Since kdim(A) = n, we see that kdim(Ad ) ≤ n−1. Because (Aa)d = Ad ,
we conclude that kdim(Aa) ≤ n. Thus, kdim(Aa) ≤ kdim(A).
(2) One implication is trivial. For the other, let d be nowhere dense in A.
Then ♦d is closed and nowhere dense in A. Therefore, kdim(A♦d ) ≤ n − 1.
Thus, (1) yields kdim(Ad ) = kdim((A♦d )d ) ≤ kdim(A♦d ) ≤ n − 1. Consequently,
kdim(A) ≤ n. �
We next recall the notion of an Esakia morphism between Esakia spaces.

Definition 2.13. Suppose F = (W,R) and G = (V,Q) are Esakia spaces.

1. A map f : W → V is a p-morphism provided R[f(w)] = f(R[w]) for all
w ∈W .

2. An Esakia morphism is a continuous p-morphism f :W → V .
It is well known (see, e.g., [21, Section IV.3]) that Esakia morphisms correspond
dually to S4-algebra homomorphisms; that is, h : A → B is an S4-algebra homo-
morphism iff h∗ : B∗ → A∗ is an Esakia morphism, where h∗(w) = h−1(w).
Moreover, h is 1-1 (resp. onto) iff h∗ is onto (resp. 1-1).
We call an S4-frame F = (W,R) rooted if there is r ∈ W with W = R[r]. We
refer to r as a root of F. In general, r is not unique. Let F = (W,R) be a finite rooted
S4-frame. It is well known [24, 30] that with F we can associate the Jankov–Fine
formula 
F, which satisfies the following property:


F is satisfiable in an Esakia space G iff there is an Esakia space E

and Esakia morphisms F
f←− E

g−→ G such that f is onto and g is 1-1.

Let Fn = (Wn,R) be the n-element chain, where Wn = {w0, . . . , wn−1} and
wiRwj iff j ≤ i ; see Figure 1.
We are ready to characterize the internal Krull dimension of an S4-algebra.
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wn−1•
wn−2•

w0•
w1•

...

Figure 1. The n-element chain.

Theorem 2.14. Let A be a nontrivial S4-algebra and n ≥ 1. The following are
equivalent:
1. kdim(A) ≤ n − 1.
2. There does not exist a sequence c0, . . . , cn of nonzero closed elements of A such
that c0 = 1 and ci+1 is nowhere dense in Aci for each i ∈ {0, . . . , n − 1}.

3. A � bdn .
4. depth(A∗) ≤ n.
5. A � ¬
Fn+1 .
6. F∗

n+1 is not isomorphic to a subalgebra of a homomorphic image of A.

7. There do not exist an Esakia space G and Esakia morphisms Fn+1
f←− G

g−→ A∗
such that f is onto and g is 1-1.

8. F∗
n+1 is not isomorphic to a subalgebra of A.

9. Fn+1 is not an image of A∗ under an onto Esakia morphism.
Proof. (1)⇒(2): Induction on n. Let n = 1. Since A is nontrivial, kdim(A) ≤ 0
yields kdim(A) = 0. Therefore, for any nowhere dense d in A, we have
kdim(Ad ) = −1, so Ad is trivial, and hence d = 0. Thus, A has no nonzero
closed nowhere dense elements, as required. Next let n > 1 and kdim(A) ≤ n − 1.
Suppose there is a sequence c0, . . . , cn of nonzero closed elements of A such that
c0 = 1 and ci+1 is nowhere dense in Aci for each i ∈ {0, . . . , n − 1}. Then c1, . . . , cn
is a sequence of nonzero closed elements of Ac1 such that ci+1 is nowhere dense in
Aci for each i ∈ {1, . . . , n− 1}. By the induction hypothesis, applied toAc1 , we have
kdim(Ac1 ) > n − 1. Since c1 is nowhere dense in A with kdim(Ac1 ) > n − 1, we
conclude that kdim(A) > n. This contradicts (1).
(2)⇒(3): If A �� bdn, then there exist a1, . . . , an ∈ A such that dn �= 0, where
dn is defined as in Definition 2.10. Put an+1 = 1 and let e0, . . . , en be defined as in
Definition 2.10. Observe that

en = ♦(�an+1 ∧ dn) = ♦(�1 ∧ dn) = ♦dn ≥ dn �= 0.
Set c0 = 1 and ci = ei for 1 ≤ i ≤ n. Then c0, . . . , cn is a sequence of nonzero
closed elements in A such that c0 = 1 and, by Lemma 2.11, ci+1 is nowhere dense
in Aci for each i ∈ {0, . . . , n − 1}.
(3)⇒(1): Suppose that kdim(A) > n − 1. We define a decreasing sequence
b0, . . . , bn of closed elements in A such that bi+1 is nowhere dense in Abi and
kdim(Abi+1) > (n−1)−(i+1). Set b0 = 1. If bi is already defined with kdim(Abi ) >
(n− 1)− i , then by Lemma 2.12(2), there is a closed nowhere dense bi+1 ∈ Abi such
that kdim(Abi+1 ) > (n − 1)− (i + 1). Noting that kdim(Abn) > (n − 1)− n = −1,
it follows that Abn is not trivial, and hence bn �= 0.
Let ai = −bi for 1 ≤ i ≤ n. Let d0, . . . , dn be defined from a1, . . . , an as in
Definition 2.10.We show that bi = di for each 0 ≤ i ≤ n. If i = 0, then b0 = 1 = d0.
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Next suppose that bi = di for 0 ≤ i < n, and show that bi+1 = di+1. Since ai+1 is
open in A, bi+1 is nowhere dense in Abi , and bi is closed in A, we have

bi+1 = bi ∧ bi+1 = ♦(bi − bi+1) ∧ bi+1 = ♦(bi − bi+1)− (−bi+1)
= ♦(ai+1 ∧ bi)− ai+1 = ♦(�ai+1 ∧ di)− ai+1 = di+1.

Thus, dn = bn �= 0. Since ¬bdn is interpreted in A as dn, we conclude that A
refutes bdn.
(3)⇔(4)⇔(8): This is well known; see Lemma 2.5 and [35, Lemma 2].
(5)⇔(7): This is the Jankov–Fine Theorem.
(6)⇔(7): This follows from Esakia duality.
(6)⇒(8): This is obvious.
(8)⇔(9): This follows from Esakia duality.
(4)⇒(7): This is obvious since 1-1 and ontoEsakiamorphisms do not increase the
depth. �
Remark 2.15. Theorem 2.14 can be extended to include the trivial algebra by
letting bd0 = ⊥.
As an immediate consequence, we obtain:
Corollary 2.16. The internal and external Krull dimensions of an S4-algebra
coincide, and so Definitions 2.4 and 2.8 are equivalent.

§3. Modal Krull dimension of topological spaces. As we pointed out in the intro-
duction, it is inadequate to define the Krull dimension of a topological space X
as the supremum of the lengths of finite chains in the specialization order of X .
Section 2 suggests that a more adequate definition would result by working with the
Krull dimension of AX .

Definition 3.1. Define the modal Krull dimension mdim(X ) of a topological
space X as the Krull dimension of AX ; that is, mdim(X ) = kdim(AX ).

Remark 3.2. It is immediate fromCorollary 2.16 that themodalKrull dimension
of a topological space X can be defined recursively as follows:
mdim(X ) = −1 if X = ∅,
mdim(X ) ≤ n if mdim(D) ≤ n − 1 for every nowhere dense subset D of X ,
mdim(X ) = n if mdim(X ) ≤ n and mdim(X ) �≤ n − 1,
mdim(X ) =∞ if mdim(X ) �≤ n for any n = −1, 0, 1, 2, . . . .
Lemma 3.3. If Y is a subspace of X , thenmdim(Y ) ≤ mdim(X ).
Proof. By Lemma 2.12(1), mdim(Y ) = kdim(AY ) ≤ kdim(AX ) = mdim(X ). �
Lemma 3.4. Let X be a topological space. Thenmdim(X ) ≤ n iff for every closed
nowhere dense subsetD of X we havemdim(D) ≤ n − 1.
Proof. Apply Lemma 2.12(2). �
To obtain an analogue of Theorem 2.14 for modal Krull dimension, we require
an analogue of the Jankov–Fine theorem for topological spaces. Let F = (W,R) be
a finite rooted S4-frame and choose any enumeration ofW = {wi | i < n} in which
w0 is a root of F. We recall [24] that the Jankov–Fine formula 
F associated with F
is the conjunction of the following formulas:
1. p0,
2. �(p0 ∨ · · · ∨ pn−1),
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3. �(pi → ¬pj) for distinct i, j < n,
4. �(pi → ♦pj) whenever wi R wj , and
5. �(pi → ¬♦pj) whenever ¬(wi R wj).
The modal language is interpreted in a topological space X by interpreting it in
the powerset algebraAX . A modal formula ϕ is defined to be valid (resp. satisfiable)
in X exactly when ϕ is valid (resp. satisfiable) in AX . If ϕ is valid in X , then we
write X � ϕ. For a given valuation v and x ∈ X , we write x �v ϕ, or x � ϕ for
short, if ϕ is true at x under v.
An interior map between topological spaces X,Y is a continuous open map
f : X → Y . It is well known (see, e.g., [42, Section III.3]) that the following are
equivalent:
• f : X → Y is interior,
• f−1(IYA) = IXf−1(A) for all A ⊆ Y ,
• f−1(CYA) = CXf−1(A) for all A ⊆ Y .
We call Y an interior image of X if there is an onto interior map f : X → Y .
The next lemma generalizes [24, Lemma 1] to topological spaces.
Lemma 3.5. Let X be a topological space. Then 
F is satisfiable in X iff F is an
interior image of an open subspace of X .
Proof. First suppose that F is an interior image of an open subspaceU ofX , say
via f : U → F. Let pi be interpreted as Ai := f−1(wi) when i < n and as Ai := ∅

when i ≥ n. Since A0 = f−1(w0) �= ∅, there is x ∈ U with x � p0. We show that
x � 
F. As A0 ∪ · · · ∪ An−1 = U and x ∈ U , we see that x � �(p0 ∨ · · · ∨ pn−1).
Suppose i �= j. Because Ai ∩ Aj = ∅, we see that x � �(pi → ¬pj). Suppose
wiRwj . Then wi ∈ ♦R{wj}, so since f is interior, Ai = f−1(wi) ⊆ f−1♦R{wj} =
CUf−1(wj) = CUAj ⊆ CAj , whereC denotes closure inX andCU denotes closure
in the subspaceU . Therefore, x � �(pi → ♦pj). Finally, suppose¬(wi Rwj). Then
{wi}∩♦R{wj} = ∅. Asf is interior, this yieldsf−1(wi)∩CUf−1(wj) = ∅. Thus,
Ai ∩CUAj = ∅. But Ai ∩CUAj = Ai ∩U ∩CAj = Ai ∩CAj . So Ai ∩CAj = ∅,
which gives x � �(pi → ¬♦pj). Consequently, 
F is satisfiable at x in X .
Conversely suppose that 
F is satisfied at some x ∈ X by interpreting pi as
Ai ⊆ X . Set

U = I

(⋃
i<n

Ai

)
∩

⋂
0≤i �=j<n

I
(
(X \ Ai ) ∪ (X \ Aj))

∩
⋂
wiRwj

I
(
(X \ Ai ) ∪ CAj) ∩

⋂
¬(wiRwj )

I
(
(X \ Ai ) ∪ (X \ CAj)) .

Then U is open and nonempty since x ∈ A0 ∩ U . Define f : U → F by setting
f(y) = wi provided y ∈ Ai (for i < n). To see thatf is well defined, let y ∈ Ai∩Aj .
Then y /∈ X \C(Ai ∩Aj) = I((X \Ai) ∪ (X \ Aj)). Therefore, it follows from the
definition of U that i = j, and so f is well defined.
To see that f is onto, since w0 is a root of F, we have w0 R wj , and so U ⊆
(X \ A0) ∪ CAj for all j < n. Recalling that x ∈ A0 ∩U , we get x ∈ CAj for each
j < n. As U is open and contains x, we have U ∩ Aj �= ∅ for each j < n. Thus, f
is onto.
Finally, to see that f is interior, it is sufficient to show that f−1(♦R{wj}) =
CUf−1(wj) for each j < n. Supposey ∈ f−1(♦R{wj}). Thenf(y)Rwj .Assuming

https://doi.org/10.1017/jsl.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.14


KRULL DIMENSION INMODAL LOGIC 1367

f(y) = wi , we have y ∈ Ai and y ∈ (X \ Ai) ∪ CAj , giving y ∈ CAj . So y ∈
U ∩ CAj = CUAj = CUf−1(wj). Conversely, suppose y /∈ f−1(♦R{wj}). Then
¬(f(y)Rwj ). Assuming f(y) = wi , we have y ∈ Ai and y ∈ (X \Ai)∪ (X \CAj),
yielding y ∈ X \ CAj . Thus, y �∈ CAj , and hence y /∈ CUAj = CUf−1(wj).
Consequently, f is interior, and hence F is an interior image of an open subspace
of X . �
The next theorem is an analogue of Theorem 2.14 for modal Krull dimension,
and is the main result of this section.
Theorem 3.6. Let X �= ∅, n ≥ 1, and Fn+1 be the (n + 1)-element chain. The
following are equivalent:
1. mdim(X ) ≤ n − 1.
2. There does not exist a sequence F0, . . . , Fn of nonempty closed subsets ofX such
that F0 = X and Fi+1 is nowhere dense in Fi for each i ∈ {0, . . . , n − 1}.

3. X � bdn .
4. X � ¬
Fn+1 .
5. Fn+1 is not an interior image of any open subspace of X .
6. Fn+1 is not an interior image of X .
Proof. (1)⇔(2)⇔(3)⇔(4): This follows from the equivalence of Items (1), (2),
(3), and (5) of Theorem 2.14,Definition 3.1, the correspondence between relativiza-
tions and subspaces, and the fact that X and AX validate exactly the same modal
formulas.
(4)⇔(5):We haveX � ¬
Fn+1 iff 
Fn+1 is not satisfiable inX . This, by Lemma 3.5,
is equivalent to Fn+1 not being an interior image of any open subspace of X .
(5)⇒(6): This is obvious.
(6)⇒(2): Suppose there is a sequence F0, . . . , Fn of nonempty closed subsets of
X such that F0 = X and Fi+1 is nowhere dense in Fi for each i ∈ {0, . . . , n − 1}.
We show that Fn+1 is an interior image of X . Let Fn+1 = ∅. Define f : X →Wn+1
by f(x) = wi if x ∈ Fi \ Fi+1 for i ≤ n. Clearly f is well-defined and onto since
{Fi \ Fi+1 | i ≤ n} is a partition of X . Moreover, C(Fi \ Fi+1) = Fi since Fi is
closed in X and Fi+1 is nowhere dense in Fi for i ≤ n. Thus,

f−1(♦R{wi}) = f−1 ({wi, . . . , wn}) =
⋃n

j=i
(Fj \ Fj+1)

= Fi = C(Fi \ Fi+1) = Cf−1(wi).

Consequently, f is an onto interior map, and hence Fn+1 is an interior image
of X . �
Section 7 contains a comparisonofmodalKrull dimensionwith otherwell-known
topological dimension functions. We conclude this section by calculating the modal
Krull dimension of some well-known spaces.

Example 3.7.
1. It follows from the celebrated McKinsey-Tarski theorem [37, 42] that every
finite rooted S4-frame is an interior image of any dense-in-itself metric space.
LetR, C, andQ denote the real line, the Cantor discontinuum, and the rational
line, respectively. It follows from Theorem 3.6 that each of R, C,Q has infinite
modal Krull dimension.

2. We view ordinals as topological spaces equipped with the interval topology
induced by the well order. Let n ≥ 1. It is well known that the n-element chain
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is an interior image of the ordinal �n, and that the (n + 1)-element chain is
not an interior image of �n. By Theorem 3.6, mdim(�n) = n − 1.

3. A reasoning similar to (2) yields that mdim(�n+1) = n andmdim(��+1) =
∞. Since these ordinals are compact, and hence Stone spaces, we obtain the
examples alluded to in the introduction.

4. Let X be a nonempty Alexandroff space and let n ≥ 1. By Theorem 3.6,
mdim(X ) ≤ n− 1 iff X � bdn. This together with the finite model property of
S4n yields that S4n is the logic of the class of all nonempty Alexandroff spaces
of modal Krull dimension ≤ n − 1. Since every finite space is Alexandroff,
S4n is also the logic of the class of all nonempty finite spaces of modal Krull
dimension ≤ n − 1.

For T1-spaces there is an alternate description of modal Krull dimension, which
is based on an appropriate generalization of the concept of a nodec space. This will
be discussed in the next section.

§4. n-discrete algebras, n-nodec spaces, and n-Zeman formulas. In this section
we generalize the notion of a discrete S4-algebra to that of an n-discrete S4-algebra.
The topological counterpart of this generalization yields a generalization of the
concept of a nodec space. As was shown in [3], nodec spaces are modally definable
by the Zeman formula. We introduce n-Zeman formulas and show that they define
n-discrete S4-algebras and n-nodec spaces. We prove that a T1-space X is n-nodec
iff mdim(X ) ≤ n. From this we derive that there are infinitely many modal logics
incomplete with respect to any class of T1-spaces.

Definition 4.1. Let A be a nontrivial S4-algebra.
1. Call A 0-discrete if A is discrete.
2. For n ≥ 1, call A n-discrete if Aa is (n − 1)-discrete for each nowhere dense
a ∈ A.

Remark 4.2. This definition can be extended to all S4-algebras by letting the
trivial S4-algebra to be (−1)-discrete.
In order to axiomatize n-discrete S4-algebras, we generalize the Zeman formula

zem = �♦�p → (p → �p)
as follows.

Definition 4.3. Set bd0 = ⊥, and for n ≥ 0, define
zemn = pn+1 → �(bdn ∨ pn+1).

We call zemn the n-Zeman formula, and we call

S4.Zn := S4 + zemn

the n-Zeman logic.

Remark 4.4.
1. An easy induction shows that bdn and zemn are Sahlqvist formulas (see, e.g., [2,
Definition 3.1]). Therefore, S4n and S4.Zn are Sahlqvist logics. Thus, S4n and
S4.Zn are canonical, and hence Kripke complete (see, e.g., [10, Section 10.3]
or [6, Sections 3.6 and 5.6]).
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2. It is easy to see that zem0 is equivalent to p → �p, and hence S4.Z0 is the logic
of (nontrivial) discrete S4-algebras. We will see shortly that zem1 is equivalent
to zem, and hence S4.Z1 is the Zeman logic S4.Z := S4+ zem.

Theorem 4.5. Let A be a nontrivial S4-algebra and n ≥ 0. The following are
equivalent:
1. A is n-discrete.
2. A � zemn.
3. There is no chainwn+1Rwn 	R wn−1 	R · · · 	Rw1 	Rw0 inA∗ satisfyingwn+1 �= wn.
Proof. (1)⇒(3): Suppose that A is n-discrete. If there is a chain

wn+1 R wn 	R wn−1 	R · · · 	R w1 	R w0
in A∗ satisfying wn+1 �= wn, then we build inductively a decreasing sequence of
clopen R-downsets A0, . . . , An of A∗ such that wi /∈ Ai+1, wi+1 ∈ Ai+1, and Ai+1 ∩
maxR(Ai ) = ∅ for 0 ≤ i ≤ n − 1. Let A0 =W . Suppose Ai is already built. Since
wi+1 	R wi , we have wi+1 /∈ R[maxR(Ai) ∪ {wi}]. Now maxR(Ai) ∪ {wi} is closed,
and it follows thatR[maxR(Ai)∪{wi}] is closed aswell. SoW \R[maxR(Ai)∪{wi}]
is open and contains wi+1. Therefore, there is a clopen R-downset Ai+1 such that
Ai+1 ⊆ Ai , wi+1 ∈ Ai+1, and Ai+1 ∩ R[maxR(Ai) ∪ {wi}] = ∅. Let a0, . . . , an ∈ A
be such that �(ai) = Ai for i ≤ n. Since Ai+1 ∩maxR(Ai ) = ∅, Lemma 2.3 yields
that ai+1 is nowhere dense in Aai for i < n. Because A is n-discrete, Aai is (n − i)-
discrete for each i ≤ n. So Aan is 0-discrete, and hence discrete. We show this is a
contradiction. Since wn �= wn+1, there is clopen An+1 of A∗ such that wn /∈ An+1
andwn+1 ∈ An+1. Set B = An \An+1. Thenwn+1Rwn ∈ B, sown+1 ∈ ♦RB \B. Let
b ∈ A be such that �(b) = B. Then b ∈ Aan , and since ♦RB �= B, we have ♦b �= b
in Aan , contradicting that Aan is discrete.
(3)⇒(1): Suppose that A is not n-discrete. Then there is a sequence of closed
elements a0, . . . , an ∈ A such that a0 = 1, ai+1 is nowhere dense inAai for i < n, and
Aan is not discrete. LetAi := �(ai) for i ≤ n. Clearly eachAi is a clopenR-downset,
and Lemma 2.3 gives Ai+1 ∩maxR(Ai) = ∅ for i < n. As Aan is not discrete, there
is a ∈ Aan such that a �= ♦a. Therefore, there is w ∈ ♦R�(a) \ �(a). Thus, there is
v ∈ �(a) such thatwRv. Clearlyw, v are distinct. We buildw0, . . . , wn+1 as follows.
Setwn+1 := w andwn := v. As a ≤ an, we see thatwn ∈ An . Supposewi has already
been chosen in Ai for 1 ≤ i ≤ n. Since Ai ⊆ Ai−1, there is wi−1 ∈ maxR(Ai−1)
such that wi Rwi−1. As ai is nowhere dense in Aai−1 , we havewi /∈ maxR(Ai−1), so
wi 	R wi−1. Therefore,

wn+1 R wn 	R wn−1 	R · · · 	R w1 	R w0
is a chain in A∗ satisfying wn+1 �= wn.
(2)⇔(3): This follows directly from standard Sahlqvist theory (see, e.g., [6,
Sections 3.6 and 5.6]). �
Theorem 4.6.
1. S4n+1 ⊂ S4.Zn for n ≥ 0.
2. S4.Zn ⊂ S4n for n ≥ 1.
3. S4 =

⋂
n≥1 S4n =

⋂
n≥0 S4.Zn .

4. S4.Zn is canonical for n ≥ 0.
5. S4.Zn has the finite model property for n ≥ 0.
6. S4.Z1 = S4.Z.
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Proof. (1) Suppose A � S4.Zn. It follows from Theorem 4.5 that depth(A∗) ≤
n + 1. Therefore, by Theorem 2.14, A � S4n+1. Thus, S4n+1 ⊆ S4.Zn. To see that
the inclusion is proper, consider the finite S4-frame Fn2 depicted in Figure 2. Since
depth(Fn2) = n + 1, we see that F

n
2 � S4n+1. On the other hand, as

r2 R r1 	R wn−1 	R · · · 	R w1 	R w0
and r2 �= r1, Theorem 4.5 implies Fn2 �� S4.Zn .
(2) Suppose A � S4n . Then depth(A∗) ≤ n by Theorem 2.14. Therefore, there
is no chain wn 	R wn−1 	R · · · 	R w1 	R w0 in A∗. Thus, Theorem 4.5 yields that
A � S4.Zn, and hence S4.Zn ⊆ S4n . To see the inclusion is proper, consider Fn1
depicted in Figure 2. Since depth(Fn1) = n + 1, we see that F

n
1 �� S4n. On the other

hand, it follows from Theorem 4.5 that Fn1 � S4.Zn.
(3) Since S4 has the finite model property, it follows that S4 =

⋂
n≥1 S4n. Thus,

by (2),
S4 =

⋂
n≥1 S4n ⊇

⋂
n≥1 S4.Zn =

⋂
n≥0 S4.Zn ⊇ S4.

(4) Since S4.Zn is a Sahlqvist logic, it is canonical (see, e.g., [6, 10]).
(5) Follows from (1) since every normal extension of S4n+1 (for n ≥ 0) has the
finite model property.
(6) By (5) and Theorem 4.5, S4.Z1 is the logic of finite S4-frames in which there
is no chain w2 R w1 	R w0 satisfying w2 �= w1. By [43, Theorem II.7.5], the same is
true of S4.Z. Thus, S4.Z1 = S4.Z. �
As we just saw, S4.Z1 = S4.Z. By [3, Theorem 4.6], S4.Z is the logic of nodec
spaces, where we recall that a space is nodec if every nowhere dense set is closed.
Since a space is nodec iff every nowhere dense set is closed and discrete (see, e.g.,
[14]), the next definition generalizes the notion of a nodec space.

Definition 4.7. We call a nonempty topological space X n-nodec provided AX
is n-discrete.

Remark 4.8. Suppose X is nonempty.

1. X is 0-nodec iff X is discrete.
2. X is 1-nodec iff X is nodec.
3. For n ≥ 1, X is n-nodec iff every nowhere dense subset of X is
(n − 1)-nodec.

4. X is n-nodec iff X � zemn .

•
•

�
�

�
�

•
• •. . .

...

w0

w1

wn−1

r1 rm

Figure 2. The S4n+1-frame Fnm.
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Theorem 4.9. Let X be a nonempty T1-space and n ∈ �. Then mdim(X ) ≤ n iff
X is n-nodec.
Proof. By induction on n. First suppose n = 0. If X is discrete, then the only
nowhere dense subset of X is ∅. Therefore, mdim(X ) ≤ 0. Conversely, if X is not
discrete, then there is x ∈ X such that {x} is not open, so I{x} = ∅. Since X is T1,
we see that IC{x} = I{x} = ∅, so {x} is nowhere dense. Thus, mdim(X ) > 0.
Next suppose that for every T1-space Y , we have Y is n-nodec iff mdim(Y ) ≤ n.
We show that X is (n + 1)-nodec iff mdim(X ) ≤ n + 1. We have mdim(X ) ≤ n + 1
iff mdim(Y ) ≤ n for every nowhere dense subspace Y of X . Since a subspace
of a T1-space is a T1-space, by inductive hypothesis, this is equivalent to every
nowhere dense subspace Y of X being n-nodec. But this is equivalent to X being
(n + 1)-nodec. �
Corollary 4.10. For n ≥ 0, the interval [S4n+1,S4.Zn) is infinite and no logic in
[S4n+1,S4.Zn) is the logic of any class of T1-spaces.
Proof. To see that [S4n+1,S4.Zn) is infinite, for m ≥ 2, let Lm be the logic of

Fnm depicted in Figure 2. Since F
n
m is a p-morphic image of F

n
m+1 and F

n
m+1 is not a

p-morphic image of a generated subframe of Fnm, we have ¬
Fnm+1 ∈ Lm \Lm+1, and
hence

S4n+1 ⊂ · · · ⊂ Lm+1 ∩ S4.Zn ⊂ Lm ∩ S4.Zn ⊂ · · · ⊂ L2 ∩ S4.Zn ⊂ S4.Zn.
Next suppose L ∈ [S4n+1,S4.Zn) and K is a class of T1-spaces. If L is the logic
of K, then for each X ∈ K, we have X � L. Therefore, since S4n+1 ⊆ L, we have
X � bdn+1. By Theorem 3.6, mdim(X ) ≤ n. As X is T1, by Theorem 4.9, X is
n-nodec. By Remark 4.8, X � zemn. Thus, S4.Zn ⊆ L, a contradiction.
Consequently, L is not the logic of any class of T1-spaces. �
Remark 4.11. By Segerberg’s Theorem, each L ∈ [S4n+1,S4.Zn) is Kripke com-
plete, hence topologically complete. However, the completeness is with respect to
spaces that are not T1.

§5. Topological completeness of S4.Zn . TheMcKinsey–Tarski theorem not only
shows that S4 is the basic modal logic associated with topological spaces, but also
thatS4 is the logic of ‘nice’ spaces; i.e., any dense-in-itself metric space. Analogously,
S4n+1 is the basic logic of topological spaces of modal Krull dimension n ≥ 0.
However, Corollary 4.10 shows that it cannot be the logic of ‘nice’ spaces. In fact, it
follows from Theorem 4.9 that S4.Zn is the basic logic of T1-spaces of modal Krull
dimension n. Thus, it is natural to seek a version of the McKinsey-Tarski theorem
for S4.Zn where n ≥ 0.
Since S4.Z0 � p → �p, it is clear that S4.Z0 is the logic of any nonempty
discrete space. On the other hand, it follows from the result of [5] mentioned in the
introduction that S4.Zn is not the logic of any metric space for n ≥ 1. In fact, if
the logic L of a metric space is contained in the logicM of the two-element cluster,
then since S4.1 �⊆M , we must have L = S4.
The goal of this section is to construct for each n ≥ 1 a countable dense-in-itself
�-resolvable Tychonoff space Zn of modal Krull dimension n such that S4.Zn is
the logic of Zn. This construction is technically the most challenging part of the
paper. Since finite Tychonoff spaces are discrete, S4.Zn does not have the finite
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model property with respect to Tychonoff spaces for n ≥ 1. On the other hand,
because Zn is countable, we obtain that S4.Zn has the countable model property
with respect to Tychonoff spaces. Since countable Tychonoff spaces are normal (see,
e.g., [19, Theorem 1.5.17]), we obtain that S4.Zn has the countable model property
with respect to normal spaces.
Our technique is to identify a single frame Qn+1 whose logic is S4.Zn and utilize
Qn+1 to guide the construction of Zn as follows. The depth of Qn+1 indicates the
necessary modal Krull dimension of Zn . Thus, since Zn is Tychonoff and hence T1,
Theorem 4.9 yields thatS4.Zn is sound with respect toZn. In addition, we construct
Zn so that Qn+1 is an interior image of Zn . Consequently, S4.Zn is complete with
respect to Zn . Since there is no restriction on the cluster size of Qn+1 (except at the
root), for such an interior map to exist, Zn needs to be �-resolvable. Also, since
there is no restriction on the branching in Qn+1 (except at the maximal points),
we build Zn step-by-step, utilizing the construction of adjunction spaces (for the
simplest case see Figure 4).
The basic building block for the construction is a countable dense-in-itself
�-resolvable Tychonoff nodec space Y such that the remainder Y ∗ = �Y \ Y con-
tains a subspace homeomorphic to �� which consists entirely of remote points ofY .
In Section 5.1 we explain why such a building blockY exists, in Section 5.2 we build
the spaces Zn from Y , and in Section 5.3 we prove that S4.Zn is the logic ofZn .

5.1. The basic building block. Let X be a topological space. We recall (see
Juhász [32, 33]) that a �-base of X is a collection B of nonempty open subsets
of X such that every nonempty open subset of X contains a member of B. The
�-weight �(X ) ofX is the smallest cardinality of such a family. We will be interested
in Tychonoff spaces of countable �-weight.
For a compact Hausdorff spaceX , let EX be theGleason cover of X [26,41]. It is
well known that EX is constructed as the Stone space of the Boolean algebra of
regular open subsets of X , and hence EX is an extremally disconnected compact
Hausdorff space, wherewe recall that a space is extremally disconnected if the closure
of each open set is open.
If ∇ ∈ EX , then ⋂{CX (U ) | U ∈ ∇} is a singleton of X , which we denote by
pX (∇). This defines a map pX : EX → X . It is well known that pX is an irreducible
map; that is, pX is an onto continuous map such that for every proper closed subset
F of EX , the image pX (F ) is a proper closed subset of X . Since pX is evidently
closed, this yields that F ⊆ EX is nowhere dense iff pX (F ) ⊆ X is nowhere dense,
and that �(X ) = �(EX ).
Let Z be a subspace of X . A point x ∈ X \ Z is remote from Z provided
x �∈ CX (D) for every nowhere dense subset D of Z. Observe that if x is remote
from Z, then x is remote from every subspace of Z. The following simple lemma
was used in [16,39] for constructing various examples.

Lemma 5.1. For a T1-space X , if every x ∈ X is remote from X \ {x}, then X is
nodec.

Proof. LetD be a nowhere dense subset of X and x /∈ D. Since X is a T1-space,
D is a nowhere dense subset of X \ {x}. Therefore, as x is remote from X \ {x},
we see that x �∈ CX (D). Thus, X is nodec. �
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Suppose X is a Tychonoff space. A remote point of X is a point p ∈ �X \X that
is remote from X . In the context of Čech-Stone compactifications, remote points
are very well studied in the literature. In particular, we have:

Theorem 5.2. [9, 13] If X is a nonpseudocompact Tychonoff space with countable
�-weight, then the remainder X ∗ := �X \ X contains a point that is remote from X .
Here we recall that a Tychonoff space X is pseudocompact if every continuous
real-valued function on X is bounded. This result was generalized to products of
such spaces in [15].
Let I be the closed unit interval and let EI be the Gleason cover of I. For t ∈ I, let
X = EI\p−1

I
({t}). SinceX is a dense subspace ofEI, it isC ∗-embedded inEI (see,

e.g., [46, Proposition 10.47]), meaning that every bounded continuous real-valued
function on X extends to EI. Therefore, by [46, Theorem 1.46], �X = EI. It is
also clear thatX is a nonpseudocompact Tychonoff space with countable �-weight.
Thus, by Theorem 5.2, there is a point xt ∈ p−1I

({t}) that is remote from X .
Let D be any countable dense subset of I (e.g., D = I ∩Q). We set

Y := {xt | t ∈ D}.
Lemma 5.3 ([16, 39]). Y is a countable dense-in-itself extremally disconnected
�-resolvable nodec space that is of countable �-weight.
Here we recall (see, e.g., [17]) that a partition P of a space X is dense if each
D ∈ P is dense in X , and that X is κ-resolvable if it has a dense partition of size κ.
We now isolate the crucial property ofY that makes our construction in Section 5.2
work.

Proposition 5.4. Y has a compact set of remote points that is homeomorphic
to ��.
Proof. Since Y is countable, we can pick a nonempty closed G -subset S of �Y
such that Y ∩ S = ∅. Put T = �Y \ S. By [46, Theorem 1.49], �T = �Y and
T ∗ = S. By [13, Theorem 11.1], we can choose a countably infinite discrete set
D consisting entirely of remote points of T every limit point of which is also a
remote point of T . Observe that every point from D is remote from Y since Y is a
subspace of T . We show that D is C ∗-embedded in �Y by utilizing a technique of
[40]. Since D ⊆ T ∗ = S and S is closed, CD ⊆ S. Because Y ⊆ �Y \ S, we see
that C(D) ∩ Y ⊆ C(D) \ S = ∅. Therefore, D is closed in the subspace D ∪ Y ,
which is normal since it is countable. By the Tietze Extension Theorem (see, e.g.,
[19, Theorem 2.1.8]),D isC ∗-embedded inD∪Y , and soD isC ∗-embedded in �Y .
This, by [46, Theorem 1.46], yields that C(D) = �D, and hence Y has a compact
set of remote points that is homeomorphic to ��. �
5.2. The spaces Zn. Let F = (W,R) be a rooted S4-frame. We call F a tree if R
is a partial order and (∀w, u, v ∈W )(u R w and v R w ⇒ u R v or v R u). We will
always denote the root of a tree F by r, the R-maximal points of F by max(F), and
call v a child of w provided w 	R v and from w R u R v it follows that w = u or
u = v. For n ≥ 1, let Tn denote the tree of depth n in which all non-R-maximal
points have � children.
Define an equivalence relation on an S4-frame F = (W,R) by setting

w ∼ v iff w R v and v R w.
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As is customary, we call equivalence classes of ∼ clusters. The skeleton of F is the
partially ordered S4-frame obtained by modding out the clusters of F. We call a
cluster in F trivial if it is a singleton, and proper otherwise. We call F a quasi-tree if
the skeleton of F is a tree. A cluster of a quasi-tree F is maximal if all its points are
R-maximal, and it is the root cluster if it contains a root of F.
Let P be a partition of a spaceX . We callP clopen provided eachA ∈ P is clopen
in X . For a cardinal κ, we consider the κ-fork depicted in Figure 3.

κ-fork

•
w0 •
w1 · · · •

w�, � < κ· · ·

• r�
�

��

�
�
��

�
�
��

Figure 3. The κ-fork.

Lemma 5.5. The κ-fork is an interior image of a space X iff there are a closed
nowhere dense subset N of X and a clopen partition P = {A� | � < κ} of the
subspace X \N such that CA = A ∪N for each A ∈ P .
Proof. Let F = (W,R) be the κ-fork. First suppose that f : X →W is an onto
interior map. Let N = f−1(r) and A� = f−1(w�). Then

CN = Cf−1(r) = f−1(♦R{r}) = f−1(r) = N

and
ICN = IN = If−1(r) = f−1(�R{r}) = f−1(∅) = ∅.

Therefore, N is closed and nowhere dense in X . Clearly P = {A� | � < κ} is a
partition of X \N . Moreover, since each {w�} is simultaneously anR-upset and an
R-downset in the subframeW \ {r}, each A� is clopen in X \N . Finally,

CA� = Cf−1(w�) = f−1(♦R{w�}) = f−1({w�, r}) = A� ∪N.
Next suppose that there are a closed nowhere dense subset N of X and a clopen
partition P = {A� | � < κ} of the subspace X \N such that CA = A ∪N for each
A ∈ P . Define f : X →W by setting

f(x) =
{
r if x ∈ N,
w� if x ∈ A�.

It is clear that f is a well-defined onto map. Moreover,

f−1(♦R{r}) = f−1(r) = N = CN = Cf−1(r)

and
f−1(♦R{w�}) = f−1({w�, r}) = A� ∪N = CA� = Cf−1(w�).

Thus, f is interior. �
We assume the reader is familiar with the construction of attaching spaces or
adjunction space (see, e.g., [28, pp. 12–14]or [47, pp. 65–66]).Given an indexed fam-
ily of spaces Xi and subspaces Yi ⊆ Xi , along with continuous maps fi : Yi → Z,
one can forman adjunction spacewhich is a quotient of the topological sum

⊕
i∈I Xi

in which the only nontrivial equivalence classes are
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{(yi , yj) | i, j ∈ I, yi ∈ Yi , yj ∈ Yj, fi(yi) = fj(yj)}.
When Z is a singleton, the adjunction space is often referred to as the wedge sum.
Given an equivalence relation ≡ on a set X , let [x] be the equivalence class of
x ∈ X . We call U ⊆ X saturated provided that x ∈ U implies [x] ⊆ U . Recall
that open (resp. closed) sets in a quotient space X/≡ correspond to saturated open
(resp. closed) sets in X .
Using Y we recursively build the family of spaces {Zn | n ≥ 1} such that eachZn
is a subspace of Zn+1 and there is an onto interior mapping αn : Zn → Tn+1.
Base case (n = 1): Let {Yn | n ∈ �} be a pairwise disjoint family of spaces
such that there is a homeomorphism hn : Y → Yn for each n ∈ �. Fix y ∈ Y and
set yn = hn(y). Let Z1 be the wedge sum of {(Yn, yn) | n ∈ �}. We identify each
Yn \ {yn} with its image in Z1 and refer to the point {yn | n ∈ �} in Z1 using
the symbol y; see Figure 4. Since T2 is the �-fork and {y} is a closed nowhere
dense subset of Z1 such that {Yn \ {yn} | n ∈ �} is a clopen partition of Z1 \ {y}
satisfying y ∈ CZ1 (Yn \ {yn}), it follows from Lemma 5.5 that there is an onto
interior mapping α1 : Z1 → T2 such that α−11 (r) = {y}.

�
�
�
�
�
��

�
�

�
�

�
�� Y0 Y1 Y2 . . .

�
�
�
�
�
��

�
�
�
�
�
��

•
y

Z1

• • •y0 y1 y2

Y0 Y1 Y2

. . . �

Figure 4. Realizing Z1 as a wedge sum of the Yi .

Recursive step (n ≥ 1): Suppose Zn with the above properties is already built.
Identify Tn+1 with the subframe Tn+2 \max(Tn+2). Enumerate max(Tn+1) as {wi |
i ∈ �}. Label points in max(Tn+2) as wi,j where wi,j is the jth child of wi . Let
αn : Zn → Tn+1 be an onto interior map such that (αn)−1(r) = {y} where y is the
point in the base case defining Z1. Set Xi = (αn)−1(♦R{wi}); see Figure 5.

max(Tn+2). . .w0,j w1,j w2,j

max(Tn+1)
• • •�
�

�
�

�
�

	
	

	
	

	
	

w0 w1 w2 . . .

�
�
�
�
�
�
��

�
�

�
�

�
�

��

•
αn(y) = r

�
�
�
�
�
�
��

�
�

�
�

�
�

��

•
y

X0 X1 X2 . . .

�
�
�
�
�
�
��

�
�
�
�
�
�
��

Zn Tn+1�αn

Xi = α−1n (♦R{wi})

Figure 5. Mapping Zn onto Tn+1 viewed as a subframe of Tn+2.

SinceXi is countable, there is a continuous bijectionf : � → Xi which extends to
a continuous onto map g : �� → �Xi . Up to homeomorphism, �� is a subspace of
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�Y such that each point in �� is a remote point of Y . Consider the quotient space
Qi of �Y obtained by the equivalence relation whose only nontrivial equivalence
classes are the fibers of g, namely g−1(x) for each x ∈ �Xi . By [19, Theorem 2.4.13]
the quotientmapping of �Y ontoQi is closed. Intuitively,Qi is obtained from�Y by
replacing the copy of �� that ‘is remote fromY ’ by �Xi . We identifyY , �Xi , andXi
with their respective images inQi , see Figure 6. For a nowhere dense subsetN ofY ,
we haveC�Y (N)∩ �� = ∅, so C�Y (N) is saturated, and hence CQi (N)∩ �Xi = ∅.

••••

�
g

�
f

� Xi
�∗

Y Y

Y ∗

�� �Xi

�Y Qi

Figure 6. Identifying Y , �Xi , and Xi in the quotient Qi of �Y .

Viewing Y ∪ Xi as a subspace of Qi , the subsets Y and Xi are complements
of each other, Y is dense, and Xi is closed and nowhere dense. Let Ai be the
adjunction space of� copies ofY ∪Xi glued through the identity map on the copies
of Xi . That is, up to homeomorphism, Ai is the quotient of the topological sum⊕
m∈�(Y ∪Xi)×{m} under the equivalence relation whose nontrivial equivalence

classes are {(x,m) | m ∈ �} for each x ∈ Xi ; see Figure 7.

Y Y

. . . �

Ai

Yi,j ’s

. . .

	
	
		

	
	
		

�
�
��

�
�
��Xi Xi

	
	

		

�
�
��Xi

Figure 7. The adjunction space Ai obtained by gluing � copies
of Y ∪ Xi through Xi .

To facilitate defining αn+1 : Zn+1 → Tn+2 we denote the � copies of Y in Ai
by Yi,j where j ∈ �. We also identify Xi with its homeomorphic copy in Ai . The
quotient mapping from

⊕
j∈�(Yi,j ∪ Xi) onto Ai is closed. Thus, in Ai we have

that
⋃
j∈� Yi,j and Xi are complements of each other,

⋃
j∈� Yi,j is dense, and Xi is

closed and nowhere dense.
We define Zn+1 as the adjunction space of theAi for i ∈ � through the following
gluing. For each Ai consider the inclusion mapping Ii : Xi → Zn . Glue through
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the equivalence relation whose nontrivial equivalence classes are {(xi , xj) | xi ∈ Xi ,
xj ∈ Xj, Ii(xi) = Ij(xj)}. Intuitively the gluing is through identifying points
in Xi and Xj that are equal in Zn; see Figure 8. Identify the Yi,j , Xi , and Zn
with their images in Zn+1. Observe that Yi,j is open in Yi,j ∪ Xi and saturated in⊕
j∈�(Yi,j ∪ Xi), hence open in Ai . Similarly, Yi,j is saturated in

⊕
i∈� Ai , and so

open in Zn+1. Thus, in Zn+1 we have that
⋃
i,j∈� Yi,j and Zn are complements of

each other,
⋃
i,j∈� Yi,j is dense and open, and Zn is closed and nowhere dense.

�
�
�
�
�
�
�

�
�

�
�

�
�

� X0 X1 X2 . . .

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Zn+1

Zn

. . .. . .

Y0,j

. . .

Y1,j

. . .

Y2,j































�
�
�
�
�
�
�

�
�
�
�
�
�
�Xi Xi+1

Ai Ai+1

. . . . . .

. . .

Yi,j

. . .

Yi+1,j

�

Figure 8. Attaching the Ai to obtain Zn+1.

We now extend αn : Zn → Tn+1 to αn+1 : Zn+1 → Tn+2 by setting αn+1(z) = wi,j
for each z ∈ Yi,j . Let w ∈ Tn+2. If w = wi,j ∈ max(Tn+2), then

α−1n+1(♦R{wi,j}) = α−1n+1 ({wi,j} ∪ ♦R{wi}) = α−1n+1(wi,j) ∪ α−1n (♦R{wi})
= Yi,j ∪ Xi = CZn+1(Yi,j) = CZn+1α−1n+1(wi,j).

Otherwise w ∈ Tn+1, so since αn is interior and Zn is closed in Zn+1, we have

α−1n+1(♦R{w}) = α−1n (♦R{w}) = CZnα−1n (w) = CZn+1α−1n+1(w).
Thus, αn+1 is interior and α−1n+1(r) = {y}.
Lemma 5.6. Let X =

⊕
i∈� Yi . For n ∈ �, if 0 ≤ mdim(Yi) ≤ n for each i , then

mdim(X ) ≤ n.
Proof. Induction on n.
Base case (n = 0): Suppose mdim(Yi) = 0 for each i . Let N be nowhere dense
in X . Then Ni = N ∩ Yi is nowhere dense in Yi . Therefore, mdim(Ni ) = −1, and
so Ni = ∅. Thus, N = ∅. From this it follows that mdim(N) = −1, and hence
mdim(X ) = 0.
Inductive step (n ≥ 0): Suppose for any family of spaces {Y ′

i | i ∈ �}, if
0 ≤ mdim(Y ′

i ) ≤ n for each i , thenmdim(
⊕
i∈� Y

′
i ) ≤ n. Assume 0 ≤ mdim(Yi) ≤

n + 1 for each i ∈ �. Let N be nowhere dense in X . Then Y ′
i = N ∩Yi is nowhere

dense in Yi . Therefore, mdim(Y ′
i ) ≤ n. By the inductive hypothesis, mdim(N) ≤ n.

Thus, mdim(X ) ≤ n + 1. �
Lemma 5.7. For n ≥ 1, mdim(Zn) = n.
Proof. Since Tn+1 is an interior image of Zn , the (n + 1)-element chain is an
interior image ofZn . By Theorem 3.6, mdim(Zn) ≥ n.We show thatmdim(Zn) ≤ n
by induction on n ≥ 1.
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Base case (n = 1): Let N be nowhere dense in Z1. Set Ni = N ∩ Yi for each
i ∈ �. Then Ni is nowhere dense in Z1. Noting that Yi is a closed subspace of
Z1 homeomorphic to Y (which is a dense-in-itself T1-space), it follows that Ni is
nowhere dense in Yi . Because Y is nodec, Yi is nodec, and soNi is closed in Yi . Let
N ′ be the union of the Ni in the topological sum of the Yi which is the preimage of
the adjunction space Z1. Then N ′ is closed in the sum. Since N ′ is the preimage of
N , we see that N is closed in Z1. Therefore, Z1 is nodec. Because Z1 is a T1-space,
it follows from Theorem 4.9 that mdim(Z1) ≤ 1.
Inductive step (n ≥ 1): Assume mdim(Zn) = n. Since Zn+1 was con-
structed in three stages, our proof is also in three stages. First we show that
mdim(Y ∪ Xi) ≤ n + 1, next that mdim(Ai ) ≤ n + 1, and finally that
mdim(Zn+1) ≤ n + 1.
Stage 1: Since mdim(Zn) = n and each Xi ⊆ Zn , by Lemma 3.3, mdim(Xi) ≤ n.
Also, the (n+1)-element chain is an interior image ofXi , giving thatmdim(Xi) ≥ n.
Thus, mdim(Xi) = n.
LetN be nowhere dense inY ∪Xi , and setM = N ∩Y . ThenM is nowhere dense
in Y ∪ Xi . Let U be an open subset of Y contained in CYM . Since Y is open in
Y ∪Xi , we have thatU is open in Y ∪Xi and is contained in CYM ⊆ CM . Because
M is nowhere dense in Y ∪Xi , we obtainU = ∅, and soM is nowhere dense in Y .
SinceY is nodec,M is closed and discrete in Y . By the construction ofY ∪Xi , each
x ∈ Xi is the image of a set of points each remote fromY , and henceCM ∩Xi = ∅.
Thus, CM ⊆ Y , from which it follows that CYM = CM . Therefore, since M is
closed in Y , it is closed in Y ∪ Xi . Consequently,M is closed in N . In fact,M is
clopen in N since Y is open andM = N ∩Y . Therefore,N is the disjoint union of
M and N ∩ Xi . AsM is discrete, mdim(M ) ≤ 0. Also, since N ∩ Xi is a subspace
of Xi , we have mdim(N ∩ Xi) ≤ mdim(Xi) = n. By Lemma 5.6, mdim(N) ≤ n.
Thus, mdim(Y ∪ Xi) ≤ n + 1.
Stage 2:LetN be nowhere dense inAi . SetNj = N ∩Yi,j . Recalling thatYi,j∪Xi
is homeomorphic to Y ∪ Xi , by replacingM by Nj and Y ∪ Xi by Yi,j ∪ Xi in the
proof of Stage 1, we see thatNj is closed in Yi,j ∪Xi andNj ∩Xi = ∅ for all j ∈ �.
Therefore,

⋃
j∈� Nj is closed in the topological sum

⊕
j∈�(Yi,j∪Xi). Since

⋃
j∈� Nj

is also saturated in
⊕
j∈�(Yi,j ∪Xi), it is closed in Ai , and hence closed inN . Also,⋃

j∈� Nj = N ∩
⋃
j∈� Yi,j is open inN since

⋃
j∈� Yi,j is open in Ai . Therefore,N

is the disjoint union of N ∩ Xi and
⋃
j∈� Nj . By Lemma 5.6, mdim

(⋃
j∈� Nj

)
≤

1 ≤ n since mdim(Nj) ≤ mdim(Yi,j) ≤ 1. Also mdim(N ∩ Xi) ≤ mdim(Xi) = n,
so utilizing Lemma 5.6 again yields mdim(N) ≤ n. Thus, mdim(Ai ) ≤ n + 1.
Stage 3:LetN be nowhere dense inZn+1. SetNi = (N ∩Ai )\Xi . By recognizing
that Ni is realized within the discussion of Stage 2 as

⋃
j∈� Nj , we see that each

Ni is closed in Ai , and hence
⋃
i∈� Ni is closed in

⊕
i∈� Ai . Moreover,

⋃
i∈� Ni

is saturated, and so
⋃
i∈� Ni is closed in Zn+1. Therefore,

⋃
i∈� Ni is also closed

in N . But
⋃
i∈� Ni = N ∩ (Zn+1 \ Zn), so

⋃
i∈� Ni is open in N . Thus, N is

the disjoint union of N ∩ Zn and
⋃
i∈� Ni . Since mdim(Ni) ≤ mdim(Ai \ Xi) =

mdim
(⊕

j∈� Yi,j
)
≤ 1, Lemma 5.6 yields that mdim (⋃i∈� Ni) ≤ 1 ≤ n. Also

mdim(N ∩Zn) ≤ mdim(Zn) = n, so by Lemma 5.6, mdim(N) ≤ n. Consequently,
mdim(Zn+1) ≤ n + 1. �
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5.3. Completeness. Since S4.Zn has the finite model property, S4.Zn is the logic
of finite uniquely rooted S4-frames F of depth ≤ n + 1. Since each such F can be
unraveled into a uniquely rooted finite quasi-tree T whose depth is ≤ n + 1, we see
that S4.Zn is the logic of uniquely rooted finite quasi-trees T of depth ≤ n + 1.
Let Qn be the quasi-tree whose skeleton is Tn and in which the root cluster is the
only trivial cluster and all other clusters are countably infinite. Clearly identifying
the clusters yields an onto p-morphism pn : Qn → Tn. Because every uniquely
rooted finite quasi-tree of depth ≤ n + 1 is an interior image of Qn+1, we see
that S4.Zn is the logic of Qn+1. Since we will utilize this fact, we state it as a
lemma.
Lemma 5.8. S4.Zn is the logic of Qn+1.
Since mdim(Zn) = n and Zn is T1, we see that Zn � S4.Zn. Therefore, to show
that S4.Zn is the logic of Zn , in view of Lemma 5.8, it is sufficient to prove that
Qn+1 is an interior image of Zn. The idea of the proof is to ‘fatten’ the mapping
αn : Zn → Tn+1 to a mapping Zn → Qn+1. Let Cκ be the κ-cluster as depicted in
Figure 9.

Cκ

�
�

�
	•

w0 · · · •
w�, � < κ· · ·

Figure 9. The κ-cluster.

Lemma 5.9. A space X is κ-resolvable iff Cκ is an interior image of X .
Proof. First suppose that X is κ-resolvable. Then there is a dense partition
{D� : � < κ} of X . Define f : X → Cκ by f(x) = w� if x ∈ D�. Clearly f is a
well-defined onto map. Moreover, for each � < κ, we have

Cf−1(w�) = C(D�) = X = f−1({w� : � < κ}) = f−1(♦R{w�}).
Thus, f is an interior map.
Conversely, let f : X → Cκ be an onto interior map. Then {f−1(w�) : � < κ} is
a partition of X such that

Cf−1(w�) = f−1(♦R{w�}) = f−1({w� : � < κ}) = X.
Thus, {f−1(w�) : � < κ} is a dense partition of X , and hence X is κ-resolvable. �
Theorem 5.10. For each n ≥ 1, S4.Zn is the logic of Zn .
Proof. As we already pointed out, in view of Lemma 5.8, it is sufficient to show
thatQn+1 is an interior image of Zn . The proof is by induction on n.
Let n = 1. Let Ci be the maximal cluster in Q2 whose p2-image is wi ∈ max(T2)
(here we are using the enumeration of max(T2) as it appears in the recursive step
of defining the Zn). So Ci = p−12 (wi). Since each Yi \ {yi} is an open subspace of
Yi , Yi is homeomorphic to Y , and Y is �-resolvable, we see that each Yi \ {yi}
is �-resolvable. As Yi \ {yi} is homeomorphic to the subspace Yi \ {y} of Z1, by
Lemma 5.9, there is an onto interiormapfi : Yi \{y} → Ci . Definef : Z1 → Q2 by

f(z) =
{
fi(z) if z ∈ Yi \ {y},
r if z = y.
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Since {Yi \ {y} | i ∈ �} ∪ {y} is a partition of Z1 and each fi is onto, f is a
well-defined onto map. Let w ∈ Q2. Suppose w ∈ Ci for some i ∈ �. Then

f−1(♦R{w}) = f−1(Ci ∪ {r}) = f−1
i (Ci) ∪ {y}

= (Yi \ {y}) ∪ {y} = CZ1 (Yi \ {y}) = CZ1f−1(w).

Otherwise w is the root, and so

f−1(♦R{w}) = f−1(w) = {y} = CZ1{y} = CZ1f−1(w).

Thus, f : Z1 → Q2 is an onto interior map.
Let n ≥ 1. Suppose g : Zn → Qn+1 is an onto interior map. Identify Qn+1
with the subframe Qn+2 \ maxR(Qn+2). Let wi,j ∈ max(Tn+2) be the jth child of
wi ∈ max(Tn+1) (as in the recursive step of building theZn). Let Ci,j be themaximal
cluster in Qn+2 whose pn+2-image is wi,j . So Ci,j = p−1n+2(wi,j). Also, let Ci be the
maximal cluster in Qn+1 whose pn+2-image is wi ∈ max(Tn+1). So Ci = p−1n+2(wi).
Since each subspace Yi,j of Zn+1 is homeomorphic to Y , we see that Yi,j is
�-resolvable. By Lemma 5.9, there is an onto interior map fi,j : Yi,j → Ci,j .
Define f : Zn+1 → Qn+2 by

f(z) =
{
fi,j(z) if z ∈ Yi,j ,
g(z) if z ∈ Zn.

Since {Yi,j | i, j ∈ �}∪{Zn} is a partition ofZn+1 and thefi,j and g are onto,f is a
well-defined onto map. Let w ∈ Qn+2. Supposew ∈ Ci,j for some i, j ∈ �. Because
Zn is closed in Zn+1, both g and fi,j are interior maps, and g−1(♦RCi) = Xi , we
have

f−1(♦R{w}) = f−1(Ci,j ∪ ♦RCi) = f−1
i,j (Ci,j) ∪ g−1(♦RCi) = Yi,j ∪Xi

= CZn+1Yi,j = CZn+1(CYi,jf
−1
i,j (w)) = CZn+1f

−1(w).

Otherwise w ∈ Qn+1, and so
f−1(♦R{w}) = g−1(♦R{w}) = CZng−1(w) = CZn+1f−1(w).

Thus, f : Zn+1 → Qn+2 is an onto interior map. �
As an immediate consequence, we obtain:

Corollary 5.11. For each n ≥ 1, S4.Zn is the logic of a countable dense-in-itself
�-resolvable Tychonoff space of modal Krull dimension n.

Moreover, since S4.Z = S4.Z1, we obtain the following topological completeness
for the Zeman logic:

Corollary 5.12. S4.Z is the logic of a countable dense-in-itself �-resolvable
Tychonoff nodec space.

That S4.Z is the logic of nodec spaces was shown in [3, Theorem 4.6], but the
proof required the use ofAlexandroff nodec spaces. The above corollary strengthens
this result considerably by providing a topologically “nice” nodec space whose logic
is S4.Z.
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§6. Krull dimension of Heyting algebras. In this section we turn to Heyting alge-
bras, which are closely related to S4-algebras [38,42].We utilize this connection and
our results about the Krull dimension of S4-algebras to define the Krull dimension
of a Heyting algebra both externally and internally, and show that these definitions
are equivalent. We also show how to give an equivalent definition of the modal
Krull dimension of a topological space in terms of the Heyting algebra of open sets.

Definition 6.1. A Heyting algebra is a bounded implicative lattice; that is, a
bounded distributive lattice such that ∧ has a residual→ satisfying

x ≤ a → b iff a ∧ x ≤ b.
As usual, we let ¬a denote a → 0.
If A is an S4-algebra, then H(A) := {�a | a ∈ A} is a Heyting algebra in which
a → b = �(−a ∨ b). Conversely, if H is a Heyting algebra, then the free Boolean
extension B(H) of H can be equipped with � so that A(H) := (B(H),�) is an
S4-algebra,H is isomorphic toH(A(H)), andA(H(A)) is isomorphic to a subalgebra
of A (see, e.g., [42, Sections IV.1 and IV.3] or [21, Sections II.2 and II.5]).
As with S4-algebras, there are two typical examples of Heyting algebras. Firstly,
the collection HX of all open sets of a topological space X is a Heyting algebra,
where U → V = I((X \U ) ∪ V ). By the Stone representation theorem [44], every
Heyting algebra is represented as a subalgebra of HX for some topological space X
(see [38, 42]). Secondly, the R-upsets of an S4-frame form a Heyting algebra, but
sinceR-upsets do not distinguish between points that areR-related to each other, we
may restrict ourselves to those S4-frames that are in addition antisymmetric. More
precisely, theHeyting algebras ofR-upsets ofF and the skeleton ofF are isomorphic,
and every Heyting algebra is represented as a subalgebra of the Heyting algebra of
R-upsets of some partially ordered S4-frame (see, e.g., [21,25]).
The dual H∗ of a Heyting algebra H is the spectrum of prime filters of H. If A
is an S4-algebra and A∗ is the dual of A, then the dual H(A)∗ of H(A) is obtained
by taking the skeleton of A∗. Conversely, if H is a Heyting algebra, then the dual
A(H)∗ of A(H) is isomorphic to the dual H∗ of H (see, e.g., [21, Section III.4]).
Let H be a Heyting algebra and a ∈ H. The relativization of H with respect to a
is the Heyting algebraHa whose underlying set is the interval [a, 1] and ∧, ∨, and→
in Ha coincide with those in H. If H = HX is the Heyting algebra of all opens of a
topological space X andU is an open subset ofX , then the relativization of H with
respect toU is isomorphic to theHeyting algebra of all opens of the subspaceX \U .
We are ready to define Krull dimension of Heyting algebras. As with S4-algebras,
we first define Krull dimension of Heyting algebras externally and then provide
an equivalent internal definition of it. We also show that Krull dimensions of an
S4-algebra A and the associated Heyting algebra H(A) coincide.

Definition 6.2. Let H be a Heyting algebra. Define theKrull dimension kdim(H)
of H as the supremum of the lengths of finite R-chains in H∗. If the supremum is
not finite, then we write kdim(H) =∞.
Lemma 6.3.
1. If A is an S4-algebra, then kdim(A) = kdim(H(A)).
2. If H is a Heyting algebra, then kdim(H) = kdim(A(H)).
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Proof. (1) Since H(A)∗ is the skeleton of A∗, we see that the corresponding
R-chains in A∗ and H(A)∗ have the same length. Thus, kdim(A) = kdim(H(A)).
(2) This is obvious since H∗ is isomorphic to (A(H))∗. �
As with S4-algebras, the concept of Krull dimension of a Heyting algebra H is
closely related to that of the depth of H. It is well known that whether the depth
of H is ≤ n is described by the following formulas in the language of intuitionistic
logic.

Definition 6.4. For n ≥ 1, consider the formulas:
ibd1 = p1 ∨ ¬p1,

ibdn+1 = pn+1 ∨ (pn+1 → ibdn) .

The intuitionistic language is interpreted in a Heyting algebra H by assigning to
propositional letters elements of H and by interpreting conjunction, disjunction,
implication, and negation as the corresponding operations of H. The next lemma is
well known (see, e.g., [10, Proposition 2.38]).
Lemma 6.5. Let H be a nontrivial Heyting algebra and n ≥ 1. Then H � ibdn iff
depth(H∗) ≤ n.
To characterize the Krull dimension of a Heyting algebra internally, we require
some preparation. We call an element a of a Heyting algebra H dense if ¬a = 0.
Lemma 6.6. Let H be a Heyting algebra, a ∈ H, and b ∈ Ha . If b is dense in Ha ,
then b is dense in H.
Proof. Since b is dense in Ha and a is the bottom of Ha , we have b → a = a.
Therefore, ¬b = b → 0 ≤ b → a = a. On the other hand, a ≤ b implies ¬b ≤ ¬a.
Thus, ¬b ≤ a ∧ ¬a = 0, and hence b is dense in H. �
Lemma 6.7. Let A be an S4-algebra and let a, b ∈ H(A) with b ≤ a. Then a is
dense in H(A)b iff −a is nowhere dense in A−b .
Proof. Since a, b are open, −a,−b are closed. Therefore, since −a ≤ −b, we
have −a = ♦−a = −b ∧ ♦−a = ♦−b−a. Thus,

a is dense in H(A)b iff ¬a = 0 in H(A)b
iff a → b = b in H(A)
iff �(−a ∨ b) = b in A
iff �(−b → −a) = b in A
iff −b ∧�(−b → −a) = 0 in A
iff �−b−a = 0 in A−b
iff �−b♦−b−a = 0 in A−b
iff −a is nowhere dense in A−b. �

Remark 6.8. When b = 0, we obtain that a is dense in H(A) iff −a is nowhere
dense in A.

We are ready to give an internal recursive definition of the Krull dimension of a
Heyting algebra.

Definition 6.9. The Krull dimension kdim(H) of a Heyting algebra H can be
defined as follows:
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kdim(H) = −1 if H is the trivial algebra,
kdim(H) ≤ n if kdim(Hb) ≤ n − 1 for every dense b ∈ H,
kdim(H) = n if kdim(H) ≤ n and kdim(H) �≤ n − 1,
kdim(H) =∞ if kdim(H) �≤ n for any n = −1, 0, 1, 2, . . . .

The next two results concern the internal definition of the Krull dimension.

Lemma 6.10. Let H be a Heyting algebra and let a ∈ H. Then kdim(Ha) ≤
kdim(H).
Proof. If kdim(H) = ∞, then there is nothing to prove. Suppose kdim(H) = n.
Let b ∈ Ha be dense in Ha . By Lemma 6.6, b is dense in H. Since kdim(H) = n, we
see that kdim(Hb) ≤ n − 1. Because (Ha)b = Hb , we conclude that kdim(Ha) ≤ n.
Thus, kdim(Ha) ≤ kdim(H). �
Theorem 6.11.
1. If A is an S4-algebra, then kdim(A) = kdim(H(A)).
2. If H is a Heyting algebra, then kdim(H) = kdim(A(H)).
Proof. (1) By Theorem 2.14, kdim(A) ≥ n iff there is a sequence c0, . . . , cn of
nonzero closed elements of A such that c0 = 1 and ci+1 is nowhere dense in Aci for
each i ∈ {0, . . . , n−1}. By [4, Theorem 6.9], kdim(H(A)) ≥ n iff there is a sequence
1 = b0 > b1 > · · · > bn > 0 in H(A) such that bi−1 is dense in H(A)bi for each
i ∈ {1, . . . , n}. The two conditions are equivalent by Lemma 6.7. The result follows.
(2) Since H is isomorphic to H(A(H)), we have kdim(H) = kdim(H(A(H)).
By (1), kdim(H(A(H))) = kdim(A(H)). Thus, kdim(H) = kdim(A(H)). �
As a consequence we obtain:

Corollary 6.12. The external and internal definitions of the Krull dimension of a
Heyting algebra coincide, so Definitions 6.2 and 6.9 are equivalent.
Proof. Apply Corollary 2.16, Lemma 6.3, and Theorem 6.11. �
Corollary 6.13. For a topological space X , we havemdim(X ) = kdim(HX ).
Proof. Since HX is the Heyting algebra of opens of AX , by Lemma 6.3 (or
Theorem 6.11), mdim(X ) = kdim(AX ) = kdim(HX ). �
Let Ln be the (n + 1)-element linear Heyting algebra. Then (Ln)∗ is isomorphic
to the n-element chain Fn shown in Figure 1. Let 
(Ln) be the Jankov–Fine formula
of Ln . Another immediate consequence of our results is the following:

Corollary 6.14. Let H be a nontrivial Heyting algebra and n ≥ 1. The following
are equivalent:
1. kdim(H) ≤ n − 1.
2. There does not exist a sequence 1 = b0 > b1 > · · · > bn > 0 in H such that bi−1
is dense in Hbi for each i ∈ {1, . . . , n}.

3. H � ibdn.
4. depth(H∗) ≤ n.
5. H � ¬
(Ln+1).
6. Ln+1 is not isomorphic to a subalgebra of a homomorphic image of H.
7. Ln+1 is not isomorphic to a subalgebra of H.

§7. Comparison to other dimension functions. We conclude the paper with a
comparison of modal Krull dimension to other well-known topological dimension
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functions.We recall that ifX is a regular space, then theMenger-Urysohndimension
ofX is denoted by ind(X ), ifX is a Tychonoff space, then the Čech-Lebesgue dimen-
sion ofX is denoted by dim(X ), and if X is a normal space, then the Brouwer-Čech
dimension ofX is denoted by Ind(X ) (see, e.g., [19, Chapter 7] for a detailed account
of these three dimension functions). Also, for a spectral space X , let kdim(X )
denote the Krull dimension of X , and for a T0-spaceX , let gdim(X ) denote Isbell’s
graduated dimension of X [29].

Proposition 7.1. Let X be a topological space.

1. If X is a spectral space, then kdim(X ) ≤ mdim(X ).
2. If X is a T0-space, then gdim(X ) ≤ mdim(X ).
3. If X is a regular space, then ind(X ) ≤ mdim(X ).
4. If X is a normal space, then Ind(X ) ≤ mdim(X ) and dim(X ) ≤ mdim(X ).
Proof. (1) The Krull dimension of a spectral space X can be defined as the
supremum of the lengths of finite chains in the specialization order R of X .
Define ε : X → (AX )∗ by ε(x) = {A ∈ AX | x ∈ A}. It is well known
and easy to check that xRy in X iff ε(x)Rε(y) in (AX )∗. Therefore, the supre-
mum of the lengths of finite chains in the specialization order of X can be no
larger than the supremum of the lengths of finite chains in (AX )∗. The result
follows.
(2) Recall that Isbell’s graduated dimension of a T0-space X is the least n such
that some lattice basis of HX is a directed union of finite topologies of Krull dimen-
sion n. Suppose the Isbell dimension of X is n. The lattice of all opens HX is a
directed union of finite topologies �i since the variety of distributive lattices is locally
finite. Because the Krull dimension of each �i is ≥ n, we see that mdim(X ) ≥ n,
as desired.
(3) Induction on n ≥ −1. The base case is clear since ind(X ) = −1 iff X = ∅,
which happens iff mdim(X ) = −1. For the inductive step, suppose mdim(X ) = n.
If Y is closed and nowhere dense in X , then mdim(Y ) ≤ n − 1. By the inductive
hypothesis, ind(Y ) ≤ n − 1. Because the boundary of an open set is (closed and)
nowhere dense in X , it follows that the boundary B of any open subset of X has
ind(B) ≤ n − 1. Thus, ind(X ) ≤ n.
(4) Let X be normal. Replacing each occurrence of ind in the proof of (3) by
Ind yields Ind(X ) ≤ mdim(X ). By [19, Theorem 7.2.8], dim(X ) ≤ Ind(X ) ≤
mdim(X ). �
Remark 7.2.
• It remains open whether dim(X ) ≤ mdim(X ) for any Tychonoff space X .
• For appropriately chosen spaces, the inequalities in Proposition 7.1 are strict.
For example, ifX = �n+1, then kdim(X ) = gdim(X ) = ind(X ) = Ind(X ) =
dim(X ) = 0, but mdim(X ) = n by Example 3.7(3).
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