
The Aeronautical Journal (2022), 126, pp. 533–546
doi:10.1017/aer.2021.82

REGULAR PAPER

A survey of human pilot models for study of Pilot-Induced
Oscillation (PIO) in longitudinal aircraft motion
J.H. Bidinotto , H.C. Moura and J.P.C.A. Macedo

University of São Paulo, São Carlos School of Engineering, Department of Aeronautics Engineering, São Carlos – SP, Brazil,
E-mail:jhbidi@sc.usp.br

Received: 24 September 2020; Revised: 2 March 2021; Accepted: 26 August 2021

Keywords: PIO; pilot models; aircraft longitudinal motion; human survey

Abstract
Pilot-Induced Oscillation (PIO), although an old issue, still poses a significant threat to aviation safety. The intro-
duction of new systems in modern aircraft modifies the human–machine interaction and makes it necessary for
research to revisit the subject from time to time. Given the need of aircraft manufacturers to constantly perform PIO
tests, this study analysed the feasibility of using three different computational pilot models (Tustin, Crossover and
Precision) to simulate PIO conditions. Three aircraft models with different levels of propensity to PIO (original,
low propensity and high propensity) were tested, as well as two pilot gain conditions (normal and high). Data were
collected for a purely longitudinal synthetic task through simulations conducted in MATLAB R©. PIO conditions
were detect using a tuned PIO detection algorithm (ROVER). Data were analysed in terms of both whether the pilot
models triggered a PIO condition and for how long the condition was sustained. The results indicated that the three
pilot models only provoked PIO conditions when high gain inputs were applied. Additionally, Crossover was the
only pilot model to trigger a PIO for the three aircraft models. There were also significant differences between the
pilot models in the total PIO time, as the Tustin model typically sustained the oscillatory condition for longer.

Nomenclature
A state matrix
A–PC aircraft–pilot coupling
B input matrix
C output matrix
c input vector
D feedforward matrix
e(s) error signal between the desired value and the actual aircraft
g gravitational acceleration
Iy moment of inertia about the y-axis
Kp gain
LQR linear quadratic regulator
m mass of the aircraft
PIO pilot-induced oscillation
q pitch rate
ROVER real-time oscillation verifier
TL general lead time constant of human pilot modelling function
TI general lag time constant of human pilot modelling function
u(s) pilot control signal
�u longitudinal velocity variation
w vertical velocity
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x state vector
X·, I·, M· stability and control longitudinal derivatives
y linearised flight dynamics
Yc(s) transfer function for the aircraft behaviour
Yp(s) transfer function for human pilot action

Greek symbol
δe elevator angle
�θ pitch angle variation
ζ damping coefficient
θ0 initial pitch angle
τ , τe time delay constant
ωc crossover frequency
ωn natural frequency

1.0 Introduction
Pilot-Induced Oscillation (PIO), also known as Aircraft–Pilot Coupling (A–PC), can be defined as “sus-
tained or uncontrollable oscillations resulting from efforts of the pilot to control the aircraft” [1]. In other
words, it is a coupling between the dynamics of a system (in this case, an aircraft) and the action of the
pilot trying to control the oscillations but, instead of attenuating them, the controller aggravates the prob-
lem [2]. Although an old issue that has been studied since the 1960s [3], new PIO incidents, and even
accidents, still occur in modern aircraft. The constant increase in performance and the introduction of
new technologies foster research to revisit the topic from time to time [4]. The detection and suppression
of PIO situations have been addressed by scientific researchers since the 1960s, and their results have
shown that this phenomenon cannot be detected prior to its occurrence, although some algorithms pro-
pose real-time identification of the event, including the Real-time Oscillation Verifier (ROVER), which
observes four parameters and their threshold values in order to characterise a PIO.

With the advancement of computational tools and the development of more reliable aircraft models,
computational simulations have become a great ally in the analysis of PIO occurrences, as they are
much cheaper and safer than carrying out in-flight test campaigns, which expose the aircraft to potential
damage and endanger the test crew. Given that both the aircraft and the human pilot participate in a PIO,
models of the vehicle dynamics and the human being are necessary for a representative simulation.

Several advances have been made towards high-fidelity physics-based aircraft models, which are
now widely available, for example, through sets of control and stability derivatives in a state-space
formulation. Computational pilot models have also benefited from recent major developments, especially
the so-called functional models. However, to date, it is still unclear how these pilot models can be used
to simulate PIO conditions.

To fill this gap, this study analysed the feasibility of using three different computational pilot models
(Tustin [5], Crossover and Precision [6]) to simulate pitch PIO conditions. Tests were performed in
MATLAB R© for three aircraft models with different levels of propensity to PIO, as well as for two pilot
gain conditions. A purely longitudinal synthetic task was used to induce potential PIOs, and a tuned
real-time PIO detection algorithm (ROVER) was utilised to detect the condition.

The current paper is structured into the following main sections: Section 2 presents the modelling
addressed for the PIO study, detailing the aircraft and pilot models, the synthetic task and the PIO
detection algorithm, including some considerations about the flight commands; Section 3 details the
data collection and estimation parameters required by the pilot functional models to perform the PIO
computational simulations; Section 4 presents and discusses the findings. Finally, Section 5 provides
concluding remarks. This work is part of a broader research project towards the study of PIO events
[7,8].
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Figure 1. Diagram of the system used.

2.0 Modelling
In this manuscript, potential PIO conditions were assessed using the control arrangement shown in
Fig. 1. It essentially consisted of a generic task to be performed (Syntask), a human pilot model, an
aircraft model and a PIO detection algorithm (ROVER). Figure 1 also includes the elevator actuator
and the elevator surface, representing the whole pitch flight control system. These are sources of delays
and may affect the behaviour of the system in PIO [2,3,7–9], but in the current study, such delays were
disregarded because they could compromise the information sought by the research.

The study focused on pitch PIO, thus only the longitudinal motion of the aircraft was considered
and the pitch angle was chosen as the parameter to be controlled. That said, the error signal e(s) shown
in Fig. 1 accounted for the difference between the longitudinal reference attitude (the Syntask) and the
actual pitch angle of the aircraft. Based on this signal, the pilot model actuated on the aircraft dynamics
by deflecting the elevator (being the only possible input signal).

The behaviour of the human pilot is either represented by three different pilot models in the form of
transfer functions proposed in the literature or by a real human, whereas the aircraft is modelled by the
closed-loop configuration with a Linear Quadratic Regulator (LQR) controller. It is noteworthy that the
actuators of the aircraft control surfaces have some limitations, thus their rate and position saturation
were also modelled and incorporated into the vehicle dynamics model. The rate limit of the actuators
was chosen to be 40◦/s, and the position of the control surfaces was limited to deflect 30◦ for each side.
Finally, the ROVER algorithm is utilised to identify in real time the occurrence of PIO [9].

The main blocks of the control arrangement of Fig. 1 are detailed in the remainder of this section.

2.1 Syntask
Syntask is a synthetic task consisting of a profile of attitudes (in our case, the pitch angle) to be carried
out by either human or computational pilots. In this study, the Syntask was displayed on the artificial
horizon by means of a movable red line (Fig. 2a). The line moved in accordance with the profile indicated
in Fig. 2b. All simulations with the computational pilot models were performed using the same Syntask
profile (Fig. 2b).

2.2 Aircraft model
A state-space approach according to Etkin and Reid (10) is selected to model the dynamics of the vehicle,
in this case, a Boeing 747-100 in a cruise condition equivalent to an altitude of 40,000ft and Mach 0.8.
Equation (1) describes the system via the state-space optics, in which the state vector x represents the
longitudinal velocity variation (�u), vertical velocity (w), pitch rate (q) and pitch angle variation (�θ ). It
can thus be seen that only the longitudinal behaviour is considered, as the research focuses on pitch-axis
PIO. For the same reason, the input vector of Equation (1), that is, c, stands for the elevator angle (δe),
while the output vector y in the present research coincides with the state vector. Therefore, the output
matrix C is a 4 × 4 identity matrix, whilst the feedthrough matrix D is a 4 × 1 null matrix. The throttle
is considered to be constant.

ẋ = Ax + Bc (1)

y = Cx + Dc,
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Figure 2. Synthetic task system [8].
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Mq + Mẇ(Zq+mu0)

(m−Zẇ)
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According to the assumption of decoupling between the longitudinal and lateral directional motions,
Equations (2) and (3) apply to the motion relative to the axis in the wingspan direction (y). In these
equations, m is the mass of the aircraft, g is the gravitational acceleration and Iy is the moment of inertia
about the y-axis; the other terms are the longitudinal stability derivatives of the aircraft, detailed in
Table 1.

A thorough investigation is conducted in the sense that three different sets of stability derivatives
are analysed, as presented in Table 1. The first, model A, represents the original parameters for the
mentioned flight condition [10], whilst models B and C [9], correspond to modified variables, with B
being a model with lower propensity to PIO occurrence and C having a higher propensity. In Table 1,
the derivatives omitted for models B and C mean that the original value was maintained.

2.3 ROVER algorithm
The ROVER algorithm seeks to detect PIO in real time by observing four parameters: (i) pitch rate
magnitude, (ii) pitch rate frequency, (iii) pilot input amplitude and (iv) phase difference [11]. When
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Table 1. The stability and control derivative of the models [9,10]

Stability Aircraft Model
Derivatives Original Low propensity High propensity

(Model A) (Model B) (Model C)
Xu −1.982 × 103 – –
Xw +4.025 × 103 – –
Zu −2.595 × 104 – –
Zw −9.030 × 104 +9.030 × 103 –
Zq −4.524 × 105 +1.610 × 108 –
Zẇ +1.909 × 103 – –
Mu +1.593 × 104 – –
Mw −1.563 × 105 – –
Mq −1.521 × 107 – +1.171 × 107

Mẇ −1.702 × 104 – −8.510 × 104

Xδe −1.653 × 101 – –
Zδe −1.579 × 106 +6.318 × 107 −3.257 × 108

Mδe −5.204 × 107 −5.204 × 108 –

Table 2. ROVER parameters [11,12]

Parameter Threshold value
Pitch rate magnitude ≥ 8◦/s
Pitch rate frequency 0.85–10rad/s
Pilot command ≥ 1.0 (peak to peak)
Phase difference ≥ 40◦

all these parameters simultaneously reach pre-established threshold values, the algorithm flags that the
system is in PIO.

These parameter values were chosen according to Liu [12] and have been previously tested in other
works from the same authors [7–9]. In these trials, some human pilots were subjected to similar con-
ditions and their subjective opinion corroborated the use of the values presented in Table 2.

2.4 Pilot models
Three mathematical pilot models were used in this study. Although differing slightly, they all seek to
mathematically represent the control action of a human pilot by means of a transfer function Yp(s) mod-
elling the pilot control signal u(s) for the error signal e(s). The three models together with their transfer
functions are described below.

2.4.1 Tustin model
Tustin [5] proposed the transfer function presented herein as Equation (4) to model the human pilot
control action. In this model, the pilot’s control behaviour, level of experience and neuromuscular limi-
tations are taken into account. These parameters are respectively represented in Equation (4) by the gain
Kp, the time constant of anticipation TL and the time delay constant τ .

Yp = u(s)

e(s)
= Kp(1 + TLs)e−τ s

s
. (4)
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2.4.2 Crossover model
According to McRuer [6], human pilots adapt their control actions depending on how they perceive the
dynamic condition of the controlled vehicle, thus that author proposed an open-loop transfer function
for the pilot–vehicle system as presented in Equation (5).

YpYc = ωce−τes

s
. (5)

In this model, Yc(s) and Yp(s) represent the individual transfer functions of the vehicle and pilot,
respectively, whereas ωc is the so-called crossover frequency and τe is a total time delay constant mod-
elling the time elapsed between the instant when a change in the system behaviour is identified by the
human body and the moment the aircraft changes its attitude as a consequence of an action performed
by the crew member.

Based on the mentioned pilot–vehicle system model, McRuer further explored the pilot behaviour
and introduced a transfer function solely describing the human being as expressed in Equation (6).
The presence of a time delay constant (TI) suggests the adoption of this model when the response of a
controlled plant is dominated by a second-order transfer function, which serves well the aircraft modes
of phugoid, short-period and Dutch roll. Additionally, Kp stands for the gain of the pilot, and τ serves
as their response time delay.

Yp = u(s)

e(s)
= Kpe−τ s

TIs + 1
. (6)

2.4.3 Precision model
Likewise developed by McRuer [6], the precision model expands the crossover model to take into
account the human neuromuscular actuation system and an anticipation component for the pilot’s con-
trol action. The general form of its describing function is defined in Equation (7). In addition to the pilot
gain Kp, time delay τ and general lag time constant TI also considered in the crossover model, Equation
(7) introduces the lead time constant TL towards the lead-lag pilot control actuation, as well as the term
in parentheses to account for the neuromuscular system. Regarding the latter, ωn and ζ respectively
represent the natural frequency and damping ratio of the pilot’s neuromuscular system.

Yp = Kpe−τ s TLs + 1

TIs + 1

(
1

s2

ω2
n

2ζ

ωn
s + 1

)
. (7)

To utilise the models presented above, the parameters of each transfer function were obtained from
experimental data gathered from human pilot trials. Thus, a model estimation methodology was applied,
as detailed in the next section.

3.0 Model estimation
Human pilot trials are conducted to estimate the variables required by the pilot models. For this purpose,
three volunteer pilots, identified as pilot 1, pilot 2 and pilot 3, were asked to fly the Boeing 747 model in
the above-detailed cruise situation (Section 2.2). In these tests, the system shown in Fig. 1 still applies,
except for the pilot model which is substituted by the human pilot, and the ROVER system, which in
this case is not utilised.

The trials consist of the generation of a synthetic task in the form of a step from 0◦ to 10◦ (or 10◦

to 0◦).1 with respect to the artificial horizon (Fig. 2a). The pilots are then required to capture the angle
using a commercial joystick with a 40Hz acquisition rate.

In addition, for the characterisation of a PIO condition, the pilot must apply the command in an
aggressive manner [13], simulating an emergency situation. This way, both conditions are simulated:

1As the dynamics of the aircraft is different when applying positive and negative commands, both tests were performed.
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Figure 3. Pilot model estimation: Syntask, aircraft pitch angle and pilot input for the normal gain
condition.

slow application (called normal gain condition) and fast application (called high gain condition).
Hereinafter, these modes are also named susceptibility conditions.

Figures 3 and 4 present the results obtained for the three test pilots performing the task just described.
In both cases, the Pitch Task curve (red) represents the synthetic task that the pilot should follow, while
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Figure 4. Pilot model estimation: Syntask, aircraft pitch angle and pilot input for the high gain
condition.

the Pilot Command contour (black) shows the angle applied on the joystick by the test pilot, and finally,
the curve labelled Model Angle (blue) is the attitude of the aircraft model following the command appli-
cation. Figure 3 applies to the normal gain condition, whilst Fig. 4 refers to the high gain situation.
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Table 3. Pilot model estimation: parameters for the normal gain condition

Pilot Normal gain condition
Model Kp TL TI ζ ωn τ

Tustin 0.3715 5.5328 1 × 10−6 – – 0.85
Crossover 2.8820 – 0.2334 – – 0.85
Precision 4.9475 6.5253 10 0.6460 18.1217 0.85

Table 4. Pilot model estimation: parameters for the high gain condition

Pilot High gain condition
Model Kp TL TI ζ ωn τ

Tustin 1.0423 6.0390 1 × 10−6 – – 0.6167
Crossover 6.4706 – 0.1562 – – 0.6167
Precision 5.9640 1.0095 0.8875 0.8 22.2916 0.6167

Table 5. Pilot model estimation: Z-domain transfer functions

Pilot Susceptibility condition
Model Normal High gain

Tustin Yp = z−34(1.989z − 1.979)

z − 1
Yp = z−25(6.303z − 6.277)

z − 1

Crossover Yp = z−34(0.2928)

z − 0.8984
Yp = z−25(0.3348z + 0.221)

z − 0.8521

Precision Yp = z−34(0.208z2 − 0.04705z − 0.2218)

z3 − 2.402z2 + 1.958z − 0.5555
Yp = z−25(0.1051z3 + 0.915z2 − 0.7586z − 0.2282)

z3 − 2.182z2 + 1.586z − 0.3986

From the data presented in Figs. 3 and 4, the parameters of interest for the three pilot models were
extracted, for both the normal and high gain conditions, as presented in Table 3 and 4, respectively. To
accomplish this task, the MATLAB R© system identification toolbox was used, although due to limitations
of the mentioned toolbox in identifying the real value of the pilot time delay, the pole of Tustin’s model,
originally at the origin, was dislocated, resulting in the transfer function described in Equation (8)

Yp = Kp(TLs + 1)

(TIs + 1)
e−τ s. (8)

Finally, Table 5 provides the transfer functions for the three pilot models according to the gain
condition. Entries in Table 5 are in the Z-domain (discrete-time), i.e.,

Yp = u(z)

e(z)
(9)

4.0 Results
To investigate the PIO phenomenon, a series of mathematical simulations were conducted with the
Boeing 747-100 in cruise condition. Referring to Fig. 1, Syntask corresponds to a given imposed task
to be performed, whereas pilot model stands for the derived pilot functional models (Section 3, Table
5) in both normal and high gain conditions; furthermore, the aircraft model is substituted by the three
vehicle models detailed in Table 1. Finally, the ROVER algorithm, as discussed in Sect. 2.3, is utilised
to indicate the occurrence (or not) of PIO.
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Figure 5. Syntask, Aircraft pitch angle and ROVER for all pilot models and gain conditions: original
aircraft model (A).

The results are presented in Figs 5, 6 and 7. All of them present the control responses for the three
pilot models (Tustin, Crossover and Precision) and susceptibility conditions (normal and high gain),
although Fig. 5 refers to the original aircraft model (model A), whilst Figs. 6 and 7 correspond to the
aircraft dataset with low (model B) and high (model C) propensity for PIO, respectively.
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Figure 6. Syntask, Aircraft pitch angle and ROVER for all pilot models and gain conditions: low
propensity model (B).

Additionally, in each figure, the Pitch Task (red) curve represents the synthetic task proposed to the
virtual pilot, the Model contour (blue) shows the response of the pilot-controlled aircraft model and the
ROVER curve (green) indicates the PIO condition based on the detection subroutine. In more detail,
when the ROVER curve is zero, the pilot–aircraft set lies outside the PIO condition, while on the other
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Figure 7. Syntask, Aircraft pitch angle and ROVER for all pilot models and gain conditions: high
propensity model (B).

hand, when it assumes non-zero values (in this case chosen to be 10 in order to be better visualised in
the figures), it means that the set is coupled, i.e., in a PIO condition.

Moreover, Fig. 5, 6 and 7 also present the variable PIO Level, that is, the percentage of time for which
the ROVER curve is in 10 (non-null). As the subroutine serves for the detection of a PIO situation, it is
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possible to infer that, the higher the PIO Level, the more susceptible to the phenomenon the pilot–aircraft
system will be.

5.0 Conclusions
In the light of the collected results, it is possible to state that the proposed system architecture, as pre-
sented in Fig. 1, is effective for simulating the high gain condition, with both human and virtual pilots.
Since the three pilot models were successfully applied in the simulations, it can be concluded that the
methodology for estimating their transfer function parameters is adequate; moreover, as the ROVER
subroutine identified the coupling between the aircraft and pilot, it can be concluded that the algorithm
is valid for detecting PIO.

Based on theoretical literature, the high gain manoeuvring condition was expected to show a greater
tendency to PIO when compared with the low-gain applications, which is indeed confirmed by the PIO
level observations in Fig. 5, 6 and 7. Additionally, independently of the pilot model adopted, the aircraft
models with low (B) and high (C) propensity for PIO proved to be in accordance with theoretical expec-
tations, as the PIO level of these plants is considerably lower and higher, respectively, in comparison
with the original aircraft dynamics. These observations are valid for the high gain command application
condition.

For the low propensity aircraft model (B), only the Crossover pilot activated the ROVER algorithm
(Fig. 6d). In comparison with the response obtained for the other virtual pilots, the mentioned model
presents the greatest residual oscillation about the pitch task, which triggers the ROVER, confirming the
sensitivity of the detection algorithm.

However, in this sense, for the high propensity aircraft model (C), the virtual pilot proposed by
Tustin showed greater susceptibility to sustaining oscillations with the aircraft, being a more conser-
vative option when studying pilot–aircraft coupling behaviour without the application of any type of
control. On the other hand, for the original aircraft model (A), the virtual Crossover pilot model had a
greater tendency to PIO when compared with the Precision model, whereas for the high propensity (C)
model, the opposite is observed, with the Precision virtual pilot having a slightly greater tendency than
the Crossover pilot representation.

In future research addressing PIO, it is recommended to identify the threshold values of the stability
derivatives for cases with greater propensity for this phenomenon. Also, a project is already underway
with the aim of deeper characterisation of the loss of control in flight phenomenon, which also includes
the PIO problem based on a parametric analysis of pilot inputs and aircraft behaviour in both longitudinal
and lateral axes.

In the near future, the authors aim to develop a tool that could detect and suppress the PIO condition
in real time, to avoid future accidents caused by this phenomenon.
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