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We model the axisymmetric unidirectional flow of a Herschel–Bulkley fluid with rheological

parameters that depend linearly on pressure. Adopting an appropriate scaling, we formulate

the mathematical problem in cylindrical geometry exploiting an integral formulation for the

momentum equation in the unyielded part. We prove that, under suitable assumptions on the

data of the problem, explicit solutions can be determined. In particular, we determine the

position of the yield surface together with the pressure and velocity profiles. With the aid of

some plots, we finally discuss the dependence of the solution on the physical parameters of

the problem.
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1 Introduction

Fluids with rheological parameters that may vary with thermodynamical quantities such

as pressure or temperature have always drawn considerable attention among the sci-

entific community. Experimental studies have indeed proven that, under specific operating

conditions, viscosity can vary by several order of magnitude with pressure, see [3].

Since the seminal work of Stokes [15], many models have been proposed to investigate

fluids with pressure-dependent rheology. These models are of undeniable practical interest

especially when considering flows at high pressure and problems involving lubricants.

While on the one hand, a high pressure regime reduces the volume of a liquid, the

effect of increasing the pressure induces significant changes also in fluid properties such

as viscosity, thermal conductivity, etc. In particular, there are situations in which the

variation in the density of a liquid is insignificant when compared with the changes in

the viscosity of the fluid. In this case, one is allowed to treat such a class of liquids as

incompressible fluids with pressure-dependent viscosity.

It has to be remarked that when we speak of “pressure”, we are actually talking

about the “mean normal stress” of the fluid which must not be confused with the

Lagrange multiplier due to the constraint of incompressibility, that is the reaction due to

incompressibility. Indeed, as shown in [18] and [19], since constraint forces do no work,

viscosity cannot depend on the Lagrange multiplier that enforces the incompressibility

constraint.
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Barus [2] carried out one of the early study on the variation of viscosity with pressure

in which viscosity varies exponentially with pressure. More general formulas have also

been proposed, for example, the one by Andrade [1], in which the dependence on the

temperature is also taken into account. An exhaustive summary of the investigations

concerning the effects of pressure on the various properties of liquids before 1930 can

be found in [3]. More recent studies can be found in [4, 12–14]. Simple flows concerning

Newtonian and non-Newtonian fluids with pressure- and temperature-dependent viscosity

have been widely investigated in various settings, see [16–18, 20–22].

In this paper, we study the simple flow of an incompressible visco-plastic fluid whose

rheology depends on the mean normal stress experienced by the fluid, i.e. the pressure.

In particular, we consider a Herschel–Bulkley fluid which flows in a cylindrical duct of

uniform cross-section. The Herschel–Bulkley fluid is a non-Newtonian visco-plastic fluid

in which the strain and the stress are related in a non-linear way when the second invariant

of the extra stress is above a critical threshold called yield stress. The Herschel–Bulkley

fluid is characterized by three parameters, namely the consistency index1 μ∗, the flow

index n and the yield stress τ∗o . The consistency index is a proportionality factor related

to the viscosity of the fluid, the yield stress is a threshold that must be overcome in

order to start the flow and the flow index is a measure of the capability of the fluid

of shear-thinning or shear thickening. In a one-dimensional geometry, the constitutive

equation of a Herschel–Bulkley fluid is given by

(τ∗ − τ∗o )+ = μ∗γ̇∗
n

, (1.1)

where τ∗ is the stress and γ̇∗ is the strain-rate. From (1.1), we see that the fluid cannot

undergo deformations when the applied stress is below the yield stress and that the fluid

has a power-law behaviour when the stress is above the yield stress. In the classical

Herschel–Bulkley model, the consistency index and the yield stress are constants. Here,

we assume that they depend (linearly) on the pressure. The assumption of the linear

dependence of the rheological parameters on the pressure is crucial in our model, since we

know that, under more general assumptions, the solution may not exist. In the Newtonian

case, for instance, parallel flow solutions do not exist when viscosity is related to pressure

in a non-linear fashion, as shown in [20]. We shall see that, even in the simple case of

a Poiseuille unidirectional flow, the dependence of the material moduli on the pressure

leads to a mathematical problem that is much more complicated than the classical one.

For the reader interested in problems for visco-plastic fluid with non-constant material

parameters, we refer to [5, 7, 10, 11].

The paper is organized as follows. After formulating the general problem, we will look

for solutions in which the radial component of the velocity is null (unidirectional flow),

and we will prove that under specific assumptions, analytical explicit solutions can be

found. We will finally show some plots to illustrate the dependence of the solutions on

the physical parameters of the problem.

1 The starred variables denote dimensional quantities.

https://doi.org/10.1017/S0956792517000183 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792517000183


354 L. Fusi and F. Rosso

2 The mathematical model

Let us consider an incompressible fluid in which the stress can be decomposed as

T∗ = −p∗I + S∗,

where S∗ is the traceless deviatoric part and p∗ is the mean normal stress

p∗ = −1

3
tr T∗.

We assume that the constitutive equation defining the fluid is the one of an Herschel–

Bulkley fluid, namely⎧⎪⎪⎨
⎪⎪⎩

S∗ =

[
2μ∗(p∗)II∗

n−1

D +
τ∗o (p

∗)

II∗D

]
D∗ II∗S � τ∗o (p

∗),

D∗ = 0 II∗S � τ∗o (p
∗),

where D∗ is the rate of strain, μ∗ is the consistency index (a parameter related to the

viscosity of the fluid), τ∗o is the yield stress, n is the flow index and where

II∗S =

(
1

2
S∗ · S∗

)1/2

II∗D =

(
1

2
D∗ · D∗

)1/2

are invariants of the stress and of the strain-rate, respectively. In the classical Herschel–

Bulkley model, the parameters μ∗, τ∗o are taken constant. Here, we assume that they

depend linearly on the mean normal stress p∗, that is

μ∗ = α∗p∗, τ∗o = βp∗. (2.1)

One can easily check that the dimension of α∗ is a time to the power of n, while β is

dimensionless since τ∗o has the dimension of a pressure. Adopting a cylindrical coordinate

system (r, θ, z), we consider the flow in a pipe of radius R∗ and length L∗ assuming that

the velocity is of the form

v∗ = w∗(r)ez , (2.2)

that is we consider a fully developed flow in which the inertial effects are negligible

(creeping flow), see Figure 1. The constraint of incompressibility div v∗ = 0 is clearly

automatically satisfied. The linear momentum equation in the yielded region reduces to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂p∗

∂r∗
=

∂S∗
rz

∂z∗

∂p∗

∂z∗
=

1

r∗
∂

∂r∗
(
r∗S∗

rz

)
,

(2.3)

since the only non-zero non-diagonal component of the stress is

S∗
rz =

[
21−nα∗p∗

|w∗′
|n

|w∗′ |
+

βp∗

|w∗′ |

]
w∗′

,
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r∗ = s∗

r = R∗

L∗

r∗

z∗

Figure 1. Sketch of the system.

where the prime denotes differentiation w.r.t. r∗. Referring to Figure 1, we assume that

the flow domain can be split into an unyielded region (rigid inner plug) and a yielded

region (adjacent to the pipe walls). Moreover, we assume that these regions are separated

by a smooth surface r∗ = s∗ called the yield surface. In r∗ ∈ [0, s∗], we have II∗S � τ∗o (p
∗)

while in r∗ ∈ [s∗, R∗], we have II∗S � τ∗o (p
∗). The yield criterion is thus

II∗S = τ∗o (p
∗) or equivalently II∗D = 0 on r∗ = s∗.

On the pipe wall r∗ = R∗, we assume the usual no-slip condition

w∗(R∗) = 0. (2.4)

The momentum equation in the unyielded part cannot be derived from the classical local

differential formulation (2.3), since in a visco-plastic fluid, the stress is not defined below

the yield limit. This is a tricky issue which we have addressed recently in a series of

paper, [6–9] regarding the modelling of a Bingham fluid in lubrication approximation.

Indeed, following [7], the integral formulation of the linear momentum balance in the

plug is given by

�∗
∫
Ω∗

∂v∗

∂t∗
dV ∗ + �∗

∫
∂Ω∗

v∗(v∗ · n)dS∗ =

∫
∂Ω∗

T∗ndS∗, (2.5)

where Ω∗ = {r∗ ∈ [0, s∗], z∗ ∈ [0, L∗]} is the rigid plug and �∗ is the density. Since

we are considering creeping flow where inertia is neglected, equation (2.5) reduces to the
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equilibrium equation ∫
∂Ω∗

T∗ndS∗ = 0. (2.6)

The radial component of (2.6) is automatically null because of symmetry. The longitudinal

component of (2.6) yields (see Appendix A)

∫
∂Ω∗

T∗n · ezdS∗ = 2π

L∗∫
0

(
S∗
rz −

s∗

2

∂p∗

∂z∗

)∣∣∣∣
r∗=s∗

s∗dz∗ = 0. (2.7)

3 Scaling

We adopt the following scaling:

r∗ = R∗r, z∗ = R∗z, w∗ = U∗w, D∗ =

(
U∗

R∗

)
D, II∗D =

(
U∗

R∗

)
IID,

s∗ = R∗s, S∗ = α∗P ∗
(
U∗

R∗

)n

S, II∗S = α∗P ∗
(
U∗

R∗

)n

IIS ,

where R∗ is the radius of the pipe, U∗ is a characteristic velocity and P ∗ is a characteristic

pressure. We assume that the length and the radius of the pipe are of the same order so

that the non-dimensional length of the pipe is

L =
L∗

R∗ = O(1).

With this scaling and recalling that velocity is given by (2.2), we find that

Drz =
w

′
(r)

2
, IID =

|w′
(r)|
2

,

Srz = sign(w
′
(r)) · p

[
21−n|w′

(r)|n + Bn
]
, (3.1)

where
′
= d/dr and where

Bn =
β

α
is the Bingham number and where

α := α∗
(
U∗

R∗

)n

.

Since we expect that velocity is decreasing in the region [s, 1], we assume2 w
′
(r) < 0 and

(3.1) can be rewritten as

Srz = −p
[
21−n

(
− w

′
(r)

)n

+ Bn
]
. (3.2)

2 Notice that this is a a priori assumption that must be checked once the solution is found.
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The dimensionless momentum equation in the yielded phase is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂p

∂r
= α

∂Srz
∂z

,

∂p

∂z
=

α

r

∂

∂r
(rSrz) .

(3.3)

The momentum integral equation (2.7) becomes

L∫
0

(
2αSrz − s

∂p

∂z

)∣∣∣∣
r=s

sdz = 0. (3.4)

We introduce

Q(r) :=
[
21−n

(
− w

′
(r)

)n

+ Bn
]
, (3.5)

so that

Srz = −pQ.

System (3.3) becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂p

∂r
= −αQ

∂p

∂z
,

∂p

∂z
= −

[
α

r
Qp + αp

∂Q

∂r
+ αQ

∂p

∂r

]
.

(3.6)

On eliminating ∂p/∂r in (3.6), we find

1

p

∂p

∂z
= −

α

r

∂

∂r
(rQ)(

1 − α2Q2
) . (3.7)

The l.h.s. of (3.7) is a function that depends on r and z, whereas the r.h.s. depends only

on r. Therefore, we may seek a solution where both sides of (3.7) are equal to a constant.

Of course, this is not the sole choice, since we may also look for a solution in which both

sides are equal to a function of r. Suppose

1

p

∂p

∂z
= −λ λ > 0,

where we choose λ > 0 since we expect that pressure is decreasing along the pipe. We get

p(r, z) = c(r) exp(−λz), (3.8)

where c(r) and λ are unknown. Further

1

r

∂

∂r
(rαQ) + λ

(
α2Q2 − 1

)
= 0. (3.9)
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We introduce the new variable θ such that

αQ =
1

λθ

dθ

dr
. (3.10)

Inserting (3.10) into (3.9), we find

d2θ

dr2
+

1

r

dθ

dr
− λ2θ = 0, (3.11)

which is a second-order modified Bessel equation. The solution to (3.11) is

θ(r) = aIo(λr) + bKo(λr), (3.12)

where a and b are integration constant and where Io and Ko are the modified Bessel

functions of first and second type, respectively. From (3.10),

αQ =
aI1(λr) − bK1(λr)

aIo(λr) + bKo(λr)
=

I1(λr) − ξK1(λr)

Io(λr) + ξKo(λr)
,

where we have exploited the relations I
′

o = I1, K
′

o = −K1 and where for simplicity, we

have set ξ = b/a. Recalling that Q is defined by (3.5), we get

−w
′
(r) =

{
1

21−nα

[
I1(λr) − ξK1(λr)

Io(λr) + ξKo(λr)
− αBn

]}1/n

. (3.13)

Using the yield criterion w
′
(s) = 0, we find

I1(λs) − ξK1(λs)

Io(λs) + ξKo(λs)
= αBn. (3.14)

Integrating (3.13) between r � s and R, we get the velocity in the yielded domain

w(r) =

1∫
r

{
1

21−nα

[
I1(λη) − ξK1(λη)

Io(λη) + ξKo(λη)
− αBn

]}1/n

dη, (3.15)

where ξ is unknown at this stage.

Remark 1 When n = 1, our model reduces to the Bingham model with pressure-dependent

rheological parameters (which was studied in [5] in planar geometry). For this particular

case, (3.15) can be integrated providing

w(r) =
1

αλ

1∫
r

d

dη
[ln(Io(λη) + ξKo(λη))] dη − Bn(1 − r),

w(r) =
1

αλ
ln

(
Io(λ) + ξKo(λ)

Io(λr) + ξKo(λr)

)
− Bn(1 − r).
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Let us go back to the problem for the pressure. So far we have not yet used equation

(3.6)1. Hence, we insert (3.8) into (3.6)1. We obtain

c
′

c
=

d(ln c)

dr
= λαQ =

d

dr
[ln(Io(λr) + ξKo(λr))] ,

which implies

c(r) = m [(Io(λr) + ξKo(λr))] ,

where m > 0 is a positive constant to be determined. As a consequence,

p(r, z) = m [(Io(λr) + ξKo(λr))] exp(−λz). (3.16)

Following [22], we determine the constants m and λ imposing the pressure at the inlet

and outlet of the pipe for r = 1, i.e.

p = po > 0 at r = 1, z = 0,

p = p1 > 0 at r = 1, z = L.

The above implies

λ =
1

L
ln

(
po

p1

)
> 0 if po > p1, (3.17)

and

m =
po[

Io(λ) + ξKo(λ)
] =

p1 exp(λL)[
Io(λ) + ξKo(λ)

] . (3.18)

We shall prove that the constant m is always positive. Plugging (3.16) into the rigid plug

momentum equation (3.4), we find

sm [(Io(λs) + ξKo(λs))]

L∫
0

exp(−λz)dz · (λs− 2αBn) = 0.

Therefore, recalling that β = αBn, we get

λs = 2αBn = 2β. (3.19)

Notice that (3.19) produces the flow condition

s =
2β

λ
< 1 ⇐⇒ λ > 2β. (3.20)

Substitution of (3.19) into (3.14) provides the constant ξ

ξ =
I1(2β) − βIo(2β)

K1(2β) + βKo(2β)
. (3.21)

We observe that ξ can be seen as a function of β, i.e. ξ = ξ(β) defined in (0,∞). Exploiting

the properties of modified Bessel functions (see Appendix B), we can prove that

dξ

dβ
< 0, lim

β→0+
ξ(β) = 0,
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Figure 2. The function ξ (a); the function Io(λr)/Ko(λr) (b).

as shown in Figure 2(a). Therefore,

ξ = ξ(β) < 0 ∀ β > 0.

To get a consistent solution, we must ensure that the pressure defined in (3.16) is positive,

that is we must check that

m
[
(Io(λr) + ξKo(λr)

]
> 0.

We begin by proving that the quantity Io(λr) + ξKo(λr) > 0 when r ∈ [s, 1]. When this is

proved, the positiveness of m follows from (3.18). Recalling that Io and Ko are positive

functions, we observe that

Io(λr) + ξKo(λr) > 0 ⇐⇒ −ξ <
Io(λr)

Ko(λr)
. (3.22)

Looking at Figure 2(b), we see that Io/Ko is an increasing function of λr. Therefore,

inequality (3.22)2 is satisfied if

−ξ <
Io(λs)

Ko(λs)
=

Io(2β)

Ko(2β)
, (3.23)

that is when

βIo(2β) − I1(2β)

βKo(2β) + K1(2β)
<

Io(2β)

Ko(2β)
. (3.24)

The above reduces to

I1(2β)Ko(2β) + Io(2β)K1(2β) > 0, (3.25)

which is verified for every 2β > 0. Therefore, inequality (3.22) is always satisfied and

the pressure is always positive. The only condition that we have not yet verified is the

positiveness of the function −w
′
(r) in the yielded domain [s, 1]. Indeed, we recall that our

model was based on the a priori assumption that the velocity profile was a decreasing

function of r in the interval [s, 1], namely w
′
(r) < 0. Let us go back to (3.13) and look at
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Figure 3. Contour plots of p for α = 0.8, keeping Bn = 0.01 and varying Δp (= p0 − p1).

the function in square bracket. We must check that

F(r) =:

[
I1(λr) − ξK1(λr)

Io(λr) + ξKo(λr)
− β

]
> 0, (3.26)

with ξ given by (3.21) and when r ∈ [s, 1]. In Appendix B, we will show that F(r) is

positive when

β < β ≈ 0.71. (3.27)

4 Plots

To illustrate the behaviour of the solutions, we show here some plots of the main

variables of the problem, i.e. pressure, stress, velocity, strain-rate and yield surface. For

the sake of simplicity, we assume L = 1 and we take p1 = 1, so that the pressure drop is

Δp = po − 1 > 0 and

λ = ln(Δp + 1).

In Figure 3, the pressure p(r, z) is plotted in the yielded region (r, z) ∈ [s, 1] × [0, 1] for

different values of Δp. The other parameters used are α = 0.8 and Bn = 0.01. We notice

that, for small values of the pressure drop, the dependence of the pressure on the radial

coordinate becomes negligible.
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Figure 4. Contour plots of p for α = 0.8, keeping Δp = 5.2 and varying Bn.

In Figure 4, we have plotted the pressure p(r, z) keeping the pressure drop Δp fixed and

letting the Bingham number Bn (and consequently β) vary. As expected, the position of

the yield surface is affected by the increase of Bn. The behaviour of the pressure field is

not automatically deducible from equation (3.16), since the dependence on β is through

the function ξ(β) defined in (3.21). We observe that the rate at which pressure decrease

with z for fixed r changes with the increase of the Bingham number.

In Figure 5, the stress |Srz(r, z)| is plotted for (α, Δp) = (0.8, 3.2) and for different choices

of Bn and n. In particular, we notice that, for fixed Bn, the shift from shear-thinning

behaviour (n < 1) to shear-thickening behaviour (n > 1) results in an increase of the local

value of the stress experienced by the fluid. On the other hand, for fixed n, the increase

of the Bingham number produces and increase of the stress |Srz| with a more gradual

variation of with respect to the radial coordinate.

In Figure 6, the velocity profile is plotted for (α,Bn, Δp) = (0.8, 0.44, 3.2) with n ranging

from 0.5 to 1.5. The position of the yield surface does not depend on n so it does not

change. The increase of n seems to produce a velocity profile which is steeper in the

proximity of the yield surface.

In Figure 7, the strain rate w
′

is plotted for (α,Bn, Δp) = (0.8, 0.44, 3.2) with n ranging

again from 0.5 to 1.5. We notice that the shift from n = 0.5 to n = 1.5 results in a change

in the convexity of w
′
.
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Figure 5. Contour plots of |Srz| with (α, Δp) = (0.8, 3.2) for different pairs (Bn, n).

Finally, in Figure 8, we plot λ as a function of Δp, m as a function of β and s as a

function of β and Δp. Notice that in the plot of m, the domain of β cannot exceed the

maximum value λ(Δp)/2 given by the constraint (3.20).

5 Conclusions

We study the simple flow of an incompressible visco-plastic fluid with rheological para-

meters that depend on the pressure. We consider a Herschel–Bulkley fluid which flows in

a cylindrical pipe with uniform cross-section. The Herschel–Bulkley fluid is special type

of non-Newtonian visco-plastic fluid where the stress strain relation is non-linear way

when the second invariant of the extra stress is greater than a critical threshold (yield

stress). The Herschel–Bulkley fluid is modelled using three parameters: the consistency

index μ∗, the flow index n and the yield stress τ∗o . The fluid is undeformable when the

applied stress is below the yield stress and the fluid has a power-law behaviour when

the stress is above the yield stress. Differently from the classical model, here we assume

that the consistency index μ∗ and the yield stress τ∗o depend linearly on the pressure.

We study the Poiseuille unidirectional flow, showing that the dependence of the material

moduli on the pressure leads to a mathematical problem which is much more complicated

than the classical one. We formulate the general problem and look for a solution in

which the radial component of the velocity is null. Under specific assumptions on the
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Figure 6. Velocity plots with (α,Bn, Δp) = (0.8, 0.44, 3.2) for increasing n.

Figure 7. Shear-rate plots with (α,Bn, Δp) = (0.8, 0.44, 3.2) for increasing n.
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Figure 8. Plots of λ(Δp), m(β) (where the dependence of its domain on Δp is emphasized) and

contour plots of the yield interface s(β, Δp).

data of the problem, we prove the existence of analytical explicit solutions. We present

some plots to illustrate the dependence of the solutions on the physical parameters of the

problem.
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Appendix A: The equation for the unyielded plug

Equation (2.7) can be derived writing the stress tensor as

T =

⎡
⎣ −p∗ 0 S∗

rz

0 −p∗ 0

S∗
rz 0 −p∗

⎤
⎦ , (A 1)

and assuming that at the inlet and outlet of the pipe the tangential component of the

stress is zero, i.e.

T
∣∣∣
z∗=0

⎡
⎣ −p∗in 0 0

0 −p∗in 0

0 0 −p∗in

⎤
⎦ , T

∣∣∣
z∗=L∗

=

⎡
⎣ −p∗out 0 0

0 −p∗out 0

0 0 −p∗out

⎤
⎦ (A 2)
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with p∗in, p
∗
out uniform and unknown. We have

0 =

∫
∂Ω∗

T∗n · ezdS∗ = −
∫
∂Ω∗

in

T∗
∣∣∣
0
ez · ezdS∗ +

∫
∂Ω∗

out

T∗
∣∣∣
L∗

ez · ezdS∗

+

∫
∂Ω∗




T∗
∣∣∣
s∗

er · ezdS∗ = 2π

⎡
⎣L∗∫

0

S∗
rz

∣∣∣
s∗
s∗dz∗ +

(
s∗

2

2
p∗in −

s∗
2

2
p∗out

)⎤
⎦ .

Therefore, we can write

0 =

L∗∫
0

(
S∗
rz −

s∗

2

∂p∗

∂z∗

) ∣∣∣
s∗
s∗dz∗ +

(
s∗

2

2
p∗out −

s∗
2

2
p∗in

)
+

(
s∗

2

2
p∗in −

s∗
2

2
p∗out

)
,

which gives (2.7).

Appendix B: Properties of some functions used in the model

We begin by showing that the function ξ defined in (3.21 ) is decreasing. Let us consider

the function

ξ(x) =
2I1(x) − xIo(x)

2K1(x) + xKo(x)
,

which is exactly (3.21) with x = 2αBn = 2β > 0. Recalling that

I
′

o(x) = I1(x) I
′

1(x) = Io(x) − I1(x)

x
,

K
′

o(x) = −K1(x) K
′

1(x) = −Ko(x) − K1(x)

x
,

it is easy to show that

ξ
′
(x) =

−x2
[
Ko(x)I1(x) + K1(x)Io(x)

]
[
2K1(x) + xKo(x)

]2
< 0,

for all x > 0. Therefore, ξ(x) is a decreasing function for all x > 0. Moreover,

lim
x→0

ξ(x) = lim
x→0

ξ
′
(x) = 0.

Next, we prove the monotonicity of the r.h.s of the second inequality of (3.22). This result

comes from the inequality

d

dx

[
Io(x)

Ko(x)

]
=

I1(x)Ko(x) + Io(x)K1(x)

K1(x)2
> 0,

which holds for all positive x. Finally, we show that there exists a positive fixed value of

β such that for all β � β the a priori condition w
′
(r) < 0 is no longer fulfilled. Indeed
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Figure B 1. Function F(x). The change of sign around x0 ≈ 1.42 is emphasized.

w
′
(r) < 0 in (s, 1] only if the function F defined in (3.26) is positive. Let us set

x = λr xo = λs = 2αBn = 2β.

The function (3.26) can be rewritten as

F(x) =
I1(x) − ξK1(x)

Io(x) + ξKo(x)
− xo

2

with

ξ = ξ(xo) =
2I1(xo) − xoIo(xo)

2K1(xo) + xoKo(xo)
.

First, we notice that F(xo) = 0 as expected. Next, we observe that if we plot F(x) for

x � xo for different positive values of xo, we obtain the behaviour of Figure B 1. As one

can see there is a value xo ≈ 1.42 such that for all xo < xo, the function F(x) is positive

for all x > xo. Therefore, setting

xo = αBn = 2β ≈ 1.42,

we have that the constraint −w
′
(r) > 0 is guaranteed in (s, 1) if

β = αBn < 0.71.
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