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SUMMARY

Plasmodium knowlesi is increasingly recognized as a major cause of malaria in Southeast Asia. Anopheles leucosphyrous
group mosquitoes transmit the parasite and natural hosts include long-tailed and pig-tailed macaques. Despite early
laboratory experiments demonstrating successful passage of infection between humans, the true role that humans play
in P. knowlesi epidemiology remains unclear. The threat posed by its introduction into immunologically naïve populations
is unknown despite being a public health priority for this region. A two-host species mathematical model was constructed
to analyse this threat. Global sensitivity analysis using Monte Carlo methods highlighted the biological processes of great-
est influence to transmission. These included parameters known to be influential in classic mosquito-borne disease models
(e.g. vector longevity); however, interesting ecological components that are specific to this system were also highlighted:
while local vectors likely have intrinsic preferences for certain host species, how plastic these preferences are, and how this
is shaped by local conditions, are key determinants of parasite transmission potential. Invasion analysis demonstrates that
this behavioural plasticity can qualitatively impact the probability of an epidemic sparked by imported infection.
Identifying key vector sub/species and studying their biting behaviours constitute important next steps before models
can better assist in strategizing disease control.
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INTRODUCTION

The major human malaria species Plasmodium
falciparum and Plasmodium vivax infect approxi-
mately 200 million people every year, killing nearly
600 000 (WHO, 2014). These parasites successfully
established in human populations thousands of
years ago following zoonotic emergence from ape
hosts in Africa (Liu et al. 2010, 2014). In 2004, a sur-
prisingly high prevalence of P. knowlesi was found in
humans in Malaysian Borneo when diagnostic
microscopy was replaced by the more discriminatory
method of nested PCR (Singh et al. 2004). This
ground-breaking study identified that all blood
samples from 208 people reporting atypical malaria
infection in Kapit division of Malaysian Borneo
were P. knowlesi-positive but misidentified as the
morphologically similar P. malariae – a result

subsequently corroborated by a larger, follow-up
study conducted by the same group (Cox-Singh
et al. 2008). Although long- and pig-tailed macaques
are the natural hosts for this species, P. knowlesi has
now been described in humans across several
Southeast Asian countries and is the leading cause
of human malaria in Malaysian Borneo (Singh and
Daneshvar, 2013).
Mathematical models have been exploited in

malaria research for a century and have produced
considerable insight in both the epidemiology and
control of infection (Smith et al. 2012). Model com-
plexity has increased along with biological under-
standing and computational power; however, even
the most complex ecological transmission models
have fundamental elements that are identical, or
analogous, to the original Ross–Macdonald formula-
tions (Reiner et al. 2013). This family of models typ-
ically assume a single host species – an assumption
that must be relaxed in the current context. Due to
the relatively recent discovery of human infections
with this species, and the correspondingly nascent
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understanding of infection processes, P. knowlesi
models are relatively scarce and uncomplicated.
The first published knowlesimalaria model expanded
the Ross–Macdonald formula to account for hetero-
geneous biting of the vector (Anopheles leucosphyrous
group) split between both macaque and human
mammalian hosts (Yakob et al. 2010). A game theor-
etic approach to evolutionary invasion analysis of this
deterministic system of ordinary differential equa-
tions was used to calculate the conditions under
which a parasite might switch natural hosts from
macaques to humans (Yakob et al. 2010).
Subsequent adaptations of this model were used to
explore how vector control strategies could be opti-
mized – both at larval and adult stages (Abdullahi
et al. 2013); and, to explore how the basic reproduc-
tion number may be impacted by different ecological
settings (Imai et al. 2014). Using a mathematical
model, we build on this work to analyse the probabil-
ity of successful parasite invasion into a host popula-
tion following its introduction by an infected vector
or host (either human or macaque).
Stochastic effects are known to be highly influen-

tial during the period immediately after the introduc-
tion of infection into a population (Bartlett, 1956),
and are accounted for in calculating the probabilities
of successful invasion of P. knowlesi introduced into
susceptible populations (ranging from exclusively
macaque to exclusively human). We also incorporate
a flexible formulation that allows for qualitatively
distinct host-selection vector biting behaviours
because this aspect remains largely unknown for
local vector species while also being: (1) critical to
vector-borne disease epidemiology and control
(Besansky et al. 2004); (2) likely to vary considerably
(and not necessarily linearly) across differing propor-
tionate representations of alternative mammalian
hosts (Takken and Verhulst, 2013); and (3) also
likely to vary according to local vector sibling
species (Gillies, 1967). Insights gained into P. know-
lesi epidemiology, including parasite invasion prob-
abilities, are discussed along with proposed future
research directions.

METHODS

Figure 1 depicts the different epidemiological com-
partments in the model and their connections.
Being a severely neglected tropical disease, there is
a general absence of longitudinal studies detailing
P. knowlesi malaria infection (Fornace et al. 2015).
Consequently, a flexible and open-ended description
of the transmission dynamics (Yakob, 2016a, b) is
presented and used to calculate between-species
parasite transmission numbers as well as invasion
probabilities. Sensitivity analysis of the parameters
underlying these thresholds will determine the
aspects of unknown infection biology that might
constitute priorities for future research.

Transmission dynamics
dS
dt

¼ μþ γI þ τR� mHpHbVHSZ � μS ð1Þ

dI
dt

¼ mHpHbVHSZ � ðγþ εþ π þ μÞI ð2Þ

dR
dt

¼ εI þ κA� ðτ þmHθpHbVHZ þ μÞR ð3Þ

dA
dt

¼ πI þmHθpHbVHZR� κA� μA ð4Þ

dX
dt

¼ μV � ð pHbHVðI þ σAÞ

þ ð1� pHÞbNVðIN þ σNANÞÞX � μVX
ð5Þ

dY
dt

¼ ð pHbHVðI þ σAÞ þ ð1� pHÞbNV

ðIN þ σNANÞÞX � ðζ þ μVÞY
ð6Þ

dZ
dt

¼ ζY � μVZ ð7Þ

dSN

dt
¼ μN þ γNIN þ τNRN

� mNð1� pHÞbVNSNZ � μNSN

ð8Þ

dIN
dt

¼ mNð1� pHÞbVNSNZ � ðγN þ εN þ πN

þ μNÞIN ð9Þ

dRN

dt
¼ εNIN þ κNAN � ðτN þ mNθNð1

� pHÞbVNZ þ μNÞRN ð10Þ

dAN

dt
¼ πNIN þmNθNð1� pHÞbVNZRN

� ðκN þ μNÞAN

ð11Þ

All variables depicting epidemiological categories
are proportions. Susceptible humans (S) become
infectious (I) following a bite from an infectious
vector (Z). Infectious humans revert to susceptible
at rate γ. Different parameterization of the clearance
rate of symptomatic infection (ε), the rate of rever-
sion to full susceptibility (τ) and the susceptibility
to asymptomatic infections (θ) affects the temporal-
ity of immunity. Human hosts can become asympto-
matically infected (A) directly progressing from
symptomatic infection when the rate termed π is
greater than 0, or following on from recovery (R)
and subsequent reinfection (θ> 0). Asymptomatic
infection in macaques is assumed to be lifelong (by
setting recovery from secondary infection, κN, to
equal 0) whereas humans are assumed to be able to
clear the parasites and recover at rate κ. Processes
governing infection in the natural macaque hosts
are denoted by subscript N. Susceptible vectors
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(X) become infected (Y) following a bite froman infec-
tious host, and after the extrinsic incubation period (1/
ζ), become infectious (Z). The ratio of mosquitoes to
hosts is denoted m (subscript H and N for human
and non-human hosts respectively) and the vector
mortality rate is μV. Transmission coefficients are
denotedby ‘b’withassociated subscripts (these aredis-
tinguishedby thehost species involved should species-
specific estimates arise in the future, e.g. bVH is the
transmission coefficient from vectors to human hosts
and comprises the bite rate per vector multiplied by
the probability of parasite transmission per bite).
However, because there are two alternative host
species, bites must be further partitioned according
to which host species actually receives the bite from a
vector. This required the following framework to
apportion these bites among alternative host species
as determined by both their relative abundances and
intrinsic vector preferences for specific host species.

Functional responses in the human blood index

The proportion of bites on humans is determined by
a flexible formula that allows for a wide range of
different functional responses depicting distinct
vector-biting behaviours:

pH ¼
_H

_H þ αð1� _HÞβ
ð12Þ

Here pH is the ‘human blood index’ (Garret-Jones,
1964); _H is the availability of humans relative to
all other potential hosts; α and β are parameters
that shape the functional response of human bite
proportion relative to all potential host species.
Type I responses (α= β= 1) assume bite distribution
among alternative host species that is directly pro-
portionate to their relative availability; Type II
human blood index responses (0⩽ α< 1 and β⩾ 1)
are convex-up with increasing human availability
relative to alternative hosts and describe an anthropo-
philic vector; Type III responses (α⩾ 1 and β > 1) are
s-shaped and depict a zoophagic vector that becomes
increasingly anthropophilic with increased human
encounters; Type IV responses (α > 1 and 0 < β⩽ 1)
are convex-down and describe a zoophilic vector
that only bites humans when there are few alterna-
tives; and type V responses (0⩽ α⩽ 1 and 0 < β < 1)
are s-shaped reflected in the y = x line and describe
a negative prey-switching (Abrams et al. 1993) ana-
logue, e.g. whereby anthropophilic vectors avoid a
nuisance response. A fuller description of these func-
tional responses can be found in (Yakob, 2016b).
Figure 2 illustrates the shape of association between
the human blood index and human host availability
relative to all potential blood hosts. A complete
range of host availabilities is displayed – from entirely
macaque populations (0 on the x-axis) to entirely
human populations (1 on the x-axis), and everything
in between, e.g. at the half-way mark (0·5) of the
x-axis, equal availability of humans and macaques
is shown for a mixed population. This formula
is used to assess the importance of different host avail-
abilities (i.e. different environmental settings) and

Fig. 2. The qualitatively distinct functional types in
vector biting behaviour. Vector-borne disease models
ubiquitously assume that the human blood index is
directly proportional to the availability of humans relative
to all blood hosts (Type I). In this study, alternative vector
behaviours are also modelled for comparative purposes.
Parameterization of equation (12) needed to produce
the curves for Types I-V were α= 1, β= 1; α= 0·25, β= 4;
α= 4, β= 4; α= 4, β= 0·25; α= 0·25 and β= 0·25.

Fig. 1. A general framework for multi-host vector-borne
diseases. Top row: susceptible non-human hosts (SN)
become infectious (IN) following an infectious bite from a
vector, and then potentially recover (RN) or become
asymptomatically (and/or chronically) infected (AN).
Middle row: susceptible vectors (X) become infected (Y)
and then infectious (Z), following successful pathogen
transmission during a bloodmeal. Bottom row: susceptible
human hosts (S) become infectious (I) following an
infectious bite from a vector, and then potentially recover
(R) or become asymptomatically (and/or chronically)
infected (A). Current best understanding of this infection
system is that macaques remain infected for many years (in
the order of their lifetimes); but, should evidence arise that
they clear infections (similar to the human system), the
model allows for this development (shaded-out region of
the transmission process).
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different host-feeding behaviours in the resulting
between-species transmission rates and invasion
analysis.

Calculation of the basic reproduction number: entries of
the next generation matrix (NGM)

Standard theory states that the basic reproduction
number, R0, can be calculated as the largest eigen-
value (i.e. the spectral radius) of the NGM, K
(Diekmann and Heesterbeek, 2000). In the present
context, involving two types of hosts and one type
of vector, K is a 3 × 3 matrix. Entries of K, which
we write asKij, depict the expected number of infec-
tions of each type (human host, macaque host or
vector) that are directly produced by an infectious
individual of each type (human, macaque or
vector) when the system is at (or very near) the infec-
tion-free equilibrium. Standard theory shows how
the Kij can be calculated by considering the linear-
ized infected subsystems, decomposing each into
two matrices (Diekmann et al. 2010): one depicting
the infection transmission (T) and the other depict-
ing all other transitions (Σ). Each Kij is calculated
as the spectral radius of the NGM for that compo-
nent of the system calculated from −TΣ−1

(Diekmann et al. 2010). For the present system,
there are four non-zero entries of the NGM (whose
derivations are shown below): the average number
of human cases arising from an infected vector
(KVH); the average number of macaque cases arising
from an infected vector (KVN); the average number
of vector infections arising from an infected human
(KHV); and the average number of vector infections
arising from an infected macaque (KNV). These
between-species transmission numbers and their sen-
sitivities to the underlying model parameters are
assessed in terms of the Spearman’s rank correlation
coefficient calculated from 5000 iterations of a
Monte Carlo multivariate sensitivity analysis
(whereby all parameters were assumed to have tri-
angular probability distributions ±10% about the
median values described in Table 1). Global sensitiv-
ity analysis was used to ascertain the processes that are
most instrumental in P. knowlesi transmission rates.

Invasion probabilities

For deterministic model formulations, if the average
number of secondary infections arising from a
primary infection exceeds unity, the successful inva-
sion of the pathogen into the host population is guar-
anteed. New epidemics driven by the imports of
small numbers of infected hosts or vectors are less
certain than implied by determinism: for instance,
an initial infective could, with some probability,
recover or die before causing any secondary infec-
tions. Calculation of invasion probabilities requires
a stochastic model, a framework that can be obtained

by reinterpreting the rates of continuous movement
between compartments in the deterministic differen-
tial equation model as rates (probabilities per unit
time) at which discrete transition events occur in
the stochastic model. Branching process theory has
been used to calculate the extinction probability of
(potential) epidemics sparked by the introduction
of infected individuals (Athreya and Ney, 1972)
and this has recently been expanded to calculate
invasion probabilities for vector-borne disease
systems allowing for two levels of host attractiveness
(Lloyd et al. 2007). In line with these previous
developments, invasion probabilities among the
different host types are the same, in that an outbreak
amongst one host type necessarily means ongoing
infections amongst other host types, even if this is
just a spill-over effect. To the best of our knowledge
the current analysis constitutes the first to describe
methods of invasion analysis for a real multi-host
vector-borne disease system. This theory requires
the calculation of probability generating functions,
G(s) that summarize the distributions of secondary
infections of each type of species that results from
the introduction of an infected vector, macaque or
human. In these functions, secondary infections
amongst vectors, macaques and humans are labelled
using powers of sv, sn and sh, respectively. As in the
deterministic analysis, all quantities are calculated at
the infection free equilibrium. For the human host
population, calculation of the probability generating
function needs to account for the fact that an infec-
tious human host in the I compartment can move
to the asymptomatic (A) compartment and continue
to cause infections. This is achieved by calculating
generating functions for infections produced while
in the two compartments and combining them,
accounting for the probability of making the infected
(I) to asymptomatic (A) transition, to give the overall
generating function for an infective human host. We
remark that the branching process analysis does not
need to consider the transition from recovered (R) to
asymptomatic (A) (recovered individuals becoming
re-infected) as the rate of this flow is negligible
near the infection free equilibrium. The generating
function for the number of secondary infections gen-
erated from the infected (I) class is

GIðsvÞ ¼ 1
1þ R1ð1� svÞ ð13Þ

where R1 =mHpHbHV/(γ+ ɛ+ π+ μ). The generating
function for the asymptomatic (A) class is

GAðsvÞ ¼ 1
1þR2ð1� svÞ ð14Þ

where R2 = σmHpHbHV/(κ + μ). With ϕ denoting the
probability that an infected (I) individual will
become asymptomatic (A), i.e. ϕ = π/(γ+ ɛ+ π+ μ),
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the generating function for the number of secondary
infections generated after departure from the
infected (I) class is given by

GZðsvÞ ¼ 1� fþ fGAðsvÞ ð15Þ

Making use of the fact that the generating function
for the sum of two independent random variables
is the product of their generating functions, we
have that the generating function for the secondary
infections resulting from an infected human host is
given by GHV(sv) =GI(sv).GZ(sv) and hence

GðsvÞ ¼ 1
1þR1ð1� svÞ 1� fþ f

1
1þR2ð1� svÞ

� �

ð16Þ

The generating function, GNV(sV), describing the
distribution of the number of vectors infected by
an infectious macaque is obtained similarly. The
generating function for the numbers of humans
and macaques infected by an infectious vector is
GV(sh, sn), where

GVðsh; snÞ ¼ 1
1þKVHð1� shÞ þKVNð1� snÞ ð17Þ

As in Lloyd et al. (2007), extinction probabilities fol-
lowing an introduction of an infected vector, human
or macaque (sv, sh and sn, respectively) are found by
solving the set

GVðsh; snÞ ¼ sv
GHVðsvÞ ¼ sh
GNVðsvÞ ¼ sn

ð18Þ

This is most easily achieved by substituting the
second and third of these equations into the first,
leaving an equation for sv alone. This results in a
fifth degree polynomial for which one root is sv = 1,
and thus leaves a quartic polynomial to solve for sv.
This equation can be solved numerically and sh and
sn found by substitution. Standard theory shows
that these invasion probabilities are all zero when
the basic reproduction number, R0, of the system is
less than one and fall between 0 and 1 when R0 is
greater than one (i.e. invasion happens with some
non-zero probability, but is not guaranteed).
Previous explorations of multi-host systems have

assumed that the proportion of bites on alternative
host species is directly proportional to their relative
availability. Using the new formulation that allows
for qualitatively different functional responses in

Table 1. Plasmodium knowlesi mathematical model parameters, descriptions, median values and source

Definition
Median values
humans (macaques) Source

bVH Transmission coefficient (to humans);
bite rate × transmission probability

0·1; 1/3 × 0·3 Rickman et al. (1990)

bVN Transmission coefficient (to non-
humans); bite rate × transmission
probability

0·1; 1/3 × 0·3 Rickman et al. (1990)

bHV Transmission coefficient (humans→
vectors); bite rate × transmission
probability

0·007; 1/3 × 0·02 Bonnet et al. (2003)

bNV Transmission coefficient (non-
humans→ vectors); bite rate × trans-
mission probability

0·007 Bonnet et al. (2003)

mH Ratio of mosquitoes to human hosts 10 (but varied for
invasion analysis)

Assumption

mN Ratio of mosquitoes to macaque hosts 10 (but varied for
invasion analysis)

Assumption

γ Recovery rate 0·07 (0) day−1 Coatney et al. (2003)
ε Clearance rate of symptomatic infection 0·07 (0) day−1 Coatney et al. (2003)
κ Clearance rate of asymptomatic

infection
0·01 (0) day−1 Franks et al. (2001)

π Asymptomatic primary infection rate 0·14 (0·14) day−1 Assumption
θ Susceptibility to secondary asymptom-

atic infection
1 (0) Assumption

τ Full susceptibility reversion rate 0·0057 (0) day−1;
1/(ln(2) × 3 years)

White et al. (2014)

σ Adjustment factor for asymptomatic
transmissibility to vector

0·25 (0·25) Okell et al. (2012)

μ Birth and death rate of hosts (i.e. stable
population)

3·4 × 10−5(2·7 ×
10−4) day−1

Anonymous (2010), Yanuar et al. (2009)

μV Birth (or maturation) and death rate of
vectors (i.e. stable population)

0·1 day−1 Yakob et al. (2010)

ζ Rate of parasite development within
vector

0·1 day−1 Collins (2012)
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vector bite behaviours [equation (12)], the sensitivity
of invasion probabilities to this neglected aspect of
disease vector ecology was also assessed.

RESULTS

NGMs were used to calculate the expected number
of infections of each type (human host, macaque
host or vector) that are directly produced by an
infectious individual of each type:

KHV ¼ mHbHVpHðκþ μþ πσÞ
ðκþ μÞðγþ π þ εþ μÞ ð19Þ

KNV ¼ mNbNVð1� pHÞðκN þ μN þ πNσNÞ
ðκN þ μNÞðγN þ πN þ εN þ μNÞ

ð20Þ

KVH ¼ bVHpHζ
μVðμV þ ζÞ ð21Þ

KVN ¼ bVNð1� pHÞζ
μVðμV þ ζÞ ð22Þ

The resulting basic reproduction number, R0, is cal-
culated as:

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKHVKVH þKNVKVNÞ

p

Using our baseline parameterisation, the numerical
value ofR0 is calculated to be 79.9. Figure 3 describes
the sensitivity of the parasite transmission numbers
between species to the parameter values in the form
of tornado plots. Across the different functional
response Types, there is good qualitative consistency
in the transmission numbers’ sensitivity to under-
lying parameters. Intuitively, both KVH and KVN

are highly sensitive to the mosquito mortality rate –
a parameter that is well understood to be strongly
influential in classic models of vector-borne diseases
(Macdonald, 1956). BothKHV andKNV are similarly
sensitive to the transmission coefficients (b) and very
insensitive to mammalian host longevity (inverse of
their respective mortality rates, μ and μN) as per trad-
itional malaria models. Of note is the considerable
variation in transmission numbers in relation to the
availability of humans relative to all alternative
blood hosts, _H whereby _H was the most influential
parameter for all transmission numbers under a
Type III functional response (a zoophagic vector
that becomes increasingly anthropophilic with
increased human encounters) and of markedly lower
significance under a type V response (negative prey-
switching). This result is apparent from Fig. 2.
Sensitivity analysis was conducted at _H = 0·5 (i.e.

humans and macaques are equally available) because

Fig. 3. Multivariate sensitivity analysis for the different functional response Types. KVH: average number of human
infections arising from an infectious vector;KVN: average number of macaque infections arising from an infectious vector;
KHV: average number of vector infections arising from an infectious human; KNV: average number of vector infections
arising from an infectious macaque. Results are shown for parameters that had Spearman’s rank correlation coefficients of
over 0.1 following 5000 iterations of a Monte Carlo simulation.

106Laith Yakob and others

https://doi.org/10.1017/S0031182016002456 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182016002456


this is where differences between the types are most
pronounced. The gradient of the human blood index
as a function of human availability relative to all
blood meal hosts is steepest for type III and flattest
for type V at this cross-section. This ranking in sen-
sitivity will shift non-monotonically for the different
functional types in vector biting behaviour across the
range of alternative host availabilities.
Figure 4 shows the invasion probabilities for P.

knowlesi in relation to host availability and vector
host-selection behaviours. General trends arise
when comparing these probabilities across scenarios
whereby the pathogen is introduced by vectors,
humans and macaques: introduction of the pathogen
by an infected vector is most likely to elicit an out-
break when macaques are the dominant blood host
(i.e. when the human blood index and the human
availability relative to all blood-hosts are between
zero and 0.5); similarly, for all biting Types, the
pathogen is least likely to invade when introduced
by infected humans and most likely to invade when
introduced by macaques. This can be explained by
the assumed superiority of macaques as parasite
hosts (they are assumed to remain infectious for
life). Additionally, regardless of the introducing
species, maximum invasion probabilities are achieved
with a Type IV vector (a zoophilic vector that only
bites humans when there are few alternatives). For

most biting Types, parasite invasion is most likely
for mid-level human availabilities and HBI (i.e.
when there is a mix of blood host species).
However, some important caveats emerge under
specific biting Type scenarios. For Type IV and V
mosquitoes (zoophilic or switching to zoophilic
when human hosts dominate), an invasion driven by
malaria imported by an infected macaque has the
highest probability when the HBI approaches unity.
These biting behaviours would be the most likely to
ensure that the importing macaque is bitten and
thereby transmits the parasite.

DISCUSSION

Malaria caused by P. knowlesi can be a highly debili-
tating and potentially fatal disease. To improve our
understanding of this neglected tropical disease,
we developed models to explore the probability of
P. knowlesi invasion into different populations.
Multivariate sensitivity analyses highlight aspects

of vector and pathogen life history that are most
influential in disease transmission. Consistent with
models of other malarias, disease transmission is
critically sensitive to vector longevity. Accurate
age-grading for natural anopheline mosquitoes
remains a major hurdle and most estimates come
from ovarian examination of the number of

Fig. 4. Plasmodium knowlesi invasion probabilities following introduction by infected human (1− sh), infected macaque
(1− sn) or infected vector (1− sv). The lines are labelled with the different functional types in vector biting behaviour.
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gonotrophic cycles that females have undergone
(Cook and Sinkins, 2010). Not even rough estimates
produced through this indirect measuring method
are yet available for members of A. leucosphyrous
group. Additionally, this group is made up of
several species that are morphologically impossible
to distinguish (Sallum et al. 2005) and whose life his-
tories, bite behaviours and thus contribution to P.
knowlesi transmission are only just beginning to be
uncovered (Vythilingam et al. 2006; Tan et al. 2008;
Wong et al. 2015). Future modelling efforts incorpor-
ating entomological parameters will require allowing
for considerable uncertainty – as incorporated here –
until empirical information becomes available.
The current study constitutes the first endeavour

in determining the probability of successful invasion
following a P. knowlesi introduction into a suscep-
tible population. This is particularly relevant for
newly emerging infectious diseases because of their
vulnerability to fade-out through random effects
when infection numbers are low. To conduct this
invasion analysis, it was assumed that the human
hosts were immunologically naïve. In terms of
P. knowlesi transmission, over 70% of infections are
in individuals over the age of 20 years (W. Grigg
et al. in prep.). This is not the epidemiological
profile that would be expected if acquired immunity
were an important transmission determinant locally.
There is good evidence that P. knowlesi exhibits
unstable transmission in humans (with a strong sea-
sonal effect). Indeed, unstable transmission would
be expected for a spill-over parasite. Together,
these factors suggest that human populations that
suffer from P. knowlesi infection do so through the
repeat invasion of the parasite into humans from
the macaque reservoir; and, that sustained transmis-
sion within humans over prolonged periods is
seldom (if ever) experienced. Therefore, the assump-
tion of an immunologically naïve human population
with which to simulate P. knowlesi invasion currently
seems appropriate.
The current study highlights vector biting beha-

viours that can profoundly impact the probability
of successful P. knowlesi invasion (e.g. maximum
invasion probability is three-fold higher for Type
IV mosquitoes compared to a Type II vector).
Critical in ascertaining the true threat that humans
pose in transporting infection between different
populations will be identification of the functional
response in vector biting behaviour to variations in
the availability of alternative blood hosts.
An in-depth analysis was conducted into how

vectors respond to differing availabilities of alternative
blood sources in terms of their host selection and how
this impacts transmission.When non-linear responses
are accounted for, quantitative differences arise in the
parasite transmission numbers between species but
qualitative differences emerge in the invasion prob-
abilities. For example, when humans constitute the

overwhelming majority of the available blood hosts,
invasions sparked by infected macaques are com-
pletely precluded when spread by vectors exhibiting
Type I, II or III responses. Establishing how local
vector biting behaviour responds to a changing envir-
onment as humans increasingly encroach upon and
supplant macaque habitats will be key to addressing
the likelihood of P. knowlesi spread by human (or
macaque) importation. Semi-field experiments using
varied availabilities of alternative hosts and testing
blood meals of fed mosquitoes could help improve
understanding of this behaviour.
Following the precedents of the major human

malaria species P. falciparum and P. vivax,
P. knowlesi may be in the process of emerging as a
substantive agent of malaria from primates into
human populations – and recent field studies
suggest that distinct parasite strains have invaded
human populations (Ahmed et al. 2014; Divis et al.
2015; Pinheiro et al. 2015). This offers a unique
opportunity to identify the environmental drivers
behind the parasite’s evolution. To this end, the
current study in whichmethods are developed to cal-
culate invasion probabilities for multi-host malaria
infections advances our ability to explore these
important questions.
The present study highlights areas requiring

further investigation. Biological understanding for
P. knowlesi is germinal (although burgeoning) and
currently dictates the appropriate level of complexity
for disease models. Numerous host, parasite and
environmental factors impact the epidemiology of
all malarias and the coming years can be expected to
better equip us in building upon this initial effort to
simulate P. knowlesi invasion. For example, haema-
globinopathies are known to impact malaria epidemi-
ology and (particularly beta thalassemia) occur at high
rates in P. knowlesi-endemic populations. Currently,
it is unknown whether/how these haemaglobinopa-
thies affect susceptibility to P. knowlesi infection
and these were consequently omitted from the
current analysis. Additionally, given the overlapping
endemicity with other malaria species in some
regions, a future direction of the current work
would be the exploration of the effects of P. knowlesi
invasion in regions withP. falciparum and/orP. vivax
already. However, much of our parameterization
comes from studies in Sabah where levels ofP. falcip-
arum and P. vivax transmission are very low and
unlikely to impact P. knowlesi invasion.
Another shortcoming arising from data paucity is

the need to resort to parameter values gleaned from
classic malaria entomological and epidemiological
studies. Recent genetic analysis suggests a lack of
clustering of parasite genotypes in humans or maca-
ques, which may be suggestive of zoonotic rather
than human-vector-human transmission (Lee et al.
2011; Divis et al. 2015). However, a similar result
would be anticipated under the circumstance that

108Laith Yakob and others

https://doi.org/10.1017/S0031182016002456 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182016002456


human outbreaks were limited in size, i.e. transmis-
sion chains were relatively short. A comprehensive
multivariate sensitivity analysis allowed detection
of the model parameters for which direct estimates
were as yet unavailable and that were simultaneously
highly influential in disease transmission. As described
above, mosquito longevity is highly influential, but, so
too is the vector biting behaviour. Additionally, sea-
sonal effects on vector species’ (or sibling species’)
abundance (absolute as well as relative to one
another) have only recently been described for
Anopheles balabacensis (Wong et al. 2015), and the inte-
gration of these new data into seasonally driven ento-
mological models constitutes important future work.
Following a successful control campaign, malaria

incidence in Malaysia has declined considerably in
recent years and targets have been set for imminent
elimination (Cotter et al. 2011). Unfortunately, the
current endemicity of P. knowlesi threatens elimin-
ation in this region (William et al. 2013). While
informing the epidemiology and control of a consid-
erable public health threat, rapid knowledge devel-
opment in the ecology of this newly emerging
disease can also be expected to provide invaluable
insight into the evolutionary processes underlying
successful pathogen invasion into humans.
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