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We investigate experimentally the characteristics of the flow field that develops at low
Reynolds numbers (Re� 1) around a sharp 90◦ corner bounded by channel walls.
Two-dimensional planar velocity fields are obtained using particle image velocimetry
(PIV) conducted in a towing tank filled with a silicone oil of high viscosity. We
find that, in the vicinity of the corner, the steady-state flow patterns bear the
signature of a three-dimensional secondary flow, characterized by counter-rotating
pairs of streamwise vortical structures and identified by the presence of non-vanishing
transverse velocities (uz). These results are compared to numerical solutions of the
incompressible flow as well as to predictions obtained, for a similar geometry, from
an asymptotic expansion solution (Guglielmini et al., J. Fluid Mech., vol. 668, 2011,
pp. 33–57). Furthermore, we discuss the influence of both Reynolds number and
aspect ratio of the channel cross-section on the resulting secondary flows. This work
represents, to the best of our knowledge, the first experimental characterization of the
three-dimensional flow features arising in a pressure-driven flow near a corner at low
Reynolds number.
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1. Introduction
In the limit of low Reynolds numbers (Re � 1), the formation of eddies and

secondary flows is known to occur within bounded geometries such as cavities
and ridges (Pan & Acrivos 1967; Leong & Ottino 1989; Shankar 1993; Shankar &
Deshpande 2000). For geometries involving corners, low-Reynolds-number flows are
well characterized for two-dimensional configurations, both analytically (Moffatt 1964;
Jeffrey & Sherwood 1980) and experimentally (Taneda 1979). In the case of corner
flows in bounded three-dimensional configurations, the situation is different as the flow
is three-dimensional. While in recent years, a number of simulations and analytical
studies have been presented on the topic (Moffatt & Mak 1998; Gomilko, Malyuga
& Meleshko 2003; Yi & Bau 2003; Rusconi et al. 2010; Guglielmini et al. 2011),
there is surprisingly little, if any, quantitative experimental data available. To the best
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of our knowledge, experiments have been limited to qualitative characterizations of
the boundary-driven three-dimensional flow in the neighbourhood of a corner (Hills
& Moffatt 2000), or around a cylindrical object spanning the gap of a Hele-Shaw
cell where the region adjacent to the object features secondary streamwise vorticity
(Riegels 1938).

With the advent of microfluidic devices (e.g. ‘lab-on-a-chip’) operating at low Re
(Stone, Stroock & Ajdari 2004; Squires & Quake 2005), the existence of corners and
bends is a common trait of most channel configurations. For the case of pressure-
driven channel flows, Lauga, Stroock & Stone (2004) demonstrated analytically that
laminar low Re flows in microchannels must be three-dimensional if either the channel
cross-section or the curvature of the centreline varies along the axial flow direction.
Despite such analytical insight, velocity fields remain to be experimentally determined
even for the elementary case of a generic flow around a 90◦ corner bounded on either
side by the walls of a channel (Guglielmini et al. 2011). Nevertheless, some qualitative
insight into the nature of such three-dimensional corner flows has emerged recently.
Rusconi et al. (2010) demonstrated experimentally under laminar flow conditions that
biofilms made of bacterial cells held together in a self-secreted polymetric matrix
developed in the form of a thread, connected to the side boundary downstream of a
sharp 90◦ corner within microfluidic channels: the biofilms were suspended exactly
in the middle plane, at half the channel height. Numerical simulations uncovered the
presence of streamwise counter-rotating pairs of vortical structures where the flow
is three-dimensional in the vicinity of sharp or rounded corners (Guglielmini et al.
2011). Such findings are consistent with the locations where, according to observations,
bio-filaments connect to the corner walls.

Motivated by the work of Rusconi et al. (2010) and the lack of experimental
flow visualization available at low Re, we investigate here the quantitative flow
field characteristics around a sharp, L-shaped corner bounded by channel walls;
such geometry may be described as a reflex corner since the passage follows the
bend. Our experiments are based on particle image velocimetry (PIV) measurements
conducted in a towing tank, where the flow is characterized by Re� 1. The present
manuscript is organized as follows. In § 2, we describe the experimental set-up and
the two-dimensional velocimetry technique, as well as the computational methods and
asymptotic theory. Next, in § 3 we detail quantitative properties of the base (axial)
flow and the flow topology in the vicinity of the sharp corner, with an emphasis on
analysing the structure of the secondary flow (i.e. orthogonal to the primary axial
flow). In particular, we compare experimental data to numerical solutions of the
incompressible flow field in a configuration very similar to our experimental set-up.
Moreover, experimentally determined velocity profiles are compared to predictions
obtained from an asymptotic expansion solution (Guglielmini et al. 2011) for a similar
geometry, featuring an undisturbed unidirectional flow that streams around a cylinder
of rectangular cross-section and spans the gap between two horizontal plane walls.

2. Experimental and numerical approaches
2.1. Experimental apparatus

Flow field measurements are conducted in a custom-designed towing tank (figure 1a,b).
The tank is constructed of transparent glass with dimensions 1220 mm × 229 mm ×
305 mm (length × width × height). The tank is mounted onto an aluminium base
plate to which three pairs of low-friction carts (Pasco Scientific, Roseville CA) are
attached and spaced equally along the length of the base plate. The pairs of carts sit
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FIGURE 1. (Colour online) Schematic of the experimental apparatus. View of the towing
tank along (a) streamwise and (b) spanwise directions, respectively. (a,b) The configuration
illustrates two-dimensional planar flow field measurements in the streamwise direction
(y–z plane). (c) Detail of the immersed obstacle constructed of an L-shaped, 90◦ corner
sandwiched between two thin parallel plates. The height of the gap (L) between the parallel
plates is chosen as the characteristic length. (d) Top view of the corner geometry illustrating
the light sheets at fixed x/L locations (see figure 6).

on two parallel aluminium tracks (figure 1a) and the base plate is driven by a DC
servo motor (9236 series, Pittman USA) connected to an optical encoder measuring
the motor’s rotational speed (r min−1) and a power supply controlling the applied
voltage. In the present study, only constant voltages are applied, which generate steady,
linear displacements of the tank. The calibration curve of the tank speed (U∞) versus
voltage (V) is linear in the range 4–12 V (R2 = 0.99), corresponding to a range of
steady-state tank speeds varying from U∞ = 3.65 ± 0.05 to 12.39 ± 0.09 mm s−1.
Below the 4 V threshold, displacements of the tank become jerky and are thus
omitted from our study. The tank is filled with a Newtonian, silicone fluid (100 %
polydimethylsiloxane: Clearco Products, Bensalem PA) with viscosity µf ≈ 5 Pa s and
density ρf ≈ 970 kg m−3.

Details of the flow geometry are shown in figure 1(c). The obstacle is fixed in place
by a vertical rod and consists of a ‘sandwich’ structure made of an L-shaped, 90◦

corner sandwiched between two thin parallel plates (305 mm× 228 mm× 3 mm). The
entire ‘sandwich’ is immersed in the liquid-filled tank such that the top parallel plate
of the sandwich is located approximately 70 mm below the free surface (figure 1b).
The entire structure is transparent and made of acrylic for improved optical access.
Here, the height of the gap between the parallel plates is chosen as the characteristic
length (L = 50.8 mm) and all other relevant dimensions are referenced as a function
of L. The sandwich geometry is bounded by the tank wall and characterized by a
channel with an aspect ratio W/L = 2 (i.e. width to height) downstream of the corner
(figure 1b). Two additional configurations are also investigated where W/L = 1 and 3.
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Note that a small gap of a few millimetres is maintained between the parallel plates
and the tank wall to avoid any friction or torque on the immersed obstacle (figure 1b).

In our experiments, flow around the L-shaped obstacle is generated from displacing
the tank in the negative y-direction with velocity U∞, while the sandwich structure
is fixed in space (figure 1a). The coordinate system origin lies along the edge of the
corner, located halfway between the parallel plates (figure 1c), with the z-axis pointing
upward.

2.2. PIV measurements
Steady flow in the vicinity of the 90◦ corner is investigated quantitatively using
particle image velocimetry (PIV). Silver-coated hollow ceramic spheres with a
diameter dp = 100 µm are used as seeding particles (ρp = 1.1 g cm−3: Potters
Industries Inc., AG-SL150-30-TRD). Due to the high viscosity of the working
fluid, the particle sedimentation rate (us) is slow relative to the tank speed, i.e.
U∞ = O(1 mm s−1), and using Stokes’ law, us = |ρf − ρp|d2

pg/(18µf ) ≈ 0.6 µm s−1,
where g is the gravitational acceleration. An argon ion laser (Spectra Physic 2020)
is used to create a light sheet using an optical fibre delivery system and a Powell
lens (Oz Optics Ltd); the sheet thickness is typically ∼1.5 mm. Due to the slow
and steady nature of the measurements, a digital SLR camera (Canon EOS 40D) is
used to capture instantaneous images with a resolution of 2816 × 1880 pixels and a
continuous acquisition rate of 5.32 frames per second. Image acquisition and the motor
are triggered via computer control (Labview, National Instruments); exposure times are
typically set to 1/30 s and the spatial resolution of individual images ranges between
36 and 48 µm pixel−1, depending on the measurement plane investigated. Two-
dimensional velocity fields are calculated between consecutive frames (1t = 0.188 s)
using an open-source, cross-correlation-based PIV code (Sveen 2004), first validated
against standard PIV images (Okamoto et al. 2000); we find discrepancies of less than
2 % with velocity magnitudes reported in the literature.

Velocity fields are obtained both in the streamwise (y–z plane) and spanwise
(x–z plane) directions by changing the camera/laser sheet configuration (figure 1a).
Streamwise measurements are conducted by interrogating the flow at different
positions in the x-direction (figure 1b); similarly, spanwise measurements are obtained
by translating the light sheet in the y-direction. Here, steady-state velocity fields are
obtained by averaging approximately 200 individual PIV images obtained at a fixed
tank velocity U∞. Note that the first few PIV images are typically omitted from the
averaging scheme in an effort to exclude any possible transient effects at the onset
of tank translation. We find standard deviations (SD) of the mean spatial velocity
magnitude in the measurement field (e.g. y–z plane) of the order of SD ≈ 3 % or less
for sequences of approximately 200 individual PIV plots upon rotating PIV data by
an angle of 0.1–0.15◦, due to the slight misalignment between the parallel plates of
the sandwich structure and the camera’s field of view. In our experiments, Re varies
between 0.036 and 0.122, where Re= ρf U∞L/µf .

2.3. Numerical simulations and asymptotic theory
To solve for the flow field that develops in the region confined by the two parallel
plates and the sidewalls of the tank, numerical solutions of the incompressible
Navier–Stokes equations are evaluated using the finite-element-based software
COMSOL. Simulations employ no-slip boundary conditions at the moving and fixed
walls and pressure boundary conditions at the inlet and outlet cross-sections. For each
scenario simulated, the pressure drop is chosen in order for the flow rate through
the channel to equal that measured in experiments (i.e. for the same thickness
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of the L-shaped obstacle and the same tank velocity U∞). The validity of the
solutions discussed below is verified via successive grid refinements (i.e. the densest
computational domain is made of approximately 4.5 × 105 elements). Note that sharp
corners have been replaced with rounded corners of radii R/W = 0.025 in order to
avoid geometric singularities (Guglielmini et al. 2011).

In addition to numerical simulations, an asymptotic expansion solution is solved
for the present geometry based on the approach of Guglielmini et al. (2011), which
follows previous studies by Thompson (1968) and Balsa (1998). In particular, we
consider the flow field generated by an undisturbed unidirectional flow, which streams
around a cylindrical object of rectangular cross-section (with aspect ratio 5/4, identical
to that of the experimental L-shaped obstacle when mirrored with respect to the plane
x/L=−2.5) that spans the gap between two horizontal plane walls. This configuration
corresponds to the experimental geometry (figure 1) when the tank wall for negative
x is replaced by a symmetry plane, in the limit L/W � 1 (i.e. the opposite tank wall
is moved farther from the obstacle). As in Guglielmini et al. (2011), we identify an
‘outer region’ characterized by the typical ‘potential’ flow description of the ‘Hele-
Shaw’ geometry, corresponding to a parabolic profile of the in-plane velocity along
the coordinate z and a pressure distribution such that ∇2

x,y p(x, y) = 0, analogous to
a potential flow solution. Such an ‘outer’ flow does not vanish at the sidewalls,
but rather drives the motion in the viscous boundary layer that develops along the
sidewalls. The viscous layer, or ‘inner region’, scales with the channel thickness L
along both the vertical and the cross-stream directions and varies slowly along the
streamwise direction, where we define ‘streamwise’ as a direction parallel to the
obstacle side boundary.

In order to solve for the flow field in the ‘outer region’ of our specific geometry,
the flow field around a cylinder is mapped into the flow field around a rectangle
of aspect ratio 5/4 by a conformal transformation. The potential distribution at the
cylinder surface is used to determine the pressure distribution at the rectangle surface,
which provides the outer boundary condition for the viscous layer p(θ) = c1 cos θ ,
where θ = 0 is the direction of the incoming flow. In Guglielmini et al. (2011) and in
Balsa (1998), an analytical solution for the viscous boundary layer is provided and it
is shown that the component of velocity uz (i.e. the signature of the secondary flow)
depends on the streamwise coordinate as the second derivative of the outer pressure
field with respect to such a streamwise coordinate. Further, the vertical component
of velocity uz is antisymmetric with respect to the middle horizontal plane of the
geometry and decays exponentially in the direction orthogonal to the sidewalls. In
§ 3, we present a comparison between the asymptotic results and the experimental
and numerical results. Note that the asymptotic solution obtained for the viscous
boundary layer holds only in the region along the sidewalls, approaching and leaving
the corner. In the immediate proximity of the corner, the flow is anticipated to be fully
three-dimensional, such that none of the spatial derivatives can be neglected and our
asymptotic solution breaks down.

3. Results
3.1. Base flow: experiments and simulations

The steady-state velocity field in the streamwise, negative y-direction is shown in
figure 2 (Re = 0.06). Velocity data are shown for a selection of two-dimensional
y–z planes spanning the vicinity of the corner (x1/L = −1/4) towards the outer tank
wall (x7/L = 7/4). As anticipated, the flow field arising between the top (z/L = L/2)
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FIGURE 2. PIV measurements of the average flow field, and corresponding velocity
magnitudes, obtained along the streamwise flow direction (Re = 0.06). A selection of PIV
measurement planes are presented (x1–x7) and schematically depicted (a); streamwise flow is
from right to left.

and bottom (z/L = −L/2) plates of the sandwich illustrates features of both (i) wall-
bounded shear flow and (ii) fully developed laminar flow between parallel plates. On
the one hand, axial flow is influenced by motion of the tank wall at x/L = 2 and
is best understood by observing the decay in the magnitude of the flow along the
negative x-direction, namely from the tank wall (|u(x7)| ≈ U∞) towards the no-slip
boundary condition at the corner (|u(x2)| → 0). In particular, velocities along the
x1-plane are nearly quiescent (figure 2, top right-hand corner) since fluid flow must be
deflected in the x-direction to get around the corner.
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FIGURE 3. PIV measurements of the average spanwise flow field, and velocity magnitude, in
the vicinity of the corner. A selection of measurement planes are shown at fixed y-positions
and schematically depicted in the top left inset. Spanwise flow is from left to right.

On the other hand, due to the presence of the no-slip boundary conditions at the top
and bottom plates, velocities at these locations (z/L= L/2 and −L/2, respectively) are
reduced to zero (figure 2) and thus give rise to Poiseuille-like profiles, characteristic
of low-Reynolds-number flows between parallel plates. It is interesting to note that
in the bulk of the channel (e.g. planes x3, x4, and x5), fluid flow illustrates entrance-
like effects at locations proximal to the edge of the corner (y/L > 0). This is not
surprising since fluid in the towing tank must first enter the gap created by the parallel
plates but the bulk of fluid ahead of the obstacle is deflected around the stationary
sandwich structure. Hence, in the rectangular ductal region away from either the corner
(x/L = 0) or the tank wall (x/L = 2), flow magnitudes at the entrance of the sandwich
are decelerated relative to the free-stream flow velocity U∞ (e.g. planes x3, x4, and x5,
figure 2).

Further insight into the motion of fluid flow locally around the sharp corner may be
gained from two-dimensional measurement planes in the spanwise x-direction. As seen
in figure 3, there is a net flow (ux > 0) along the y1-measurement plane located in the
region just proximal to the corner. This picture coincides with our earlier observation
of nearly quiescent flow in the streamwise direction in the x1-plane (figure 2, top right-
hand corner). Note, however, that spanwise flow magnitudes in the y1-plane remain
weak (ux < 0.25U∞) and quickly decrease as fluid approaches the tank wall (x/L = 2).
This general trend is confirmed for measurements in the subsequent y2- and y3-planes
(figure 3), although spanwise flow (ux) is gradually weaker in each distal plane along
the negative y-direction. Hence, sufficiently far from the corner, flow is predominantly
axial and illustrates features of two-dimensional laminar channel flows (figure 2), with
the exception of the presence of shear motion driven at the tank wall.

Figure 4 illustrates magnitudes of the velocity fields obtained from numerical
simulations (Re = 0.06) in a selection of streamwise (a) and spanwise (b) planes,
corresponding to experimental data shown in figures 2 and 3. In general, numerical
simulations illustrate the same trends of the base flow seen in experiments, with small
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FIGURE 4. Numerical simulations of the flow field in the sandwich region of the
experimental set-up shown in figure 1 (Re = 0.06). Results for the velocity magnitudes are
shown along the streamwise (a) and spanwise (b) flow directions. A selection of streamwise
planes (fixed x-position) and spanwise planes (fixed y-position) are presented. A top view of
the streamwise and spanwise measurement planes is schematically depicted in the first row.

variations in the actual values of the velocity magnitudes. These trends are confirmed
when investigating the resulting base flows generated for varying geometrical aspect
ratios (W/L), as shown in figure 5. For the case W/L = 2 (figure 5b), numerical
simulations were conducted as well for varying Reynolds number, where we generally
find good agreement between experimental and numerical data. Note however that for
experiments, PIV data do not cover entirely the range from x/L= 0 to 1.

3.2. Secondary flow: changes with position
We investigate features of the low-Reynolds-number flow field in the neighbourhood
of the sharp corner by characterizing the secondary flow. The existence of such
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FIGURE 5. Comparisons of experimental and numerical velocity profiles of the base flow (uy)
at Re = 0.06 along the spanwise x-direction. A schematic of the spanwise x–z plane is shown
in (a). Velocity profiles are shown for (b) W/L = 1, (c) W/L = 2, and (d) W/L = 3. Each
velocity profile is taken at sections of constant y= 0 and z= 0, i.e. in the middle plane of the
geometry. Corresponding legend for all plots of numerical (lines) and experimental (points)
data is shown in plot (c).

secondary flow superimposed on the primary planar flow is best visualized in our
two-dimensional measurement planes by isolating in the vicinity of the corner the
uz velocity component (figure 6). We interpret the presence of a non-vanishing uz

as the signature of a three-dimensional secondary flow (Guglielmini et al. 2011).
Figures 6(a)–6(d) (x/L < 0) refer to the flow region upstream of the corner. Here,
the flow streaming along the sidewall is deflected transversely to the characteristic
plane of the flow (i.e. along the z-direction), in an antisymmetric fashion with
respect to the middle plane of the sandwich z = 0 (note the upward and downward
arrows in figure 6). Distal to the corner (y/L < 0), fluid elements experience a
deflection in the opposite direction, again in an antisymmetric fashion with respect
to the sandwich centreplane (figure 6e,f ). Hence, the features seen before and after
the turn around the sharp corner in figure 6 underlie the helical character of the
secondary flow. This secondary flow consists of two pairs of counter-rotating vortices
characterized by streamwise vorticity (in the direction parallel to the sidewalls),
and nearly antisymmetric with respect to the middle plane of the sandwich (z = 0);
streamwise vortices exist on length scales comparable to the height of the sandwich
gap. Our experimental observations confirm the basic three-dimensional flow features
seen around corners at low Re in recent numerical studies (Rusconi et al. 2010;
Guglielmini et al. 2011) and identified in past analytical studies (Riegels 1938;
Thompson 1968; Balsa 1998; Guglielmini et al. 2011).

In general, we observe that the secondary flow is characterized by slow velocities,
where |uz|/U∞ < 0.01 (figure 6); that is, the strength of the transverse fluid motion
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FIGURE 6. Planar PIV sections of the transverse velocity component (uz) in the y–z plane.
Measurements are shown for various sections along the x-axis (W/L= 2, Re= 0.06).
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FIGURE 7. (a) Profiles of the transverse velocity component (uz) along the z-axis for PIV
data obtained at different x-locations (W/L = 2, Re = 0.06). Measurements are shown
upstream of the corner, for a fixed y/L = 1/5. (b) Corresponding profiles of uz along the
streamwise flow direction (y-axis). PIV data are presented at two z-heights, representative of
the top (z/L = 1/4) and bottom halves (z/L = −1/4) of the channel. Insets in (a) and (b)
correspond to examples of two-dimensional PIV data of uz in y–z plane for a fixed x-position
(x/L= 1/8 and 0, respectively). Colour bar shown in figure 6.
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represents merely 1 % of the velocity of the tank U∞; note that experimental and
numerical results in figure 5 indicate that the average velocity in the channel adjacent
to the L-shaped obstacle is ∼0.5U∞. Not surprisingly, these weak secondary flow
structures remain entirely hidden from the primary planar flow. One-dimensional
profiles of the transverse velocity component (uz) are shown in figure 7 in an effort
to characterize more precisely the evolution of these helical structures. The strength
of the secondary flow upstream of the corner (y/L > 0) is presented in figure 7(a)
along the axis z at the fixed position y/L = 1/5 and for various measurement planes
at constant x. These measurements capture the nearly antisymmetric nature of the
counter-rotating secondary vortices about the sandwich centreline (z = 0 plane). The
evolution of the secondary flow strength along the axial y-direction, respectively in
the top (z/L = 1/4) and bottom halves (z/L = −1/4) of the channel, is presented in
figure 7(b) for a selection of constant x-planes. These results characterize the inversion
of the secondary flow just past the sharp corner (y = 0). We note the clear asymmetry
between the vortices before and after the turn, in which the former eddies are stronger
than the latter ones. Finally, from figure 7(b) we can further appreciate that the
magnitude of the secondary flow quickly decays distally from the corner (progressing
in the negative and positive y-directions), emphasizing that the vortical phenomenon
remains localized.

3.3. Secondary flow: comparison with numerical and asymptotic theory results
We compare PIV results for the secondary flow with numerical results. To begin
with, we find that numerical contour plots of the magnitude of the transverse velocity
component uz at various planes of constant x/L (figure 8) agree well with our PIV data
(figure 6). In particular, the qualitative structures of the counter-rotating secondary
vortices obtained in simulations are nearly identical to those measured. Results
from numerical simulations illustrate vortices of the same intensity and dependence
on the spatial coordinates as those seen in the PIV visualizations. Furthermore,
downstream vortices are significantly weaker than upstream vortices, confirming
experimental observations. This agreement is further supported by comparing detailed
one-dimensional velocity profiles obtained from numerical simulations (continuous
lines) and experiments (dotted lines) in figure 9, which also reports the behaviour
predicted by the described asymptotic approach (dotted lines in figure 9b,c).

In an effort to ease the comparison with results from asymptotic theory and
provide further insight into the structure of the secondary flow, we introduce a
curvilinear coordinate system (s1, s2, z) for the fluid region close to the corner, with
the streamwise axis s1 running along the sidewall of the obstacle in our region of
interest (s1 = 0 at the vertical symmetry plane of the corner) and the cross-stream
axis s2 orthogonal to the sidewall and positive in the fluid domain (see figure 9a). In
figure 9(b), the vertical component of the velocity uz is shown along the coordinate
s1/L, for values of the distance from the wall s2/L= {1/8, 3/16, 1/4} and two vertical
positions z/L = ±1/4. Correspondingly, the vertical component of the velocity uz is
plotted along s2/L for the positions z/L = ±1/4 and along various planes at constant
x/L = {−3/16,−1/8,−1/16} in figure 9(c). Finally, uz is plotted in figure 9(d) versus
the vertical coordinate z/L at various positions (x/L, y/L) located in the upstream
region of the secondary flow.

We observe that, in figure 9(b), for both experimental and numerical results, the
dependence of uz on s1 shows a very similar trend to that suggested by asymptotic
theory (dotted lines), which predicts that the secondary velocity will be proportional
to the second derivative along the streamwise coordinate s1 of the pressure distribution
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FIGURE 8. Planar PIV sections of the transverse velocity component (uz) in the y–z plane
obtained from numerical simulations (W/L = 2, Re = 0.06). Measurements are shown for
identical planes presented in figure 6.

in the potential flow region (uz ∝ ∂2p/∂s2
1). Since we have p(s2 = 0) = c1 cos θ , this

dependence implies a stronger secondary flow in the upstream region compared with
the downstream region. In fact the second derivative of the pressure distribution in
the ‘outer’ flow along the streamwise coordinate is larger in the upstream region
(0 < θ < π/4) than in the downstream region (π/4 < θ < π/2). We believe this
asymmetry to be further enhanced by features pertaining to the chosen experimental
set-up, i.e. the presence of the moving tank wall at x/L = 2 and the non-uniformity of
the in-flow into the sandwich region along the plane y/L= 1.5.

In addition, the velocity uz in figure 9(c) decays exponentially moving away from
the sidewall in the s2-direction, in agreement with the solution from Balsa (1998)
for the viscous boundary layer (uz ∝ e−2πs2/L). Hence, we may conclude that our
experiments further confirm the general structure of the secondary vorticity which
develops in low-Reynolds-number flows due to variations of the curvature of the
boundary, as first described by Balsa (1998) and Guglielmini et al. (2011).

We have systematically quantified, for figure 9 and the following figures 10 and
11, the relative error between experimental and numerical velocity distributions and
found that this quantity varies between 15 and 50 %, depending on the specific
experiment and region of the flow field considered. Such discrepancies are thought
to arise in part from differences in the experimental and numerical profiles of the
main axial flow (figure 5). This follows as the numerical geometry is slightly different
from the sandwich structure used in experiments. Moreover, the inlet flow into the
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FIGURE 9. Comparison of the secondary flow (Re = 0.06) as obtained from experiments,
numerical simulations and asymptotic analysis. (a) A curvilinear coordinate system (s1, s2, z),
with s1 running along the sidewalls and s2 orthogonal to the sidewall. (b) Experimental,
numerical and asymptotic results for the component of velocity uz along the coordinate s1
for three different values of the distance from the sidewall s2 (see legend) and two vertical
coordinates z = ±1/4. (c) Experimental, numerical and asymptotic results for uz versus s2
in three planes at constant x/L and at two vertical coordinates z = ±1/4. (d) Profiles of the
component uz along the coordinate z/L from experiments and numerics in the top half of the
channel and at three positions (x/L, y/L) located upstream of the corner.

sandwich region is taken as uniform in numerical simulations while in experiments the
tank set-up generates slightly non-uniform incoming flow. Nevertheless, experimental
data support all the main features of the secondary flow identified with numerical
simulations.

3.4. Secondary flow: influence of Reynolds number
The secondary flow motion arising around the sharp corner is consistently observed
at Re much smaller than unity, as illustrated by varying Re in both experiments
and numerical simulations. In figure 10(a), we extract from figure 6 the uz velocity
profile at Re = 0.06 along the z-axis for x/L = −1/16 and y/L = 1/16 and compare
with measurements obtained for increasing Re. Proximal to the edge of the corner
(i.e. y/L > 0), the structure and strength of the secondary flow motion appear to be
nearly identical for the range of Reynolds numbers investigated here, and lie within
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FIGURE 10. (a) Profiles of the transverse velocity component (uz) along the z-axis.
Measurements are shown for W/L = 2 and increasing values of Re, upstream of the corner
for a fixed y-position (y = L/16). Experiments are compared with numerical simulations. (b)
Corresponding experimental and numerical profiles of uz along the streamwise flow direction
(y-axis) for increasing Re. PIV data are shown at two z-heights, representative of the top
(z/L = 1/4) and bottom half (z/L = −1/4) of the channel. Legend is given in (a); colour bar
shown in figure 6.
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FIGURE 11. Comparison between experiments and numerical simulations of the secondary
flow strength for different aspect ratios W/L (Re = 0.06). (a) Transverse velocity component
(u∗z ) along the streamwise flow direction in the fixed plane x/L = −1/8 for data at
z/L = ±1/4. (b) Corresponding u∗z along the positive z-axis for fixed x/L = −1/8 and
y/L = 1/8 (legend shown in a). In both (a) and (b), the dimensionless velocity component
u∗z is scaled with ux at location (−1/8, 1/8, 0) obtained from numerics.

the experimental error discussed above in § 3.3. Similarly, figure 10(b) shows velocity
profiles of uz in the streamwise y-direction for increasing Re, at z coordinates located
in the top (z/L = 1/4) and bottom (z/L = −1/4) half of the channel and in the
plane x/L = 1/8. For increasing Re, profiles again confirm the inversion of the flow
direction past the sharp corner (y = 0) as well as the magnitude of decay of uz

distally from the corner, along the negative and positive y-direction. While velocity
profiles obtained from numerical simulations are nearly identical for Re� 1, as the
Reynolds number approaches unity, the upstream vortex becomes weaker while the
downstream one is enhanced, in agreement with results from Guglielmini et al. (2011).
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This latter observation allows us to conclude that the secondary flow discussed here is
an inherently viscous, i.e. zero-Reynolds-number, phenomenon.

3.5. Secondary flow: influence of channel aspect ratio W/L

Finally, we investigate the effect on the secondary flow of the channel aspect ratio
(W/L). It has been shown in Guglielmini et al. (2011) that for a rectangular cross-
section channel performing a 90◦ turn, provided that the ratio of the channel height
(L) and width (W) remains less than unity (conversely W/L > 1), the secondary flow
simply rescales with L. With the aim of verifying this finding for our particular
experimental set-up, we perform measurements for three different channel cross-
sections (W/L = {1, 2, 3}), where we have made use of L-shaped obstacles with
different widths while maintaining the same height. In figure 11, experiments and
numerical simulations are reported for different ratios W/L. The secondary flows are
compared by rescaling the y- and z-axis with the sandwich height (i.e. y/L and z/L),
while the velocity component uz is rescaled with the velocity parallel to the sidewall
(ux) at an arbitrary position located near the obstacle and in the middle plane. In fact,
for our specific experimental apparatus, we observe that a wider channel (i.e. increase
in W) leads to a smaller pressure drop through the sandwich region and, consequently,
to a larger flow rate. This is accompanied by a qualitative change in the velocity
profile in the channel cross-section since the flow is also driven by the boundary (see
figure 5). This observation implies that the base (axial) flow cannot be rescaled in a
simple way.

Following such considerations, we plot numerical and experimental results for the
dimensionless velocity profile (u∗z ) along the cross-stream coordinate y for z = ±1/4
(figure 11a), and at a specific location in the upstream vortex (figure 11b). All results
superimpose within the expected measurement error, at least in the region closer to
the sidewall (y/L < 0.5). We conclude that, for a given axial flow streaming along the
corner sidewalls in a shallow geometry, the structure of the secondary flow along the
three coordinates rescales with the aspect ratio (W/L) of the geometry.

4. Conclusions
Until present, there are few if any available quantitative flow visualizations around a

three-dimensional corner at low Reynolds numbers. We have visualized and quantified
in a towing tank the secondary counter-rotating vortical structures that arise in the
vicinity of such three-dimensional corners at Re� 1. Here, the specific geometry
investigated consists of an L-shaped, 90◦ corner obstacle, sandwiched between an
upper and bottom plate and sometimes referred to as a reflex corner, as the bend is
followed by a passage. In particular, the top and bottom plates play a critical role
in generating the three-dimensional flow. While the measured transverse flows are
consistently weak in magnitude compared to the bulk streamwise flow, they remain an
inherent signature of steady-state laminar creeping flows around a three-dimensional
bend. In particular, our PIV data are consistent for changes in the Reynolds number,
with Re� 1, as well as changes in the geometrical configuration, provided the aspect
ratio W/L remains larger than unity. Experimental results have been thoroughly
compared with laminar flow numerical simulations for a geometry that contains all
the relevant features of the experimental set-up and with results provided by the
asymptotic theory discussed in Guglielmini et al. (2011) and adapted for this particular
flow configuration.
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