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Local uniqueness for the inverse boundary
problem for the two-dimensional diffusion

equation

N. I. GRINBERG†
Institut für Numerische Mathematik, Universität Münster, Germany

(Received 3 July 1998; revised 29 October 1999)

We study an inverse boundary problem for the diffusion equation in R2. Our motivation is

that this equation is an approximation of the linear transport equation and describes light

propagation in highly scattering media. The diffusion equation in the frequency domain is

the nonself-adjoint elliptic equation div(D grad u) - (cµa + iω0) u = 0, ω0� 0, where D and

µa are the diffusion and absorption coefficients. The inverse problem is the reconstruction

of D and µa inside a bounded domain using only measurements at the boundary. In the

two-dimensional case we prove that the Dirichlet-to-Neumann map, corresponding to any

one positive frequency ω0, determines uniquely both the diffusion and the absorption coeffi-

cients, provided they are sufficiently slowly-varying. In the null-background case we estimate

analytically how large these coefficients can be to guarantee uniqueness of the reconstruction.

1 Introduction

Near-infrared optical tomography is one of the new non-invasive methods for imaging

of small alterations of highly scattering living tissues, such as the human brain or

breast. Light propagation in n−dimensional space is described by the so-called one-speed

transport equation (see Case & Zweifel (1967), Ishimaru (1978) or Arridge (1999)). In a

theoretical study, as well as in computations, one usually replaces the transport equation

by its first order approximation, the diffusion equation:

LΦ (x, t) = S (x, t) , L :=
∂

∂t
− divx [D (x) gradx] + cµa (x) , (1.1)

where S (x, t) is the source, µa > 0 is the absorption coefficient, D (x) is the strictly positive

diffusion coefficient: D (x) := c
[
n
(
µa (x) + µ′s (x)

)]−1
and µ′s > 0 is the reduced scattering

coefficient. The scattering approach is realistic under the condition µa � µ′s. Note that, at

infrared wavelengths, living tissues show very low absorption compared with scattering:

typical values are µa ∼ 0.05 mm−1, µs ∼ 100 mm−1. The advantages and disadvantages of

the diffusion approach are discussed, for example, in Case & Zweifel (1967, S̃ 8.3B) and

in Arridge (1999, § 3.3).

In the present paper, we will study the unforced equation (i.e. S ≡ 0) in a bounded
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474 N. I. Grinberg

domain Ω ⊂ R2 with piecewise Hölder boundary Γ . For a time-harmonic solution

Φ (x, t) = exp (iω0t)w (x) , ω0� 0,

we have

div (D gradw (x))− (cµa + iω0)w (x) = 0, x ∈ Ω b R2. (1.2)

We define the so-called Dirichlet-to-Neumann (DtN) map Λ via

Λϕ := D
∂w

∂n

∣∣∣∣
Γ

, Γ := ∂Ω. (1.3)

Here ϕ is the Dirichlet boundary condition w |Γ= ϕ,for a solution w of (1.2); Λϕ is

uniquely defined because ω0 � 0 and (1.2) has no more than one solution with the

same Dirichlet data. The output photon flux − D ∂Φ
∂n

∣∣
Γ

can be measured experimentally.

Calderon (1980) investigated the elliptic impedance equation∑
∂i
[
γij (x) ∂ju (x)

]
= 0,

and posed the problem of whether the coefficients γij can be uniquely determined by Λ.

We study a similar problem for (1.2).

Our main results are as follows. We prove that both the scattering and the absorption

coefficient can be uniquely reconstructed from Λ, provided they are sufficiently close to

some constants. In particular, we prove the uniqueness of the reconstruction if the norm∥∥∥∆√D√
D

+ cµa+iω0

D

∥∥∥Lp′
is small – see Theorem 4.2.

It is well known that if the coefficients µa and D are smooth enough, then the function

u := w
√
D satisfies the Schrödinger equation

(∆− q̃ (x)) u (x) = 0, q̃ :=
∆
√
D√
D

+
cµa + iω0

D
, x ∈ Ω. (1.4)

Let ΛSch be the DtN map for the Schrödinger operator. Then

ΛSchϕ =
1√
D
Λ
ϕ√
D
− 1

2

∂ lnD

∂n
ϕ. (1.5)

The study of any inverse boundary problem begins with the so-called orthogonality

relation, first proposed by Calderon (1980). We need the following version:

Proposition 1.1 Suppose that the diffusion operators L1 and L2 generate the same map Λ,

and the functions D1 and D2 coincide at the boundary Γ . Then the corresponding solutions

u1,2 to (1.4) belonging to C1 (Ω) ∩H2 (Ω) satisfy the following orthogonality relation:∫
Ω

(q1 − q2) u1u2dx =
1

2

∫
Γ

(
∂

∂n
ln
D1

D2

)
u1u2dσ. (1.6)

Proof Equation (1.6) follows from Green’s formula for the functions u1 and u2. q

The well-known idea is to construct, for any θ ∈ (R2
)′
, a pair of solutions u1, u2 to (1.4),

such that ‖u1u2 − exp (−iθ · x)‖ < ε in appropriate norm, where ε is a suitably chosen

small parameter (see (2.1)). Then (1.6) implies that the difference between the Fourier
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transforms q̂1 − q̂2 should be less then ε (we prove in § 3 that the boundary integral in

(1.6) equals zero). The construction of such solutions is based on the exponentially growing

ansatz u = exp (ζ · x) [1 + ψ (ζ, x)] , here ζ = (ζ1, ζ2) ∈ C2 is a vector with two complex

components, first proposed by Faddeev (1965). Several self-adjoint operators admit this

approach (see Sylvester, 1997). When it comes to recovery of unknown conductivity (the

impedance equation) or potential (Schrödinger equation) from the DtN map, this method

works especially well for dimensions n > 3, because the data providing by the DtN

mapping are very rich (overdetermined) (see Sylvester & Uhlmann, 1987). In the two-

dimensional case, these data are no longer overdetermined, but nevertheless enough for,

say, the Schrödinger equation to be uniquely determined by the correspondent DtN map,

provided the potential is small enough (see Nachman (1995) and Gylys-Colwell (1995)).

The principal distinction between (1.2) and the above-mentioned equations is that the

diffusion operator is not self-adjoint; hence the corresponding Schrödinger potential (1.4)

is complex-valued. Nevertheless if the potential is close to some (complex) background

value we can apply a similar method and write out the exponentially growing solutions

in this nonself-adjoint case as well (cf. Sylvester & Uhlmann, 1995). The inverse problem

for the complex-valued potentials in dimensions n > 3 was solved by Isakov (1998).

We avoid the standard first step of the study, which consists in the determination of

the derivatives of the symbol at the boundary. In the standard scheme one needs this

step to prove that the right-hand side of (1.6) equals zero; the complicated technique used

goes back to Kohn & Vogelius (1984), and involves a detailed local study of solutions.

We suppose instead that the diffusion coefficient D is known at the boundary (this

assumption seems to be quite natural in applications because this data can be measured

directly without invading the interior domain), and then investigate the contribution of

the normal derivative of D to the orthogonality relation (1.6).

2 Investigation of the orthogonality relation

In this section we define the auxiliary solutions to the Schrödinger equation (1.4), discussed

in the introduction. We prove in § 3 that the boundary integral in (1.6) equals zero, and then

use the orthogonality relation
∫
Ω

(q1 − q2) u1u2dx = 0. For any vector θ := kω ∈ (R2
)′

(the

dual plane), k > 0, |ω| = 1 we write out a pair of solutions u1,2 (θ, x) to (1.4), such that for

some positive ε < 1 the following estimate holds:∥∥∥∥∫
Ω

r (x) [u1 (θ, x) u2 (θ, x)− exp (−iθ · x)] dx

∥∥∥∥L2,θ

6 ε ‖r‖L2
, (2.1)

where r := q1 − q2. Hence, (1.6) implies

‖r̂‖L2
=

∥∥∥∥∫
Ω

r (x) exp (−iθ · x) dx

∥∥∥∥L2

=

∥∥∥∥∫
Ω

r (x)
(
e−iθ·x − u1u2

)
dx

∥∥∥∥L2

6 ε ‖r‖L2
,

and we conclude that r ≡ 0 since ε <
√

2π

To write out these solutions we need two different approaches for large and small

frequencies k = |θ| . We then estimate the norms of the remainder for large and small |θ|
separately (§ 2 and 3, resp.) and get (2.1).
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2.1 Exponentially growing solutions: large k

For large k the construction is based on the exponentially growing ansatz

u = exp (ζ · x) (1 + ψ) , ζ ∈ C2

(cf. Faddeev, 1965). If u (x) is the solution to (1.4), then the function ψ = u exp (−ζ · x)−1,

ζ ∈ C2, satisfies the reduced equation

(∆+ 2ζ · ∇)ψ +
(
ζ2 − q̃) (ψ + 1) = 0, (2.2)

where ζ · ∇ := ζ1∂x + ζ2∂y and ζ2 := ζ2
1 + ζ2

2 ∈ C.
Introduce the complex number c, which we will call the background :

c := c1 + ic2 : c1 := cµ0
a/D

0; c2 := ω0/D
0, (2.3)

where µ0
a and D0 are some non-negative constants.

If we set ζ2 = c, then (2.2) reads

(∆+ 2ζ · ∇)ψ − q (ψ + 1) = 0, x ∈ Ω, (2.4)

where

q := (q̃ − c) χ (x ∈ Ω) . (2.5)

Now parametrize two families of solutions
(
ζ±
)2

= c as follows:

ζ± = ζ± (k, ω) := ±α (k)ω⊥ + i

(
−1

2
kω ± β (k)ω⊥

)
; (2.6)

here the parameters are k > 0 and ω ∈ R2, |ω| = 1, the vectors ω and ω⊥ form an

orthonormal frame in R2. The coefficients α and β are written in terms of the auxiliary

variable δ (k):

α (k) =

√
1

2

(
δ (k) +

√
c2

2 + δ2 (k)

)1/2

=
k

2

(
1 + O (k−2

))
; (2.7)

β (k) =

√
1

2

(
−δ (k) +

√
c2

2 + δ2 (k)

)1/2

= O (k−1
)
, k →∞; (2.8)

δ (k) : = c1 +
k2

4
. (2.9)

If c = 0, then, evidently,

ζ± = ±k
2
ω⊥ − i

2
kω.

We use in what follows the notation θ ∈ R2 for the vector kω; the correspondence

θ ↔ (k, ω) is one-to-one (away from zero). Note that ζ+ + ζ− = −iθ.
Fix a positive frequency κ and suppose, up to the end of this subsection, that k > κ. In

the null-background case we put κ := (diamΩ)−1.

We now rewrite (2.4) as the integral equation

ψ − g±θ ∗ (qψ) = g±θ ∗ q, (2.10)
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where the kernel

g±θ (x) := (2π)−2

(
1

−ξ2 + 2iξ · ζ
)∨
ξ→x

, ζ := ζ± (2.11)

is a fundamental solution for the operator ∆+2ζ± ·∇. The sign ∧ denotes here the Fourier

transform

f∧ (x) :=

∫
R2

f (ξ) exp (−iξ · x) dξ1dξ2 (for f ∈ D),

the sign ∨ means the adjoint Fourier transform.

2.1.1 Investigation of the kernel g±θ (x)

We identify R2 ∼= C and
(
R2
)∗ ∼= C∗, i.e. consider a point x ∈ R2 of a real plane (or a

point η ∈ (R2
)′

of a dual plane) as a complex number (and then write it bold):

η := η1 + iη2; x := x1 + ix2. (2.12)

Theorem 2.1 (a) Kernels g±θ (x) satisfy the following estimates:∣∣∣g±θ (x)
∣∣∣ 6 const

(
k |x|)−1

; (2.13)∣∣∣g±θ (x)− g±1 (x)− g±2 (x)
∣∣∣ 6 const

(
ln
(
2 + k |x|)(
k |x|)2

+
1

k3 |x|
)
, (2.14)

where (see the notations (2.12))

g+
1 (x) := g+

θ,1 (x) =
1

2πixθ
, g−1 (x) := g−θ,1 (x) =

1

2πixθ
, (2.15)

g+
2 (x) := g+

θ,2 (x) =
ieiξ·x

2πxθ
, g−2 (x) := g−θ,2 (x) =

ieiξ·x

2πxθ
, (2.16)

where x̄ := x1 − ix2, θ̄ := θ1 − iθ2 and x̄θ (or xθ̄ resp.) means the product of two complex

numbers.

(b) For the case c1 = c2 = 0 the estimates above can be improved to:∣∣∣g±θ (x)
∣∣∣ 6 5

(
k |x|)−1

; (2.17)∣∣∣g±θ (x)− g±1 (x)− g±2 (x)
∣∣∣ 6 4

{ (
k |x|)−1

, |x| 6 k−1;(
k |x|)−2

, |x| > k−1.
(2.18)

Remark This generalizes the well known case of real-valued background (c2 = 0) formulae

for the asymptotics the kernel g (see GylysColwell (1995) or Sylvester & Uhlmann (1986))

to the case of complex-valued background; for the case of null-background we give the

first asymptotic terms and the exact estimate of the remainder (2.18).

The detailed proof of the Theorem is given in Grinberg (1998). The main steps are as

follows.
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• It is enough to study only the kernel g+
θ (x) and the fixed ω := e1 - the first coordinate

vector. The case of arbitrary ω, as well as the case of the kernel g−θ (x) , can be reduced

to this one, by virtue of the following simple result:

Lemma 2.2 The following relation holds: g−θ (x) = g+
θ (−x) . Under a rotation R ∈

SO (2) the kernels g±θ (x) satisfies

g±Rθ (x) = g±θ
(
R−1x

)
. (2.19)

Both identities follow immediately from (2.11).

Also, in our case ζ = α (k) e2 + i
(− k

2
e1 + β (e2)

)
, and we need to study the Fourier

transform of the kernel

a (ξ) =
(−ξ2 + kξ1 − 2βξ2 + 2iαξ2

)−1
,

or, after the following change of variables

ξ → η : where η1 = ξ1 − 2β (k)

k
ξ2, η2 =

2α (k)

k
ξ2,

the Fourier transform of the function

b (η) =
(
η + λη2 + λη2 + µηη

)−1
.

Here λ (k) = O (k−2
)

and µ (k) = −1 + O (k−2
)

can be calculated via α and β. Note

that λ+ λ̄+ µ = −1. The function b (η) is smooth everywhere except for three singular

points: η = ∞, 0, 1 because the following estimate holds for any η ∈ R2, k > κ, and

some positive constant c = c (κ):∣∣η + λη2 + λ̄η2 + µηη
∣∣ > c |η − ηη| . (2.20)

Using (2.20) we get ∣∣∣∣∨b (y)

∣∣∣∣ 6 const
(
k |y|)−1

; (2.21)∣∣∣∣∨b (y)− 2πi

y1 + iy2
+

2πi exp (iy1)

y1 − i (y2 − 2iγ (k) y1)

∣∣∣∣ 6 const
ln
(
2 + |y|)
|y|2 ,

where γ := −iβ/α = O (k−2
)
.

Applying now the transformation formula

g+
ke1

= (2π)−2 k

2α (k)

∨
b (ky (x)) , y (x) :=

(
y1

y2

)
=

(
x1

β
α
x1 + k

2α
x2

)
,

we obtain the desired estimates for g+
ke1
, and hence (2.13) and (2.14) for arbitrary g±θ ,

since the formulae (2.15) and (2.16) change also covariantly under the rotations x→ Rx.

• Note that in this case in addition to (2.19) the relation

gλθ (x) = gθ (λx) (2.22)

also holds. This implies, that the estimates (2.13) and (2.18) change covariant under

the rotations x → Rx, R ∈ SO (2) and homotopies x → λx, λ > 0. That is why it is
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sufficient to prove (2.13) and (2.14) for some fixed k, ω. We choose k = 1, ω = (1, 0) ,

also, θ = e1. Since

−ξ2 + 2iξ · ζ+
0 = ξ

(
1− ξ) ,

we have

g := gθ (x) = (2π)−4

(
1

ξ

)∨
∗
(

1

1− ξ
)∨

. (2.23)

We calculate (
1

ξ

)∨
(x) =

2πi

x
;

(
1

1− ξ
)∨

(x) =
2π exp (ix1)

ix
,

and detailed investigation shows that

|gθ (x)| 6
{ (

π |x|)−1
+ 4 |x|−2

, x� 0

2
(

1 + (2π)−2 ln |x|−1
)
, |x| 6 1

}
6 5 |x|−1

. (2.24)

Since |g1 (x)| = |g2 (x)| = (
2π |x|)−1

, then the estimate above implies∣∣∣(gζ± − g±1 − g±2 ) (x)
∣∣∣ 6 { 4 |x|−2

, x� 0;(
2 + π−1

) |x|−1
, |x| 6 1.

6
4

|x| min

{
1

|x| , 1
}
. (2.25)

2.1.2 Estimation of the spatial integral in the orthogonality relation

We now investigate the solutions ψ± (k, ω, x) , using the formula (2.10) and the estimates

(2.14), (2.13). Write

ψ = (1− GQ)−1 g±θ (x) ∗ q, (2.26)

where Q denotes the operator of multiplication by the function q (x) , and Gf means the

restriction of the convolution g±θ (x) ∗ f to Ω. Denote by B (Ω) the space of all bounded

functions in the domain Ω.

Proposition 2.3 (a) If q (x) ∈ Lp (Ω) for some p > 2, then GQ : B (Ω)→ B (Ω) is bounded

and the following estimate holds:

‖GQ‖ 6 c0 k
−1 ‖q‖Lp

, (2.27)

where c0 is a constant depending only on p and Ω.

(b) For the case c1 = c2 = 0 one may take c0 (p, Ω) = 5cp (Ω) · d−1, where

cp (Ω) := d

(
2πd2

2− p�
)1/p�

, d := diamΩ, p� :=
p

1− p . (2.28)

Proof It follows from (2.13) that, for some constant λ,

|GQf (x)| 6 λ

k

∫
Ω

|q (y)| |f (y)|
|x− y| dy 6

λ

k
‖f‖B ‖q‖Lp

∥∥∥|x|−1
∥∥∥Lp� (Ω−Ω)

, (2.29)
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x ∈ Ω. For any γ < 2,∥∥∥|x|−1
∥∥∥Lγ(Ω−Ω)

6

(∫
|y|6d
|y|−γ dy

)1/γ

6
(
2πd2 (2− γ)−1

)1/γ
d−1,

which together with (2.29) gives (2.27). Taking λ = 5(see (2.17)), we get (2.28). q

Corollary 2.4 (a) If

κ−1c0 (p, Ω) ‖q‖Lp < 1, (2.30)

then the solutions ψ± (k, ω, x) are bounded on Ω for k > κ and∣∣ψ± (k, ω, x)
∣∣ 6 const. k−1 ‖q‖Lp . (2.31)

(b) The solutions u± = exp (ζ · x)
(
1 + ψ±

)
belong to H2 (Ω) ∩ C1 (Ω) .

(c) If c = 0 then (2.31) reads∣∣ψ± (k, ω, x)
∣∣ 6 10cp (Ω)

kd
‖q‖Lp , kd > 1. (2.32)

under the assumption

cp (Ω) ‖q‖Lp 6 1/10. (2.33)

Proof Item (a) (or item (c), respectively) follows immediately from (2.26) and (2.27)

(resp.(2.28)).

(b) The inclusion u± ∈ H2 (Ω) follows from (a) and equation (1.4). The proof of the

second inclusion is in [6]. q

Now, taking into account the identity (1− GQ)−1 = 1 + (1− GQ)−1 GQ we rewrite

(2.26) as follows:

ψ = g±θ (x) ∗ q + (1− GQ)−1 GQg±θ (x) ∗ q. (2.34)

It follows from (2.27) and (2.30) that∣∣∣ψ − g±θ (x) ∗ q
∣∣∣ 6 const k−2 ‖q‖Lp

. (2.35)

For the case c = 0, under the assumption (2.33), (2.28) implies the more precise estimate

|ψ − gς ∗ q| (x) 6 2

(
5cp (Ω)

kd
‖q‖Lp

)2

6
5cp (Ω) ‖q‖Lp

(kd)2
. (2.36)

Now we can apply Proposition 1.1 to the solutions u1 = eζ
+x
(
1 + ψ+

1

)
and u2 =

eζ
−x (1 + ψ−2

)
, corresponding to the potentials q1 and q2, respectively, and rewrite the

orthogonality relation (1.6) as follows:

r̂ (kω) = −
∫
R2

r (x) e−ikω·x
(
ψ+

1 + ψ−2 + ψ+
1 ψ
−
2

)
dx1dx2 + IΓ , (2.37)

IΓ :=

∫
Γ

l (x) e−ikω·x
(
1 + ψ+

1 + ψ−2 + ψ+
1 ψ
−
2

)
dσ, (2.38)
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where we have written r := q1 − q2, l := 1
2
∂
∂n

(lnD1 − lnD2) .

Proposition 2.5 Denote

Np := max
{
‖q1‖Lp , ‖q2‖Lp

}
. (2.39)

(a) Suppose that

κ−1c0 (p, Ω)Np < 1. (2.40)

Then the following estimate holds for k > κ:

R∞ :=

∣∣∣∣̂r (kω) +

∫
R2

r (x) e−ikωx
([
g+

1 + g+
2

] ∗ q1 +
[
g−1 + g−2

] ∗ q2

)
dx− IΓ

∣∣∣∣
6 const k−2Np ‖r‖L2

ln2 (2 + kd) , d := diamΩ. (2.41)

If θ = kω, then one has:

‖R∞ (θ)‖L2(|θ|>κ) 6 const ‖r‖L2
Np. (2.42)

(b) Let c = 0. Suppose that

d

(
2πd2

2− p�
)1/p�

Np 6
1

10
. (2.43)

Then the following estimate holds for k > 1/d:

R∞ :=

∣∣∣∣̂r (kω) +

∫
R2

r (x) e−ikωx
([
g+

1 + g+
2

] ∗ q1 +
[
g−1 + g−2

] ∗ q2

)
dx− IΓ

∣∣∣∣
6
cp (Ω)Np ‖r‖L2

(kd)2

√
VolΩ1 (36 + 16 ln (kd)) . (2.44)

For the L2-norm r∞ := ‖R (kω)‖L2(k>1/d) one has

r∞ 6 c∞cp (Ω) ‖r‖L2
Np, c∞ = 100

√
VolΩ1

VolΩ
. (2.45)

The detailed proof is given in Grinberg (1998), and involves accurate integration of the

estimates (2.14) for (a) and (2.18) for (b).

Proposition 2.6 (a) The contribution of the first-order terms of type
∫
R2 r (x)× (gj ∗ q) (x)

e−ikωxdx in the orthogonality relation (2.37) does not exceed∥∥∥∥∫
R2

r (x) e−ikωx
([
g+

1 + g+
2

] ∗ q1 +
[
g−1 + g−2

] ∗ q2

)
dx

∥∥∥∥L2(|ξ|>κ)
6 c (κ, p, Ω) ‖r̂‖L2

(2.46)

(b) For κ = 1/d and p 6 3,

c

(
1

d
, p, Ω

)
6 3cp (Ω)Np ‖r̂‖L2

. (2.47)
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The proof is based on the following two lemmas:

Lemma 2.7 Choose any number α so that 2 < α < p. Under the assumption (2.30) the

following estimate holds:

r±1 :=

∥∥∥∥∫
R2

r (x)
(
g±1 ∗ q

)
(x) e−iθxdx

∥∥∥∥L2(|θ|>1/d)
6 c1cp (Ω) ‖r‖L2

‖q‖Lp
,

c1 = 2π

(
VolΩ1

2πd2

)( 1
α
− 1
p

)
(2− p�)1/p�

(2− α�)1/α� , α� :=
α

1− α . (2.48)

Now choose the relevant α, for example, α = 4p
p+2

. We get by (2.48):

c1 6 8
√

2π

(
d1

d

) p−2
2p
(
p− 2

p− 1

) p−2
4p

< 16π

(
d1

d

) p−2
2p

6 16π. (2.49)

Lemma 2.8 For the term g±2 ∗ q the following estimate holds:

r±2 :=

∥∥∥∥∫
R2

r (x)
(
g±2 ∗ q

)
(x) e−iξxdx

∥∥∥∥L2(|ξ|>1/d)
6 c2cp (Ω) ‖r‖L2

‖q‖Lp ,

c2 := 4
√
π

(
d1

d

)(p−2)/2p

(p− 2)
3
4p

(p−2)
√

3p, d1 := diamΩ1. (2.50)

The proof is based on the following representation, which follows from (2.16):∫
R2

r (x)
(
g±2 ∗ q

)
(x) e−iξxdx =

i

2πξ

(
q (y)

∫
Ω1

r (x) dx

x̄− ȳ

)∧
(ξ) .

The detailed estimate of the L2-norm of the right-hand term is given in Grinberg (1998).

Corollary 2.9 (a) Under the condition (2.40), the following estimate holds for any p > 2 :

‖r̂ (θ)− IΓ (θ)‖L2(|θ|>κ) 6 c1 (κ, p, Ω)Np ‖r̂‖L2(R2) . (2.51)

(b) If c = 0, then under the condition (2.43), the following estimate holds for any p 6 3 :

‖r̂ (ξ)− IΓ (ξ)‖L2(|ξ|>1/d) 6 5.43cp (Ω)Np ‖r̂‖L2(R2) .

The proof of (a) follows directly from the formula (2.37) and the estimates (2.42) and

(2.46). Item (b) follows from the more precise estimates (2.45) and (2.47).

2.2 Estimates for small k

In the case of small k we look for the solutions u± of (1.4) of the form

u (x) = exp (ζ · [x− x0]) + ϕ (x) , ζ = ζ±
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as in (2.6), x0 ∈ Ω. Then ϕ± satisfy the equation

(∆− q)ϕ− (c1 + ic2)ϕ = q exp (ζ · [x− x0]) . (2.52)

To solve (2.52) we use the appropriate fundamental solution

g (x) := − (2π)−2

(
1

ξ2 + c1 + ic2

)∧
ξ→x

, c� 0.

For the case c1 = c2 = 0 we set

g (x) =
1

2π
ln
|x|
d
.

We can replace (2.52) by the integral equation

(1− GQ)ϕ = GQ exp (ζ · [x− x0]) ,

where G denotes the operator of convolution with g (x) and the restriction to Ω, Q is the

multiplication by q (x) .

Proposition 2.10 (a) For any q ∈ Lp, 2 < p the operator GQ : B (Ω)→ B (Ω) is bounded:

‖GQ‖ 6 c̃ (κ, p, Ω) ‖q‖Lp
;

(b) for the case c = 0 and κ = 1/d the norm of this operator can be estimated as follows:

‖GQ‖ 6 (2π)−1 cp (Ω)

√
3

2
(2− p�)1/p� ‖q‖Lp

.

Proof (b) By analogy with Proposition 2.4, we estimate

‖GQ‖ 6 (2π)−1 max
x∈Ω

∣∣∣∣∫
y∈x−Ω

q (x− y) ln
|y|
d
dy

∣∣∣∣ 6 (2π)−1 ‖q‖Lp
I,

I :=

(
2π

∫ d

0

∣∣∣∣ln t

d

∣∣∣∣p� tdt
)1/p�

=
(
2πd2

)1/p�
(
Γ (p� + 1)

21+p�

)1/p�

<
(
2πd2

)1/p�
√

3

2
.

(a) If at least one of the constants cj , j = 1, 2 is nonzero, then
(
ξ2 + c1 + ic2

)−1
is bounded

near ξ = 0. Hence, ∣∣∣∣∣g (x) + (2π)−2

(
1− Φ (ξ)

ξ2 + c

)∧
ξ→x

∣∣∣∣∣ 6 const, (2.53)

where Φ is a smooth function taking values at the segment [0, 1] and such that Φ (ξ) = 0

for |ξ| > 1, and Φ (ξ) = 1 for |ξ| < 1/2.
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Taking into account that
(−1

2π
ln |x|)∨ = ξ−2 for ξ� 0, and that

(
ξ2 + c1 + ic2

)−1−ξ−2 =

O
(
|ξ|−4

)
, ξ →∞, we get:∣∣∣∣∣g (x) + (2π)−2

(
[1− Φ (ξ)] ·

[−1

2π
ln |x|

]∨)∧
ξ→x

∣∣∣∣∣ (2.54)

=

∣∣∣∣g (x)− 1

2π
ln |x| − c ln |x| ∗ Φ̂

∣∣∣∣ 6 const.

Since the function Φ̂ decreases rapidly, we conclude that

g (x) =
1

2π
ln |x|+ h (x) , h ∈ B (R2

)
.

The rest now follows from item (b). q

Theorem 2.11 (a) If Np is small enough, namely,

c̃ (κ, p, Ω)Np < 1, (2.55)

then the solutions ϕ± are bounded in Ω :

|ϕ (x)|x∈Ω 6 const ‖q‖Lp

for any k 6 κ.
If, in addition, c = 0, then under the conditions (2.43) and p 6 3 the previous estimate

becomes

|ϕ (x)|x∈Ω 6 0.24cp (Ω) ‖q‖Lp

for any k 6 1/d;

(b) The solutions u1 = exp (ζ · [x− x0])+ϕ+
1 and u2 = exp (ζ · [x− x0])+ϕ−2 , corresponding

to the potentials q1 and q2 belong to H2 (Ω) ∩ C1 (Ω) ; and the orthogonality relation (1.6)

takes the form

r̂ (θ) = −
∫
R2

r (x)
(

eζ
−·(x−x0)ϕ+

1 + eζ
+·(x−x0)ϕ−2 + ϕ+

1 ϕ
−
2

)
dx1dx2 + I ′Γ , (2.56)

I ′Γ =

∫
Γ

l (x)
(

e−ikω·x + eζ
−·(x−x0)ϕ+

1 + eζ
+·(x−x0)ϕ−2 + ϕ+

1 ϕ
−
2

)
dσx. (2.57)

(c) The L2-norm of (2.56) can be estimated as follows:

‖r̂ (kω)− I ′Γ‖L2(k6κ) 6 c2 (κ, p, Ω) Np ‖r̂‖L2
. (2.58)

For the case c = 0 one gets

‖r̂ (kω)− I ′Γ‖L2(k61/d) 6 0.09cp (Ω)Np ‖r̂‖L2
. (2.59)
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Proof (a) The first estimate follows straightforwardly from the proposition above. For the

case c = 0 we use in addition (2.33):

‖ϕ‖B(Ω) 6

(
1− (2π)−1

√
3

2
cp (Ω) ‖q‖Lp

)−1
cp (Ω) ‖q‖Lp

2π

√
3

2

∥∥eζ·(x−x0)
∥∥

6 cp (Ω)Np

√
3

4π

(
1−
√

3

40π

)−1

exp
kd

2
< 0.14

√
ecp (Ω)Np.

(b) is proved by analogy with the Corollary 2.3b), by taking ∇ ln |x|2 = x |x|−2 and noting

that the convolution of this derivative with any function from Lp belongs to the Hölder

class Cδp , δp = 1− 2
p
.

(c) (2.58) is evident; (2.59) follows directly from (a), because∥∥∥∥∫
R2

r̂ (kω)− I ′Γ
∥∥∥∥L2(k61/d)

=

∥∥∥∥∫
R2

r (x)
(

eζ
−·(x−x0)ϕ+

1 + eζ
+·(x−x0)ϕ−2 + ϕ+

1 ϕ
−
2

)
dx

∥∥∥∥L2

6

√
2π

d2
‖r‖L1

(
2 ‖ϕ exp (ζ · [x− x0])‖B(Ω) + ‖ϕ‖2

B(Ω)

)
,

and

‖ϕ exp (ζ · [x− x0])‖B(Ω) < 0.14ecp (Ω)Np < 0.4cp (Ω)Np;

‖ϕ‖2
B(Ω) < 0.242 (10)−1 cp (Ω)Np < 0.006cp (Ω)Np;

‖r‖L1(Ω) 6 Vol1/2 (Ω) · (2π)−2 ‖r̂‖L2(Ω) .

q

3 Investigation of the boundary integral in the orthogonality relation

In this section we prove that the orthogonality relation implies that the boundary integral

(the right-hand term) equals zero.

Denote by C1,δ
# the set of piecewise C1 smooth curves such that the unit tangent vector

belongs to the Hölder class Cδ , except for a finite set of points, where the tangent vector

has jumps.

Theorem 3.1 Suppose the boundary Γ to belong to C
1,δ
# . Suppose also that the function

l = 1
2
∂
∂n

(lnD1 − lnD2) belongs to Cδ0 (δ0 may differ from δ). Then under the assumptions

(2.40) and (2.55), the orthogonality relation (1.6) implies l ≡ 0.

Proof It follows from (2.51) that IΓ (θ) belongs toL2

(|θ| > κ), because r̂ = F (q1 − q2) ∈
L2

(
R2
)

since q1 − q2 ∈ Lp (Ω) for some p > 2.

The most singular term of IΓ (θ) is (l (x) δΓ (x))∧x→θ . We show now that the input of the

https://doi.org/10.1017/S0956792599004106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792599004106


486 N. I. Grinberg

other terms into the (2.38) belongs to L2:∫
Γ

l (x)
(

eζ
−·(x−x0)ϕ+

1 + eζ
+·(x−x0)ϕ−2 + ϕ+

1 ϕ
−
2

)
dσx ∈ L2.

Consider large k = |θ| . The estimate (2.35) implies that

IΓ −
(

(lδΓ )∧ +

∫
Γ

l
(
g+
θ ∗ q1 + g−θ ∗ q2

)
e−iθxdσ

)
χ
(|θ| > κ) ∈ L2

(
R2
)
.

The estimate (2.14) implies directly that

[(gθ − g1 − g2) ∗ q] (θ) = O
(
|θ|−2

)
∈ L2

(|θ| > κ) .
Hence, we conclude that

(lδΓ )∧ (θ) +

∫
Γ

l (x) e−iθx
[(
g+

1 + g+
2

) ∗ q1 +
(
g−1 + g−2

) ∗ q2

]
(x) dσx ∈ L2

(|θ| > ε) . (3.1)

Lemma 3.2 Under the assumption (2.30) the function

α±2 (ξ) :=

∫
Γ

∣∣∣l (g±2 ∗ q)∣∣∣ e−iξxdσ
belongs to L2

(|ξ| > κ) .
Proof of the lemma It follows from (2.16) that:1

A2 =
∥∥∥α±2 (ξ)

∥∥∥L2(|ξ|>κ)
6

1

2πκ
(2π)2

∥∥∥∥q (y)

∫
Γ

l (x)

x− y
dσx

∥∥∥∥L2,y(Ω)

=

∥∥∥∥q (y)

∫
Γ

f (x)

x− y
dx

∥∥∥∥L2,y(Ω)

, f (x) :=
2π

κ

l (x)

x− y

dσx

dx
; (3.2)

A2 6 ‖q‖Lp

∥∥∥∥∫
Γ

f (x)

x− y
dx

∥∥∥∥L{

, { :=
(p

2

)∗
=

p

p− 2
. (3.3)

The function f is in some Hölder class at any piece Γn, hence∣∣∣∣∫
Γn

f (x)

x− y
dx

∣∣∣∣ 6 cn + ‖l‖B(Γn)

∣∣∣∣∫
Γ

dx

x− y

∣∣∣∣ 6 const + ‖l‖B
∣∣∣∣ln x+

n − y

x−n − y

∣∣∣∣ ,
where x±n ∈ Γ denote the ends of Γn. Finally, we get∣∣∣∣∫

Γ

f (x)

x− y
dx

∣∣∣∣ 6 const

N∑
n=1

ln
2d

|xn − y| , (3.4)

and conclude that the right-hand term of (3.3) is finite. �

Now we can deduce from (3.1) that

(lδΓ )∧ (θ) +

∫
Γ

l (x) e−iθx
[
g+

1 ∗ q1 + g−1 ∗ q2

]
(x) dσx ∈ L2

(|θ| > κ) . (3.5)

1 The author thanks Professor V. P. Palamodov for this elegant consideration.
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Taking into account that, for small θ,∫
l (x) e−iθx

(
1 + g+

1 ∗ q1 + g−1 ∗ q2

)
dσx ∈ L1

(|θ| 6 κ) ,
we conclude:

lδΓ +

[∫
Γ

l (x) e−iξx
(
g+

1 ∗ q1 + g−1 ∗ q2

)
dσx

]∨
∈ L2

(
R2
)

+B (R2
)
. (3.6)

Consider, for example, g+
1 . In accordance with (2.15):

F (z) : =

[∫
Γ

l (x) e−iξx
(
g+

1 ∗ q1

)
dσx

]∨
ξ→z

: =

[
1

2πiξ

∫
Γ

l (x) e−iξxdσx
(
q1 ∗ 1

y

)
(x)

]∨
ξ→z

= const.

∫
Γ

p (x)

z− x
dσx, s (x) := l (x)

∫
Ω

q1 (y)

y− x
dy.

The function s (x) , x ∈ Γ belongs to the Hölder class Cδ (Γ ) , δ = min {δp, δ0}.
We can now apply the estimate (3.4) to the function s (x), and conclude that∣∣∣∣∣

[∫
Γ

l (x) e−iξx
(
g−1 ∗ q2 + g+

1 ∗ q1

)
dσ

]∨
ξ→z

∣∣∣∣∣ 6 const ln
2d

|z − xn(z)| , (3.7)

where xn(z) is the nearest to z ‘vertex’ of Γ .

Suppose now that there exists some point x0 ∈ Γ such that Γ is smooth near this point

and l
(
x0
)
> 0. Then there exists also a neighbourhood UΓ =

{
x ∈ Γ , σ (x, x0

)
6 s0

}
(here σ

(
x, x0

)
denotes the length along the curve) such that l (x) > 0 for any x ∈ UΓ .

Consider the two-dimensional neighbourhood Uε := {z, ρ (z, UΓ ) 6 ε}. For the character-

istic functions φm (z) = χ
(
Uεm

)
the convergence lim

m→∞φm = 0 takes place both in L2 and

in L1. Hence, by (3.6):〈
lδΓ +

[∫
Γ

l (x) e−iξx
(
g−1 ∗ q2 + g+

1 ∗ q1

)
dσ

]∨
ξ

, φm

〉
→ 0, m→∞.

The function
[∫
Γ
l (x) e−iξx

(
g−1 ∗ q2 + g+

1 ∗ q1

)
dσ
]∨
ξ

(z) is bounded in Uε, see (3.7), because

Uε does not contain any of the points xn. Therefore, the convergence relation above

implies that ∫
UΓ

l (z) dσz = 〈lδΓ , φm〉 → 0.

Thus we get the contradiction with the condition l (z) > 0 at UΓ . Hence, l ≡ 0. �

4 Uniqueness of the solution to the inverse boundary problem

Proposition 4.1 (a) Suppose that all conditions of the Theorem 3.1 are satisfied and the

following estimate holds:

Np 6 (c1 (κ, p, Ω) + c2 (κ, p, Ω))−1 . (4.1)
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In case c = 0 we suppose that for some p 6 3 the condition (2.43) holds (instead of (2.40),

(2.55) and (4.1) for the arbitrary c).

Then the potentials q̃1 and q̃2 coincide, if the corresponding Dirichlet-to-Neumann maps

for diffusion operators are equal.

Proof It follows from (2.51), (2.58) and Theorem 3.1 that if the Dirichlet-to-Neumann

operators for Λ1 and Λ2 are identical, then for the difference r = q1 − q2 the estimate

‖r̂‖L2
6 (c1 (κ, p, Ω) + c2 (κ, p, Ω))Np ‖r̂‖L2

(for the case c = 0 the estimate ‖r̂‖L2
6

6cp (Ω)Np ‖r̂‖L2
instead) holds. The condition (4.1) (or in case c = 0 : cp (Ω)Np < 1/10

resp.) implies evidently r ≡ 0. q

Now we are ready to prove the uniqueness of the solution to the inverse boundary

problem for diffusion operator.

Theorem 4.2 (a) Suppose that:

(i) the diffusion coefficient D (x) ∈ C1 (Ω) and is strictly positive;

(ii) Γ ∈ C1,δ
# and ∂D

∂n

∣∣
Γ
∈ Cδ for some δ > 0;

(iii) the functions ∆D and µa belong to Lp (Ω) for some p > 2;

Then there exists a constant δ = δ (c, p, Ω) , where c := cµ0
a

D0 + i ω0

D0 , D
0 and µ0

a are some

background values, such that if∥∥∥∥∥∆
√
D√
D

+
cµa + iω0

D
− c

∥∥∥∥∥Lp(Ω)

< δ,

then the coefficients µa (x) and D (x) of the diffusion equation are uniquely defined by the

Dirichlet-to-Neumann mapping Λ and by the value D|Γ .
(b) In case c = 0 the uniqueness of the reconstruction of µa and D is guaranteed when the

conditions (i) and (ii) hold and∥∥∥∥∥∆
√
D√
D

+
cµa + iω0

D

∥∥∥∥∥Lp′

<
1

10cp′ (Ω)
(4.2)

for some p′ 6 3.

The proof follows directly from the Proposition 4.1. The condition (i) implies that

1/D (x) is also continuous and strictly positive. If two diffusion operators L1 and L2

satisfy the conditions (i)–(iii) (notice that in the null-background case the condition (4.2)

means (2.33) ) and have the same values at the boundary and the same DtN mappings,

then q̃1 = q̃2. Hence, equating the real and imaginary parts of this relation we get

D1 = D2;
∆
√
D1√
D1

+ c
µa1
D1

=
∆
√
D2√
D2

+ c
µa2
D2
,

which implies L1 = L2. �
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5 Conclusions

We have studied the 2D-diffusion model for optical tomography. A local uniqueness

theorem for the diffusion equation in plane was proved where the variable coefficients

µa and D are almost constant or satisfy (4.2). The open question is, whether a global

uniqueness result holds.
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