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We consider the exchange flow of relatively dense, viscous fluid in a container
connected by a vertical pipe to a container beneath it, initially full of relatively light
fluid. A non-dimensional value for the flux of dense fluid down the tube is determined
experimentally as a function of the ratio of the two viscosities and the Reynolds
number. The experimental data are satisfactorily collapsed using dimensional analysis
and balancing buoyancy, inertial and viscous forces as appropriate. A theoretical
analysis, assuming steady, axisymmetric motion, captures a considerable part, but not
all of the processes involved. The paper discusses quantitative applications of the
results to the movement of magma in volcanic conduits. The concepts indicate how
bi-directional convection in the conduit between a lava lake and a magma reservoir
deep in the crust is the essential ingredient in the explanation of the long-standing
problem that the amount of degassing of sulphur dioxide from a lava lake in a
volcanic crater can exceed by many orders of magnitude that consistent with the
amount of lava solidified in the crater. Movies are available with the online version
of the paper.

1. Introduction
Uni-directional, steady flow along a horizontal pipe of constant cross-section

(neglecting the effects of gravity) is one of the fundamental problems in fluid mechanics
(Batchelor 1967). Under these circumstances, with applied pressures at either end, it
is impossible to have a bi-directional flow. However, for a flow in a diverging channel,
known as Jeffrey–Hammel flow, beyond a certain flux dependent on the Reynolds
number, the flow can become so concentrated at the axis that there is a return flow
close to the walls (Batchelor 1967).

The flow of two different fluids along a pipe has been extensively investigated, by
(amongst others) Hickox (1971), Scoffoni, Lajeunesse & Homsy (2001) and D. D.
Joseph and his co-workers (see, for example, Joseph et al. 1997), motivated in part by
the interest of oil companies in pumping viscous oils through pipelines. The inclusion
of water, whose viscosity is very much less than the oil, can considerably reduce the
pressure needed to pump a given flux of oil through the pipe by lubricating the high
shear region near the wall. The flow in such situations is rarely, if ever, stable and
breaks up into a series of different flow types, which are reviewed by Joseph et al.
(1997) and include the formation of bubbles, slugs, bamboo waves and what Joseph
calls disturbed core-annular flow. These studies have concentrated on the flow patterns
generated by counterflows in a tube, while we focus here on the initial exchange rate
between the two reservoirs linked by the tube, rather than the flow details.
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In a related problem, Stevenson & Blake (1998) presented experimental results for
the evolution in a long thin tube of a lower region of viscous fluid initially overlain
by viscous fluid of greater density. They investigate the velocity of rise V of the
intruding ‘bubble’ of less dense fluid and present a non-dimensional version of this
velocity, which they call the Poiseuille number, Ps, as a function of γ = µU/µL, the
ratio of the dynamic viscosities of the more dense fluid to the less dense fluid, where
Ps ≡ VνU/(g′R2), νU is the kinematic viscosity of the upper, relatively dense fluid,
g′ is the reduced gravity and R the radius of the tube. They suggest no theory
themselves, but compare their experimental results with the theoretical results of
Kazahaya, Shinohara & Saito (1994), who derive a model for an inner, ascending
Poiseuille flow surrounded by an outer, descending Poiseuille flow contained in a long
cylinder of radius R. The experimental data do not fit the analysis of Kazahaya et al.
(1994) at all well. Stevenson & Blake (1998) mention, in our opinion correctly, that
(part of) the problem is the ‘incorrect assumption of zero velocity at the interface
between the two fluids’ invoked by Kazahaya et al. (1994). They also describe three
different overturn styles. For γ less than about 10, the descending fluid detaches from
the wall and flows in the centre, surrounded by ascending fluid at the walls in the
lower half of the tube. In mirror fashion, in the upper region the ascending fluid also
detaches from the wall and rises through descending fluid around it. For 10 <γ < 300
(approximately), the descending fluid splits into individual blobs that descend down
the centre of the pipe. For γ > 300 the descending fluid sticks to the walls at all times
with the ascending fluid rising in the center of the tube.

Stevenson & Blake (1998) were not able to measure accurately the radius of
the ascending fluid region in their main experiments because of optical distortion.
However, they considered four additional experiments in which low-viscosity fluid was
injected into denser, more viscous fluid at the base of a vertical open-ended column.
They found that the relative radius (the radius divided by the radius of the containing
tube) for these ascending regions looked similar as in their main experiments and
was approximately constant with values of 0.53–0.64 for four experiments with a
reasonably broad ranges of Ps and γ .

Why is this the form of motion? They make no comment as to why the fluid
tends to ascend in the central regions rather than in the outer regions. One might
immediately think that the no-slip condition at the wall plays an important role here,
but it is not obvious how to evaluate this quantitatively. They also make no comment
on reasons for the cross-sectional area of the rising fluid.

The geological/geophysical motivation for this activity comes from measurements
of fluxes of sulphur dioxide and other volatiles from lava lakes in volcanic craters.
The investigations tend to concentrate on the sulphur dioxide fluxes because these
are much easier to measure, by infrared remote sensing techniques, than the possibly
much larger fluxes of water vapour or carbon dioxide. Evaluation of the amount of
magma (liquid rock) required to come to the surface to supply the sulphur dioxide
flux can be calculated from the known (low) amount of sulphur dioxide dissolved in
and transported by the magma. This value of magma flux can exceed by as much as
four orders of magnitude the actual erupted flux (Francis, Oppenheimer & Stevenson
1993; Wallace 2001). The proposed explanation for this discrepancy is that magma
relatively rich in sulphur dioxide rises from a holding reservoir (magma chamber),
which exist in the Earth’s crust a few kilometres beneath volcanic craters. As the
magma rises, the pressure decreases, which leads to degassing of the sulphur dioxide
(and some crystallization; see Jaupart 2000 or Sparks 2003 for example). The degassed
sulphur dioxide travels mainly at the same velocity as the rising magma because it is
in the form of small bubbles, so the argument runs, but when the magma reaches the
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surface the gas can escape. This leaves the magma with an increased density, which is
further increased by the cooling that occurs, and also by crystallization. The relatively
heavy magma then sinks down the conduit – making for a bi-directional flow within
the conduit – and this ‘conveyor-belt’ form of motion can continue, transporting
sulphur dioxide to the surface and then into the atmosphere, without a net flux or
eruption of any magma. The rate of flow in the conduit is partly determined by the
change in density, which is itself set by the heat transfer between the lava lake and
the atmosphere. However, attractive as the whole explanation may be, no complete
mathematical analysis to test the idea quantitatively has been conducted.

The aim of the current paper is to develop the quantitative analysis supported
by laboratory experimentation and then to briefly apply the results to the geological
problem. We investigate here the flow that results when relatively dense, viscous liquid
flows from a sealed container down a vertical pipe into another container, initially
filled with relatively less dense viscous liquid. This situation is first investigated
experimentally and a quantitative explanation of the experimental data is then
presented. We hope to publish a fuller discussion of the geological consequences
of our results in a journal specializing in the Earth sciences.

The form of the paper is as follows. In the next section, by way of setting up a
foundation, we consider the emptying of an open container through a simple hole
in its base over a range of Reynolds numbers. By dimensional arguments we will
construct the expected form of a non-dimensional flux versus Reynolds number at
the limits of low and high Reynolds number and show experimentally how to link
these two. In § 3, experiments for the interchange of dense fluid filling a closed upper
container with relatively less dense fluid beneath it will be described, leading to the
relationship between a non-dimensional transport number Te and γ . Section 4 will
present the mathematical analysis of a simplified, steady and axisymmetric, fluid-
mechanical model, incorporating the effects due to gravity and the unknown pressure
gradient. The final section presents our conclusions and a brief description of the
geological relevance of the work.

2. Flow from a hole in a container
In order to set the foundations, consider a container filled with liquid of density ρ

and kinematic viscosity ν to a height h open to the atmosphere draining through a
hole in the bottom with a scale (like the radius) of r . For large Reynolds numbers
Re = V r/ν, where V denotes the exit velocity scale, it follows from Bernoulli’s principle
that V ∝ (gh)1/2, where g is the acceleration due to gravity. Thus the volume flux
Q ∝ (gh)1/2r2, with the constant of proportionality dependent on the details of the
hole. In summary, the non-dimensional flux F given by

F ≡ Q/[r2(gh)1/2] ∼ constant (R′ ≡ (gh)1/2r/ν � 1), (2.1)

with the value of the constant dependent on the coefficient of contraction or vena
contracta (Batchelor 1967).

For small Reynolds number, balancing the driving pressure head ρgh with the
viscous stress µv/r , where the dynamic viscosity µ = ρν, we determine that V ∼ ghr/ν,
Q ∼ ghr3/ν and Re ∼ ghr2/ν2, with the constant of proportionality discussed in
Happel & Brenner (1973). In summary

F ∼ R′ (R′ � 1). (2.2)

To test these hypotheses and scaling and to determine the relationships for moderate
R′, we carried out a series of simple laboratory experiments.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

46
61

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007004661


98 H. E. Huppert and M. A. Hallworth

Perspex container

Collecting bath

Digital balance

Liquid
H

2r

Threaded brass nozzle

Vertical scale

h

Figure 1. The experimental apparatus used for measuring the flow from a
rectangular container.

# Hole radius Density Viscosity
(cm) Liquid (g cm−3) (cm s−1)

1 0.50 Pure water 0.9982 0.01
2 0.35 Pure water 0.9982 0.01
3 0.35 100wt % glycerine 1.2600 7.70
4 0.50 100wt % glycerine 1.2600 7.70
5 0.50 70.3wt % glycerine 1.1820 0.175
6 0.35 70.3wt % glycerine 1.1820 0.175
7 0.35 80.0wt % glycerine 1.2085 0.399
8 0.35 92.0wt % glycerine 1.2404 1.83
9 0.50 92.0wt % glycerine 1.2404 0.83

Table 1. A listing of the hole radius and liquid properties for the various drainage experiments.
Density values were determined by hydrometer and viscosity values were measured by U-tube
viscometers.

The experimental apparatus consisted of an open-topped Perspex box with a square
base of internal length 25 cm and height 30 cm, as shown in figure 1. The fluid in
the container drained through a circular hole of radius r drilled through the centre
of a 3 mm thick brass disk of diameter 16 mm, which was screwed into a threaded
hole in the centre of the base. Two interchangeable brass disks were used, with hole
radii of 0.5 cm and 0.35 cm. The box was supported above a collecting bath sitting
directly on an electronic balance which could measure mass in the range 0–6 kg to
an accuracy of 0.1 g. At the start of each experiment, the outlet hole was temporarily
stoppered and the Perspex container filled to a height H (approximately 7.5 cm). The
stopper was then removed and the liquid allowed to drain freely into the collecting
bath beneath. Throughout the drainage, the height h of the free surface of liquid
remaining in the container and the mass of liquid M in the collecting bath were both
recorded as functions of time until the container was empty.

A total of nine different combinations of hole radius and liquid viscosity were
explored, as listed in table 1. Each experiment was conducted three times and averaged
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Figure 2. Mean measurements of the height h of liquid in the container and the mass M of
liquid collected in the bath as functions of time t for a typical drainage experiment (#5 in
table 1). Values of Q were calculated for given values of h for each point marked with a solid
circle from the differences of data points on either side.

F

1 10 100 1000 10000

1

10

3.3

slope 1

0.50  0.01
0.35  0.01
0.35  7.70
0.50  7.70
0.50  0.1745
0.35  0.1745
0.35  0.399
0.35  1.83
0.50  1.83

r
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v
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Figure 3. Plot of F as a function of R′ for the drainage experiments. Each array of data
comes from a single experiment, and tracks the decrease in Q with decreasing h.

values used in the subsequent analyses with differences of order 2%. The liquids used
were water, glycerine and mixtures thereof, as specified in table 1 along with their
relevant physical properties. In order to determine the relationship for the flux rate
as a function of height and to test the theoretical relationships given by (2.1) and
(2.2), it was necessary to calculate the volumetric flux Q. Since this flux decreased
as the head of liquid in the container fell during the course of each experiment, a
differencing method was adopted to evaluate the mean volumetric flow rate at several
specific values of the hydrostatic head h as it reduced, as detailed in figure 2.

Figure 3 plots F as a function of R′. We see that (2.1) and (2.2) are appropriate
except for 7 � R′ � 30, in which range the relationship between F and R flares
smoothly between (2.1) and (2.2).

If the container is closed, much more interesting phenomena can occur, because
compressibility effects become important. We have begun a preliminary series of
experiments in which a sealed cylinder (of radius 7.9 cm and height 16.9 cm) filled
with water drains through a long vertical tube (length ∼ 100 cm, diameter ∼ 1 cm)
sealed into the centre of the base. Initially, a plug of air rises up the centre of the
tube while water drains at a steady rate from its base. Once the plug of air reaches
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Figure 4. The mass of water collected below the exit tube as a function of time for two
different long tubes. Straight-line fits to the three separate regimes are also included.

the base of the cylinder, bubbles of air are released into the cylinder at a regular
frequency, and collect as a layer of air beneath the closed roof. From the acoustic
signal emitted during this process we call this regime ‘popping’. This air layer grows
in thickness, until, after approximately 80 s, a second regime (which we call ‘glugging’)
occurs, during which plugs of water are drawn down the tube to a length l, which
creates a partial vacuum at the top of the cylinder. The difference in pressure draws
the plug back up into the cylinder along with some air. This process is repeated with
a frequency that steadily decreases while the maximum length of drawdown l steadily
increases until it attains the full length of the drainage tube. At this stage, after about
180 s, a third regime (which we call ‘slugging’) is encountered. During this regime, a
prolonged flow of water streams out of the tube until the partial vacuum created in
the cylinder causes the whole column of water in the tube to be powerfully accelerated
back into the chamber in fountains which became progressively more violent, until
after about 230 s the cylinder is fully evacuated. Movie 1, available with the online
version of the paper, presents short clips of each of these forms of motion.

We have measured the mass of the drained water as a function of time; this is
depicted in figure 4 for tubes of length 50 and 100 cm. During the popping stage the
mass discharge rate is approximately constant at 6.5 g s−1; during the glugging stage
it is 8.9 g s−1; while during the slugging stage it is 26.5 g s−1. There are antecedents
of this behaviour, but for the different situation of a relatively short tube, discussed
by Clanet (2000) and Clanet & Searby (2004). The geometry of their apparatus
(incorporating only a short delivery tube) does not yield the three regimes as shown
in figure 4. We plan to present a full experimental and theoretical description of the
phenomena in a future publication. Here we include a preliminary description mainly
for comparison.

3. Bi-flow between two sealed containers
Motivated in part by the geological application, we conducted two series of

experiments aimed at investigating the buoyancy-driven exchange of fluids between
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ρH > ρL

µH

ρH

µL

ρL

µL

ρL

µL

ρL

(b)

l

Digital balance

Perspex tube 2r

Beaker

(c)

Clamp

Rig B Filling port

Inverted flask

Perspex tube 2r

Beaker

Rig A

µH

ρH

µH

ρH

Figure 5. The apparatus used for the exchange flows. (a) Schematic of the system.
(b) Preliminary set-up used for experiments A1–A33. (c) Improved set-up used for experiments
B34–B56.

two reservoirs linked by a vertical conduit or tube. A schematic of the set-up is
shown in figure 5(a). Relatively dense fluid contained in the closed, upper reservoir
is connected by a thin vertical tube to a lower reservoir initially containing less
dense fluid. The density difference between the two fluids results in a buoyancy-driven
exchange flow, with a downward volumetric flux of the denser fluid being matched
by an equal upward volumetric flux of the less dense fluid. This exchange continues
until less dense fluid is no longer below more dense fluid.

We investigated the fluid interchange by measuring the exchange flux for different
values of the tube radius, the tube length, the initial density difference between the two
fluids and their relative viscosities. Since there is no net volume flux through the tube,
in a closed system we could not initially think of a practical, non-intrusive way to
measure the actual volumetric rate of exchange of each fluid. We solved this problem,
however, by measuring the change in mass of the lower reservoir as a function of
time. This was achieved using an open-topped lower reservoir, and submerging the
tip of the connecting conduit just below the free surface of the contained liquid. The
conduit itself was sealed at its upper end into the base of the upper reservoir, both of
which were clamped to a rigid stand. The lower reservoir thus did not support weight
from the conduit or upper reservoir, and by placing it on an electronic balance, the
mass of the liquid in the lower reservoir could be measured with time as it increased
throughout the exchange. The drawback of this measuring system is that the mass
flux so obtained can only be related to the volumetric flux if the densities of the
exchanging fluids are known and no mixing takes place between them within the
conduit. With this limitation in mind, a number of experiments were performed with
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102 H. E. Huppert and M. A. Hallworth

immiscible fluids, thereby eliminating the problem induced by mixing of the fluids.
For experiments in which the exchanging fluids were miscible and mixing did occur
in the conduit, a separate analysis of the results is necessary and will be detailed later.

In practice, two experimental rigs were employed, as shown in figure 5. A series of
preliminary experiments (denoted by the prefix A) was first conducted in the simple
set-up depicted in figure 5(b), in which an inverted, 1 litre, round-bottomed flask served
as the upper reservoir. Perspex tubes of different lengths and radii were fixed into
the neck of the flask using silicone sealant and corks, and these projected vertically
down such that their lower ends were submerged just beneath the free surface of
the fluid in the lower reservoir. Thirty-three experiments (A1–A33) performed in this
system produced satisfactory results, but the non-ideal entry conditions into the tube
through the neck of the flask, its limited volume and the awkwardness of exchanging
and re-sealing the various conduit tubes led eventually to the custom-built improved
apparatus shown in figure 5(c). In this modified set-up, the upper reservoir was
replaced by a Perspex container having a circular base of internal radius 7.9 cm and
height 16.9 cm, and a working volume of 3.2 litres. The reservoir could be filled through
an access port in the sealed lid, and was drained through a fixture in the centre of the
base which allowed easy, O-ring sealed push-fit interchange between Perspex tubes
of three different radii and any desired length. The 23 experiments performed in this
set-up are denoted by the prefix B, as detailed in table 2 (available as a supplement
to the online version of the paper) which gives the initial conditions and parameters
for all the bi-flow experiments. While the geometrical set-up for series B was better
than that for series A, the results obtained from each seemed equally reliable.

A variety of fluids were used to explore a wide range of different density and
viscosity contrasts. The less dense fluids contained in the lower reservoir covered a
viscosity range from 0.01 to 63 cm2 s−1, and included pure water, various aqueous
glycerine solutions, vegetable oils and high-viscosity polymer solutions of carboxy-
methylcellulose (CMC). The more dense fluids initially contained in the upper
reservoir ranged in viscosity from 0.01 to 450 cm2 s−1, and included pure water, various
aqueous salt and glycerine solutions, and pure golden syrup. With the exception of
water, the density and viscosity of each solution used were determined prior to each
run using hydrometers and U-tube viscometers respectively. Each experiment began
by filling the upper reservoir and conduit tube with a known mass of fluid mU ,
initially held in place by a temporary stopper at the lower end of the tube. The lower
reservoir was then filled with a mass m of dense solution until the lower tip of the
conduit tube was just submerged below the free surface. The exchange began upon
removal of the stopper, and the increasing mass of the lower reservoir was recorded
as a function of time until the exchange ceased.

Several different styles of exchange flow were observed depending on the viscosities
of the fluids involved and whether they were miscible with each other. The main
styles of flow behaviour may be summarised by the schematic representation shown
in figure 6 and movie sequences 2 to 5 (available with the online version of the
paper). When both fluids were relatively inviscid and miscible (figure 6a), vigorous
turbulent mixing of the fluids took place in the conduit, such that mixed fluid emerged
from either end of the tube into the upper and lower reservoirs as plumes, which
proceeded to occupy the reservoirs in a typical filling box fashion. Figure 6(b) depicts
the situation where both fluids have relatively low viscosities but are immiscible. In
this type of exchange, the upward-moving less dense fluid forms an almost straight-
sided column rising up through the centre of the tube with an outer annulus of dense
fluid moving in the opposite direction. The situation shown in figure 6(c) relates
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(a) (b) (c)Low viscosity
Miscible fluids

Low viscosity
Immiscible fluids

High viscosity
Miscible or immiscible fluids

Varicose
instabilities

Mixing
in tube

‘Filling box’

‘Filling box’

Figure 6. Sketches of three different styles of exchange. (a) When both upper and lower
fluids are miscible with each other and have low viscosity, vigorous turbulent mixing occurs
throughout the length of the tube. (b) When the fluids are immiscible but still have relatively
low viscosity, the exchange occurs as a straight-sided column of the less dense fluid moving
upwards through a surrounding envelope of downward-moving dense fluid. (c) When one
or both of the fluids have high viscosity and are prevented from mixing, either due to this
viscosity contrast or because they are immiscible, the exchange flow occurs as an irregular
column of upward-moving fluid with varicose instabilities. This column may be confined to
the central axis of the tube, with a surrounding annulus of dense, downward-moving fluid, or
it may be highly irregular and break into discrete blobs or partially adhere to the sidewall of
the conduit.

to the situation where one or both of the fluids have relatively high viscosity, and
are prevented from mixing either due to their viscosity contrast or because they are
physically immiscible. In this case, the exchange flow occurs as an irregular column
of upward-moving fluid, which develops varicose instabilities. The upward flow may
be confined to the central axis of the conduit, or it may be highly irregular and break
into discrete blobs or partially adhere to the sidewalls of the conduit.

The only quantitative data that were measured from the experiments was the mass
of the lower reservoir M as a function of time. The interpretation of these data differs
according to whether any mixing of the two fluids occurred during the exchange, and
is shown in figure 7. Schematic representations of M as a function of time are shown
for cases where there is no mixing (figure 7a), and where mixing does occur (figure 7b).

With no mixing (figure 7a) there is a steady increase in M as the fluids exchange
until one of the reservoirs is emptied of its initial fluid. In our experiments, the upper
reservoir always had the smaller volume and was thus exhausted first. Assuming no
mixing, from conservation of mass and volume we can calculate the theoretical final
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Figure 7. Schematic representations of the mass of the lower reservoir, M , with time for
(a) immiscible and (b) miscible fluids. In (b) the final mass of the lower reservoir M∞ lies
between the two theoretical limits of no mixing Mmin and complete homogenization of all the
fluid in the system (M). A mixing ratio β , defined as (M − M∞)/(M − Mmin), can be used to
quantify the degree of mixing. Representative experimental data of M − m for immiscible and
miscible fluids are shown in (c) and (d) respectively.

mass of the lower reservoir M as

M = m + (mU�ρ/ρU ), (3.1)

where ρU and ρL are the densities of the fluid in the upper and lower reservoirs
respectively, and �ρ = ρU − ρL > 0. The mass of the lower reservoir increases linearly
with time up to this theoretical maximum and then exchange ceases. The mass flux
dM/dt is then related to the volumetric flux Q by

Q =
dM

dt
/�ρ. (3.2)

Figure 7(c) shows some representative data for experiments using immiscible fluids
for which there can be no mixing. In each case, the final measured and predicted value
for the final mass of the lower reservoir are equal to within experimental error (2%).

In figure 7(b), we consider the situation where some degree of mixing between the
two fluids can take place during the exchange. The rate of mass exchange is no longer
constant, but decreases steadily, and the mass asymptotes to a final value M∞, which
falls short of the theoretical maximum M. From the initial masses of fluids in both
reservoirs, it is also possible to calculate a minimum value for the final mass in the
lower reservoir Mmin based on complete homogenization of all the fluid in the closed
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Figure 8. The initial rate of mass exchange measure as a function of (a) length of tube and
(b) radius of tube.

system, which, again using conservation of mass and volume, is given by

Mmin =m +
mU�ρ/ρU

1 + (ρLmU/ρUm)
. (3.3)

Using the theoretical maximum and minimum final values, we can use the
experimentally measured final value of M∞ to provide a quantitative estimate of the
amount of mixing that must have occurred, expressed as a mixing fraction β , where

β =
M − M∞

M − Mmin

. (3.4)

A value of β = 0 indicates no mixing at all, while β = 1 represents complete
homogenization of the two fluids.

Figure 7(d) presents some representative experimental data in which some mixing
occurred. In these experiments, the mass flux dM/dt is defined by a fit to the data
in the initial linear stage, and the volumetric flux Q is then derived from this using
(3.2). Calculated values of Q and β for all experiments are presented in table 2.

Mixing of the exchanging fluids in the conduit has the important effect of reducing
the rate of exchange, since it decreases the density difference driving the flow. We
investigated the influence on mixing of the radius and length of the conduit by
conducting a systematic series of experiments (B45–B53) using low-viscosity miscible
fluids (water and 50 wt % glycerine) in apparatus B. A 3 × 3 matrix of experiments
was run for tube radii of 0.55 cm, 1.0 cm and 1.5 cm and tube lengths of 3 cm, 50 cm
and 100 cm. The rates of initial mass exchange as functions of tube radius r and tube
length l, keeping all other parameters fixed, are shown in figure 8.

The flow regime is clearly too complicated to describe in detail by two steady
uni-axial flows in opposite directions, although we will examine the consequences of
this approach in the next section. Here we extend the arguments of the previous
section to develop asymptotic results in the limits of large and small γ and large and
small Reynolds numbers.

The flow takes place under a balance between the vertical driving force per unit
cross-sectional area due to buoyancy, �ρgR, where R is the radius of the connecting
tube; the vertical pressure difference, which is also of order �ρgR; the viscous stresses
µV/R, where V is a scale for the velocity within the connecting pipe (the maximum
upward velocity, for example) and µ is a viscosity (to be defined in detail below); and
the inertial force ρV 2. For extremely viscous, low-Reynolds-number flow ρV R/µ � 1,
buoyancy forces balance viscous forces to lead to V ∼ ρg′R2/µ, where g′ = �ρg/ρ is
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γ = µu/µ
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Figure 9. Plot of Te as a function of γ . The straight-line portions represent Te = 0.01γ and
Te= 0.125, valid for γ � 1 and � 1 respectively. The letters A, B, C and D indicate the flow
parameters for movie sequences 2, 3, 4, 5 respectively.

the reduced gravity. Thus the volume flux in either fluid Q ∼ ρg′R4/µ. Alternatively,
for high-Reynolds-number flows, ρV R/µ � 1, a balance between buoyancy and
inertial forces indicates that V ∼ (g′R)1/2 and Q ∼ (g′R)1/2R2.

A non-dimensional transport number Te can be defined by

Te= µUQ/(g�ρR4). (3.5)

Thus, for low Reynolds numbers, Te ∼ µU/µ. If µU � µL, most of the viscous
dissipation is due to the upper fluid and µ should be identified as µU ; and then
Te is constant. If, on the other hand, µL � µU, µ should be identified as µL; and then
Te ∼ γ . These two limiting curves are plotted with all the experimental data in figure 9,
where solid circles indicate data obtained from experiments with immiscible fluids;
open circles from experiments with miscible fluids but little mixing, β ∼ 1; and crosses
from experiments in which considerable mixing took place. The two limiting lines
provide a good fit to the data for experiments at low Reynolds numbers, while most
of the data taken from experiments in which a considerable amount of mixing took
place plot quite differently. Explicitly, the best fit curves to much of the experimental
data are Te= 0.01γ for γ � 1; and Te= 0.125 for γ � 1. The mismatch with some of
the data suggests considering the limiting case for high Reynolds numbers, for which
Te ∼ νU/[(g′R)1/2R] ≡ Re−1

U . Figure 10 presents Te as a function of ReU . The data are
seen to fit the limiting curves well, except for some experiments, for which the mixing
was so strong that its effects need to be included in the force balance. In particular, the
initial value of �ρ is not the appropriate density difference driving the fluids through
the conduit. This change in conditions is seen to decrease the pre-multiplicative
constant by about an order of magnitude, but not the functional form of Re−1

U .

4. Theoretical discussion
A complete theoretical solution of the exchange flow, incorporating either or both

of unsteady, non-axisymmetric flow in the conduit and mixing between the two fluids,
is obviously impossible. Some initial understanding, however, can be gained from
investigating the simplest, basic problem of assuming that the flow in the conduit is
steady, coaxial and that no mixing takes place.
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Figure 10. Plot of Te as a function of ReU . The straight-line portions represent Te= 0.125
and Te = 0.556Re−1

U , valid for ReU � and � 1 respectively. The letters A, B, C and D indicate
the flow parameters for movie sequences 2, 3, 4, 5 respectively.
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Figure 11. Typical velocity profiles as a function of radius, from (4.9), for γ = 0.01, 1 and
1000. The values of a and C used are those which maximise Te.

Linear stability analyses of such flows have been considered by a number of
authors, including Hickox (1971), Joseph et al. (1997), and Scoffoni et al. (2001), who
conclude, as discussed in the Introduction, that the flows are rarely if ever stable.
How accurately a stable, axisymmetric flow will describe the mean fluid flux has not
been previously determined, at least to our knowledge. That is our aim in this section.

Consider the steady-state flow depicted in figure 11, where there is an axial, inner
flow in 0 � R � R1 and an outer flow in R1 � R � R2 acting under the force of
gravity. The two regions move under a pressure gradient, pz, and the difference in
buoyancy between the two fluids. Assuming that the densities of the fluid are ρ1 in
the central region and ρ2 in the outer region, we can write the governing equations as

0 = −ρ1g − pz + µ1

1

R

d

dR

(
R

du

dR

)
(0 � R � R1), (4.1a)

0 = −ρ2g − pz + µ2

1

R

d

dR

(
R

du

dR

)
(R1 � R � R2). (4.1b)

The appropriate boundary conditions are

u(0) finite, [u] = 0,

[
µ

du

dR

]
= 0, u(R2) = 0, (4.2)
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where

[η] ≡ η(R1−) − η(R1+). (4.3)

One of the complications in this problem is that the pressure gradient pz is initially
unknown (as is R1). We thus write

pz = − 1
2
(ρ1 + ρ2)g − 1

2
g�ρC, (4.4)

where C is to be determined later.
Introducing non-dimensional radii and velocities by

r =R/R2 w =µ2u/
(
g�ρR2

2

)
, (4.5)

the governing equations become

0 =
1

2
γ (C + 1) +

1

r

d

dr

(
r
dw

dr

)
(0 � r � a), (4.6a)

0 =
1

2
(C − 1) +

1

r

d

dr

(
r
dw

dr

)
(a � r � 1), (4.6b)

where

γ =µ2/µ1 and a = R1/R2, (4.7)

which is yet to be determined. The appropriate boundary conditions are

w(0) finite [w] = 0
dw

dr
(a−) = γ

dw

dr
(a+) w(1) = 0. (4.8)

The solutions to (4.6) and (4.8) are

w(r) = 1
8
γ (C + 1)(a2 − r2) + 1

8
(C − 1)(1 − a2) − 1

2
a2 ln a (0 � r � a) (4.9a)

= 1
8
(C − 1)(1 − r2) − 1

2
a2 ln r (a � r � 1). (4.9b)

The non-dimensional volume flux, q1, in the central region is given by

(2π)−1q1 ≡
∫ a

0

rwdr (4.10a)

= 1
32

γ (C + 1)a4 + 1
16

(C − 1)a2(1 − a2) − 1
4
a4 ln a, (4.10b)

while the non-dimensional volume flux, q2, in the outer region is given by

(2π)−1q2 ≡
∫ 1

a

rwdr (4.11a)

= 1
32

(C − 1)(1 − a2)2 + 1
8
a2(1 − a2 + 2a2 ln a). (4.11b)

The net vertical flux through any horizontal cross-section must be zero, and hence

q1 + q2 = 0, (4.12)

which on adding (4.10b) and (4.11b) becomes

C[1 + (γ − 1)a4] = (1 − a2)(1 − 3a2) − γ a4. (4.13)

Figure 12 plots C as a function of a for various values of γ . It is immediately seen
that for all a and γ, −1 < C < 1 and thus because C cannot be large or, in general,
small, the effect of the pressure gradient involved in driving the flow is comparable to
the additional body force difference. In particular in the limit C = 1, the vertical pres-
sure gradient is just sufficient to balance the gravitational effects of the outer (falling)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

46
61

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007004661


Bi-directional flows in constrained systems 109

–1.0

–0.5

0

0.5

1.0

0 0.2 0.4 0.6 0.8 1.0
a

C γ = 1000 100 01

Figure 12. C as a function of a for four values of γ .
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Figure 13. A plot of all the data. The solid curve represents the maximum flux (or Te) or
maximum dissipation, D, according to a steady, axisymmetric analysis.

fluid, as seen in (4.6b). In contrast, in the limit C = −1, the vertical pressure gradient
is just sufficient to balance the gravitational effects of the inner (rising) fluid, (4.6a).
Also, for γ < 1 , C(a) is very insensitive to the value of γ and given approximately by
(1 − a2)(1 − 3a2), while for γ > 1 , C(a) is most sensitive to the value of γ .

The transport number

Te ≡ µ2Q1

g�ρR4
2

= q1 = −q2. (4.14)

For given γ , either C or a still need to be determined by some extra criterion. This
may be set by the details of the connection between the conduit and the containers,
determining the ease with which the flow enters and exits the conduit and hence the
local energy losses. An interesting exercise from a different perspective is to use the
criterion that q1, and hence Te, be a maximum. (The minimum is Te= 0, attained for
a =0 or 1 and C = 1 and −1 respectively.) Only by flowing in a non-axisymmetric or
non-coaxial way could an experimentally determined Te exceed this value. Figure 13
plots this maximum value, Temax, as a function of γ . It is seen that the data generally
lie just below the curve for γ > 1, and hence it is a good predictor, and definitely
below it for γ < 1 and well below it for γ � 1. A steady, axisymmetric flow hence
appears to yield reasonable predictions for the mean flux of fluid for γ > 1.
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Another possible criterion is to extremize the dissipation Batchelor (1967), given by

Φ = 4π

∫ R2

0

µeij eijRdR, (4.15)

where eij = (1/2)du/dR is the strain rate tensor. Differentiating (4.9), inserting the
results into (4.15) and carrying out the integrals, we evaluate the non-dimensional
dissipation

D ≡
∫ a

0

r

(
dw

dr

)2

dr + γ

∫ 1

a

r

(
dw

dr

)2

dr (4.16a)

= 1
64

γ 2(C + 1)2a4

+ γ
[

1
64

(C − 1)2(1 − a4) + 1
8
(C − 1)a2(1 − a2) − 1

4
a4 ln a

]
. (4.16b)

D is zero for a =0 or 1 and has a maximum for 0 <a < 1. The corresponding value
of Te is identical to that obtained by maximising the flux. This is because in this
steady-state flow the dissipation must equal the rate of release of potential energy,
which is directly proportional to the flux of fluid.

5. Conclusions and geological applications
We have presented some new experiments on the exchange flow between a dense,

viscous liquid initially in a closed container about a relatively less dense, viscous liquid
linked by a vertical connecting tube. The flow in the tube and the two containers
showed a variety of features dependent on the viscosity ratios of the two liquids and
whether they were miscible with each other or not. The flow of miscible liquids at high
Reynolds numbers, based on the density difference and tube radius, between about
10 and 104 involved vigorous mixing in the tube, with the mixed liquids emerging into
the reservoirs as plumes which then penetrated the container in the well-known filling
box manner. This mixing, which reduces the density difference driving the exchange
flow, also reduces the flux and transport number Te. The use of immiscible or very
viscous liquids lead to a more ordered, but still irregular, flow which could at times
break down into discrete blobs.

Using dimensional analysis, we showed that the data could be well collapsed, for
low Reynolds numbers, to

Te=0.01γ (γ � 1) (5.1a)

and

Te=0.125 (γ � 1), (5.1b)

in terms of the transport parameter Te, defined by (3.5) and the ratio of the dynamic
viscosities γ . For high Reynolds numbers the experimental data were well represented
by

Te= 0.556Re−1
U (ReU � 1). (5.2)

A simple theoretical model, incorporating a steady, axisymmetric core-annular flow
yielded good agreement with the experimental data for γ � 1, with less agreement
for flows with either γ � 1 or large values of ReU .

Additional features would no doubt arise if the connecting tube was at an angle
or if it was a slot with considerably different length scales in the two horizontal
directions; and we plan to investigate these geometries in the near future.
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There are many examples of volcanic craters with large sulphur dioxide (SO2)
fluxes. The largest of these include: Mt Etna in Italy, from which the typical flux is
50 kg s−1 or 5000 t/day; Mt Masaya in Nicaragua (1000 t/day); Mt Langila in Papua
New Guinea (1000 t/day); Mt Erebus in Antarctica (300 t/day) (Francis et al. 1993);
and Erta ’Ale in Ethiopia (100 t/day) (Oppenheimer et al. 2004).

The composition and viscosities of the magmas which feed these craters are all
different. So also is the ratio S of the measured flux of SO2 compared with that
estimated from merely the erupted volume of magma. For Mt Etna S ∼ 50; for Mt
Masaya S ∼ 2, 500; and for Erta ’Ale S is effectively infinite, or it can maybe even
be considered as negative because there has been a slow reduction in the height of
the lava lake in the approximately thirty years of observations.

Typical viscosities might vary between µU ∼ 2500 Pa s, µ ∼ 1500 Pa s (γ = 5/3) and
µU ∼ 105 Pa s, µ ∼ 104 Pa s (γ = 10). A typical �ρ is 70 kgm−3. The radius of the
conduit (which may be neither uniform with depth nor vertical) could vary between
1 m and 10 m. Thus the volume flow rate in the conduit

Q = g�ρTeR4/µU m3 s−1 (5.3a)

∼ 100R4/µU m3 s−1, (5.3b)

and could therefore take on values between 10−3 and 4 × 102 m3 s−1. For a magma
density of 2500 kg m−3 this means a mass flux between 2.5 and 106 kg s−1. Assuming
1 wt. % of the magma is made up of SO2 (Wallace 2001), we calculate a SO2 flux of
between 0.025 and 104 kg s−1, which spans the observations.

Alternatively, because Q is such a strong function of R (5.3) we might argue the
measured SO2 flux could lead to indications of the conduit radius, which is difficult,
if not impossible, to measure in situ. At Mt Etna, the observed SO2 flux indicates that
Q ∼ 50 × 100/2500 = 2 m3 s−1. Hence, with µU =2000 Pa s for the relatively inviscid
basaltic Etna lava, R ∼ (40)1/4 ∼ 2.5 m, a reasonable estimate. A detailed comparison
between the theory and field observations for specific sites will be presented in another
publication.

We are grateful for John Hinch’s continued interest and stimulating comments
and the geological motivation provided by Steve Sparks and Clive Oppenheimer.
In addition, all three provided insightful comments on an earlier version of the
manuscript. The research of H. E.H. is supported by a Royal Society Wolfson Merit
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