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Analytic treatment is presented of the electrostatic instability of an initially planar
electron hole in a plasma of effectively infinite particle magnetization. It is shown
that there is an unstable mode consisting of a rigid shift of the hole in the trapping
direction. Its low frequency is determined by the real part of the force balance
between the Maxwell stress arising from the transverse wavenumber k and the
kinematic jetting from the hole’s acceleration. The very low growth rate arises from a
delicate balance in the imaginary part of the force between the passing-particle jetting,
which is destabilizing, and the resonant response of the trapped particles, which is
stabilizing. Nearly universal scalings of the complex frequency and k with hole
depth are derived. Particle in cell simulations show that the slow-growing instabilities
previously investigated as coupled hole–wave phenomena occur at the predicted
frequency, but with growth rates 2 to 4 times greater than the analytic prediction.
This higher rate may be caused by a reduced resonant stabilization because of
numerical phase-space diffusion in the simulations.
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1. Introduction
Long-lived solitary electrostatic structures that are isolated peaks of positive

potential at Debye-length scale, are now routinely observed as a major high-frequency
component of space-plasma turbulence (Matsumoto et al. 1994; Bale et al. 1998;
Ergun et al. 1998; Mangeney et al. 1999; Pickett et al. 2008; Andersson et al.
2009; Wilson et al. 2010; Malaspina et al. 2013, 2014; Vasko et al. 2015; Mozer
et al. 2016; Hutchinson & Malaspina 2018; Mozer et al. 2018). They give rise to
what used to be called broadband electrostatic noise that occurs widely wherever
unstable parallel electron distributions are present; and they are now interpreted as
mostly ‘electron holes’: a type of nonlinear Bernstein, Greene and Kruskal (BGK)
mode (Bernstein, Greene & Kruskal 1957) in which the potential is self-consistently
maintained by a deficit of electron phase-space density on trapped orbits (Turikov
1984; Schamel 1986; Eliasson & Shukla 2006; Hutchinson 2017). Although electron
holes are routinely produced as the endpoint of Penrose-unstable one-dimensional
Vlasov–Poisson (particle-in-cell or continuum) kinetic simulations (Morse & Nielson
1969; Berk, Nielsen & Roberts 1970; Hutchinson 2017), multi-dimensional simulations
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2 I. H. Hutchinson

observe them to be long lived only when a magnetic field in the trapping direction
suppresses ‘transverse instabilities’ that tend to break up the electron holes (Mottez
et al. 1997; Miyake et al. 1998; Goldman, Oppenheim & Newman 1999; Oppenheim,
Newman & Goldman 1999; Muschietti et al. 2000; Oppenheim et al. 2001; Singh,
Loo & Wells 2001b; Lu et al. 2008). Even with a very strong magnetic field, many
simulations have observed much slower-growing transverse instabilities (Goldman
et al. 1999; Oppenheim et al. 1999; Newman et al. 2001; Oppenheim et al. 2001;
Umeda et al. 2006; Lu et al. 2008; Wu et al. 2010), usually associated with coupled
long-parallel-wavelength potential waves, well outside the hole, that are called ‘streaks’
or ‘whistlers’. These instabilities are important because they may decide the long-term
fate of electron holes in the high-field regime, causing planar holes to break up into
three-dimensional shapes of limited transverse extent.

This paper presents the first satisfactory theoretical analysis of transverse electron
hole instability in the high magnetic field regime. Prior analytical investigations in this
regime have concentrated on coupling to the waves. The pioneering work of Newman
et al. (2001) correctly identified the importance of kink oscillation of the hole
and calculated its real frequency (ω) in a simplified waterbag model, in agreement
with simulation. The external waves are actually magnetized Langmuir oscillations
at the high-frequency end of the whistler branch of the cold plasma dispersion
relation at substantially oblique propagation: ω ' ωpk‖/k; the other, lower frequency,
end of the branch, at near-parallel propagation, is where the ionospheric whistler
phenomena occur. However, Newman et al.’s instability mechanism was taken to be
coupling between the hole and the external waves. And their analysis inappropriately
represented the hole coupling through a single long-wavelength travelling wave
Fourier mode. That is not what is observed in subsequent simulations, and cannot
rightly represent the localized electron hole’s effect on the wave, which gives a local
impulse, a standing wave with a local step in potential and is proportional to the hole’s
acceleration, not just its displacement. Moreover the wave’s effect on the hole is not
just its lowest Fourier mode. Therefore, although their simulations showed instability,
their analysis was based on unjustified coupling assumptions. The other early
published attempt, by Vetoulis & Oppenheim (2001), at an analytic understanding
of the high-field instability correctly identified particle bounce resonance as an
important ingredient, and gave an expression for the resulting electron distribution
function perturbation. However it then took the perturbing potential to be a single
long-wavelength mode, presumably to represent the wave, and discarded the far more
important perturbation arising from the hole position shift. In other words, the particle
kinetics of the hole was taken to be a small perturbation to the wave, even in the
hole vicinity, rather than the wave to be a small perturbation to the hole, which is
more appropriate. Berthomier et al. (2002), motivated by measurements of auroral
phenomena, gave a very helpful review of experiment and theory, and used a different
route to solving the Vlasov–Poisson system but made essentially the same erroneous
assumption that the perturbing potential was purely the wave. The shortcomings of
these competing prior analyses have left the high-field instability mechanism so far
unresolved, even though simulations continue to observe it. The present paper is
aimed at a rigorous treatment to resolve this uncertainty.

It analyses, for an initially planar hole, a perturbation analogous to a kink of a
cylindrical plasma: a uniform shift displacement of the hole in the direction z of
particle trapping with a finite transverse wave vector ky = k, as illustrated in figure 1.
This eigenmode structure is adopted as an ansatz that is well theoretically justified
at low frequency; and has been shown to give accurate values of real and imaginary
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Electron phase-space hole transverse instability at high magnetic field 3

FIGURE 1. Illustration of the shift kink of an electron hole showing phase-space z, vz
contours of constant energy with a specific (trapped particle) iso-energy surface rendered
as a function of transverse position y, in three dimensions.

frequencies for the transverse instability at low and moderate magnetic fields. It
predicts that the low-field instability is purely growing (Hutchinson 2018a,b), that
it is stabilized at a certain (magnetic field) B-threshold (Hutchinson 2018b), and is
replaced by an oscillatory instability which then stabilizes above a second threshold
(Hutchinson 2019), all of which are in good quantitative agreement with particle
in cell (PIC) simulations. Those simulations, however, like earlier ones, sometimes
observe a residual high magnetic field oscillatory kink instability, coupled to external
waves, with a much lower growth rate. It persists to apparently arbitrarily high
magnetic field (and hence cannot be attributable to cyclotron resonances (Jovanović
& Schamel 2002) since its frequency shows no B-field dependence), and is the
motivating observation behind the present extension of the analysis.

Suppression of transverse particle motion by the high magnetic field is a significant
simplification, and allows one to derive the eigenmode equations from elementary
one-dimensional understanding of the Vlasov equation, and to develop purely analytic
approximations for the hole force terms whose balance gives the eigenvalue and
hence the frequency and growth rate. Section 2 explains the derivation and force
balance, and then provides some motivating and explanatory observations of the
important physics, based on numerical orbit integration, which lays the groundwork
for the analytical solution. Section 3 performs the analysis of the three dominant
imaginary contributions to the particle force arising from a hole shift perturbation,
using well-motivated analytic approximations of the anharmonic motion of the trapped
and passing particles. Together these determine (in § 4) a universal dispersion relation
between the real and imaginary parts of the frequency ω and the corresponding
transverse wavenumber k. Section 5 compares the results with some particle in cell
simulations, and makes the case that the instability mechanism analysed is probably
responsible for the hole–wave coupled instability observed in simulations, albeit with
some caveats.

The stability analysis takes no account of any induced waves external to the hole.
It shows that there is essentially always a slow-growing residual transverse instability
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of a slab hole at high magnetic field, regardless of the precise field magnitude, and
regardless of any coupling to external waves. This instability might generate waves
(Singh, Loo & Wells 2001a) and the simulations give evidence that it is influenced
and possibly sometimes suppressed or enhanced by hole–wave coupling, but hole–
wave coupling should probably be regarded as a feature, not an intrinsic causative
mechanism, of the instability.

Ions are taken as a uniform immobile background, only electron dynamics is
included, and the external background distribution of untrapped electrons f0 is taken
to be an unshifted Maxwellian of density n0 and temperature Te. These simplifications
well-represent holes that move much faster than the ion sound speed but slower than
the electron thermal speed. Throughout this paper dimensionless units are used with
length normalized to Debye length λD =

√
ε0Te/n0e2, velocity to electron thermal

speeds vt =
√

Te/me, electric potential to thermal energy Te/e and frequency to
plasma frequency ωp= vt/λD (time normalized to ω−1

p ). In these normalized units the
electron mass (me) is unity and is omitted from the equations but normalized electron
charge is qe=−1, and is retained. The parallel energy W is written 1

2v
2
z + qeφ where

φ is the electric potential.

2. High-B instability
2.1. The Vlasov–Poisson system

A rigorous analysis of the problem of transverse instability at arbitrary magnetic field
strength has been presented in an earlier paper (Hutchinson 2018b) which should be
consulted for general mathematical detail. We proceed more simply here by making
the early approximation of high magnetic field. A linearized analytic treatment of
electrostatic instability of a magnetized electron hole depends on the first-order
perturbation to the distribution function f1 caused by a potential perturbation φ1. It
is found by integrating Vlasov’s equation along the equilibrium (zeroth-order) helical
orbits, which are the equation’s ‘characteristics’. For a collisionless situation f is
constant along orbits.

The integration can be expressed as an expansion in harmonics of the cyclotron
frequency (Ω = eB/me). However, if the magnetic field is strong enough, only the
m = 0 harmonic is important. Physically, this high-field approximation amounts to
accounting only for particles’ motion along the magnetic field, and ignoring cross-
field motion, taking the Larmor radius (and cross-field drifts) to be negligibly small.
Vlasov’s equation is then essentially one-dimensional so we need only consider the
parallel velocity distribution, denoted f (v).

Because the equilibrium is non-uniform in the (trapping) z-direction, uncoupled
Fourier representation of the potential variation is possible only for the transverse
direction (taken as y without loss of generality) orthogonal to z. The z-dependence of
the linearized eigenmode must be expressed in a full-wave manner by writing

φ1(x, t)= φ̂(z) exp i(ky−ωt). (2.1)

One way to derive the solution of Vlasov’s equation intuitively is to recognize
that if a small time-independent potential perturbation is applied, then particles’
(parallel) energy is still conserved as they approach from far past time (and
distance). Consequently the perturbation to the distribution function ( f1) at fixed
velocity arises purely as a result of the perturbation to the potential in the form
f1(z) = qeφ1(z)(∂f0/∂W). This equation expresses the conservation of distribution
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Electron phase-space hole transverse instability at high magnetic field 5

function along constant energy orbits and the fact that the potential perturbation
causes an orbit at fixed velocity to correspond to an energy different (in the distant
past, where the distribution is f0) by qeφ1. This component is commonly referred to
as the ‘adiabatic’ perturbation.

However when the perturbation is time dependent an additional effect of particle
energization occurs. Particles no longer move with constant energy. Instead their
energy has an instantaneous rate of increase equal to qe(∂φ1/∂t), at every position in
the past orbit. The energy change from the distant past can be written
E =

∫ t
−∞

qe(∂/∂t)[φ1(z(τ ), τ )] dτ . The starting f value (still conserved along the
perturbed orbit) thus corresponds to energy smaller by E . Therefore the distribution
perturbation acquires a second ‘non-adiabatic’ component −E(∂f0/∂W) that, for
harmonic time dependence ∝e−iωt, gives a total

f1 = qeφ1(t)
∂f0

∂W
+ qeiωΦei(ky−ωt) ∂f0

∂W
, (2.2)

where

Φ(z, t)≡
∫ t

−∞

φ̂(z(τ ))e−iω(τ−t) dτ , (2.3)

and z(τ )= z(t)+
∫ τ

t vz(t′) dt′ is the position at earlier time τ (see Hutchinson 2018b,
equation (5.6)). For positive imaginary part of ω (ωi > 0) the integral converges. We
denote the second term of (2.2) omitting the dependence ei(ky−ωt), as f̃ ≡ qeiωΦ∂f0/∂W,
which is the ‘non-adiabatic’ distribution perturbation.

The main formal difficulty is to find the shape of the eigenfunction φ̂(z) which
self-consistently satisfies the perturbed Poisson equation: an integro-differential
eigenproblem. For slow time dependence relative to particle transit time, it can
be argued on general grounds that the eigenmode consists of a spatial shift (by
small distance ξ independent of position) of the equilibrium potential profile (φ0(z))
(see Hutchinson 2018b, §3.1) giving

φ̂ =−ξ
∂φ0

∂z
. (2.4)

The frequencies we care about have periods not much longer than the particle transit
time, at least for particles with total energy near zero; so this shift form cannot
be expected to hold exactly. However, we can obtain a good approximation to the
corresponding eigenvalue of our system by expressing it in terms of a ‘Rayleigh
quotient’. This mathematical procedure is equivalent to requiring the conservation
of total z-momentum under the influence of the assumed shift eigenmode. (See
Hutchinson & Zhou (2016), Zhou & Hutchinson (2017) and Hutchinson (2018b) §3).
This amounts to a ‘kinematic’ treatment of the hole as a composite object.

The z-momentum balance can be derived in an elementary way by applying the
zeroth- and first-order Poisson equations d2φ0/dz2

= −ρ0/ε0, and d2φ1/dz2
− k2φ1 =

−ρ1/ε0 (where ρ is the charge density) to the integral expression for the first-order
hole force

∫
ρ0(−dφ1/dz) dz, using judicious integrations by parts as follows:

−

∫
ρ0

dφ1

dz
dz = ε0

∫
d2φ0

dz2

dφ1

dz
dz=−ε0

∫
dφ0

dz
d2φ1

dz2
dz

=

∫
dφ0

dz
(ρ1 − ε0k2φ1) dz. (2.5)
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Now, since ρ0 is a function of φ0, we can also integrate by parts the other way to
find

−

∫
ρ0

dφ1

dz
dz=

∫
dρ0

dφ0

dφ0

dz
φ1 dz. (2.6)

Combining and rearranging these expressions we get

FE ≡−ε0k2
∫

dφ0

dz
φ1dz = −

∫
dφ0

dz

(
ρ1 −

dρ0

dφ0
φ1

)
dz

= −

∫
dφ0

dz

(∫
qe f̃ dvz

)
dz≡ F̃. (2.7)

The force FE consists of transfer by Maxwell stress in the y-direction of z-momentum
(d/dy(EyEx)). It acts in a direction so as to increase the kink amplitude, in a manner
analogous to a compressed spring. The force F̃ is exerted by the equilibrium potential
on the non-adiabatic part of the charge density perturbation which is the jetting. Its
real part is proportional to kink acceleration, and acts like a negative inertia. The
eigenvalue equation (2.7) is that they must balance; we substitute into it the shift-mode
form for φ1, equations (2.4) and (2.1). To lowest order, satisfying the real part of
the force equation, the result is an oscillation at a real frequency whose square is
proportional to the ratio of the negative tension effect and the negative inertia.

Both the real and imaginary parts of the complex momentum balance equation
FE = F̃ must be zero. But FE is real and positive for real k, and in this high-B
approximation k appears only in FE and not in F̃. If we regard k as a free choice,
then provided the sign of Re(F̃) is positive, we can always satisfy Re(F̃−FE)= 0 by
simply choosing the appropriate value for k. Consequently it is only the imaginary part
Im(F̃) (which is independent of k) that determines whether there exists a solution of
the dispersion relation with a frequency ω=ωr + iωi in the upper half-plane (ωi > 0),
implying instability. We denote contributions from trapped (negative energy, W < 0)
and passing (W > 0) particles with subscripts ‘t’ and ‘p’ respectively, and write
F̃ = F̃t + F̃p. At frequencies low compared with the transit time of thermal electrons
across the hole, Re(F̃t) > 0, Re(F̃p) < 0, and |Re(F̃t)|> |Re(F̃p)| so Re(F̃) is indeed
positive.

2.2. Numerical evaluation observations

A numerical implementation of the required integrations to find F̃ has previously been
developed (Hutchinson 2018b) for the specific hole equilibrium

φ0(z)=ψ sech4(z/4), (2.8)

where the constant ψ is the maximum hole potential: the ‘depth’ of the hole. This
code actually performs the integrations for arbitrary magnetic field strength but works
well for the present high-B case, with some modifications, described later, newly
implemented to allow accurate evaluations at ωi→ 0. It shows there to be unstable
solutions at low frequency as illustrated by the contours of F̃ plotted in figure 2.
An unstable mode occurs at the intersection of the zero contours of the real and
imaginary parts of F̃. Notice that the real part of the frequency is small even for
the deep hole ψ = 0.64, but the imaginary part is far smaller ωi . 0.02ψ0.75ωr. The
shape of the contours is approximately similar for different hole depths, when the
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FIGURE 2. Contours of real and imaginary parts of F̃−FE. Instability occurs for different
k at different places along the zero contour Im(F̃ − FE)= 0. For the particular k chosen,
the eigenfrequency is show as a point.

frequencies are scaled to ωr/ψ
0.75, ωi/ψ

1.5 and the wavenumber to k/ψ0.25. The
vertical contours of real part show that there is negligible influence of ωi on Re(F̃)
in this low-frequency region. The plots are for a specific finite field Ω = 10, but are
essentially unchanged for any Ω & 5, indicating that we are well into the high-B,
one-dimensional motion, regime. We wish to derive analytically the shape of these
contours in order to identify the controlling physics of this instability.

We concentrate on the decisive imaginary part of

F̃=−(iω)ξ
∫

qe
dφ0

dz

∫
∂f0

∂W
qe

∫ t

−∞

φ̂(z(τ ))e−iω(τ−t) dτ dv dz. (2.9)

The resulting lowest order in ω contribution to F̃ is proportional to ω2 times a
real quantity (Hutchinson 2018b). It therefore gives rise to an imaginary component
Im(F̃)= 2(ωi/ωr)Re(F̃). The total contribution of this type includes both trapped and
passing terms but the trapped real force is typically about five times larger than the
passing real force, and will be our focus in the analytic approximation. However,
figure 2 shows there are non-zero imaginary components at ωi → 0. We therefore
seek, in addition, the imaginary component of the trapped particle force F̃t of lowest
order in ω that does not depend on ωi. It comes from accounting to higher order for
the variation of the e−iω(τ−t) factor, and is contributed by the resonance between the
eigenfrequency ω and the bounce frequency ωb of some trapped particles. There is
also an important imaginary component of F̃p that does not depend on ωi.

One can exchange the order of integration in (2.9) so as to perform the velocity
integration last. The notation dF̃t/du is used to denote the quantity that when
integrated du over any velocity-dependent variable u gives F̃t. Figure 3 shows an
example of the real and imaginary parts of dF̃t/d(−W)1/2. The area under the curves
gives the total force. The parameter (−W)1/2 runs from zero for the highest energy
(marginally) trapped particles to

√
ψ for the deepest trapped particles. As will be

shown shortly, it is approximately proportional to the bounce frequency, because of

https://doi.org/10.1017/S0022377819000564 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000564


8 I. H. Hutchinson

FIGURE 3. Example of contributions to the trapped particle force from different
particle energies, showing the resonance between bounce frequency and eigenfrequency.
Components: solid line, real; dashed line, imaginary; dotted line, ωr/2ωi × imaginary.

the anharmonic shape of the electron hole potential φ0, which falls exponentially
to zero in the wings. In figure 3 we observe for this low-frequency (ωr = 0.02,
ωi = 2× 10−4) case a resonant response at a low value of (−W)1/2 (weakly trapped
particles) corresponding to ωr ' ωb. It is obvious that in addition to the substantial
real force, arising from the area under the solid curve, there is a smaller imaginary
force that is dominated by the contribution from the resonance. Resonances also
occur at odd harmonics of the fundamental bounce frequency of particles having
lower ωb that are closer to zero energy (the trapped/passing boundary). However their
contribution is much smaller and can be ignored.

The low-level non-resonant imaginary contribution that extends across the entire
(−W)1/2 range in figure 3 arises from the component Im(F̃)= 2(ωi/ωr)Re(F̃) (as is
verified by the dotted line, which equals Re(F̃) far from resonance). It tends to zero
as ωi→ 0, as expected from analysis; but the narrow resonant contribution does not.
Instead it becomes narrower and higher with a convergent total area. This fact poses a
numerical challenge at small ωi for the code that calculates F̃ by discrete integration.
The challenge is overcome by adopting the approach made familiar in plasma physics
in the context of Landau damping: namely displacing the contour of integration in
the ωb↔ v plane so that it remains below the pole at ωb=ω as ωi decreases toward
(or even beyond) zero. Keeping the integration contour sufficiently below the pole
limits the narrowness and height of the resonance, allowing it to be numerically
resolved. We now obtain approximate analytic expressions for the important
contributions to the imaginary force at low frequency.

3. Analytic treatment of the hole momentum
3.1. Bounce orbit integration

First we obtain the relationship between the bounce frequency of trapped particles, ωb,
and (unperturbed) orbit energy W. To approximate analytically for low frequency we
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Electron phase-space hole transverse instability at high magnetic field 9

observe that orbits near the separatrix (W→ 0) have low ωb because they dwell most
of their time near the turning points. The potential and its gradient are small there,
and for the sech4(z/4) hole they can be approximated as −(dφ0/d|z|)'φ0'ψ16e−|z|.
Actually, the mechanism of Debye shielding requires, in the far wing, that φ0 ∝ e−|z|
for any hole shape that does not have infinite gradients of f at the separatrix
(Hutchinson 2017). Therefore the treatment has much wider application than the
specific sech4 hole shape. In the wing (where φ0 ∼ −W) we may thus take
dφ0/φ0 ' −d|z|, and can write the relationship between time t to pass from the
turning point to a smaller |z|, corresponding to a larger φ0, as

t(z)=
∫
−d|z|
|v|
'

1
√

2

∫
dφ0

φ0
√
φ0 +W

=
1
√

2

2
√
−W

tan−1

√
φ0

(−W)
− 1, (3.1)

whose inverse is
φ0

−W
= 1+ tan

(
t
√
−W/2

)
. (3.2)

A quarter period of the orbit has been reached when −φ0/W is large, which occurs
when the value of t

√
−W/2 is 'π/2. Consequently the orbit period is approximately

tb = 2π/(
√
−W/2), and ωb =

√
−W/2.

We shall shortly also need the following average over the orbit, which can be
evaluated for the first quarter period using the relation (3.2), initially neglecting the
distinction between

√
−W/2 and ωb,〈

φ0

−W
cosωbt

〉
'

1
t

∫ t

0
cosωbt′ + sinωbt′ dt′ = [sinωbt− cosωbt+ 1]/ωbt. (3.3)

Taking ωbt=π/2, we get an average equal, by symmetry, to that for a full orbit,〈
φ0 sinωbτ

′
〉
= 〈φ0 cosωbt〉 '

4
π
(−W)'

8
π
ω2

b; (3.4)

(τ ′ is a shifted time, measured from the centre of the orbit: ωbτ
′
=π/2+ωbt).

Although these results are exact as W→ 0, and over-estimate ωb by only a factor
√

2 at the other extreme −W→ ψ , their inaccuracy will turn out to be numerically
significant. It arises because the estimate of tb has neglected the extra time it takes the
orbit to pass from the place where the relationship dφ0/φ0 '−d|z| is broken by the
rounded potential peak, to the exact centre of the hole z= 0. We track the correction
by writing ωb = A

√
−W/2 where A is a correcting factor close to but slightly below

unity. Approximately the same factor applies to the mapping of W to ω2
b in (3.4)

which will be written 〈φ0 sinωbτ
′
〉 ' (8/π)ω2

b/A
2.

3.2. Resonant force
To evaluate the resonant contribution of trapped particles to the force, it is convenient
to integrate (2.3) twice by parts using the fact that φ̂ =−ξ(dφ0/dz)= ξ(dv/dτ)/qe,

qeΦ(t)
ξ
=

∫ t

−∞

dv
dτ

e−iω(τ−t) dτ = v(t)+ iωz(t)+ (iω)2
∫ t

−∞

z(τ )e−iω(τ−t) dτ . (3.5)

This is exact for an exact shift mode. If the eigenmode deviates from a shift mode
(for example by having a shift ξ that is a non-uniform function of |z|) but retains
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the properties of the shift mode in that it is antisymmetric and localized to the hole,
then the treatment remains valid provided we reinterpret in Φ the meaning of v to be∫

qeφ̂ dτ/ξ and z=
∫
v dτ .

The benefit of this re-expression is that, measuring τ from where z = 0, z(τ ) is
an approximate square wave in time on low bounce frequency orbits. Also, when we
integrate the resulting f̃ (dφ0/dz) over the hole extent, to obtain F̃t, the antisymmetry
of (dφ0/dz) annihilates any symmetric part of f̃ and hence of Φ. Therefore the term
v(t) can be dropped. Choose the zero of τ and t to be where v is positive, during
the bounce period chosen to minimize |t|. Then the integral in (3.5) can be separated
into two parts:

∫ t
0 with |t|6 tb/2 plus

∫ 0
−∞

. Only
∫ 0
−∞

contributes to the resonant term.
The other (non-resonant) terms will be dealt with later.

Represent the square wave during the final orbit as z(t) = sign(t)zA. The resonant
part of the integral may then be evaluated as

qeΦR

(iω)2ξ
=

∫ 0

−∞

z(τ )e−iω(τ−t) dτ =
1

1− eiωtb

∫ 0

−tb

z(τ )e−iω(τ−t) dτ

=
zAeiωt

1− eiωtb

1
iω
([e−iωτ

]
0
−tb/2 − [e

−iωτ
]
−tb/2
−tb )

=
zAeiωt

iω
(1− eiωtb/2)2

1− eiωtb
=

zAeiωt

iω
1− eiωtb/2

1+ eiωtb/2

[
=

zAeiωt

ω
tan(ωtb/4)

]
. (3.6)

The denominator 1+ eiωtb/2 becomes zero, giving resonances, when ωtb = 2π` with `
an odd integer. In the vicinity of the `th (odd) resonance

1− eiωtb/2

1+ eiωtb/2
'

2
1− eiπ(ω−`ωb)/ωb

'
−2ωb

iπ(ω− `ωb)
. (3.7)

Thus at resonance

f̃R = qeiωΦR
∂f0

∂W
'−ξ

∂f0

∂W
zAeiωt (iω)22ωb

iπ(ω− `ωb)
, (3.8)

in which t represents the endpoint z(t) (zero when t = 0) of the orbit: the position
where f̃ is being evaluated. Also, in general, for small positive imaginary part ωi, the
integral through (strictly close under) a resonance is∫

+

−

g(ωb)

(`ωb −ωr − iωi)
dωb '

iπ
`

g(ωr/`) (3.9)

for any slowly varying function g.
We now need to get the total non-adiabatic force by integrating −qe(dφ0/dz)f̃R over

the relevant phase space dz dv. Our current interest is the trapped particles, which
occupy a finite area of phase space bounded by the separatrix. The best way to carry
out this area integral is not along fixed values of v or z, but along fixed values of
energy, following the orbits along which particles move as a function of time (denoted
τ ′). It is convenient to represent the orbit energy by the value of the velocity at the
hole centre z= 0 where the potential has its single maximum, ψ , because every orbit
does in fact pass through this position. We write this velocity vψ (taken positive)
so that (the negative quantity) W = qeψ +

1
2v

2
ψ = qeφ(z) + 1

2v(z)
2. Then, since at
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Electron phase-space hole transverse instability at high magnetic field 11

constant energy v dv = vψ dvψ , we have dz dv → v dτ ′ dv = dτ ′vψ dvψ = dτ ′ dW '
−dτ ′4ωb dωb/A2 (using ω2

b = −A2W/2). Incidentally, the numerical integration code
is implemented in the same way, but it uses none of the present approximations.

The resonant force as ωi→ 0 can then be written, using first the parity relations,
and then (3.8), (3.9) and (3.4), as

F̃R = −qe

∫ √
−2qeψ

0

∫ tb/2

−tb/2

dφ0

dz
f̃R(τ

′)dτ ′vψ dvψ

' −qe

∫ √
−2qeψ

0

∫ tb/2

0

dφ0

d|z|
[f̃R(τ

′)− f̃R(−τ
′)] dτ ′vψ dvψ

' −qeξ

∫ 0

√
ψ/2

∂f0

∂W
(iω)2zA2ωb

iπ(ω− `ωb)

∫ tb/2

0
φ02i sin(ωτ ′) dτ ′4ωb dωb/A2

' qeξ

∫ √ψ/2
0

∂f0

∂W
(iω)2zA2ωb

iπ(ω− `ωb)
i
〈
φ0 sin(ωτ ′)

〉
tb4ωb dωb/A2

' qeξ
∂f0

∂W

∣∣∣∣
R

(iωr)
2zA

2ωR

`
i 〈φ0 cos(ωrt)〉 8π/A2

' −iqeξzA
∂f0

∂W

∣∣∣∣
R

128ω5
R/A

4, for `= 1, (3.10)

where ωR=ωr/` is the resonant bounce frequency. This surprisingly simple expression
has not to the author’s knowledge been previously discovered.

It should be remarked that (3.10) has no explicit dependence on the hole depth
ψ . However, the (positive) value of ∂f0/∂W varies generally as ∼ψ−1/2 (Hutchinson,
Haakonsen & Zhou 2015; Hutchinson 2017); more specifically, for a sech4(z/4) hole
it can be shown analytically that

f0 = f0s

[
2
√

π

√
−W +

15
16

√
π

ψ
W + exp(−W)erfc(

√
−W)

]
, (3.11)

∂f0

∂W
= f0s

[
15
16

√
π

ψ
− exp(−W)erfc(

√
−W)

]
, (3.12)

where f0s is the distribution function at the separatrix (W = 0, exp(0)erfc(0)= 1), and
for unit density f0s = 1/

√
2π. We will write this ∂f0/∂W 'D(15/16)/

√
2ψ , where D

is a correction factor approximately equal to 1 − (16/15)
√
ψ/π, somewhat smaller

than unity. For a general (non-shift) antisymmetric potential perturbation φ̂ one should
take ξzA = −

∫ ∫
φ̂(τ ′) dτ ′ dτ , in accordance with the remarks following (3.5). The

fifth power dependence upon ωR is one guarantee that ` = 3 and higher harmonic
resonances can be ignored. So, henceforth we consider only ` = 1. For small
frequencies ωR, the turning point position zA is approximately equal to the half-width
of the hole, and varies only logarithmically at low frequency, because it occurs at
2ω2

R =−W = φ0(z)' 16ψe−|z| in the wings, so for an exact shift mode

zA ' ln
(

16ψ
2ω2

R

)
= ln

(
8ψ−1/2

(ω2
R/ψ

3/2)

)
' ln

(
8ψ−1/2

(0.05)2

)
= 8.− ln(ψ)/2, (3.13)

using the observed numerical scaling ωr/ψ
3/4
∼ 0.05. The value zA= 9 will be used as

a generic estimate. The dominant dependency is F̃R ∝ ξω
5
r/ψ

1/2, and we will ignore
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12 I. H. Hutchinson

the weak dependence on ψ and ωr of zA and of the correction factors D and A, in
estimating the constant of proportionality. For ψ = 0.16, D = 0.76 and A can be as
small as 0.9, in which case D/A4

' 1.15 and the combined correction factors are
moderate giving F̃R ' 1000iξω5

r/
√
ψ .

3.3. Non-resonant force

The non-resonant contribution to (3.5) is the sum of the non-resonant (
∫ t

0 ) integral
plus the term iωz(t). If treated using the square-wave approximation z(t) = sign(t)zA
it is

qeΦNR(t)
iωξ

= z(t)+ (iω)
∫ t

0
z(τ )e−iω(τ−t) dτ = sign(t)zAeiωt, (3.14)

taking into account that the signs of z and t are the same. When multiplied by the
antisymmetric quantity −(iω)2qe(dφ0/dz) and integrated for positive and negative z(t)
and v this gives rise to a force

F̃NR =−(iω)2ξ
∫ √

−2qeψ

0

∂f0

∂W

∫ tb/2

0
zA2 cosωτ ′qe

dφ0

dz
dτ ′vψ dvψ . (3.15)

This expression is manifestly real when ωi = 0, and provides the main contribution
to Re(F̃t). But it also makes an important contribution, first order in ωi, to Im(F̃t):
approximately (2ωi/ωr)F̃NR(ωr).

It is less clear for the non-resonant contribution that the square-wave approximation
to z(t) is accurate, since contributions to this integral also arise from deeply trapped
particles, which have almost sinusoidal bounce motion. Nevertheless, proceeding as
before to replace −qe(dφ0/dz) = (dv/dτ ′), we get −

∫ tb/2
0 cos ωτ ′qe(dφ/dz) dτ ′ =∫ tb/2

0 cos ωτ ′(dv/dτ ′) dτ ′ =−vψ + v(tb/2) cos(ωtb/2) +
∫
ω sin ωτ ′v(τ ′) dτ ′. The final

integral term can be ignored by ω ordering and the second because v(tb/2) = 0
everywhere except on a negligible measure at ωtb/2' nπ; so we can substitute −vψ
for −

∫ tb/2
0 cosωτ ′qe(dφ/dz) dτ ′, giving

F̃NR ' −(iω)2ξ
∫ √

−2qeψ

0

∂f0

∂W
zA2vψvψdvψ

' −(iω)2ξ
〈
∂f0

∂W
2zA

〉
1
3
(2ψ)3/2 =ω2ξwt f0s

√
2π

5
8
ψ, (3.16)

where 〈(∂f0/∂W)2zA〉 denotes an average over energy whose weighting ∝v2
ψ

(emphasizing shallowly trapped orbits) justifies writing it as wtf0s(15/16)
√

π/ψ ,
with wt ∼ 2zA a hole width somewhat greater than unity. (But the zA here is not just
for resonant orbits; it is an average over all trapped particles.) This expression for
unit density is 5

8 wtω
2ξψ = 5ω2ξψ when wt = 8 which is a plausible estimate.

The non-resonant ωi-term involves in addition a small contribution from passing
particles. The total value Re(F̃/ω2) has been evaluated more precisely elsewhere
(Hutchinson & Zhou 2016; Hutchinson 2018b), and for unit density can be
written in terms of the function h(χ) = −(2/

√
π)χ + (2χ 2

− 1)eχ2erfc(χ) + 1 =
χ 2
− 2/
√

π 4
3χ

3
+O(χ 4), where χ 2

= φ0(z), as

F̃NR = ξω
2
∫

h
(√

φ0(z)
)

dz= ξω2ψwi ' ξω
2
∫
φ0(z) dz, (3.17)
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which can be considered to define a width wi '
∫
φ0 dz/ψ . For shallow holes of the

chosen shape, it is wi '
∫

sech4(z/4) dz = 16/3, giving F̃ ' 5.3ξω2ψ , in excellent
agreement with the estimate developed from (3.16), confirming that the passing
particle contribution is relatively unimportant here.

3.4. Passing-particle imaginary force
To obtain the lowest-order imaginary part of the passing-particle force that is
independent of ωi we proceed in a similar manner using two integrations by parts,
except with different constants of integration than (3.5).

qeΦ(t)
ξ
= [v(t)− v∞] + iω[z(t)− z∞(t)] + (iω)2

∫ t

−∞

[z(τ )− z∞(τ )]e−iω(τ−t) dτ . (3.18)

Here v∞ denotes the distant velocity (outside the hole) of the orbit under consideration;
and z∞(t) = v∞t + const. denotes the position as a function of time for motion at
a constant velocity v∞ which extrapolates the distant past orbit ignoring φ(z). Thus
[z(τ ) − z∞(τ )] is zero in the distant past, rises as it passes through the hole and
then remains constant past the hole. As before, it is the final integral term that
gives the imaginary force (real part of Φ). We approximate the integral by treating
[z(τ ) − z∞(τ )] as the unit step function H(τ ) ≡ [1 + sign(τ )]/2 times an amplitude
zp =

∫
∞

−∞
[v(t) − v∞] dt, and note that

∫ t
−∞

H(τ )e−iω(τ−t) dτ = H(t)[1 − eiωt
]/(−iω).

Then, ignoring other terms that are subsequently annihilated by symmetry, we have
for small ωt a term independent of ωi

Re{qeΦ(t)} 'Re{(−iω)ξzp[1− eiωt
]H(t)} ' (iωr)

2ξzptH(t). (3.19)

From the second term of (3.18) we also have a component of qeΦ(t) equal to
iωrzpH(t), which could be pursued, but it contributes imaginary force only ∝ωi and
is subdominant to the similar trapped component, so we do not bother. The required
imaginary contribution to passing force at ωi = 0 is thus

iIm(F̃p) ' −

∫ ∫
qe

dφ0

dz
ξ(iω)3

∂f0

∂W
zpτ
′H(τ ′) dτ ′v∞ dv∞

= −qeξ(iω)3
∫

∂f0

∂W
zp

∫
∞

0
−τ ′

dv
dτ ′

dτ ′v∞ dv∞

= −qeξ(iω)3
∫

∂f0

∂W
zp

∫
∞

0
[v(τ ′)− v∞] dτ ′ v∞ dv∞

= −qeξ(iω)3
∫

∂f0

∂W

z2
p

2
v∞ dv∞. (3.20)

The integral quantity zp(v∞) =
∫
(1 − |v∞/v|) dz is approximately the value of its

integrand at the hole centre times the hole width: zp(v∞) ' (1 − v∞/
√
v2
∞
+ 2ψ)wp.

Its dependence for v2
∞
& ψ is zp ' wpψ/v

2
∞

; so
∫
∞

ψ
z2

p dv2
∞
' w2

pψ , and for small ψ
we can multiply this by the value of df0/dW at small energy. The remainder of the
integral can be approximated as having constant zp ' wp so

∫ ψ
0 z2

p dv2
∞
' w2

pψ , giving∫
∞

0

∂f0

∂W

z2
p

4
dv2
∞
'
∂f0

∂W

∣∣∣∣
v∞=0

w2
p
ψ

2
(3.21)
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14 I. H. Hutchinson

(which can be considered the definition of wp). Thus finally

Im(F̃p)' qeξω
3 ∂f0

∂W

∣∣∣∣
0

w2
p

2
ψ. (3.22)

This is negative because (∂f0/∂W)|0 = −f0s = −1/
√

2π for unit density. Also notice
that despite depending on ∂f0/∂W this is not a resonance effect but is contributed by
all energies from zero to a few times ψ .

4. Solution of the dispersion relation
4.1. Complex frequency

We now have analytic approximations of the three terms that at low frequency
predominate the relation that the total imaginary part of the hole force must vanish,

2
ωi

ωr
Re(F̃)+ Im(F̃t)+ Im(F̃p)= ξ [Ciωiωrψ +Ctψ

−1/2ω5
r +Cpω

3
rψ] = 0. (4.1)

Here the primary ω and ψ dependences have been written explicitly, leaving
coefficients Ci ' 10, Ct ' 1000 and Cp ' −w2

p/2
√

2π ' −7 (for wp = 6, a plausible
value chosen with hindsight) for unit density f0s = 1/

√
2π that are approximately

constant. Writing ω̂r =ωr/ψ
3/4 and ω̂i =ωi/ψ

3/2 the relation becomes

0= Im(F̃)= ξψ13/4ω̂r[Ciω̂i +Ctω̂
4
r +Cpω̂

2
r ], (4.2)

which demonstrates the universality (observed approximately in figure 2) when
expressed in the scaled quantities ω̂r and ω̂i. It also reproduces the quantitative
results of figure 2, and specifically the zero contour of Im(F̃). First however,
figure 4(a) demonstrates the agreement of the analytic formulas for the three
imaginary components of the force with the corresponding parts of the force calculated
by the numerical integration code. All the forces in that plot are normalized in the
form F̂ ≡ F̃/ξψ13/4, in accordance with (4.2), giving an essentially universal plot,
independent of ψ (when small) expressed in terms of ω̂. The agreement of the
analytic curves with the appropriate range of the full numerical integration is very
good, confirming that the dominant terms (of (4.1)) have been correctly identified
and quantitatively estimated.1

Figure 4(b) shows the shape of the force contours for comparison with figure 2.
The agreement is within the level of variation expected. The position of the bottom
right-hand end of the zero contour, at ωi= 0, is decided by setting equal and opposite
the second and third terms, whose solution can be rendered as

ω̂r =
√
−Cp/Ct '

√
7/1000= 0.084. (4.3)

Near the bottom left-hand end we can neglect the trapped term and find

ω̂i ' (−Cp/Ci)ω̂
2
r ' 0.7ω̂2

r . (4.4)

This parabolic ω̂r-dependence appears to be present in figure 2 (although numerical
rounding and other uncertainties make the zero contour shape imprecise) and

1The asymptotic low-frequency logarithmic slope of Im(F̃p) is unity, the same as that of Im(F̃t). It comes
from the z− z∞ term of (3.18) whose coefficient we did not bother to estimate.

https://doi.org/10.1017/S0022377819000564 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000564


Electron phase-space hole transverse instability at high magnetic field 15

(a) (b)

FIGURE 4. (a) Numerical integration (solid lines) agrees asymptotically with the analytic
approximations (dashed lines) of the three terms in the imaginary force. The curve is
universal when expressed in scaled quantities ω̂r, ω̂i and F̂. (b) The contours of force
resulting from the analytic expressions, showing good shape agreement with figure 2.

is obvious in figure 4(b). The top of the contour is determined by maximizing
−Ctω̂

4
r −Cpω̂

2
r which gives

ω̂r =

√
−Cp

2Ct
' 0.06 (4.5)

and then

ω̂i =
1
2

(
−Cp

Ci

)
ω2

r =
1
4

(
−Cp

Ci

)(
−Cp

Ct

)
' 1.2× 10−3. (4.6)

These expressions agree with the corresponding positions on the zero contour in
figure 4(b) (as they must).

It is clear from these observations that the effect of the resonant force is to limit
the maximum ωr at which instability can occur. In other words, it is a stabilizing term
(contradicting Newman et al. (2001), Vetoulis & Oppenheim (2001) and Berthomier
et al. (2002)), which as ωr increases eventually overcomes the others because it varies
as a higher power. If its coefficient Ct were reduced, for example by decreasing the
distribution gradient ∂f0/∂W for shallowly trapped particles, or for a perturbation
whose shift was smaller in the wings of the hole, the effect would be to permit
instability to higher ωr and with higher ωi, following the ω̂i ' 0.35ω̂2

r trajectory
further up. The stabilizing nature of the resonance might appear counter-intuitive
since ∂f0/∂W is positive causing resonant particles to give energy to the eigenmode.
What makes this effect stabilizing, however, is that the eigenmode is a ‘negative
energy’ mode (Lashmore-Davies 2005), reflecting the negative inertia of the hole.
Therefore adding energy to it tends to reduce its amplitude.

4.2. Wavenumber
As explained earlier, the wavenumber must be chosen to satisfy the real part of (2.7)
Re(F̃) = FE. The real frequency ωr gives the predominant real part of F̃ at low
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frequency, namely Re(F̃) = (Ci/2)ξω2
rψ , see (3.17) and (4.1). The Maxwell stress

force can be evaluated in dimensionless units as

FE = ξk2
∫ (

dφ0

dz

)2

dz=
128
315

ξk2ψ2, (4.7)

from which we conclude

k2
=

315
128

Ci

2
ω2

r

ψ
, giving k̂=

k
ψ1/4
=

√
315Ci

256
ω̂r = 3.5ω̂r. (4.8)

At the maximum unstable ωi, ω̂r ' 0.06, we then require k̂ ' 0.2, which is in
reasonable agreement with figure 2. We have recovered the observed scaling of the
universal solution: k= k̂ψ1/4, and approximately the absolute value of k̂ required for
maximum instability growth.

5. Comparison with simulation
The high-B (Ω > 2ωp) instability investigated here was first observed in particle in

cell simulations of initially uniform two-stream electron distributions (Goldman et al.
1999; Oppenheim et al. 1999, 2001), and has been observed in similar simulations
since (Umeda et al. 2006; Lu et al. 2008; Umeda 2008). The electron holes form
from nonlinear Langmuir instability and then usually experience transverse instabilities
coupled to external waves. Umeda et al. (2006) observed that warm beams with
significant velocity spread give shallower holes, and they found no transverse hole
instability for depth ψ . 0.8 at high-B. Such treatments may well be appropriate
for a full scale simulation of events of nature, but for insight into the instability
mechanisms, they suffer from difficulties associated with the highly distorted and
uncertain electron velocity distributions and a high level of fluctuations associated
with different wave phenomena.

Single holes deliberately set up by initial simulation conditions have been studied as
an alternative that provides cleaner insight in the linear instability growth. Oppenheim
et al. (1999) generated slab holes from (effectively) one-dimensional two-stream
simulations, which were then used as initial conditions for a two-dimensional
PIC simulation. It is not clear what the distribution function f0 actually was when
multidimensional dynamics was turned on. Publications observing high-B hole–wave
instability of pre-formed holes of specified distribution seem to be limited to the
continuum Vlasov simulation of deep waterbag holes by Newman et al. (2001) and
the PIC simulations of Wu et al. (2010) (ψ = 0.8, 2). A waterbag distribution, for
which ∂f0/∂W = 0, unfortunately makes the crucial resonant term zero (or, at the
waterbag boundary, infinite). Wu’s potential profiles were Gaussian, corresponding
still to rather pathological electron velocity distributions with infinite gradient at the
separatrix; and mostly the nonlinear phases were documented.

Therefore new simulations have been run to compare with the present theory. They
use the COPTIC particle in cell code (Hutchinson 2011),2 pushing only electrons
(typically ∼1 billion, on 512 processors) on a two-dimensional rectangular periodic
domain with mesh spacing 1 (Debye length) and time step 0.5. They have effectively
infinite magnetization. A hole of specified depth ψ is created at the centre z= 0 by
prescribing the initial particle distribution solved for by the integral equation BGK

2Available from https://github.com/ihutch/COPTIC.
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ψ nz ny Time Mode Amax
2π

ωr

1
ωi

ω̂r ω̂i ω̂i/ω̂
2
r k̂ k̂/ω̂r

1 1024 256 3 200 8† 22 92 522 0.0683 0.0019 0.41 0.20 2.87
1 512 200 2 500 6 25 96 477 0.0654 0.0021 0.49 0.19 2.88
1 512 212 3 000 10† 8 65 391 0.0967 0.0026 0.27 0.30 3.07
1 512 224 2 500 7 25 94 340 0.0668 0.0029 0.66 0.20 2.94
1 512 238 3 000 7 5 94 580 0.0668 0.0017 0.39 0.18 2.76
1 512 256 2 500 8 25 94 375 0.0668 0.0027 0.60 0.20 2.94

0.8 600 200 3 000 6 20 110 440 0.0675 0.0032 0.70 0.20 2.95
0.8 512 200 2 700 1 1
0.8 512 212 2 000 7 4 100 460 0.0743 0.0030 0.55 0.22 2.95
0.8 512 224 3 000 8 6 105 455 0.0707 0.0031 0.61 0.24 3.35
0.8 512 238 2 600 8 19 100 443 0.0743 0.0032 0.57 0.22 3.01
0.8 512 256 3 000 1 1.5
0.6 600 200 3 000 3 1.2
0.6 550 200 3 000 7 9 110 560 0.0838 0.0038 0.55 0.25 2.98
0.6 532 200 2 600 7 12 110 460 0.0838 0.0047 0.67 0.25 2.98
0.6 512 200 3 000 7 8 106 513 0.0869 0.0042 0.55 0.25 2.87
0.6 512 212 3 000 2 1.2
0.6 512 224 3 000 8 6 107 480 0.0861 0.0045 0.60 0.25 2.96
0.6 512 238 3 000 2 0.8
0.6 512 256 3 000 9 10 106 490 0.0869 0.0044 0.58 0.25 2.89
0.4 512 200 5 200 8 9 124 715 0.1007 0.0055 0.54 0.32 3.14
0.4 512 212 3 000 1 0.8
0.4 512 224 4 600 9 9 120 805 0.1041 0.0049 0.45 0.32 3.05
0.4 512 238 3 000 2 0.8
0.4 512 256 5 000 10 1 118 0.1059 0.31 2.92
0.3 512 200 8 000 3 1.2
0.3 512 212 10 000 1 1.2
0.2 512 200 3 000 2 0.5
0.2 512 212 3 000 1 0.7

TABLE 1. Summary of the PIC hole instability simulations. See text for detailed
explanation.

method, and loaded using a quiet-start particle placement. The initial hole has a
modified potential form φ = ψ[1 + exp(1/ψ)]/[1 + exp(1/ψ) cosh4 z/4] which has
a stretched potential top unless ψ is rather small. This modification recognizes that
an exact sech4z/4 hole cannot exist for ψ > 0.75 because it requires a negative
central distribution function f0 < 0 at W = −ψ . The potential modification causes a
modest (typically <30 %) change in ∂f0/∂W, which is smaller than other simulation
differences discussed later. A summary of the cases run is given in table 1.

It is observed (significantly, and in agreement with earlier reports) that the stability
outcome is affected somewhat unpredictably by small changes in the size of the mesh,
nz, ny, which is why multiple domain size cases are run for each hole depth. This
appears to be a physics effect arising from the finite periodic domain. It shows that
the hole ‘knows about’ conditions a long way away, and the dependence on z-extent
implies that coupling to external waves is a significant influence. The two cases where
the unstable mode number is labelled with a dagger observe two periods of the low-
level waves spanning the z-domain, all others have one period.
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FIGURE 5. Colour (shaded) contours over the indicated range of the oscillating mode
( j =)8 amplitude A8(t, z) for case ψ = 0.8, nz = 512, ny = 238, showing its growth and
spatial variation over the central region |z|6 20.

A useful diagnostic of instability is provided by Fourier transforming the potential
in the transverse y-direction and examining the time and (z-)space behaviour of the
lower-order ( j = 0–10) mode amplitudes: Aj(t, z) = Re [(1/ny)

∑ny−1
p=0 φ(p, z, t) exp

(−i2πpj/ny) ], where p is the y-position index. This has much greater sensitivity
than merely inspecting the spatial distribution of potential or density, because it
appropriately averages over the mode structure. It also lends itself to a simple contour
plot display of amplitude on the z–t domain which documents the eigenmode structure
and evolution. Unstable cases observe certain modes growing from noise-level
fluctuations. Sometimes, even early on when mode amplitudes are small, different
modes grow and saturate at a low level or decay away, but for ψ > 0.4, usually
a particular mode eventually begins to dominate and grows exponentially until it
becomes nonlinear. That mode number (the number of wavelengths spanning the
y-domain) is noted in the table. Figure 5 shows an example of an unstable mode’s
time development. In the table the Amax column gives the mode’s maximum amplitude
(times 100 for compactness); and the ‘time’ column refers to the time the growing
mode is largest, which for large amplitudes (&10) is before the end of the actual
run when nonlinear behaviour sets in, but for small or non-growing cases is the run
duration (and Mode and Amax then refer to the largest amplitude during the run).

The growing mode illustrated in figure 5 saturates at time approximately 2600. An
arbitrarily scaled template exactly equal to the shift mode replaces the first 20 time
slots of the contour plot. The shape of the later actual local perturbation is rather
similar to it, but is accompanied by a synchronized wave component consisting of a
low-amplitude potential perturbation almost uniform in space beyond |z| & 10. Prior
to saturation there appears to be approximately a 90◦ phase shift between the wave
and the shift perturbation, but as saturation occurs the wave becomes closer to 180◦
degrees out of phase with the shift.

For shallower holes, ψ < 0.4, no long-term exponentiation was definitively observed,
even in cases run for as long as t= 10 000. The very strong scaling of the hole force
F̃ ∼ ψ13/4 and the lower growth rates means lower ψ cases are more affected by
noise or other simulation inaccuracies. However, the high computational cost of long
duration, low-ψ , simulations discouraged more thorough investigation, and it cannot
definitively be concluded that there is never instability for ψ < 0.4.
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The oscillatory period (2π/ωr) and growth time (1/ωi) of clear instabilities, when
present, are documented in the table. Their uncertainty is conservatively estimated at
±10 % and ±20% respectively. Several of the scaled forms of these parameters are
also given. We observe that ω̂r increases as the hole depth is decreased, to as much
as a factor of 2 above what is predicted by the analysis; and ω̂i to as much as a factor
of 4; although the ratio ω̂i/ω̂

2
r remains constant as predicted. The ratio k̂/ω̂r, which

according to analysis depends only on the real part of the force, varies little, lying
typically only 15 % below the value 3.5 the analysis predicts. Thus, we have good
confirmation of the real part of the force analysis.

The instability occurring at somewhat higher ω than predicted by analysis would be
expected if the resonant stabilizing force is weaker, because the effective ∂f0/∂W|R is
reduced. Sorting particles in the simulation by total energy (W =−φ + v2/2) shows
that the noise level of φ is sufficient to broaden the apparent energy distribution by an
amount of order 0.01 (Te units), presumably flattening the effective f0 near its slope
discontinuity at W = 0. The resonant energy is −W ' 2ω2

r = 2ω̂2
rψ

3/2 which is of
order 0.004 or less. Therefore the φ noise is clearly capable of a strong influence
on the relevant resonant part of the distribution function, and would be expected to
reduce the slope ∂f0/∂W|R. Perhaps it does so by the factor of 4 required to explain
the ωi enhancement, but it does not seem possible to prove this hypothesis definitively.
The resonance physics is clearly very hard to reproduce and document in a simulation
because of the smallness of the resonant energy, and the slope discontinuity at W = 0.
Alternatively the stabilizing force might be weakened by differences of the eigenmode
from the pure shift, for example as a result of the coupled wave component. Detailed
consideration of such effects is beyond the present scope.

6. Summary
Theoretical analysis shows that there is a shift-mode kink instability, having low

real frequency and very low growth rate, of an initially planar electron hole at
high magnetization (Ω & 5ωp in dimensional units). For a hole of potential form
φ = ψ sech4(z/4λD), the predicted values of the fastest growing mode are ωr/ωp '

0.06(eψ/Te)
3/4, ωi/ωp' 0.001(eψ/Te)

3/2 and kλD= 3.5ωr/ωp(eψ/Te)' 0.2(eψ/Te)
1/4.

A simple but accurate new approximation ωb/ωp =
√
−W/2Te for the dependence

of bounce frequency ωb on trapped particle energy W (for small |W|) undergirds
these purely analytic results. Numerical evaluation of the solution of the Vlasov
equation confirms the resulting identification of the three predominant force terms
giving rise to the instability as: (i) the intrinsically imaginary part of the jetting
of passing particles (which is destabilizing), (ii) the imaginary part of the trapped
particle resonant term (which is stabilizing), balanced against (iii) the imaginary part
of the frequency affecting the (otherwise) real total jetting.

Particle in cell simulations show good agreement with the predicted ωr and k, but
faster growth by factors of 2–4. This discrepancy appears explicable by non-ideal
effects in the simulation affecting the trapped distribution function, because the
resonant energy is extremely close to zero. Proximity to the distribution slope
theoretical discontinuity at the separatrix can be expected to substantially reduce
the effective positive slope of the trapped distribution, reducing stabilization. The
observed sensitivity of the simulation results to small changes in domain size suggests
that hole coupling to the observed long-wavelength external waves is significant in
them. However, the instability mechanism analysed does not depend on that coupling.
The interpretation proposed is that the hole–wave coupling is a sub-dominant effect of
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an instability occurring in the hole itself. In that case, the instability can be expected
to occur in space plasmas whose domains do not impose the restrictive boundaries
and resulting resonant parallel wavelengths of simulations.

The strong reduction in growth rate as the hole depth (ψ) is reduced predicts
that shallow holes can be very long lived indeed. Moreover if a hole has transverse
extent Ly insufficient to accommodate the highest unstable wavenumber kmax '

0.3(eψ/Te)
1/4/λD, because kmaxLy < 2π, then presumably it will be fully stable.
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