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Flow-induced periodic snap-through dynamics

Hyeonseong Kim1, Mohsen Lahooti1, Junsoo Kim1 and Daegyoum Kim1,†
1Department of Mechanical Engineering, KAIST, Daejeon 34141, Republic of Korea

(Received 23 May 2020; revised 21 December 2020; accepted 13 January 2021)

The stability and post-critical behaviour of periodic snapping are investigated
experimentally for a buckled elastic sheet with two clamped ends under an external
uniform flow. In addition to experimental investigations, low-order numerical simulations
are conducted with the elastica model for the deformation of the sheet, which is coupled
with the simple quasi-steady fluid force model based on Bollay’s lift theory, in order to
identify the deformed shape of the sheet in an equilibrium state and the critical velocity
where the sheet begins to snap. Continuous exposure to fluid-dynamic loading induces
snap-through oscillations from an initial equilibrium state. While the critical flow velocity
for bifurcation is inversely related to the ratio of the streamwise distance of the sheet to its
length, it is not significantly affected by the mass ratio of the sheet and the surrounding
fluid, leading to divergence instability. In the post-equilibrium state, regular oscillations
with the same dominant modes persist in the sheet for a broad range of the flow velocity.
As the sheet crosses the midline in the snapping process, the bending energy stored in the
sheet is released quickly, and the time for energy release is found to be lower than that
required for energy storage. Because of the initial buckled shape, the minimum bending
energy of the sheet over a cycle remains at least 40 % of its maximum magnitude.

Key words: flow–structure interactions

1. Introduction

The snap-through (snapping) motion, in which a system undergoes a rapid transition from
one equilibrium state to another, has attracted attention because of its novel dynamic
characteristics. In such motion, the energy stored in a structure is suddenly converted to
kinetic energy when the system begins to snap, inducing a rapid movement of the structure
until it reaches the other equilibrium. Several instances of snap-through motion are found
in nature and everyday life, such as the Venus flytrap (Forterre et al. 2005; Poppinga &
Joyeux 2011), hopper poppers (Pandey et al. 2014) and hairpins. The snap-through motion
of elastic materials has also been investigated with medical and engineering applications
in mind, i.e. ventricular assist devices (Gonçalves et al. 2003), actuators such as on/off
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switches (Han, Ko & Korvink 2004), high-speed transport systems for hydrogels (Xia, Lee
& Fang 2010), flow regulators (Arena et al. 2017) and energy harvesters using electrostatic
or piezoelectric transducers (Boisseau et al. 2013; Zhu & Zu 2013).

External energy input can initiate a rapid snapping transition. In previous studies,
snapping was achieved by imposing local mechanical inputs such as a point load or
a moment at a point on a buckled structure (Chen & Hung 2011; Pandey et al. 2014;
Cleary & Su 2015) and a torque that controls the inclination angle of two clamped
edges (Beharic, Lucas & Harnett 2014; Gomez, Moulton & Vella 2017a). Snapping can
also occur through the application of distributed external inputs such as electrostatic
loading (Krylov, Ilic & Lulinsky 2011), photomechanical effects (Shankar et al. 2013) and
thermal effects (Boisseau et al. 2013). Regarding a fluid-induced mechanism, Fargette,
Neukirch & Antkowiak (2014) deposited a single droplet locally on an elastic sheet to
induce snap-through. Snap-through arises when the sheet, which has maintained the
balance among the capillary force of the droplet, the gravitational force of the droplet
and the bending force of the sheet, loses its equilibrium. For example, when the droplet is
deposited on the lower surface of a downward buckled sheet and the volume of the droplet
reaches a critical value, the capillary force overcomes the sum of the gravitational force
and the bending force, and the sheet snaps to an upward buckled state.

In addition to the aforementioned external triggers, a few studies have considered fluid
flow as a mechanism for realizing the snap-through of a buckled sheet. Arena et al.
(2017) suggested the conceptual design of a shape-adaptive air inlet using a buckled
sheet for application to flow regulating systems. By properly adjusting the boundary
conditions, such as angles and the transverse positions of clamped ends, snap-through
and snap-back of a sheet could be controlled to open and close the air inlet. Gomez,
Moulton & Vella (2017b) explored the one-off snap-through of a sheet by fluid-dynamic
loading in a small-scale flow channel with cross-sectional dimensions of the order of
a centimetre at Reynolds number Re = O(10−2). To predict the deformed shape of
the sheet at each equilibrium state for a given fluid flux, they coupled the linearized
Euler–Bernoulli beam equation with the fluid pressure distribution modelled using the
lubrication theory and Poiseuille’s law. Furthermore, Peretz et al. (2020) introduced a
continuous multistable structure with a slender elastic membrane. By imposing arbitrary
time-dependent pressure profiles at an inlet, actuating fluid could induce either snap-up
or snap-down of the membrane and produce various deformation patterns with multiple
transition regions between snap-up and snap-down along the membrane. Kim et al. (2020)
recently proposed a snap-through-based triboelectric energy harvesting system operating
in unbounded flow. A buckled sheet was found to experience periodic snapping oscillations
when it was exposed to an external uniform wind, and electrical energy was extracted from
periodic contact between the snapping sheet and the sidewalls. Although the flow-induced
snap-through mechanism at high Reynolds numbers was explored by Kim et al. (2020),
the fluid-mechanical principles of the transition to periodic oscillation remain unclear.

To understand the interaction of an elastic sheet with unbounded uniform flow, it is
important to establish a proper fluid force model acting on the sheet, which should be
coupled with the governing equation of the sheet. When the Reynolds number of the flow
is sufficiently large, the fluid force by viscous effects is negligible compared with the
normal force due to the pressure difference between the two sides of the sheet. Alben,
Shelley & Zhang (2002) assumed that fluid pressure behind the location on the fibre
where flow separation occurs was equal to a constant wake pressure, which was based
on the free-streamline theory, and determined the pressure jump between the two sides
of the deflected fibre at equilibrium, using the steady Bernoulli equation and setting the
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wake pressure as zero. Regarding problems where a thin structure is at equilibrium or
has a much slower velocity in deformation compared with the flow speed, quasi-steady
flow force models have been applied for the pressure jump across the structure. Examples
of the problems include the reconfiguration of a sheet clamped at a certain angle to the
flow direction (Gosselin, de Langre & Machado-Almeida 2010; Luhar & Nepf 2011), the
dynamics of clapping papers in a book (Buchak, Eloy & Reis 2010) and the stability of an
inverted flag (Sader et al. 2016a; Sader, Huertas-Cerdeira & Gharib 2016b; Tavallaeinejad,
Païdoussis & Legrand 2018). In addition, unsteady fluid force models have been employed,
such as the unsteady Bernoulli equation to predict the critical velocity and post-critical
dynamics for flag flutter (Guo & Païdoussis 2000; Eloy, Souilliez & Schouveiler 2007; Jia
et al. 2007; Eloy et al. 2008; Alben 2009) and the inviscid vortex model to examine the
correlation between the nonlinear dynamics and wake patterns of a flag (Tang & Païdoussis
2007; Alben & Shelley 2008; Michelin, Llewellyn Smith & Glover 2008).

Generally, an elastic sheet parallel to either unbounded or bounded flow undergoes a
transition from a static equilibrium to limit-cycle oscillations, and the critical conditions
for the transition depend on the model configurations. For a flag whose trailing edge is
free to move, a resonant bending instability caused by a non-uniform pressure distribution
is responsible for the transition to fluttering motion (Guo & Païdoussis 2000; Argentina &
Mahadevan 2005; Eloy et al. 2007). For the critical conditions of such flutter instability,
the mass ratio, which represents the relative magnitude of fluid inertia to solid inertia, has
been considered as an important parameter in addition to the dimensionless free-stream
velocity, defined as the ratio of fluid inertial force to bending force, and the aspect ratio,
defined as the ratio of height to length of the sheet. In contrast, for an inverted flag with a
free leading edge and a clamped trailing edge, the effect of the mass ratio on the critical
velocity was found to be negligible, following divergence instability (Kim et al. 2013;
Sader et al. 2016a; Kim & Kim 2019). While periodic wave patterns develop along a
structure and the effects of unsteady fluid forces are of importance in a transition by
the flutter instability, the divergence instability is a static rather than a dynamic form
of instability, and it can be determined by neglecting the inertial effects of the structure
(Païdoussis, Price & de Langre 2010). In the divergence instability, the structure begins
to deform monotonically on one side from its static equilibrium shape at the critical
condition.

On the other hand, for an extensible flat membrane embedded in a channel, the effects of
the Reynolds number and tension applied to the membrane on the membrane deformation
have been investigated (Jensen & Heil 2003; Inamdar, Wang & Christov 2020). Jensen
& Heil (2003) theoretically obtained the critical condition for the onset of self-excited
oscillations in terms of the Reynolds number and reported that the critical Reynolds
number strongly depended on the tension on the membrane and the length of the rigid parts
located at the front and back of the membrane. For an inextensible post-buckled sheet in a
channel flow at a much lower Reynolds number than the aforementioned studies, Gomez
et al. (2017b) found that the critical fluid flux through the channel to initiate snap-through
depended on a channel-blocking parameter, which is determined by the compression ratio
of the sheet.

Motivated by potential fluid energy harvesting applications using piezoelectric and
triboelectric materials, this study investigates the stability and nonlinear snap-through
dynamics of an initially buckled elastic sheet under an unbounded external flow with
Re = O(104–105). The deformed shapes in the equilibrium states and the critical velocity
for the onset of snapping are obtained experimentally by changing certain geometric
and dynamic parameters, such as the initial buckled shape, free-stream velocity and
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Figure 1. Schematic diagram of the snap-through model. Inset: definition of coordinates.

fluid density. Experimental measurements are then compared with the predictions given
by low-order numerical simulations, which employ the elastica model for the sheet
deformation and the quasi-steady fluid force model based on Bollay’s lift theory. Our
experimental set-up is described in § 2. The theoretical approach and numerical method
for an equilibrium state are presented in §§ 3.1 and 3.2, respectively. The behaviour of the
sheet at the equilibrium state is analysed using the results of experimental measurements
and numerical simulations in § 3.3, which is followed by discussion on the critical
condition of the sheet in § 4. We also examine the nonlinear responses of periodic
oscillations in a post-equilibrium state in terms of the oscillation frequency (§ 5.1), modal
shape (§ 5.2) and elastic bending energy (§ 5.3). Finally, the key findings of this study are
summarized in § 6.

2. Experimental set-up

An open-loop wind tunnel with a cross-section of height 60 cm and width 60 cm generates
a free stream with spatial uniformity of within 2 %. The free-stream velocity ranges from
0.1 to 13.0 m s−1. Both ends of a polycarbonate sheet (density ρs = 1200 kg m−3 and
elastic modulus E = 2.38 × 109 N m−2) of length L = 32.5–60.0 cm, height H = 5.0–7.5
cm and thickness h = 0.20–0.38 mm are clamped parallel to the free stream by vertical
aluminium poles; the distance between the poles is L0 = 30–40 cm (figure 1), and both
poles are on the y = 0 line, with no transverse deviation between them (see inset of
figure 1). For the initial buckling, L0 is adjusted to be less than L.

Three dimensionless parameters that are of interest in characterizing the snap-through
motion are the length ratio L∗, aspect ratio H∗ and mass ratio m∗:

L∗ = L0/L, H∗ = H/L, m∗ = ρsh/ρf L, (2.1a–c)

where ρf is the fluid density. A sheet with a small length ratio exhibits large deflection,
and a length ratio equal to unity represents a straight sheet. The sheet used in this study
satisfies h � H � L so that the sheet behaves as a thin strip in terms of its elasticity
and has a high rigidity to out-of-plane deformation. Under this condition, B = Eh3/12,
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which omits the Poisson ratio, can be used as the bending stiffness of the sheet per unit
height (Audoly & Pomeau 2010). In addition to h � L, the dimensionless end-shortening
1 − L∗ (= (L − L0)/L) is much greater than the stretchability S (= h2/(12L2)) in our
model: (1 − L∗)/S > 106. Thus, the extensibility of the sheet is negligible (Pandey et al.
2014). An appropriate choice of the bending stiffness B and sheet geometry enables us
to achieve two-dimensional horizontal motion while avoiding three-dimensional motion
along the vertical direction and sagging due to gravity. Because the motion is restricted
to two dimensions, filming the bottom edge of the sheet using a high-speed camera
(FASTCAM MINI UX50, Photron Inc.) is sufficient for measuring the sheet deformation.
Images of the sheets were captured at 125 frames per second with a shutter speed of 1/2000
s and processed with MATLAB (Mathworks Inc.) to track the positions of the sheets.

Additional experimental measurements were conducted in a water tunnel of width 0.5
m, length 1.2 m and free-surface height 0.4 m in order to investigate the effect of the mass
ratio on the critical velocity. The free-stream velocity ranges from 0.1 to 0.5 m s−1, and
the overall experimental set-up is similar to that used in the wind tunnel experiments. A
polycarbonate sheet of length L = 35.0–60.0 cm, height H = 5 cm and thickness h = 0.38
mm was used; L0 = 30.0–40.0 cm.

For particle image velocimetry in the water tunnel, we reduced both L and L0 to map
a sufficient fluid domain around the sheet: L = 26.7 cm and L0 = 20.0 cm (L∗ = 0.75).
Seeding particles with a mean diameter of 50 μm were illuminated by a pulsed Nd:YAG
laser sheet (Evergreen200, Quantel Inc.) on the mid-height of the sheet. Two identical
cameras (GEV-B1620M, Im-perx Inc.) were mounted below the bottom section of the
water tunnel. The two images captured simultaneously by the two cameras were merged
into one image using MATLAB. Image pairs were captured every 0.033 s, and the time
delay between a pair of images was 0.006 s. PIVview2C (version 3.6.0, PIVTEC GmbH)
was used to cross-correlate the image pairs. For the multi-grid interrogation method, the
initial sample window was 96 pixels × 96 pixels and the final window size was 24 pixels
× 24 pixels, producing 94 × 65 nodes in a single velocity field.

3. Equilibrium state prior to snap-through

A buckled sheet with no fluid flow initially exhibits fore–aft symmetry and becomes
deformed along the flow direction with increasing free-stream velocity. The deformed
sheet maintains an equilibrium state at each free-stream velocity. When the velocity
reaches a critical value, the sheet begins to snap quickly to the opposite side. In this
section, the deformed shape of the buckled sheet is examined in the equilibrium state
prior to snap-through. Although some minor fluctuations are observed in the deformed
sheet exposed to fluid loading, its magnitude is sufficiently small that the equilibrium state
is assumed before the bifurcation occurs.

3.1. Problem description

3.1.1. Initial equilibrium state without flow
In the absence of fluid flow, a differential equation describing the buckled sheet can be
written in terms of the local balance of moments:

B
d2θ(s)

ds2 + P0 sin θ(s) = 0, (3.1)
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where s is the curvilinear coordinate, θ is the angle between the sheet and the x-axis (inset
of figure 1) and P0 is the compressive reaction force per unit height applied at the front
end (s = 0) of the sheet in the positive x-direction. Note that P0 is also applied at the rear
end (s = L) of the sheet in the negative x-direction.

Because the sheet is clamped at both edges, Dirichlet boundary conditions are applied
at both edges: θ(s = 0) = θ(s = L) = 0. Moreover, for the fundamental buckling mode
with the fore–aft symmetric shape and the two clamped ends on the same y = 0 line, the
y-directional reaction force Fy at both ends is zero. If a deviation in the y-direction exists
between the positions of the two clamped ends or an asymmetric buckling mode of a
higher order is considered as an initial shape, an additional term with a non-zero Fy at the
front end should be involved in (3.1). Because a length ratio in the range L∗ = 0.5–0.9 can
cause large deflection, the nonlinear equation from the elastica theory is adopted instead
of the linear equation (Timoshenko & Gere 2009). For a flapping flag model in which one
edge is free to move, the relative importance of compressive force (tensile force) depends
on the model conditions and flow regime (Shelley, Vandenberghe & Zhang 2005), and
the compressive force is generally neglected. However, for the buckled sheet model, the
compressive force should be balanced by the bending force, even in the absence of fluid
flow, to achieve the post-buckling configuration imposed by end-shortening (L0 < L).

The buckled sheet without fluid flow is in four-fold symmetry, provided that both
ends are on the same y-coordinate. The total shape of the sheet is composed of four
identical pieces, and the total shape can be constructed by rotating and reflecting the pieces
(Timoshenko & Gere 2009; Wagner & Vella 2013). Thus, we consider only a quarter of
the sheet from s = 0 to s = L/4 to solve (3.1). To obtain the shape of the sheet piece, the
compressive force P0 at s = 0 and the angle at the inflection point, s = L/4, with zero
curvature value (dθ/ds = 0) are first calculated for given L and L0 (and thus L∗), using
elliptical integrals in (3.2a,b) (Timoshenko & Gere 2009):

1
4

L0 = 2
(

EI
P0

)1/2

E
[

sin
θ0

2

]
− 1

4
L and

1
4

L = 4
(

EI
P0

)1/2

K
[

sin
θ0

2

]
, (3.2a,b)

where K[ ] and E[ ] are the complete elliptical integrals of the first and second kinds,
respectively. The shape of the sheet piece is then obtained numerically by solving (3.1)
with the P0 value and boundary conditions, dθ/ds = 0 and θ = θ0 at the inflection point
(s = L/4). Additionally, for given L and L0, the maximum transverse displacement w0 of
the total sheet, which appears at s = L/2, can be calculated from

1
2

w0 = 2
(

EI
P0

)1/2

sin
θ0

2
. (3.3)

The deformed shapes with no fluid flow, which are predicted by the nonlinear equation
(3.1) and the linear Euler–Bernoulli equation, are compared in appendix A.

3.1.2. Equilibrium state with flow
On the other hand, with fluid flow, the fluid force Ff normal to the surface of the sheet
is exerted on the buckled sheet as a distributed load, and the reaction force Fy in the
y-direction is additionally imposed at the front end (s = 0) of the sheet (figure 2a); Fy
is zero without the fluid force. The fluid force on the sheet with a finite aspect ratio can
be modelled with the combination of resistive force and reactive force (Lighthill 1960;
Buchak et al. 2010; Michelin & Doaré 2013; Tavallaeinejad et al. 2018). The resistive
force is expressed as the normal force experienced by a flat plate under fluid flow, and
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Figure 2. (a) Schematic diagram of the forces imposed on the sheet from the front end (s = 0) to a given
coordinate s. (b,c) Illustration of streamlines around the sheet for (b) a large length ratio (L∗ = 0.75) and (c) a
small length ratio (L∗ = 0.50).

the reactive force is caused by an acceleration of the fluid flow that follows the shape of
the sheet. Because the deformed sheet maintains an equilibrium state at each free-stream
velocity before the sheet begins to snap at a critical velocity, the quasi-steady fluid force
is assumed. Moreover, for a slender sheet at the equilibrium state, the magnitude of the
reactive force, which scales with the square of sheet height, is much smaller than that of
the resistive force, which scales with the sheet height. In this study, we use slender sheets
with small aspect ratios in H∗ = [0.07–0.18] and thus consider only the resistive fluid force
for simplicity. To establish an equilibrium equation in terms of moment balance at a given
coordinate s, we first divide the quasi-steady resistive fluid force Ff into two components,
Ff ,x and Ff ,y. Then, the fluid force components per infinitesimal segment ds and per unit
height are modelled as

dFf ,x = 1
2ρf U2CD(s) ds and dFf ,y = 1

2ρf U2CL(s) ds. (3.4a,b)

For the quasi-steady fluid force model, Bollay (1939) presented the normal force
coefficient of a rectangular wing with a small aspect ratio, which was established by
a nonlinear wing theory. Because the normal force coefficient in Bollay (1939) did not
have an explicit form, Polhamus (1966) proposed the explicit form of the normal force
acting on an inclined rigid plate with an angle of attack of θ , using leading-edge suction
analogy. The normal coefficient CN , drag coefficient CD (= CN sin θ ) and lift coefficient
CL (= CN cos θ ) are expressed as follows:

CN(θ) = Kp sin θ cos θ + Kv sin2 θ, (3.5a)

CD(θ) = Kp sin2 θ cos θ + Kv sin3 θ, (3.5b)

CL(θ) = Kp sin θ cos2 θ + Kv sin2 θ cos θ, (3.5c)
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where Kp and Kv in (3.5) are associated with potential lift and vortex lift, respectively,
and they are functions of the aspect ratio H∗ of the sheet only. Tavallaeinejad et al. (2018)
obtained fitting curves for Kp and Kv in a wide range of H∗ based on the results of Bollay
(1939). In the present study, the fitting curves presented in Tavallaeinejad et al. (2018)
are used to extract Kp and Kv values for a given H∗. The viscous shear stress exerted on
the sheet roughly scales as μU/δ, where μ is the dynamic viscosity of the fluid and δ

is the representative boundary layer thickness. As the Reynolds number Re (= UL/ν) is
O(104–105) in this study, the boundary layer is laminar, and accordingly δ ∼ Re−1/2L. The
relative magnitude of the tangential force per unit area (viscous shear stress), μU/δ, over
the normal resistive force per unit area, 1

2ρf U2CN , scales as Re−1/2/CN . Because Re =
O(104–105) and CN = O(100), the force induced by the viscous stress can be neglected.

Using Ff ,x, Ff ,y and the internal reaction forces (P and Fy), the local balance of moments
per unit length at s is formulated as

B
d2θ(s)

ds2 +
[

P + 1
2
ρf U2

∫ s

0
CD(θ(l)) dl

]
sin θ(s)

−
[

Fy − 1
2
ρf U2

∫ s

0
CL(θ(l)) dl

]
cos θ(s) = 0. (3.6)

Note that Ff ,y is positive along the negative y-direction (figure 2a). By combining the two
integrals in (3.6), one obtains

B
d2θ(s)

ds2 + P sin θ(s) − Fy cos θ(s) + 1
2
ρf U2

∫ s

0
CN(θ(l)) cos(θ(l) − θ(s)) dl = 0.

(3.7)

The left-hand side of (3.7) indicates the local balance of moments, which is caused by
the bending shear force, internal forces and normal component of fluid force. For the
prediction of the stability boundary where the transition appears, the inertial force term
of the sheet can be omitted from the equation; this approach will be justified in § 4, where
the effect of the mass ratio on the transition is discussed.

Equation (3.7) is only applicable for 0 ≤ s < s|y=ymax , because the free stream does not
directly impose any force on the sheet for s ≥ s|y=ymax ; s|y=ymax is the apex of the sheet (the
point of maximum transverse displacement). As for the outer (positive y) side of the sheet,
if the flow separation occurs at the apex of the sheet, the pressure on the outer side behind
the apex can be roughly approximated to be constant because of the formation of the wake
(figure 2b,c) (Alben et al. 2002). For the sheet with a small aspect ratio H∗ = [0.07–0.18]
considered in our study, the free stream is entrained into the area below the buckled sheet,
and the entrained flow can exert a loading on the rear part of the sheet.

The pressure difference between the two surfaces of the rear part depends on the L∗
value, which determines the volume of space below the buckled part. For L∗ close to
unity (small initial deflection), because of a small change in the direction for the entrained
flow (figure 2b), the entrained flow can exert a great loading on the rear part of the sheet.
The pressure difference between the two surfaces of the rear part is not negligible, and
thus it should be considered to precisely predict the deformed shape. However, instead
of the complicated modelling of the pressure difference for L∗ close to unity, we roughly
assume that the effect of pressure difference in the rear part is relatively small and no net
fluid-dynamic loading is applied on the rear part because the pressure difference in the
front part is more critical to determine the overall shape of the sheet. In § 3.3, we will
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report that, despite this rough assumption, numerical simulation results for the deformed
shape are in good agreement with experimental results for L∗ close to unity. On the other
hand, for a small L∗ with large initial deflection, the entrained flow inside the buckled
part veers greatly, as shown in figure 2(c), forming a circulating region, which eventually
results in negligible pressure difference between the two surfaces on the rear part.

In summary, for all L∗ addressed in this study, we assume that no net fluid-dynamic
loading is applied on the rear part, and the following two equations, (3.8a) and (3.8b),
are used to predict the equilibrium shape of the sheet at each free-stream velocity before
bifurcation and to find the critical velocity:

B
d2θ(s)

ds2 + P sin θ(s) − Fy cos θ(s)

+ 1
2
ρf U2

∫ s

0
CN(θ(l)) cos(θ(l) − θ(s)) dl = 0, s < s|y=ymax, (3.8a)

B
d2θ(s)

ds2 + P sin θ(s) − Fy cos θ(s)

+ 1
2
ρf U2

∫ symax

0
CN(θ(l)) cos(θ(l) − θ(s)) dl = 0, s ≥ s|y=ymax . (3.8b)

The governing equations differ between the regions before and after the apex.

3.2. Numerical method
To solve nonlinear equations (3.8a) and (3.8b), numerical simulations are required. The
solution of (3.1) corresponding to U = 0 is used as an initial guess for the given model.
For the finite-difference method, the sheet is discretized into segments of constant length
Δs = L/N, where N is the number of grids (N = 61). The discretized forms of (3.8a) and
(3.8b) at each grid point i are

B
θi+1 − 2θi + θi−1

(Δs)2 +
[

P + 1
2
ρf U2

∫ si

0
CD(θ(l)) dl

]
sin θi

−
[

Fy − 1
2
ρf U2

∫ si

0
CL(θ(l)) dl

]
cos θi = 0, i = 1, . . . , m, (3.9a)

B
θi+1 − 2θi + θi−1

(Δs)2 +
[

P + 1
2
ρf U2

∫ sm

0
CD(θ(l)) dl

]
sin θi

−
[

Fy − 1
2
ρf U2

∫ sm

0
CL(θ(l)) dl

]
cos θi = 0, i = m + 1, . . . , N − 1, (3.9b)

where θi = θ(iΔs), d2θ/ds2 is discretized using the standard second-order difference
method and m is the grid point immediately before s|y=ymax . The integrals in (3.9a) and
(3.9b) are evaluated with the extended trapezoidal rule. Starting from the initial solution
for U = 0, the solution at each U is obtained with intervals of ΔU varying from 0.50 at
low U to 0.05 near U = Uc. The θ values of the previous step are used to compute CD and
CL in the current step, and s|y=ymax from the previous step is used to determine which of
(3.9a) and (3.9b) is used for each grid point. Because the sheet is clamped at both edges,
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boundary conditions are applied as

θfront(i=1) = θrear(i=N) = 0. (3.10)

Equations (3.9a) and (3.9b) with (3.10) form a system of nonlinear equations that can
be solved using Newton’s method at each U. The P and Fy values are adjusted by the
shooting method until the solution satisfies the following boundary conditions at the
rear end: x(L) = L0 and y(L) = 0. Iteration ceases when the total error at the rear end
is ε = (ε2

x + ε2
y )1/2 ≤ L × 10−4, where εx = |xN − L0| and εy = |yN − 0|. According to

our numerical simulation, when U reaches a certain velocity, there exists no solution that
satisfies the error criterion at the rear end, which means that the equilibrium state is no
longer possible. That velocity is defined as the critical flow velocity, beyond which an
inertial effect of the sheet should be considered. The critical flow velocity and transition to
limit-cycle oscillation are discussed in § 4. We also conducted two separate convergence
tests with a smaller ΔU and a larger N. For L∗ = 0.50 and 0.86, the differences in the
shape deformation at each U and the critical velocity were found to be negligible between
the original result and the new result using the smaller ΔU varying from 0.10 at low U
to 0.025 near U = Uc. Furthermore, the difference in the equilibrium shapes at each U
between the two cases using 61 and 201 grid points was negligible. For example, near
U = Uc, the maximum difference in the y-coordinate between the two cases, (Δy)max/L0,
was just 0.003 at L∗ = 0.50.

3.3. Shape of a sheet at equilibrium
For an equilibrium shape at each free-stream velocity and length ratio before bifurcation,
the numerical solution of (3.9) and (3.10) is in excellent agreement with the experimental
result, despite the simple modelling of the fluid force (figure 3a). Depending on the length
ratio L∗, the sheets show different trends in deformation. For a large L∗ close to unity
(smaller deflection), the apex of the sheet is mainly displaced in the streamwise direction
as U increases, and the transverse location of the apex remains similar (figure 3ai), which
leads to an enhanced curvature at the rear part of the sheet. Until the free-stream velocity
reaches the critical velocity, the streamwise shift of the apex is primarily observed, and the
sheet does not cross the midline (straight line between the two clamped ends).

For a small L∗, the front part of the sheet undergoes significant streamwise movement
as well as transverse movement as U increases, and the front part can cross the midline
when U is close to the critical velocity (figure 3aii,aiii). For a smaller L∗, the buckled
sheet continues to deform along the flow direction on one side (figure 3aiv). In this
case, as the flow velocity increases, the part near the apex of the sheet bends backwards.
Subsequently, two points of the sheet can contact each other to form a teardrop shape, and
the snap-through does not appear, even for a higher U. This state cannot be obtained by the
numerical simulations; in figure 3(aiv), the red dotted line corresponding to the numerical
simulation is not provided for the most deformed shape.

The deformation of our snap-through model can be compared with that of another
snap-through model under fluid flow studied by Gomez et al. (2017b). The deformations
of both models are similar in that, for a smaller L∗, the displacement of the sheet becomes
more notable with increasing flow velocity. However, the detailed deformed configurations
vary slightly because a different type of fluid flow and different range of the length ratio
were used in Gomez et al. (2017b). The range of the length ratio in Gomez et al. (2017b)
is much closer to unity (L∗ > 0.96) than that of our model, and thus, for each point on
the sheet, the transverse displacement is dominant over the streamwise displacement.
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Figure 3. (a) Superimposed equilibrium shapes of the buckled sheet for several free-stream velocities
before bifurcation: [L∗, H∗, m∗] = [0.86, 0.14, 1.09] (i); [0.75, 0.13, 0.95] (ii); [0.60, 0.10, 0.76] (iii); and
[0.43, 0.07, 0.54] (iv). The black solid lines are obtained by our experimental measurements, and the red dotted
lines are from our numerical simulations. (b,c) The y-coordinate (y/w0) of the sheet at x = L0/2 versus U∗ from
(b) the numerical simulations and (c) the experimental measurements: H∗ = [0.08–0.14]. In panels (b) and (c),
the colour of the dot denotes the magnitude of L∗ (= 0.50–0.86) as in the colour bar: the same colour for a
given L∗. Each dot represents the case of a specific U∗ increasing from U∗ = 0.

Because the model of Gomez et al. (2017b) is confined in a narrow flow channel with
strong blockage effect at Re = O(10−2), hydrodynamic pressure on the buckled sheet
decreases monotonically along the streamwise direction, indicating that a large fluid
loading is imposed on the front part of the sheet. Accordingly, the front part of the sheet
can cross the midline even for L∗ > 0.96; see supplementary figure 3 in Gomez et al.
(2017b). On the other hand, because the initial deflection of our model is greater than that
of Gomez et al. (2017b), both streamwise and transverse displacements are important in
our model, in particular for a small L∗ (figure 3a). Moreover, for our model in unbounded
flow, the fluid force (3.4a,b) is affected solely by the deflection angle θ at each point on the
sheet, in contrast to the model confined in a narrow channel. For L∗ close to unity, because
of a small deflection angle, the fluid force imposed on the front part of the sheet along the
transverse direction is small, and the sheet does not cross the midline before snap-through
instability occurs.

To quantitatively investigate the deformation of a sheet at the equilibrium state, we
introduce a dimensionless free-stream velocity U∗ suitable for the snap-through model
and use it instead of U hereafter. The fluid inertial force exerted on the sheet per
unit height scales simply as Ff ∼ ρf U2w0, where w0 indicates the maximum transverse
displacement of the sheet in the absence of fluid flow: the frontal area of the sheet at U = 0
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(figure 1). The bending force per unit height scales as Fb ∼ B/L2. Then, the dimensionless
free-stream velocity, which represents the ratio of the fluid inertial force to the bending
force, is defined as U∗ = U(ρf w0L2/B)1/2. As the definition of U∗ in this study includes
w0, it differs from the form generally used for flapping flag models, U∗ = U(ρf L3/B)1/2

(e.g. Connell & Yue 2007; Alben & Shelley 2008; Kim et al. 2013; Kim & Kim 2019). For
the flag models, the sheet length L is the only length parameter to represent the geometrical
feature of its two-dimensional profile. In contrast to the flag models, two length parameters,
L and w0, are required together to represent the configuration of the buckled sheet. Thus,
for the snap-through model, U(ρf w0L2/B)1/2 is a more appropriate dimensionless velocity
parameter to indicate the relative magnitude of the fluid inertial force and the bending
force.

The deformation of the buckled sheet can be characterized by the transverse
displacement y/w0 of the sheet at x = L0/2. The transverse displacements acquired from
numerical simulations are plotted as a function of the dimensionless free-stream velocity
U∗ in figure 3(b). The y/w0 values tend to collapse onto a single curve, regardless of the L∗
values considered in this study. While the variation in y/w0 is minor in the low-U∗ regime,
y/w0 drops sharply in the high-U∗ regime. However, for a small L∗, the deformation of the
sheet becomes more significant near the critical velocity, and accordingly the yx=L0/2/w0
values of the sheet near the critical velocity tend to deviate from the collapsed curve
(rightmost dots in figure 3b). Experimental results for yx=L0/2/w0 also show a similar
trend to the results of the numerical simulations despite some deviations (figure 3c).

Generally, snap-through instability follows a saddle-node bifurcation where the stable
equilibrium and unstable equilibrium are closer with increasing bifurcation parameter
such as flow rate or inclined angle at the clamped ends, and the two equilibrium states
encounter each other at a critical value in a vertical fold (Gomez et al. 2017a,b). The
snap-through instability of our model using U∗ as a bifurcation parameter seems to
follow the saddle-node bifurcation, as can be inferred from figure 3(b,c). However, in
figure 3(b,c), the yx=L0/2/w0 values of all cases do not end at exactly vertical fold
points. Even from our numerical simulation using a smaller step size of U to examine
the convergence of the results, the branches did not become more vertical at the
critical velocity. The sheet could snap prematurely due to the presence of disturbance
by the experimental set-up, and thus the vertical fold points may not be distinct, in
contrast to the ideal saddle-node bifurcation diagram. In addition, our model may not
exhibit a clear vertical fold due to the large deflection and streamwise shift of the
sheet. More detailed theoretical examination on the bifurcation remains as a future
study.

Moreover, the magnitudes of the two internal forces at the front end, the streamwise
compressive force P and the transverse supporting force Fy depicted in figure 2(a), are
strongly affected by the free-stream velocity U∗ (and consequently by the change in the
deformed shape) for each L∗. Notably, P and Fy exhibit opposite trends in terms of U∗
(figure 4a,b). In figure 4(a,b), P and Fy are normalized by the compressive force P0 in the
absence of fluid flow; P/P0 = 1 at U∗ = 0 for all cases of L∗. See appendix A for a detailed
explanation of P0. Without fluid flow, the compressive force at the front end of the sheet is
positive, which means that it acts along the positive x-axis to maintain the bucked shape.
As U∗ increases, the compressive force tends to decrease to maintain the force balance
with the external fluid force acting along the positive x-axis (figure 4a). In particular, for
L∗ = 0.50 and 0.55, P/P0 becomes negative for large values of U∗. This indicates that, for
a sheet with large initial deflection at high U∗, the fluid-dynamic loading distributed on
the sheet along the streamwise direction is so large that the reaction force on the front end
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Figure 4. (a) Dimensionless streamwise compressive force P/P0 and (b) transverse supporting force Fy/P0
at the front end of the sheet for L∗ = 0.50–0.86. The colour of the dot denotes the magnitude of L∗, as in
the colour bar: the same colour for a given L∗. Each dot represents the case of a specific U∗ increasing from
U∗ = 0. The data in the two panels are from the numerical simulations with aspect ratio H∗ = [0.08–0.14]. (c)
Comparison of sheet deformations with increasing U∗ near U∗

c between (i) L∗ = 0.86 and (ii) L∗ = 0.50.

of the sheet should be negative for force balance; i.e. a tension force along the negative
x-axis should be applied at the clamped end to maintain the given L∗.

Unlike P/P0, the supporting force Fy/P0 tends to increase monotonically with U∗,
although its slope varies with L∗ (figure 4b). Notably, the sheet with a small L∗ exhibits
a sudden jump of Fy near the critical velocity, which is attributed to the change in a
deformation trend. As U∗ increases, the sheet with a large L∗ (L∗ = 0.86 in figure 4c)
gradually deforms without any sudden change in the deformation trend even near
the critical velocity. However, for a small L∗ (L∗ = 0.50 in figure 4c), the transverse
displacement becomes dominant with increasing free-stream velocity, and the front part
of the sheet crosses the midline (y = 0 line) after a certain free-stream velocity even in the
equilibrium state. This notable transverse displacement of the sheet at a high free-stream
velocity close to the critical velocity leads to the sudden jump of Fy/P0 in figure 4(b).

4. Transition state

When the free-stream velocity reaches a critical value, the sheet begins to snap
quickly to the opposite side, which is followed by periodic snap-through oscillations.
During a half-cycle of the oscillation, two successive processes are observed: snapping
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Figure 5. (a) Superimposed sequential images of the sheet in the transition state, for
[L∗, H∗, m∗, U∗] = [0.75, 0.13, 0.95, 11.10]; only a half-cycle is presented. See the supplementary
movie for periodic oscillations. (b) Critical flow velocity U∗

c for snap-through transition. The sheet thickness is
h = 0.20 mm (red triangles), 0.25 mm (blue stars), 0.30 mm (magenta circles) and 0.38 mm (green diamonds)
for the experimental results. The results of numerical simulations using (3.9) (black asterisks) and scaling
analysis (4.4) (black curve) are also shown. For the black curve, U∗

c = 17.0[L∗(1 − L∗)]1/4. The discrepancy
between (4.4) and experimental measurements increases as L∗ becomes smaller, which is denoted with the
black dashed line. For the numerical data, [L∗, H∗, m∗] = [0.50–0.86, 0.08–0.14, 0.63–1.08].

to the opposite side and subsequent immediate shift along the streamwise direction
(figure 5a). The sheet then repeats these processes to produce periodic oscillations; see
the supplementary movie available at https://doi.org/10.1017/jfm.2021.57. Note that the
numerical approach used in § 3 for the equilibrium state is not applicable to the transition
and limit-cycle oscillations, and figure 5(a) is from experimental measurements.

By varying the geometrical parameters of the sheet, critical flow velocities U∗
c for

the onset of transition can be obtained experimentally (figure 5b). Interestingly, for all
experimental cases, U∗

c seemingly collapses onto a single curve, and its magnitude is
governed by the length ratio L∗. Moreover, the transition occurs only for L∗ from 0.5 to 0.9.
When L∗ is very close to unity, the snap-through is far from being periodic; the oscillation
is either intermittent or irregular. According to figure 5(b), U∗

c increases as L∗ decreases,
which means that greater fluid-dynamic loading is required to lose the equilibrium state
for a more deflected sheet. To be more specific, the overall trend in U∗

c versus L∗ can be
divided into two distinct sub-trends: U∗

c goes to zero as L∗ approaches unity, while U∗
c

increases rapidly as L∗ approaches 0.5.
The trend for the sheet with small deflection (L∗ close to unity) can be obtained

using simple scaling analysis. From (3.4a,b) and (3.5) with the approximation for small
deflection (sin θ ≈ θ and cos θ ≈ 1), the two components of the total fluid force scale as

Ff ,x ∼ ρf U2CDL ∼ ρf U2L(Kpθ
2 + Kvθ

3), (4.1a)

Ff ,y ∼ ρf U2CLL ∼ ρf U2L(Kpθ + Kvθ
2). (4.1b)

Ignoring O(θ2, θ3) terms and using θ ∼ w0/L, they scale as

Ff ,x ∼ 0 and Ff ,y ∼ ρf U2LKpθ ∼ ρf U2Kpw0. (4.2a,b)
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Flow-induced periodic snap-through dynamics

Using the length L and bending stiffness B of the sheet, the flow-induced transverse
displacement δ due to Ff ,y scales as

δ ∼ Ff ,yL3

B
∼ ρf U2Kpw0L3

B
. (4.3)

The magnitude of δ should be comparable to the maximum transverse displacement w0
of the initial buckled sheet in estimating the critical velocity for snapping. Then, (4.3) is
expressed in terms of L∗ and U∗

c as follows:

U∗
c ∼

(
w0

KpL

)1/2

∼ [L∗(1 − L∗)]1/4

K1/2
p

. (4.4)

Here, the relation w0/L ∼ [L∗(1 − L∗)]1/2 is from (A5) in appendix A; and Kp can
be assumed to be constant in the aspect-ratio range, H∗ = [0.08–0.14], presented in
figure 5(b) (Tavallaeinejad et al. 2018).

For a large L∗ close to unity, the scaling relation (4.4) predicts well the trend of U∗
c with

respect to L∗ (figure 5b). However, an increasing discrepancy from the experimental results
is observed as L∗ decreases where the linear theory is no longer applicable. The critical
flow velocity can also be estimated from the numerical simulations, using the criterion
mentioned in § 3.2; at the critical velocity, the solution of (3.9) based on the equilibrium
state does not exist. The critical velocities predicted from the numerical simulations are in
good agreement with those of the experimental measurements (figure 5b).

In addition to L∗, the aspect ratio H∗ of the sheet may be regarded as a parameter for
affecting U∗. However, it is experimentally difficult to test a broad range of H∗. For H∗
much greater than unity, two-dimensional snap-through motion is not clearly observed.
Instead, the upper and lower edges of the sheet oscillate arbitrarily with different phases,
resulting in irregular and complex three-dimensional oscillations. Such three-dimensional
oscillations seriously undermine the repeatability of the transition; that is, the value of
U∗

c cannot be determined. In addition, if H∗ is too small, the initial buckled sheet sags
significantly under gravity, which prevents two-dimensional oscillations. Therefore, in our
experiments, we limited the range of H∗ to be around 0.1, namely H∗ = [0.07–0.18], to
produce two-dimensional oscillations.

Experiments in an air flow of mass ratio m∗
air = O(10−1) and in a water flow of m∗

water =
O(10−4) reveal that the critical flow velocity U∗

c is barely affected by a huge variation in
m∗, in contrast to the effect of variations in L∗ (figure 6). In figure 6, the critical velocities
are compared for two cases with the same length ratio and aspect ratio, but with different
mass ratios. Despite a change in m∗ from O(10−1) to O(10−4), U∗

c differs by only 0.03–2.5
for the cases shown in figure 6. This interesting result implies that the inertial effect of the
sheet is negligible in terms of the instability of the buckled sheet and that the snap-through
transition is induced by divergence instability rather than flutter instability, which is similar
to the instability of an inverted flag (Kim et al. 2013; Sader et al. 2016a; Kim & Kim
2019). Furthermore, the negligible inertial effect of the sheet in the snap-through transition
justifies our numerical approach in § 3.1, which does not include an inertial term of the
sheet in the nonlinear beam equation for the prediction of the critical velocity.

5. Post-equilibrium state: limit-cycle oscillations

5.1. Kinematic characteristics of periodic snap-through
The clamping constraints at both ends of a buckled sheet yield some remarkable features
in the post-equilibrium state of U∗ > U∗

c . As the buckled sheet undergoes periodic
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Figure 6. Effect of mass ratio m∗ on U∗
c for two different regimes: m∗

air = O(10−1) for air (blue) and
m∗

water = O(10−4) for water (red). Here H∗ = [0.07–0.14].

snap-through oscillations, its kinematic response differs with location on the sheet
(figure 7a,b). In figure 7(a,b), the central and rear parts of the sheet oscillate with a greater
oscillation amplitude and a transverse velocity than the front part. Although the rear part
has an amplitude comparable to that of the central part, the maximum transverse velocity
of the rear part is approximately twice as large. Moreover, the amplitude and transverse
velocity profiles are not smooth, but are rather abrupt with sharp peaks. Flow-induced
snap-through in our study occurs through the asymmetric configuration between the front
and rear parts of the sheet because of the flow direction. The fluid force imposed on
the sheet displaces the sheet along the streamwise direction, and snapping occurs more
distinctly in the rear part, as depicted in figure 5(a). Geometrically, the streamwise shift of
the sheet by the fluid flow increases the curvature of the rear part before the sheet snaps
to the opposite side, and a greater bending energy is stored and released in the rear part,
which results in a sharp peak in the transverse velocity during the snapping motion.

To further understand the characteristics of periodic snap-through oscillations, the
dimensionless oscillation frequency is examined. Generally, a peak-to-peak oscillation
amplitude is widely used as a characteristic length for the dimensionless oscillation
frequency in studies of oscillating thin structures such as the flapping propulsion of
animals and flapping flags (e.g. Alexander 2003; Connell & Yue 2007; Kim et al. 2013).
The maximum oscillation amplitude of the buckled sheet is almost the same as the
maximum transverse displacement w0 of the sheet without fluid flow (figure 7a). Hence,
2w0, which represents the peak-to-peak amplitude, is adopted as a length parameter to
define the dimensionless oscillation frequency: f ∗ = f (2w0)/U. In a wide range of U∗ =
9.6–25.8 and L∗ = 0.55–0.88, f ∗ is mostly distributed within a narrow range between
0.06 and 0.12 (figure 7c). As for the relation between the dimensional parameters, the
dimensional oscillation frequency f continuously increases with the dimensional velocity
U for a given L∗.

The oscillation frequency is correlated with the shedding frequency of the vortices
generated by the oscillating sheet. According to flow visualization using particle image
velocimetry in the water tunnel, flow separation and consequent vortex shedding occur
periodically at the apex of the sheet when the sheet reaches two extreme phases having
the maximum amplitude in the positive and negative y-directions (figure 7d). In contrast
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Figure 7. (a) Dimensionless transverse displacement y/w0 and (b) transverse velocity v/U in the y-direction
at three different streamwise locations: x/L0 = 0.2 (blue), x/L0 = 0.5 (red) and x/L0 = 0.8 (yellow). Here
[L∗, H∗, m∗, U∗] = [0.75, 0.13, 0.95, 11.10] for panels (a) and (b). Time t is non-dimensionalized by U
and w0, thus: t∗ = tU/w0. (c) Dimensionless oscillation frequency f ∗ (= f (2w0)/U) for several cases of
L∗. (d) Contours of vorticity ωzw0/U around the snapping sheet (black solid line) at two extreme phases.
Vortex shedding, which is denoted by the dotted line, is observed behind the apex of the sheet. Here
[L∗, H∗, m∗, U∗] = [0.75, 0.13, 1.71 × 10−3, 11.70] for panel (d).

to a fixed bluff body (Williamson 1996), the periodic vortex shedding is not initiated and
maintained by mutual interaction of counter-rotating vortices in the snap-through model.
Instead, the vortex shedding is subjected to the periodic oscillation of the sheet, and the
vortex shedding frequency becomes identical to the oscillation frequency of the sheet,
which differs from the vortex shedding frequency of the fixed bluff body.
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5.2. Modal analysis
To examine how the modal behaviour of the oscillating sheet is affected by its two clamped
ends, proper orthogonal decomposition (POD) is conducted with the displacement data
represented in curvilinear coordinates. The mean-subtracted dataset of the transverse
displacement, ŷ = y − ȳ, is linearly decomposed in the following manner:

y(s, t) − ȳ(s) =
m∑

j=1

ajφj(s, t), (5.1)

where y is the transverse displacement of the sheet, ȳ is the time-averaged value of y, m
is the total number of modes considered for POD, φj is the orthogonal POD modal shape
that corresponds to mode j, and aj(t) is the temporal displacement coefficient of mode j.
The POD mode φj can be obtained from singular value decomposition (SVD) (Berkooz,
Holmes & Lumley 1993; Taira et al. 2017). In matrix form, the data of ŷ expressed as Y
can be decomposed using SVD as

Y = ΦΣΨ T, (5.2)

where Φ = [φ1, φ2, . . . , φm] and Σ takes singular values (σ1, σ2, . . . , σm) along its
diagonal. The singular value σ 2

j indicates the energy level of mode j, and singular values
are arranged from mode 1 to mode m in order of the amount of energy. The relative energy
(energy fraction) captured by each mode can be computed as

relative energy of mode i = σ 2
i∑m

j=1 σ 2
j

. (5.3)

According to the POD results, for each U∗, the order of a modal shape corresponds to
that of a harmonic mode with a clamped–clamped end condition (figure 8a–c). However,
at each mode, the shape of the POD mode is displaced slightly in the streamwise direction
from that of the harmonic mode due to fluid loading. While the first and second POD
modes are dominant in terms of relative energy distribution, higher-order modes remain
negligible in the entire U∗ range considered in this study (figure 8d). The relative energy
level of the first mode at U∗ = 11.7, 13.6 and 16.6 exceeds 0.4, and that of the second
mode is around 0.3. The relative energy levels of higher-order modes are less than 0.1.
The dominance of the first and second modes in the snap-through oscillations seems to
be different from the trend of a flapping flag with a fixed front end and a free rear end,
which exhibits various vibrational modes depending on the dimensionless flow velocity
and mass ratio (Tang & Païdoussis 2007; Eloy et al. 2008; Michelin et al. 2008; Huang &
Sung 2010).

5.3. Bending energy
Because of its initial buckled configuration and quick snapping process, the sheet exhibits
salient features regarding the elastic strain energy stored during the periodic oscillations.
The elastic strain energy consists of bending energy and compressive force energy along
the sheet. Because the sheet is assumed to be inextensible, the compression energy arises
from the imposed end-shortening condition (L0 < L), and it is constant if L∗ is held fixed
(Audoly & Pomeau 2010). Thus, only the bending energy of the sheet is considered in
our examination of temporal variations in the strain energy. The bending energy per unit
height is defined as Eb(t) = 1

2 EI
∫ L

0 κ(s, t)2 ds, where κ (= (d2y/dx2)/[1 + (dy/dx)2]3/2)
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Figure 8. (a) First, (b) second and (c) third modal shapes at three flow velocities: U∗ = 11.7 (dotted line), 13.6
(dashed line) and 16.6 (dash-dotted line). In panels (a)–(c), the harmonic mode with a clamped–clamped end
condition is shown by the solid line for comparison. (d) Relative energy of POD modes for U∗ = 11.7 (blue),
13.6 (red) and 16.6 (green). Here [L∗, H∗, m∗] = [0.75, 0.13, 0.95].

is the curvature. The curvature was calculated with the dataset of positions acquired from
the captured images. The sheet was discretized into 240–250 segments along its length,
and the central-difference scheme was used to obtain dy/dx and d2y/dx2 for each segment;
because the segments had the same length ds, different values of dx were considered for
the segments when dy/dx and d2y/dx2 were discretized.

In figure 9(a), at the instant just before rapid snapping to the opposite side,
the dimensionless bending energy Eb/Eb,max reaches its maximum value; Eb,max is the
maximum bending energy over 50 cycles in this study. Moreover, the phase just after the
rapid snapping is complete corresponds to the minimum value of Eb/Eb,max. As shown
by the light red and green regions, respectively, in figure 9(a), the time span required
to release the bending energy generally becomes shorter than the time span required to
store the bending energy, which results in a sawtooth waveform in the time history of the
bending energy. The sharpness of the sawtooth waveform is found to be dependent on
L∗. While the time history curve is sharp near the onset of snap-through for L∗ > 0.7,
the curve becomes blunt and exhibits plateaus for L∗ < 0.7 (figure 11 in appendix B).
Despite a change in the curve shape of the bending energy, rapid energy release during the
snap-through process is consistently observed over a wide range of L∗.

As U∗/U∗
c increases from zero up to unity in the equilibrium state (U∗/U∗

c < 1), the
ratio of the bending energy at a given flow velocity to the bending energy at U∗ = 0,
Eb/Eb,0, gradually grows from 1.0 to 1.6 owing to enhanced deflection of the sheet along
the flow direction. Regardless of the variations in L∗, the Eb/Eb,0 values are distributed
narrowly at a given U∗/U∗

c (figure 9b). In the post-equilibrium state (U∗/U∗
c ≥ 1), the

maximum and minimum values of Eb/Eb,0 over successive cycles form separate groups
around 2.5 and 1.0, respectively. For a given U∗/U∗

c , the difference in the bending energy
between the two extreme phases, ΔEb/Eb,0 (= [Eb,max − Eb,min]/Eb,0), increases slightly
as L∗ increases, which implies that the energy release by the snapping is more effective as
L∗ is closer to unity.
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Figure 9. (a) Dimensionless bending energy Eb/Eb,max stored in the sheet during snap-through oscillations;
Eb,max is the maximum bending energy over 50 cycles. The red dashed line denotes the level of Eb/Eb,max at
U∗ = 0. A curve fitted from the experimental data (black circles) is denoted as the blue solid line. The insets
describe the shape of the sheet at the phase of maximum bending energy (left) and minimum bending energy
(right) for U∗ = 11.1 as well as the initial shape for U∗ = 0 (centre). Here [L∗, H∗, m∗] = [0.75, 0.13, 0.95].
(b) Ratio of bending energy at each free-stream velocity to bending energy at U∗ = 0: Eb/Eb,0. Circles denote
the value of Eb/Eb,0 before U∗ = U∗

c , and squares and triangles denote the maximum and minimum Eb/Eb,0
over successive cycles after U∗ = U∗

c , respectively. Here [L∗, H∗, m∗] = [0.60–0.86, 0.10–0.14, 0.76–1.08].

During the periodic oscillations, the instantaneous configurations of the sheet at the
upper and lower energy limits remain similar to the second and first modal shapes,
respectively (figure 9b), and this trend is universal for all U∗ values considered in this
study; for example, see the insets of figure 9(a) and figure 11 in appendix B. The
higher-order modes are not dominant at any phase of the oscillations. If the higher-order
modal shape was dominant, the curvature of the sheet constrained by the clamped ends
would be much greater than that of the second modal shape, resulting in a dramatic growth
in the bending energy. Accordingly, although both maximum and minimum values of the
bending energy tend to increase slightly with U∗ in limit-cycle oscillation, each of them
is confined within a narrow range without a notable jump in energy level: the maximum
Eb/Eb,0 ranges from 2.3 to 3.0 and the minimum Eb/Eb,0 ranges from 0.8 to 1.2.

The aforementioned characteristics of the bending energy are in stark contrast to those
of the flag models, which experience smooth temporal variations in bending energy during
periodic oscillations. Owing to the buckled configuration, the ratio of minimum bending
energy to maximum bending energy remains at least 40 % in the snap-through model
(figure 9a). Meanwhile, it is almost zero in the flag model (Gurugubelli & Jaiman 2015)
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because the flapping flag becomes almost straight at some point. Furthermore, unlike
the flag model, which exhibits similar time spans for energy storage and release, the
snap-through model displays a shorter time span for energy release than for energy storage.

6. Concluding remarks

We have reported the novel behaviour of the flow-induced snap-through of a buckled
sheet and several notable differences from the well-known responses of flapping
flags. Experimental measurements in wind and water tunnels and low-order numerical
simulations using the nonlinear beam equation and quasi-steady fluid dynamics have
clarified the effects of the length ratio and mass ratio on the onset condition of instability
and revealed that the transition to the limit-cycle oscillation is due to the divergence
instability mechanism. Because the sheet is clamped at both ends, only the first and second
modes are dominant as the flow velocity changes. Over an oscillation cycle, the bending
energy stored in the sheet attains a maximum immediately before snapping to the opposite
side, and decreases suddenly and reaches a minimum just after the snapping process is
complete.

In this study, periodic snap-through dynamics with a large amplitude were investigated
for high-Reynolds-number flows with fluid kinetic energy harvesting applications in
mind. The quick snapping process, robust oscillations over a broad range of flow
velocities and negligible density effects of the surrounding fluid on bifurcation offer
insights into the potential application of flow-induced snap-through to small-scale energy
harvesters. In future, we plan to explore the optimal operational and design conditions of
a snap-through-based energy harvesting system from the perspective of the fluid–structure
interactions.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2021.57.
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Appendix A. Comparison between nonlinear and linear equations

The steady and linearized Euler–Bernoulli beam equation per unit height in the absence
of external loading is

B
d4y

dx4 + P0
d2y

dx2 = 0, (A1)

which is valid for small deflections. Here B is the bending rigidity of the sheet per
unit height, P0 is the compressive force per unit height with no external force and y is
the transverse displacement of the sheet. With four boundary conditions at both edges
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Figure 10. (a) Initial shapes of the buckled sheet with no fluid flow for several length ratios L∗. Theoretical
solutions obtained by the linear Euler–Bernoulli beam equation ((A1), red) and the nonlinear elastica theory
((3.1), blue) are compared with images captured from experiments (black). (b) Comparison of maximum
transverse displacement w0 obtained from the linear Euler–Bernoulli equation (red), elastica theory (blue)
and experimental measurements (black circles). (c) Compressive force P0/Pcr applied on the buckled sheet
with no fluid flow, acquired by solving equation (3.1).

(y|x=0,L0 = 0, dy/dx|x=0,L0 = 0), the solution of (A1) provides a buckled shape:

y(x) = C
(

1 − cos
2π

L0
x
)

, (A2)

where the constant C is w0/2 from the relation y(L0/2) = w0. The w0 value for given L
and L0 (and thus L∗) is then numerically determined by the constraint on the length of the
buckled sheet (A3): ∫ L0

0

[
1 +

(
dy
dx

)2
]1/2

dx = L. (A3)

When L∗ = 0.85, (A2) predicts a quite accurate buckled shape in the absence of flow,
compared with the actual shape observed in the experiment (figure 10a). However, the
accuracy decreases as L∗ decreases, and the shape obtained by (A1) deviates significantly
from the actual shape for a small L∗; the maximum transverse displacement w0 also
deviates, as shown in figure 10(b). In contrast, the solution of the nonlinear elastica theory
expressed in (3.1) is in excellent agreement with the real shape, regardless of the L∗ value
(figure 10a,b).

For small deflection (|dy/dx| � 1), the constant C in (A2) can be determined
analytically by approximating (A3) as∫ L0

0

[
1 + 1

2

(
dy
dx

)2
]

dx ≈ L. (A4)
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Figure 11. Time history of dimensionless bending energy Eb/Eb,max for: (a) L∗ = 0.86 (H∗ = 0.14,

m∗ = 1.08); (b) L∗ = 0.75 (H∗ = 0.13, m∗ = 0.95); (c) L∗ = 0.67 (H∗ = 0.11, m∗ = 0.84); and (d)
L∗ = 0.60 (H∗ = 0.10, m∗ = 0.76). The red dashed line is Eb/Eb,max of an initial buckled sheet with no flow.
A curve fitted to the experimental data (black circles) is denoted as the blue solid line. The two insets below
each panel are the sheet shapes with minimum (left) and maximum (right) bending energy, respectively. For
each L∗, the data were obtained near the critical velocity: (a) U∗ = 9.8; (b) U∗ = 11.1; (c) U∗ = 12.6; and (d)
U∗ = 13.4.

From (A2) and (A4), C is [L0(L − L0)]1/2/π, and w0/L can be expressed as

w0

L
= 2

π
[L∗(1 − L∗)]1/2. (A5)

On the other hand, P0 can be obtained from the numerical solution of (3.1) as a function
of L∗ (figure 10c). When L∗ approaches unity, P0 converges to the critical buckling load
Pcr (= 4π2B/L2). As L∗ decreases, P0 increases, indicating that a larger compressive force
is required to make a more buckled sheet.

Appendix B. Time history of bending energy

Figure 11 shows that the sharpness of the time history curve of the bending energy varies
with L∗ as explained in § 5.3. For L∗ > 0.7, which exhibits a sharp decrease in Eb/Eb,max
during snapping (figure 11a,b), the sheet begins to snap at a maximum bending energy
level. In contrast, the bending energy curve for the sheet with L∗ = 0.6 (figure 11d) has
a plateau instead of a sharp peak. The sheet does not snap at the moment when the
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sheet attains the maximum bending energy, but some time is taken before the snapping
is initiated.
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