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DESCRIPTIONS AND CARDINALS BELOW �15

STEVE JACKSON AND FARID T. KHAFIZOV

Abstract. Assuming AD, we show that all of the ordinals below �15 represented by descriptions
(c.f. [2], but also defined below) are cardinals. Using this analysis we also get a simple representation for the
cardinal structure below �15. As an application, we compute the cofinalitites of all cardinals below �

1
5.

§1. Introduction. Wework throughout in the theoryZF+AD+DC. Theprojective
ordinals play an important role in the descriptive set theory of the projective sets.
They are defined by:

�1n = the supremum of the lengths of the Δ
1
n prewellordings of �

� .

For example, everyΠ12n+1 set admits aΠ
1
2n+1-scale onto �

1
2n+1. In [5] a basic theory

of the projective sets (assuming AD) is given, and it presented largely in terms of
these ordinals. The work of the descriptive set theorists of the late 60’s and 70’s
established some of the fundamental properties of these ordinals, such as: they
are all measurable cardinals (Moschovakis, Kunen), �12n+2 = (�

1
2n+1)

+ (Kunen,
Martin), and �12n+1 = (�2n+1)

+, where cof(�2n+1) = � (Kechris). The projective
ordinals through �14 were also computed (Kunen, Martin, Solovay). We refer the
reader to [5], [4] for an accounting of these results along with more detailed history
and credits. In the 80’s, building on work of Kunen and Martin, Jackson computed
the values of the projective ordinals �1n and showed that all the odd projective
ordinals �12n+1 have the strong partition property (defined below), a crucial element
in the analysis. The result was that

�12n+1 = ℵe(2n−1)+1,
where e(1) = � and e(n + 1) = �e(n) (ordinal exponentiation).
The upper bound in the general case appears in [1], and the complete argument
for �15 appears in [2]. The reader can also consult [3] for an introduction to this
theory.
A key part of the projective ordinal analysis is the concept of a description.
Intuitively, a description is a finitary object “describing” how tobuild an equivalence
class of a functionf : �13 → �13 with respect to certain canonicalmeasuresWm3 which
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we define below. The proof of the upper bound for the �12n+3 proceeds by showing
that every successor cardinal less than �12n+3 is represented by a description, and
then counting the number of descriptions. The lower bound for �12n+3 was obtained
by embedding enough ultrapowers of �12n+1 (by various measures on �

1
2n+1) into

�12n+3. A theorem of Martin gives that these ultrapowers are all cardinals, and the
lower bound follows. A question left open, however, was whether every description
actually represents a cardinal. The main result of this paper is to show, below �15,
that this is the case. Thus, the descriptions below �15 exactly correspond to the
cardinals below �15. Aside from rounding out the theory of descriptions, the results
presented here also serve to simplify some of the ordinal computations of [2]. In
fact, implicit in our results is a simple (in principle) algorithm for determining
the cardinal represented by a given description. This, in itself, could prove useful
in addressing certain questions about the cardinals below the projective ordinals.
Also, the analysis presented here gives an alternate way to describe the cardinal
structure without mentioning descriptions (although descriptions are used heavily
in the proofs). As an application of this we give in Section 4 a formula which
computes the cofinality of an arbitrary cardinal below �15.
We have attempted to make this paper as self-contained as possible modulo
basic AD facts about �11 and �

1
3. The main facts that we require are that �

1
1 = �1,

�13 = ��+1, and that �
1
1 and �

1
3 have the strong partition property (defined below).

The earlier (predescription) theory suffices to establish the facts mentioned at the
beginning as well to show the strong partition property on �11 and the weak partition
property on �13. The last two facts are due toMartin and Kunen respectively. Proofs
of these facts and further background on the projective ordinals can be found in [5],
[4], and [6]. Also, proofs of these facts from the modern perspective of descriptions
(using only “trivial’ descriptions) can be found in [3]. The proof of the strong
partition property on �13 requires the theory of descriptions. This can be found in
[2]. The proofs of these results, however, are not important for the current paper,
and the reader can simply take these partition results as given.
Since we are not assuming familiarity with [2], we present in the next section the
definition of description (below �15) and some related concepts. The reader familiar
with [2] will note thatweuse here slightly simplified versions of these notions as com-
pared to [2]. Although the concepts are not changed in any significant way, we have
discarded some notationwhich is not necessary here (such as the notion of “type” of
a description). Since the notion of a description is necessarily somewhat technical,
we carry along through the paper some specific examples to help the reader.

§2. Preliminaries. By ameasure on a setX wemean a countably additive ultrafil-
ter onX . UnderAD, every ultrafilter on a set is countably additive, so the notions of
measure and ultrafilter coincide. If � is a measure on an ordinal � and f : �→ ON,
we write [f]� for the equivalence class of f in the ultrapower by the measure �.
Although we don’t have Los’ theorem without AC, it nevertheless makes sense to
identify [f]� with an ordinal as usual. If � is a measure on an ordinal and α ∈ ON,
we let j�(α) denote the image of α in the ultrapower embedding by the measure �.
That is, j�(α) is the ordinal corresponding to the equivalence class of the constant
function α.
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If � is a measure on a set X , we write “∀∗�x ∈ X” to mean “for � almost all
x ∈ X .” If �1, . . . �t are measures on X1, . . . , Xt , we write “∀∗�1x1 · · · ∀∗�txt” to
mean: “for �1 almost all x1 ∈ X1 it is the case that for �2 almost all x2 ∈ X2 it is the
case that, . . . , for �t almost all xt ∈ Xt .” That is, we are referring to the iterated
product measure of the �i .
We recall (a special case of) the Erdős-Radopartition notationand the definitions
of the weak and strong partition properties. We let throughout (A)α denote the set
of increasing functions from α to A, where α ∈ ON and A ⊆ ON.
Definition 2.1. For � ≤ κ ∈ ON, we write κ → (κ)� to denote that for any
partition P : (κ)� → {0, 1} of the increasing functions from � to κ into two pieces,
there is a homogeneous set H ⊆ κ of size κ. That is, P � (H )� is constant. We say
κ has the weak partition property if ∀� < κ κ → (κ)� and say κ has the strong
partition property if κ → (κ)κ .
It is convenient to reformulate the partition properties in a way that uses c.u.b.
homogeneous sets. To do this, we must restrict the “type” of the functions being
partitioned. For our purposes we require only the simplest type, which we define
next.

Definition 2.2. For α ∈ ON, we say a function f : α → ON has uniform
cofinality � if there is a function g : α ×� → ON which is increasing in the second
argument and for all � < α we have f(�) = supn∈� g(�, n). If f : α → ON, we say
f has the correct type if it is strictly increasing, everywhere discontinuous (that is,
for all limit � we have f(�) > sup�<� f(�)), and of uniform cofinality �.
We sayf : α → ON is of continuous type if f is continuous (that is, for all limit �
we havef(�) = sup�<� f(�)) andf restricted to the successor ordinals has uniform
cofinality � (that is, the function g above has domain the set of (�, n) such that
� < α, � is a successor ordinal, and n ∈ �).
The reformulation of the partition property using c.u.b. sets can now be stated.

We say κ c.u.b−→ (κ)� if for every partition P of the functions f : �→ κ of the correct
type there is a c.u.b. C ⊆ κ which is homogeneous forP (that is, P takes a constant
value on the functions f : � → C of the correct type). For any infinite cardinal
�, the two versions of the partition property using exponent � are equivalent. This
follows from the following fact (see [6]). For the sake of completeness we sketch the
proof.

Fact 2.3. For all � ≤ κ we have:
1. κ c.u.b.−→ (κ)� implies κ → (κ)�.
2. κ → (κ)�·� implies κ c.u.b.−→ (κ)�.
Proof. Suppose first κ c.u.b.−→ (κ)� and let P : (κ)� → {0, 1}. P induces by restric-
tion a partition of the functions of the correct type, and by assumption there is a
c.u.b. C ⊆ κ which is homogeneous for the restricted partition. Let H = ran(h),
where h : κ → κ is given by h(α) = � ·(α+1)st element ofC . Note that iff ∈ (H )�,
then f is necessarily of the correct type. It follows thatH is homogeneous for P .
Suppose next that κ → (κ)�·�, and let P be a partition of the functionsf : �→ κ
of the correct type. Let P ′ be the partition of the increasing functionsf′ : � ·�→ κ
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defined by: P ′(f′) = P(f) where f is the function induced by f′, that is, f(α) =
sup�<�·(α+1)f

′(�). Let H ⊆ κ be homogeneous for P ′. Let C be the set of limit
points of H . Then if f : � → C is of the correct type, there is an increasing
f′ : � · �→ H which induces f. It follows that C is homogeneous for P . �
We henceforth officially adopt the c.u.b. versions of the partition relations, and
we just write κ → (κ)� for the c.u.b. version from now on. Also, if ≺ is a well-order
of length |≺|= �, and κ → (κ)�, then by identifying the domain of ≺ with � we
have a partition relation for functions f : dom(≺) → κ of the correct type (with
obvious meaning).
If κ has the weak partition property, and � < κ is regular, then the c.u.b. filter
restricted to points of cofinality � gives a normal measure on κ. We call this measure
the �-cofinal normal measure on κ. In particular, we have the �-cofinal normal
measure. The n-fold product of this normal measure can also be described as the
measure induced from the partition relation κ → (κ)n . That is,A ⊆ κn has measure
one iff there is a c.u.b. C ⊆ κ such that (C )n ⊆ A.
More generally, if κ → (κ)�, then the partition relation induces a measure of the
functions f : � → κ of the correct type. Namely, A has measure one iff there is a
c.u.b. C ⊆ κ such that for all f : � → C of the correct type we have f ∈ A. If �
is a measure on �, then we may also speak of the measure induced by the partition
relation κ → (κ)� and the measure �. This measure is defined as follows. A set
A ⊆ ON has measure one iff there is a c.u.b. C ⊆ κ such that for all f : � → C of
the correct type we have [f]� ∈ A. The first (function space) measure induces the
second (ordinal) measure via the map f 
→ [f]�.
We define next three families of canonical measures. These measures play an
important role in the theory of descriptions below �15. Althoughwe are confining our
attention to the cardinals below �15 in this paper, thesemeasures have generalizations
that play a similar role below the general projective ordinal (the reader can find the
general definitions in [1]).
For r ∈ �, let <r be the well-ordering of (�1)r defined by:
(α1, . . . , αr) <r (�1, . . . , �r)⇔ (αr, α1, . . . , αr−1) <lex (�r, �1, . . . , �r−1),

where <lex denotes lexicographic ordering. Note that <r has order-type �1. Thus,
granting the strong partition relation on�1, it makes sense to consider partitions of
the functionsf : dom(<r)→ �1 of the correct type.Wewill use this in the following
definition. We will also implicitly use two AD facts. The first is that the ultrapower
of �1 by the m-fold product of the normal measure on �1 (which we define below
to be Wm

1 ) is equal to �m+1. A proof can be found in [4] or [3]. The second fact
is that for any measure � on � < �13, and any 	 < �

1
3, we have j�(	) < �

1
3. This

follows, for example, from the arguments of [6] or [3]. Actually, we only need this
fact for certain measures � we define on the �k , and in this case this fact can also
be proved directly. [Since �13 is a cardinal, it suffices to show that j�(��) < �

1
3.

In fact, j�(��) = �� . By countable additivity, this follows from j�(�k) < ��
for all k. This last fact, for the measures � we consider in this paper, can be
shown directly.]

Definition 2.4 (Canonical measures). We define the ordinal measuresWr
1 , S

r
1 ,

Wr
3 , and the function space measuresW r

1 , Sr1 ,W r
3 as follows.
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1. W r
1 =W

r
1 is the r-fold product of the normal measure on �1.

2. Sr1 is the measure on functions f : dom(<r)→ �1 of the correct type induced
by the strong partition relation on�1. Sr1 is the measure on�r+1 induced from
Sr1 and the measure Wr

1 on (�1)
r . That is, A ⊆ �r+1 has Sr1 measure one iff

∃ c.u.b. C ⊆ �1 ∀f : dom(<r)→ C of the correct type, [f]Wr
1
∈ A.

3. W r
3 is the measure on functions f : �r+1 → �13 of the correct type induced
by the weak partition relation on �13.W

r
3 is the measure on �

1
3 induced from

W r
3 and the measure S

r
1 on �r+1. That is, A ⊆ �13 has Wr

3 measure one iff
∃ c.u.b. C ⊆ �13 ∀f : �r+1 → C of the correct type, [f]Sr1 ∈ A.

As the reader has probably guessed, the “W” in these definitions stands for
“weak” and the “S” for strong. Also, the subscript denotes which projective ordinal
the partition property is being applied to.The strong partition property of�1 and the
weak partition property of �13 respectively suffice to show thatS

r
1 ,W

r
3 are measures.

For our purposes, it is convenient to introduce also variations of these measures.
For each of the (r − 1)! permutations 
 = (r, i1, . . . , ir−1) of {1, 2, . . . , r} beginning
with r, let <
 be the corresponding well-ordering of (�1)r ; that is, (α1, . . . , αr) <


(�1, . . . , �r) iff (αr, αi1 , . . . , αir−1 ) <lex (�r , �i1 , . . . , �ir−1). We say h : (�1)
r → �1 is

of type 
 if h is order-preserving with respect to<
, discontinuous at points of limit
rank, and has uniform cofinality �. Let S
1 denote the corresponding measure on
�r+1 (as in the definition of Sr1), using functions h of type 
. Of course, S

r
1 is also a

measure of the formS
1 , using the particular permutation (r, 1, 2, . . . , r−1).We also
define the measureWr as follows.Wr is the measure on (r−1)! tuples (. . . , α
, . . . )
of ordinals < �13 defined by: A has measure one iff there is a c.u.b. C ⊆ �13 such
that for all f : �r+1 → C which are of continuous type, (. . . , α
, . . . ) ∈ A, where
α
 = [f]S
1 . We let S
1 andW r denote the corresponding function space measures.

Definition 2.5. If h : dom(<r) → �1 is of the correct type, we define the
invariants of h as follows: for 1 ≤ j ≤ r − 1, we define

h(j)(α1, . . . , αj) = sup{h(α1, . . . , αj−1, �j , . . . , �r−1, αj) :
αj−1 < �j < · · · < �r−1 < αj}.

We also define h(r) = h. Similarly, for 1 ≤ j ≤ r we define the “sup” version
hs (j) by

hs(j)(α1, . . . , αj) = sup{h(α1, . . . , αj−2, �j−1, �j , . . . , �r−1, αj) :
�j−1 < αj−1, �j−1 < �j < · · · < �r−1 < αj}

for j > 1 and for j = 1

hs(1)(α) = sup{h(�1, . . . , �r) : �1 < · · · < �r < α}.
Note that hs(j) is obtained from h(j) by applying a supremum to the least
significant variable, that is,

hs(j)(α1, . . . , αj−1, αj) = sup
�j−1<αj−1

h(j)(α1, . . . , αj−2, �j−1, αj).

The superscript “s” in fact stands for “supremum.” Note also that for any
h : <r→ �1 of the correct type, hs (1) is the identity function almost everywhere
(so, we will never have need of hs (j) for j = 1).
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If α = [h]Wr
1
, where h : dom(<r)→ �1 is of the correct type, let α(j) = [h(j)]Wj

1

for 1 ≤ j ≤ r. This is easily well-defined (that is, does not depend on the choice of
h of the correct type representing α).
We turn now to the definition of descriptions. We will follow the definition in [2],
simplified somewhat (there is no need to consider “type–1” descriptions).
A description is a finitary object, and has an index associated with it. An index is
of the form (fm), where m ≥ 1 is an integer, and is written as a superscript of the
description. The index is a purely syntactic object, it is merely a formal symbol. The
form of the notation suggests a function, and for higher level descriptions (which
we do consider in this paper) the intuitive meaning becomes more significant. Here,
the reader can think of the index (fm) as a reminder that the description will
take as input a function f : m → �1 (i.e., an m-tuple of countable ordinals), and
ultimately return a countable ordinal value. Descriptions indexed as d (fm) will be
called level–m descriptions, We frequently suppress writing the index when it is
understood or irrelevant. The descriptions defined directly will be also referred at
as basic descriptions, and the ones defined in terms of the other descriptions will be
called nonbasic.
In [2] we defined descriptions and then defined a certain “well-definedness” con-
dition which was called “Condition C.” Following a suggestion of the referee, we
call the descriptions of [2] here “predescriptions,” and incorporate Condition C into
the definition of description. In fact, after we have defined descriptions there will be
no need to ever refer back to the predescriptions.
Let t ∈ � and fix a sequence of measures K1, . . . , Kt with each Ki of the form
Ki = Sr1 or W

r
1 for some r = r(i) which depends on i . Fix also m ∈ �. A set of

level–m predescriptions, D′
m = D′

m(K1, . . . , Kt), is defined relative to this sequence
of measures. Along with D′

m is also defined a numerical function k : D′
m →

{1, . . . , t}∪{∞}. It will be apparent from the definition that the function k does not
depend on the value of m or the sequence of measures K1, . . . , Kt , but only on the
syntactic object d . Thus, we are justified in simply writing “k” for the function. In
the last case of the following definition another formal symbol appears. The symbol
“s” is again a purely syntactic object; the symbol stands for “sup” and its meaning
will become clearer whenwe define the interpretation of a description below (it plays
the same role as in Definition 2.5).

Definition 2.6 (Predescriptions). The set of predescriptions D′
m(K1, . . . , Kt)

and the function km : D′
m → {1, . . . , t} ∪ {∞} are defined by reverse induction on

km(d ) through the following cases:

Basic predescriptions: We allow the following objects.

1. d = (k;p) where 1 ≤ k ≤ t, Kk =Wr
1 , and 1 ≤ p ≤ r. We set k(d ) = k.

2. d = (p) where 1 ≤ p ≤ m. We set k(d ) =∞.
Non-Basic predescriptions: We allow the following objects.

1. d = (k; d0, d1, d2, . . . , dl ) where 1 ≤ k ≤ t,Kk = Sr1 , l ≤ r− 1, each di ∈ D′
m,

and k(d0), k(d1), . . . , k(dl ) > k (we allow l = 0 in which case d = (k; d0)).
We set k(d ) = k.

2. d = (k; d0, d1, d2, . . . , dl )s , where r ≥ 2, 1 ≤ k ≤ t, Kk = Sr1 , 1 ≤ l ≤ r − 1,
each di ∈ D′

m, and k(d0), k(d1), . . . , k(dl ) > k. We set k(d ) = k.
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Now let D′(K1, . . . , Kt) :=
⋃
m D′

m(K1, . . . , Kt) to be the set of predescriptions
relative to K1, . . . , Kt . We will frequently suppress the background sequence of
measures simplywritingD′ orD′

m .Wewillwrite K̄ to denote a sequence ofmeasures.
Note that if K̄ is a subsequence of K̄ ′, then D′

m(K̄) ⊆ D′
m(K̄

′).
In writing descriptions, we adopt the notation convention of writing the symbol
s in parentheses, that is, we write (k; dr, d1, . . . , dl )(s), to indicate that the symbol s
may or may not appear.
Next we give the definition of the interpretation of a predescription. Fix d ∈ D′

m,
let h1, . . . , ht be functions of type K1, . . . , Kt , that is, if Ki =Wr

1 , then hi : r → �1,
and if Ki = Sr1 , then hi : dom(<r) → �1 is of the correct type. We define the
ordinal (d ; h̄) = (d ; h1, . . . , ht) through cases by reverse induction on k(d ). If
d = d (fm) then (d ; h1, . . . , ht) < �m+1 and is represented with respect to Wm

1 by
a function which is denoted by (α1, . . . , αm) → (d ; h1, . . . , ht)(α1, . . . , αm). The
ordinal (d ; h1, . . . , ht)(α1, . . . , αm) < �1 is defined as follows.

Definition 2.7 (Interpretation of predescriptions in D′
m).

Basic:

1. If d = (k;p), then (d ; h̄)(α1, . . . , αm) = hk(p).
2. If d = (p), 1 ≤ p ≤ m, then (d ; h̄)(α1, . . . , αm) = αp.
Non–Basic:

1. If d = (k; d0, d1, d2, . . . , dl ), then

(d ; h̄)(ᾱ) = hk(l + 1)((d1; h̄)(ᾱ), . . . , (dl ; h̄)(ᾱ), (d0; h̄)(ᾱ)).

2. If d = (k; d0, d1, d2, . . . , dl )s , then

(d ; h̄)(ᾱ) = hsk(l + 1)((d1; h̄)(ᾱ), . . . , (dl ; h̄)(ᾱ), (d0; h̄)(ᾱ)).

Next we define a relation < on D′
m(K1, . . . , Kt) which will well-order this (finite)

set. For ordinal measure Ki , we let Ki denote the corresponding function space
measure.

Definition 2.8 (Order < on D′
m(K1, . . . , Kt)). If d1, d2 ∈ D′(K1, . . . , Kt), then

d1 < d2 iff ∀∗K1h1 · · · ∀∗Kt ht (d1, h̄) < (d2, h̄).
Recall that “∀∗K1h1 · · · ∀∗Kt ht” refers to the iterated product measure, in this case
of the function space measures Ki .
The ordering < on D′

m(K̄) from Definition 2.8 can be checked to be a well-
ordering on D′

m(K1, . . . , Kt). Alternatively, in Lemma 2.13 we give a purely syntac-
tical reformulation of the ordering. The reader could, if desired, take this syntactic
reformulation as the definition of <.
The only nontrivial part to check is that if d1 �= d2 then d1 < d2 or d2 < d1.
The reader may note that this is why we required that r ≥ 2 and � ≥ 1 in case 2
of the definition for nonbasic predescriptions. If we had allowed d = (k; d1)s as a
description, it would have the same interpretation as d1 (since hsk(1) is the identity
function almost everywhere).
We next introduce the set of descriptions Dm(K1, . . . , Kt) by adding one extra
condition to the notion of predescription. This extra condition ensures that the

https://doi.org/10.1017/jsl.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2016.7


1184 STEVE JACKSON AND FARID T. KHAFIZOV

interpretation of the description is well-defined with respect to the iteration of the
ordinal measures K1, . . . , Kt . This we state precisely in Lemma 2.11 below.

Definition 2.9 (Descriptions). Inductively, we say d ∈ D′
m(K1, . . . , Kt) is a

description if either d is basic or else d is nonbasic, say of the form d =
(k; d0, d1, . . . , dl )(s), and d1 < d2 < · · · < dl < d0, and d0, d1, . . . , dl are also
descriptions. We let Dm(K1, . . . , Kt) be the set of level–m descriptions defined
relative to K1, . . . , Kt .

Remark 2.10. Ifm < m′ and d ∈ Dm(K1, . . . , Kt), then inspecting the definition
ofDm(K1, . . . , Kt) shows that d may be regarded as an element ofDm′ (K1, . . . , Kt).
That is, if we remove the superscript (fm) from d (fm) ∈ Dm(K1, . . . , Kt) and then
add the superscript (fm′), we will have an element of Dm′(K1, . . . , Kt). The only
purpose of this superscript is to tell us for which m we regard d as an element of
Dm(K1, . . . , Kt).With the slight abuse of ignoring the superscripts, wemay therefore
write Dm(K1, . . . , Kt) ⊆ Dm′ (K1, . . . , Kt).

In the following lemma, when we write “hi = h′i almost everywhere,” we mean
[hi ]Wr

1
= [h′i ]Wr

1
if Ki = Sri , and mean simply hi = h

′
i if Ki =W

i
1 .

Lemma 2.11. Suppose d ∈ Dm(K1, . . . , Kt). Then for K1 almost all h1, if h1 = h′1
a.e., then for K2 almost all h2, if h2 = h′2 a.e., . . . , then for Kt almost all ht , if ht = h′t
a.e., then (d ; h̄) = (d ; h̄′).
The lemma is proved by a straightforward induction on the definition of
description. We omit the details.
In view of Lemma 2.11, if d ∈ Dm(K1, . . . , Kt) is a description, then wemaywrite

∀∗K1 [h1] · · · ∀∗Kt [ht ] P((d ; [h1], . . . , [ht ])) for any set P ⊆ ON. That is, we may use the
iteration of the ordinal measures Ki instead of the function space measures Ki . To
ease notation, we frequently write

∀∗K1h1 · · · ∀∗Ktht P((d ; h1, . . . , ht)),
that is, we write hi in place of [hi ] even when using the ordinal measure Ki . In
view of Lemma 2.11 this should cause no confusion. The reader should be warned
not to mis-interpret Lemma 2.11, however. The lemma does not say (and it is not
in general true) that there is a well-defined map ([h1], . . . , [ht ]) 
→ (d ; h1, . . . , ht).
That is, the interpretation function (for most descriptions) is not a well-defined
function on the product space K1 × · · · × Kt (although it is well-defined on the
function space product K1 × · · · × Kt). When dealing with the ordinal measure
spaces K1, . . . , Kt , the notation (d ; h1, . . . , ht) only makes sense inside a string of
quantifiers ∀∗K1h1 · · · ∀∗Kt ht .
Having formally defined descriptions and their interpretations, we introduce
now a somewhat less formal notation to represent them, which we refer to as
the functional representation of the description. In the functional representation,
the notation more closely identifies the description with its interpretation. The
functional representation of a description can be viewed as a term in the lan-
guage with function symbols hi(j), hsi (j), and variables αi,j , ·r . A basic description
of the form (k;p) will be represented as αk,p. The basic description (p) will be
represented as ·p. A nonbasic description of the form d = (k; d0, d1, d2, . . . , dl )
will then be represented as hk(l + 1)(g1, . . . , gl , g0), where g0, g1, . . . , gl are the
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representations of d0, d1, . . . , dl . Similarly, d = (k; d0, d1, d2, . . . , dl )s is represented
as hsk(l + 1)(g1, . . . , gl , g0). Recall in this case we must have l ≥ 1. Note that
in the functional representation, the arguments are written in increasing order
since d1 < d2 < · · · < dl < d0 (in the original description notation, they
are written in their order of significance in determining the size of the output
value).
In using the functional notation, we will (as in the original notation) write h(s)k (l)
to denote either hk(l) or hsk(l), i.e., the symbol s may or may not appear.
Note that the variable αi,j is identified with the description d = (i ; j) whose
interpretation relative to h1, . . . , ht is the ordinal αi,j , where

hi = (αi,1, . . . , αi,j , . . . ).

Also, the variable ·p corresponds to the description d = (p) whose interpretation is
represented by the function (α1, . . . , αm)→ αp.
Examples. For the sequence of measures K1 = S41 , K2 = S

4
1 , K3 = S

3
1 , K4 =

W 4
1 , some descriptions in D4(K̄) are:

d1 = h1(3)(α4,2, h2(2)(α4,1, ·3), ·4),
and

d2 = h1(1)(h2(2)(α4,4, h3(1)(·4))).
For the first of these, and for fixed h1, . . . , h4 = (α4,1, . . . , α4,4), the interpretation
of d is the ordinal represented with respect to W 4

1 by the function (�1, . . . , �4) →
h1(3)(α4,2, h2(2)(α4,1, �3), �4).

The next technical definition will be useful in some arguments.

Definition 2.12. Let K̄ = K1, . . . , Kt be a sequence of measures with each
Ki of the form W

ri
1 or S

ri
1 . Let h̄ = h1, . . . , ht be a sequence of functions where

hi : dom(<ri ) → �1 is of the correct type if Ki = S
ri
1 and hi : ri → �1 if

Ki = W
ri
1 . Then we say the sequence h̄ is in general position if it satisfies the

following.

1. If i < j and Ki = S
ri
1 , then hj has range in a set closed under the function

hi(1) : �1 → �1.
2. If i < j and Ki =W

ri
1 , then sup(ran(hi)) < min(ran(hj)).

Note that (1) of Definition 2.12 implies that if i < j and both Ki , Kj are of the
form Sr1 , then [hi(1)]W 1

1
< [hj(1)]W 1

1
. In fact, hj(α1, . . . , αrj ) > hi(1)(αrj ) for all

ᾱ ∈ (�1)rj (this is because αri < hj(α1, . . . , αrj ) as hj is of the correct type). It is
clear that the set of h̄ in general position has measure one in the function space
product measure K1 × · · · × Kt .
We next reformulate the ordering < on the descriptions in Dm(K̄) in a purely
syntactic manner. This is the content of the next lemma.

Lemma 2.13. Fix m and the measure sequence K̄ = K1, . . . , Kt . Let d, d ′ ∈
Dm(K̄). Then d ′ < d iff d ′ � d where� is defined inductively through the following
cases.
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I. Suppose k′ = k(d ′) < k(d ) = k.
1. Kk′ =Wr′

1 . In this case we set d
′ � d .

2. Kk′ = Sr
′
1 . In this case d

′ = h(s)k′ (l
′+1)(d ′1, . . . , d

′
l ′ , d

′
0). We define d

′ � d
to hold iff d ′0 � d .

II. Suppose k′ = k(d ′) > k(d ) = k.
1. Kk =Wr

1 . In this case we do not set d
′ � d .

2. Kk = Sr1 . In this case d = h
(s)
k (l + 1)(d1, . . . , dl , d0). We define d

′ � d to
hold iff d ′ � d0 or d ′ = d0.

III. Suppose k(d ′) = k(d ) = k <∞.
1. Kk =Wr

1 . In this case d = αk,p, d
′ = αk,p′ . We set d ′ � d iff p′ < p.

2. Kk = Sr1 . In this case d = h
(s)
k (l + 1)(d1, . . . , dl , d0) and

d ′ = h(s)k (l
′ + 1)(d ′1, . . . , d

′
l ′ , d

′
0).

a. Suppose there is a least j with 0 ≤ j ≤ l such that d ′j �= dj . Then we
define d ′ � d iff d ′j � dj . In the remaining cases assume there is no
such j.

b. If l ′ < l , then d ′ � d iff d ′ has the symbol s .
c. If l ′ > l then d ′ � d iff d does not have the symbol s .
d. If l ′ = l , then d ′ � d iff d ′ has the symbol s and d does not.

IV. k(d ′) = k(d ) =∞. In this case d ′ = ·r′ and d = ·r . We set d ′ � d iff r′ < r.

Proof. It is clear by inspection that if d ′ �= d , then either d ′ � d or d � d ′.
So, it suffices to show that if d ′ � d then d ′ < d . We show in fact that if d ′ � d
and if h̄ = h1, . . . , ht are in general position, then (d ′; h̄) < (d ; h̄). That is, for
Wm
1 almost all ᾱ = (α1, . . . , αm) we have (d

′; h̄)(ᾱ) < (d ; h̄)(ᾱ). We prove this
claim by reverse induction on min{k(d ′), k(d )}. We suppose d ′ � d , and we
use the functional representation for these descriptions in the following argument.
If k(d ′) = k(d ) = ∞, then d ′ = ·r′ and d = ·r . From IV of 2.13 we have r′ < r
and so (d ′; h̄)(ᾱ) = αr′ < αr = (d ; h̄)(ᾱ). In the remaining cases we assume
min{k(d ′), k(d )} <∞.
Assume next that k′ = k(d ′) < k(d ) = k. Suppose first that Kk′ = Wr′

1 . So, d
′

is of the form d ′ = αk′ ,p. Recall that this means that (d ′; h̄)(ᾱ) = hk′(p) = αk′,p
if we let hk′ = (αk′ ,1, . . . , αk′ ,r′). If k < ∞, then αk′,p < min(ran(hk)) as h̄ is in
general position, and since (d ; h̄)(ᾱ) is in the closure of the range of hk (this is
clear from the definition of (d ; h̄)(ᾱ)), we have αk′ ,p = (d ′; h̄)(ᾱ) < (d ; h̄)(ᾱ).
Suppose next that Kk′ = Sr

′
1 . So, d

′ is of the form d ′ = h(s)k′ (l + 1)(d
′
1, . . . , d

′
l , d

′
0).

From I.2. of Lemma 2.13 we have d ′0 � d . By induction, for almost all ᾱ we have
(d ′0; h̄)(ᾱ) < (d ; h̄)(ᾱ). Since k > k

′, hk has range in a set closed under hk′(1). So,
(d ′; h̄)(ᾱ) ≤ hk′(1)((d ′0; h̄)(ᾱ)) < (d ; h̄)(ᾱ) (the first inequality follows from the
definition of (d ′; h̄)(ᾱ)).
Suppose next that k′ = k(d ′) > k(d ) = k. In this case we must have Kk = Sr1 .
So, d is of the form d = h(s)k (l + 1)(d1, . . . , dl , d0). From II.2. of 2.13 we have
d ′ � d0 or d ′ = d0. If d ′ � d0 then by induction (d ′; h̄)(ᾱ) < (d0; h̄)(ᾱ) for
almost all ᾱ. But (d0; h̄)(ᾱ) ≤ (d ; h̄)(ᾱ) from the definition of (d ; h̄)(ᾱ). If d ′ = d0,
the result follows from (d0; h̄)(ᾱ) < (d ; h̄)(ᾱ). This follows from the definition of
(d ; h̄)(ᾱ) and the fact that if d has the symbol s , then l ≥ 1 (from the definition of
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predescription). We are using here the fact that for almost all α1 < · · · < αl < α0
that hsk(l + 1)(α1, . . . , αl , α0) > α0. Note that if we had allowed l = 0 in this
case (that is, if had allowed d = hsk(1)(d0) as a description), then we would not
have strict inequality here. That is, hsk(1)(α) = sup�<α(hk(1)(�)) = α almost
everywhere.
Suppose next that k′ = k(d ′) = k(d ) = k. If Kk = Wr

1 , the result follows
easily. So, assumeKk = Sr1 . Say d

′ = h(s)k (l
′+1)(d ′1, . . . , d

′
l ′ , d

′
0) and d = h

(s)
k (l+1)

(d1, . . . , dl , d0).Weare in case III.2. of 2.13. If III.2.a. of 2.13 holds, let j ≤ min{l, l ′}
be least such that d ′j �= dj , so d ′j � dj . By induction, for almost all ᾱ we have
(d ′j ; h̄)(ᾱ) < (dj ; h̄)(ᾱ). The result now follows from the fact that for almost all
α1 < · · · < αj−1 < α′j < αj < α0 and any α′j < α′j+1 < · · · < α′l ′ < α0 and
αj < αj+1 < · · · < αl < α0 that

h(s)k (l
′ + 1)(α1, . . . , αj−1, α′j , . . . , α

′
j+1, . . . , α

′
l , α0)

< h(s)k (l + 1)(α1, . . . , αj−1, αj , αj+1, . . . , αl , α0),

where here either side may or may not have the symbol s . This inequality uses the
fact that hk is order-preserving from dom(<r) to �1.
In case III.2.b. of 2.13, l ′ < l and d ′ has the symbol s . The result follows from
the fact that for almost all α1 < · · · < αl < α0 that

hsk(l
′ + 1)(α1, . . . , αl ′ , α0) < h

(s)
k (l + 1)(α1, . . . , αl ′ , . . . , αl , α0).

In III.2.c. we have l ′ > l and d does not have the symbol s . The result follows from
the fact that for almost all α1 < · · · < αl ′ < α0 that

h(s)k (l
′ + 1)(α1, . . . , αl , . . . , αl ′ , α0) < hk(l + 1)(α1, . . . , αl , α0).

Finally, in case III.2.d. we have l = l ′ and d ′ has the symbol s while d does not.
The result follows from the fact that for almost all α1 < · · · < αl < α0 that

h(s)k (l + 1)(α1, . . . , αl , α0) < hk(l + 1)(α1, . . . , αl , α0). �
In [2], the set of descriptions D was extended to a set D, and a property called
“condition D” was introduced. Here, we have no need of D, and condition D
simplifies to a fairly trivial condition. Nevertheless, to maintain consistency with
[2] we define:

Definition 2.14 (Condition D). If d = d (fm) ∈ Dm(K1, . . . , Kt), then we say d
satisfies condition D if d > ·m.
If d satisfies condition D, then ∀∗h1, . . . ∀∗ht (d ; h1, . . . , ht) > �m, that is,

∀∗h1, . . . , ht ∀∗α1, . . . , αm (d ; h1, . . . , ht)(α1, . . . , αm) > αm. The significance of
this is explained in Remark 2.16 below.
Next,we showhow touse descriptions to generate equivalence classes of functions
from �13 to �

1
3 with respect to themeasuresW

m (in [2], themeasuresWm
3 were used).

Definition 2.15 (Ordinal represented by description). Fix m ∈ �, and let d ∈
Dm(K1, . . . , Kt) satisfy condition D. Let g : �13 → �13 be given.
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• Wedefine (g; d ;Wm;K1, . . . , Kt) to be the ordinal represented w.r.t.Wm by the
function which assigns to the tuple (. . . , [f]S
1 , . . . ) represented by f : �m+1 →
�13 of continuous type the value (g; d ;f; K̄).

• (g; d ;f; K̄) is represented w.r.t. K1 by the function which assigns to [h1] the
ordinal (g; d ;f; h1, K2, . . . , Kt).

• In general, (g; d ;f; h1, . . . , hi−1, Ki , . . . , Kt) is represented w.r.t. Ki by the
function which assigns to [hi ] the ordinal

(g; d ;f; h1, . . . , hi−1, hi , Ki+1, . . . , Kt).

• Finally, (g; d ;f; h1, . . . , ht) = g(f((d ; h1, . . . , ht))).
Remark 2.16. If d satisfies condition D, then (g; d ;Wm; K̄) is well defined. To
see this, let f,f′ : �m+1 → �13 be strictly increasing, continuous, and represent the
same tuple of ordinals, that is, (. . . , [f]S
1 , . . . ) = (. . . , [f

′]S
1 , . . . ). Then there is a
c.u.b. C ⊆ �1 such that for all permutations 
 = (m, i1, . . . , im) and all functions
h : dom(<
)→ C of the correct type, f([h]) = f′([h]). Now,

∀∗h1, . . . , ht ∀∗α1, . . . , αm (d ; h1, . . . , ht)(α1, . . . , αm) ∈ C.
This, in fact, holds for all h̄ having range in C . Since

∀∗h1, . . . , ht (d ; h1, . . . , ht) > �m,
it follows there is a permutation 
 such that ∀∗h1, . . . , ht (d ; h1, . . . , ht) can be
represented by a function h such that either h : dom(<
̄)→ C is of the correct type,
or [h] is the supremum of ordinals represented by such functions (see the following
remark). Since f, f′ are continuous, in either case we have f([h]) = f′([h]).

Remark 2.17. We have used the following fact. If h : (�1)m → �1 is such that
[h]Wm

1
> �m (i.e., ∀∗Wm

1
α1, . . . , αm h(α1, . . . , αm) > αm), then there is a partial

permutation 
 beginning with m which describes the ordering given by h on a
c.u.b. set. That is, 
 is of the form 
 = (m, i2, . . . , ik) where k ≤ m and there is a
c.u.b. D ⊆ �1 such that for all �α, �� ∈ Dm, h(�α) < h(��) iff (αm, αi2 , . . . , αik ) <lex
(�m.�i2 , . . . , �im ). The complete “type” of h is determined by 
 and the specification
that h is either continuous (on a c.u.b. set), of uniform cofinality �, or h(�α) has
uniform cofinality αm, αi2 , . . . , or αik . In all cases, if h has range in C

′ (the limit
points of C ), then [h] is a limit of [h′] where h′ : dom(<


′
) → C is of type 
′ for

some permutation 
′ extending 
. The reader can consult Lemma 4.23 of [3] for
more details.

Next we introduce the lowering operator L on D. For every description d ∈
Dm(K1, . . . , Kt), L applied to d gives the largest description L(d ) ∈ Dm(K̄) below
d , except when d is the (unique) minimal description in Dm(K̄) in which case L(d )
will be undefined.L(d ) depends on the measure sequence K̄ as well, so we will write
L(d ; K̄) when there is danger of confusion.
First, given measures K1, . . . , Kt and an integer k (where 1 ≤ k ≤ t or k = ∞),
an operator Lk is defined on those d satisfying k(d ) ≥ k, except for a unique dkmin
which is called the minimal description with respect to Lk . We then define L = L1.
Lk is defined by reverse induction on k as follows (we write Lk(d ) throughout this
definition in place of Lk(d ; K̄)):
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Definition 2.18 (Operator Lk). Let d ∈ Dm(K1, . . . , Kt) with k(d ) ≥ k where
1 ≤ k ≤ t or k =∞. We define Lk(d ) through the following cases.
I. k = ∞. So, d is basic with d = ·p for 1 ≤ p ≤ m. If p > 1, then set

L∞(d ) = ·p−1. If p = 1, d is minimal with respect to L∞.
II. 1 ≤ k ≤ t.
1. k = k(d )
a. d is basic, so d = αk,p. If p > 1, then Lk(d ) = αk,p−1. If p = 1, d is
minimal with respect to Lk .

b. d = hk(l + 1)(d1, . . . , dl , d0), with l = r − 1 and Kk = Sr1 . Then
Lk(d ) = hsk(l + 1)(d1, . . . , dl , d0)

if l ≥ 1, and if l = 0, that is, d = hk(1)(d0), then Lk(d ) = d0.
c. d as in (b), but l < r − 1. If Lk+1(d0) is defined (here, and below, if
k = t then we regard k + 1 as being∞), and also is > dl in case l ≥ 1,
then

Lk(d ) = hk(l + 2)(d1, . . . , dl ,Lk+1(d0), d0).
If Lk+1(d0) is not defined, or is ≤ dl (and l ≥ 1), then we set Lk(d ) =
hsk(l + 1)(d1, . . . , dl , d0) if l ≥ 1; otherwise Lk(d ) = d0.

d. d = hsk(l + 1)(d1, . . . , dl , d0). If Lk+1(dl ) is defined and also satisfies
Lk+1(dl ) > dl−1 if l ≥ 2, set

Lk(d ) = hk(l + 1)(d1, . . . , dl−1,Lk+1(dl ), d0).
Otherwise, set Lk(d ) = hsk(l)(d1, . . . , dl−1, d0) if l ≥ 2, and for l = 1,
Lk(d ) = d0.

2. k < k(d ), Kk =Wr
1 .

a. d is not minimal with respect to Lk+1. Then Lk(d ) = Lk+1(d ).
b. d is minimal with respect to Lk+1. Then Lk(d ) = αk,r .

3. k < k(d ), Kk = Sr1
a. d is not minimal with respect to Lk+1. Then Lk(d ) = hk(1)(Lk+1(d )).
b. d is minimal with respect toLk+1. Then d is minimal with respect toLk .

Remark 2.19. L(d ) for d = d (fm) ∈ Dm(K̄) depends only on d and not on the
superscript (fm). That is, if we regard Dm(K̄) ⊆ Dm′(K̄) for m < m′, then the L
operations agree on Dm(K̄). So, we may unambiguously write L(d ; K̄).
Example. For the sequence of measuresK1 = S41 ,K2 = S

4
1 ,K3 = S

3
1 ,K4 =W

4
1 ,

and d (f4) = h1(3)(α4,2, h2(2)(α4,1, ·3), ·4),
L(d ) = h1(4)(α4,2, h2(2)(α4,1, ·3), h2(1)(h3(1)(·3)), ·4).

Lemma 2.20. If d ∈ Dm(K1, . . . , Kt) and k(d ) ≥ k, then Lk(d ) is defined except
when d is the unique minimal (with respect toLk) description dkmin inDm(K1, . . . , Kt).
Furthermore, Lk(d ) ∈ Dm(K1, . . . , Kt) (i.e., Lk(d ) is a description, not just a pre-
description). Also, Lk(d ) (if defined ) is the largest description d ′ in Dm(K1, . . . , Kt)
with k(d ′) ≥ k satisfying d ′ < d .
Proof. The fact that Lk(d ) is a description, not just a predescription, follows
immediately from Definition 2.18 in cases II.1.b,c,d.
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Suppose Lk(d ′) is not defined, where k(d ′) ≥ k. We show that d ′ is the minimal
description d ′′ inDm(K̄) with k(d ′′) ≥ k. Suppose firstKk =Wr

1 . From II.1.a. and
II.2. of Definition 2.18 we see that Lk(d ′) is defined unless d ′ = αk,1. If k(d ) ≥ k
and d �= d ′, then d ′ < d from cases I.1. and III.1. of Lemma 2.13. Suppose next
that Kk = Sr1 . In cases II.1.b,c,d of Definition 2.18 we see that Lk(d ′) is always
defined, so we must be in case 3 of 2.18. Further, d ′ must be minimal with respect
to Lk+1 (note that k(d ′) ≥ k + 1 now). By induction d ′ is <-minimal among those
d with k(d ) ≥ k + 1. Suppose now k(d ) ≥ k and d �= d ′. We show d ′ < d .
If k(d ) ≥ k + 1, then the result follows as d ′ is <-minimal among those d with
k(d ) ≥ k + 1. So, suppose k(d ) = k. Say d = h(s)k (l + 1)(d1, . . . , dl , d0). Since
k(d0) ≥ k + 1, we have d ′ ≤ d0. It follows that d ′ < d from III.2. of Lemma 2.13.
For the remainder of the proof we show that Lk(d ) is maximal among those
d ′ ∈ Dm(K̄) with k(d ′) ≥ k and d ′ < d . So, suppose d ′ < d , and k(d ′) ≥ k. We
show that d ′ ≤ Lk(d ).
Suppose first that k(d ) = k. If Kk = Wr

1 , then d is of the form d = αk,p where
p > 1. In this case Lk(d ) = αk,p−1 from II.1.a. of Definition 2.18. Since d ′ < d we
must have k(d ′) = k from II.1. of Lemma 2.13 and so d ′ = αk,p′ where p′ < p.
So, from III.1. of Lemma 2.13 we have d ′ ≤ Lk(d ). Assume next thatKk = Sr1 . So,
d = h(s)k (l + 1)(d1, . . . , dl , d0).
Consider first the case k(d ′) > k = k(d ). Since d ′ < d , from II.2. of Lemma 2.13
we have d ′ ≤ d0. From cases II.1.b,c,d of Definition 2.18 we see that Lk(d ) is either
of the form d0, and we are done, or else of the form h

(s)
k (l

′ + 1)(d1, . . . , d ′l ′ , d0) for
some l ′ ≥ 1. Since k(d0) > k in the second case, we have from II.2. of Lemma 2.13
that d0 < Lk(d ) and so d ′ ≤ d0 < Lk(d ).
Consider next the case k(d ′) = k = k(d ). So now d ′ = h(s)k (l

′ +
1)(d ′1, . . . , d

′
l ′ , d

′
0). Suppose first that there is a least j ≤ min{l, l ′} such that d ′j �= dj ,

so d ′j < dj from III.2.a. of Lemma 2.13. If j = 0 then by induction d
′
0 ≤ Lk+1(d0) <

d0 ≤ Lk(d ) (the last inequality holds since Lk(d ) is either d0 or of the form h(s)k (a+
1)(· · · , d0)). So, assume j > 0. If l > j or it is the case that l = j and d does not have
the symbol s , then Lk(d ) is of the form h(s)k (a +1)(d1, . . . , dj , fj+1, . . . , fa, d0) for
some a ≥ j. Then d ′ < Lk(d ) follows from III.2.a. of Lemma 2.13. If l = j and d
has the symbol s , then since d ′j < dj wemust have thatLk+1(dj) is defined and d ′j ≤
Lk+1(dj). If j ≥ 2 note that this also implies thatdj−1 = d ′j−1 < d ′j ≤ Lk+1(dj). So,
Lk(d ) = hk(j + 1)(d1, . . . , dj−1,Lk+1(dj), d0) from II.1.d. of Definition 2.18 (for
j = 1 we have Lk(d ) = kk(2)(Lk+1(d1), d0)). If d ′j < Lk+1(dj), then d ′ < Lk(d )
from III.2.a. of Lemma 2.13. If d ′j = Lk+1(dj), then d ′ ≤ Lk(d ) follows from cases
III.2.c,d of Lemma 2.13. Suppose next that for all j ≤ min{l, l ′} that d ′j = dj . If
l ′ < l , then from III.2.b. of Lemma 2.13we have that d ′has the symbol s (in this case
l ′ ≥ 1). Since l ′ < l , Lk(d ) is of the form h(s)k (a + 1)(d1, . . . , dl ′ , fl ′+1, . . . , fa, d0)
for some a ≥ l ′. Then d ′ ≤ Lk(d ) follows from III.2.b. of Lemma 2.13. If l ′ > l ,
then from III.2.c. of 2.13, d does not have the symbol s . Also, d ′l+1 < d

′
0 = d0 and if

l > 0 then we also have d ′l+1 > dl (if l = 0 then this last inequality is not a require-
ment in the definition of a description). Thus by inductionLk+1(d0) is defined and if
l > 0 we also haveLk+1(d0) ≥ d ′l+1 > dl . So, from II.1.c. of Definition 2.18 we have
Lk(d ) = hk(l + 2)(d1, . . . , dl ,Lk+1(d0), d0). By induction d ′l+1 ≤ Lk+1(d0) and so
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from cases III.2.a,d, of Lemma 2.13 we have d ′ ≤ Lk(d ). If l ′ = l then from III.2.d.
of 2.13, d ′ has the symbol s and d does not. We must have l > 0 as otherwise d ′ is
not a description. Then Lk(d ) is of the form h(s)k (a+1)(d1, . . . , dl , fl+1, . . . , fa, d0)
for some a ≥ l . From cases III.2.b,d of Lemma 2.13 we have d ′ ≤ Lk(d ).
Suppose next that k(d ) > k. Assume first that k(d ′) = k. If Kk = Wr

1 , then
either Lk+1(d ) is defined (and Lk(d ) = Lk+1(d )) or else Lk(d ) = αk,r from II.2.b.
of Definition 2.18 (again, if k = t then by k + 1 we mean∞). Since d ′ = αk,p for
some p ≤ r, we have from either I.1. or III.1. of Lemma 2.13 that d ′ ≤ Lk(d ).
So, assume Kk = Sr1 . Thus, d

′ is of the form d ′ = h(s)k (l + 1)(d
′
1, . . . , d

′
l , d

′
0).

From I.2. of 2.13 we have d ′0 < d . By induction, d
′
0 ≤ Lk+1(d ). From II.3.a.

of Definition 2.18 we have Lk(d ) = hk(1)(Lk+1(d )). We then have from cases
III.2.a,c,d of Lemma 2.13 that d ′ ≤ Lk(d ). Finally, assume k(d ′) > k. By
induction, d ′ ≤ Lk+1(d ). If Kk = Wr

1 , then Lk(d ) = Lk+1(d ) and we are done.
If Kk = Sr1 then Lk(d ) = hk(1)(Lk+1(d )) and from II.2. of Lemma 2.13 we have
Lk+1(d ) < Lk(d ) in this case, so d ′ < Lk(d ). �
Definition 2.21 (Sup of a description). If d ∈ Dm(K1, . . . , Kt), and 1 ≤ n ≤ t,
then by supKn,...,Kt (d ) we mean the description d

′ ∈ Dm(K1, . . . , Kt) defined as
follows.

1. If d = αi,j , then d ′ = αi,j if i < n, and d ′ = ·1 if i ≥ n.
2. If d = ·r , then d ′ = d .
3. If d = h(s)k (l + 1)(f1, . . . , fl , f0), where k ≥ n, then d ′ = ·r+1 if f0 = ·r , and
otherwise d ′ = f′

0 = supKn,...,Kt (f0).

4. If d = h(s)k (l +1)(f1, . . . , fl , f0) where k < n, then d
′ = f′

0 = supKn,...,Kt (f0)
if f′

0 �= f0. Otherwise, let i > 0 be least such that f′
i = supKn,...,Kt (fi) �= fi

(if such an i does not exist, set d ′ = d ). If f′
i < f0, set

d ′ = hsk(i + 1)(f1, . . . , fi−1, f
′
i , f0).

If f′
i ≥ f0, set d ′ = hk(i)(f1, . . . , fi−1, f0) if i > 1, and for i = 1, d ′ =

hk(1)(f0).

The following lemma gives the properties of the supremum of a description.
Property 6 in particular justifies the use of the term “sup.”

Lemma 2.22. Let d ∈ Dm(K1, . . . , Kt), and 1 ≤ n ≤ t. Then d ′ = supKn,...,Kt (d )
satisfies the following.

1. d ′ ∈ Dm(K1, . . . , Kn−1).
2. If d ∈ D(K1, . . . , Kn−1) then d ′ = d .
3. k(d ′) ≥ k(d ).
4. d ′ ≥ d .
5. If d satisfies condition D then so does d ′.
6. ∀∗h1 . . . hn−1 ∀α < (d ′; h1, . . . , hn−1) ∀∗hn . . . ht (α < (d ; h1, . . . , ht)).
Proof. We prove properties (1)–(4) by reverse induction on k(d ). We let d ′

abbreviate supKn,...,Ky (d ). We first prove property (1). If k(d ) = ∞ then d = ·r
in which case d ′ = ·r ∈ Dm(K1, . . . , Kn−1). If d = αi,j and i < n then
d ′ = αi,j ∈ Dm(K1, . . . , Kn−1). If i ≥ n then d ′ = ·1 ∈ Dm(K1, . . . , Kn−1).
If d is of the form d = h(s)k (l + 1)(f1, . . . , fl , f0) where k ≥ n, then either
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d ′ = ·r+1 ∈ Dm(K1, . . . , Kn−1) or else d ′ = f′
0 = supKn,...,Kt (f0) which is in

Dm(K1, . . . , Kn−1) by induction. Suppose then that d = h(s)k (l + 1)(f1, . . . , fl , f0)
where k < n. If f′

0 > f0 (where again f′
0 denotes supKn,...,Kt (f0)) then

d ′ = f′
0 which is in Dm(K1, . . . , Kn−1) by induction. Otherwise, as in (4) of

Definition 2.21 let i > 0 be least such that f′
i > fi . For j < i we have

fj = f′
j = supKn,...,Ky (fj) which is in Dm(K1, . . . , Kn−1) by induction. We either

have d ′ = hsk(i + 1)(f1, . . . , fi−1, f
′
i , f0) or d

′ = hk(i)(f1, . . . , fi−1, f0). or
d ′ = hk(1)(f0). So, in all cases d ′∈ Dm(K1, . . . , Kn−1).
We next prove property (2). Suppose d ∈ Dm(K1, . . . , Kn−1). If k(d ) = ∞ then
d = ·r , and d ′ = d from (2) of Definition 2.21. If d = αi,j then i < n and so d ′ = d
from (1) of Definition 2.21. So, suppose d = h(s)k (l + 1)(f1, . . . , fl , f0). We must
have k < n since d ∈ Dm(K1, . . . , Kn−1). Also, all the fi are in Dm(K1, . . . , Kn−1)
and so by induction f′

i = fi for all 0 ≤ i ≤ l . From (4) of Definition 2.21 we have
d ′ = d .
We next prove property (3). If k(d ) = ∞, than d ′ = d so k(d ′) = k(d ). If
d = αi,j then d ′ is either αi,j so k(d ′) = k(d ), or d ′ = ·1 in which case k(d ′) =
∞ > k(d ). Assume next that d = h(s)k (l + 1)(f1, . . . , fl , f0). If k ≥ n then d ′ is
either ·r+1 (where f0 = ·r) and so k(d ′) = ∞ > k(d ) or d ′ = f′

0. By induction,
k(f′

0) ≥ k(f0). So, k(d ′) = k(f′
0) ≥ k(f0) > k = k(d ). Suppose next that

k < n. If f′
0 �= f0 then d ′ = f′

0 and so k(d
′) = k(f′

0) ≥ k(f0) > k = k(d ) by
induction. If d ′ = d the result is trivial, so we may assume there is a least i > 0 such
that f′

i �= fi . In all cases of (4) of Definition 2.21 we have that d ′ is of the form
h(s)k (a)(· · · ) and so k(d ′) = k = k(d ).
We next prove property (4). If k(d ) =∞, then d ′ = d . If d = αi,j and i < n then
d ′ = d . If i ≥ n then d ′ = ·1 > d . So, assume d = h(s)k (l +1)(f1, . . . , fl , f0). First
suppose k ≥ n. If f0 = ·r , then d ′ = ·r+1 and ·r+1 > d from I.2. of Lemma 2.13.
Otherwise from (3) of Definition 2.21 we have d ′ = f′

0. By induction f
′
0 ≥ f0.

Moreover, since f0 /∈ Dm(K1, . . . , Kn−1) (as k(f0) > k(d ) ≥ n and k(f0) < ∞)
but f′

0 ∈ Dm(K1, . . . , Kn−1) (by (1) of the lemma), we must have f′
0 �= f0 and so

f′
0 > f0. Also, k(f

′
0) ≥ k(f0) > k(d ) by property (3) of the lemma. It then follows

from I.2. of Lemma 2.13 that d < d ′.
Suppose next (still proving property (4)) that k < n. If d ∈ Dm(K1, . . . , Kn−1),
then from property (2) we have d ′ = d and we are done. Otherwise, let i ≥ 0 be
least so that fi /∈ Dm(K1, . . . , Kn−1). From property (1) we have that f′

i �= fi .
From property (2), i is also least such that f′

i �= fi . If i = 0, then d ′ = f′
0. Since

f′
0 > f0 in this case, we have that d

′ > d from II.2.a of Lemma 2.13. Suppose then
that i > 0. Since f′

i ∈ Dm(K1, . . . , Kn−1) we have f′
i �= fi , and therefore f′

i > fi .
It then follows again from II.2.a of Lemma 2.13 that d ′ > d .
Property (5) is clear from (4). We do not give the complete details of the proof of
(6), but rather illustrate the proof with an example we consider next. �
Example. If K1 = S31 , K2 = S

3
1 , K3 =W

3
1 , K4 = S

3
1 , and

d (f4) = h1(2)(α3,1, h2(2)(h4(1)(·2), ·3)),
then d ′ = supK3,K4 (d ) = h2(1)(·3). To see property (6), fix h1, h2 and α < �5 with
α < (d ′; h1, h2). Let (�1, . . . , �4) 
→ α(�1, . . . , �4) represent α with respect toW 4

1 .

https://doi.org/10.1017/jsl.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2016.7


DESCRIPTIONS AND CARDINALS BELOW �15 1193

Then

∀∗W 4
1
�1, . . . , �4 α(�1, . . . , �4) < (d ′; h1, h2)(�1, . . . , �4) = h2(1)(�3).

From the definition of h2(1) it follows that ∀W 4
1
�1, . . . , �4 ∃� < �3 α(�̄) <

h2(2)(�, �3). Since �(�1, . . . , �4) < �3, there is a function g : �1 → �1 such that
∀W 4

1
�̄ �(�̄) < g(�2). Now, ∀∗W 3

1
h3∀∗S31 h4 ([h4(1)]W 1

1
> [g]W 1

1
). Thus,

∀∗W 3
1
h3∀∗S31 h4 ∀

∗
W 4
1
�̄ α(�1, . . . , �4) < h2(2)(h4(1)(�2), �3)

< h1(2)(α3,1, h2(2)(h4(1)(�2), �3))

= (d ; h̄)(�̄).

Note that it follows from Lemma 2.22 that if d ∈ D(K1, . . . , Kt) then d < d ′ =
supKn,...,Kt d iff d /∈ Dm(K1, . . . , Kn−1). For if d = d ′ then by (1) of Lemma 2.22
we have d ∈ Dm(K1, . . . , Kn−1). Conversely, if d ∈ Dm(K1, . . . , Kn−1) then d = d ′
by (2).

Lemma 2.23. Let d ∈ Dm(K1, . . . , Kn, . . . , Kt) and suppose k(d ) > n. Then
supKn,...,Kt (d ) = supKn+1,...,Kt (d ).

Proof. By reverse induction on k(d ). If d = αi,j , then i = k(d ) > n and
so from (1) of Definition 2.21 we have supKn,...,Kt (d ) = supKn+1,...,Kt (d ) = ·1. If
d = ·r , then from (2) of 2.21 we have that both supremums are equal to ·r . If
d = h(s)i (l + 1)(f1, . . . , fl , f0), then i = k(d ) > n. So, from (3) of 2.21, if f0 = ·r
then both supremums are equal to ·r+1. Otherwise, by induction we have that
supKn,...,Kt (f0) = supKn+1,...,Kt (f0) (note that k(f0) > k(d ) > n) and we are done
since from (3) of 2.21 we have supKn,...,Kt (d ) = supKn,...,Kt (f0) and supKn+1,...,Kt (d ) =
supKn+1,...,Kt (f0). �
The next lemma mentions one more property of the supremum.

Lemma 2.24. Let d ∈ Dm(K1, . . . , Kn−1), q ∈ Dm(K1, . . . , Kn−1, Kn, . . . , Kt),
and suppose q ≤ d (both considered as elements of Dm(K1, . . . , Kt)). Then
supKn,...,Kt (q) ≤ d .
Proof. If q = d then q ∈ Dm(K1, . . . , Kn−1) and from (2) of Lemma 2.22 it
follows that supKn,...,Kt (q) = d . So, assume q < d . Ifd < supKn,...,Kt (q), then from(6)
of Lemma 2.22 with α = (d ; h1, . . . , hn−1) we would have that ∀∗h1, . . . , ht (d ; h̄) <
(q; h̄), that is, d < q, a contradiction.
We can also prove the lemma in a purely syntactic manner. We give this
proof. Let q′ = supKn,...,Kt (q). We may assume q /∈ Dm(K1, . . . , Kn−1) by
(2) of Lemma 2.22. In particular, q �= d and thus q < d . We proceed by
reverse induction on k = min{k(q), k(d )}. If k(q) < k(d ), then q must be of
the form q = h(s)k (l + 1)(d1, . . . , dl , d0) (q cannot be of the form αk,j as then
q ∈ Dm(K1, . . . , Kn−1)). FromI.2 ofLemma2.13wehave thatd0 < d . By induction,
d ′0 = supKn,...,Kt d0 ≤ d . If d0 /∈ Dm(K1, . . . , Kn−1) then from (4) of Definition 2.21
we have that q′ = d ′0 ≤ d . If d0 ∈ Dm(K1, . . . , Kn−1), then let i > 0 be least
such that d ′i = supKn,...,Kt (di) > di , that is, di /∈ Dm(K1, . . . , Kn−1). From (4)
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of Defintion 2.21 we have that q′ = hsk(i + 1)(d1, . . . , di−1, d
′
i , d0) or else q

′ =
hk(i)(d1, . . . , di−1, d0). In either case, from I.2 of Lemma 2.13 we have that q′ < d .
If k(q) > k(d ) = k, then d is of the form d = h(s)k (l + 1)(d1, . . . , dl , d0). From
II.2 of Lemma 2.13 we have q ≤ d0. By induction, q′ ≤ d0. Since d0 < d , q′ < d .
Finally, suppose k = k(q) = k(d ). So, q = h(s)k (lq + 1)(q1, . . . , qlq , q0) and

d = h(s)k (ld + 1)(d1, . . . , dld , d0). First assume that there is an l ≤ min{lq, ld}
such that ql �= dl , and let l be the least such. In particular, for i < l we
have qi ∈ Dm(K1, . . . , Kn−1). If ql ∈ Dm(K1, . . . , Kn−1) then q′ is of the form
hk(l + 1)(q1, . . . , ql , q0) or h

(s)
k (r + 1)(q1, . . . , ql , . . . , qr , q0) for some r > l (from

(4) of Definition 2.21). In either case, q′ < d from III.2.a of Lemma 2.13.
So, suppose ql /∈ Dm(K1, . . . , Kn−1). Then from (4) of Definition 2.21 we have
q′ = hsk(l + 1)(q1, . . . , q

′
l , q0) where q

′
l = supKn,...,Kt ql . We use here the fact that

by induction, q′l ≤ dl < d0 = q0. By induction, q′l ≤ dl and so from III.2.b and
III.2.d of Lemma 2.13 we have q′ ≤ d . Next assume that for all l ≤ min{lq, ld}
we have ql = dl . We must have lq > ld as otherwise q ∈ Dm(K1, . . . , Kn−1). From
III.2.c of Lemma 2.13 it follows that d does not have the symbol s . From (4) of
Definition 2.21 we have that q′ is either of the form hsk(r + 1)(q1, . . . , qr , q0) for
r > ld or hk(r + 1)(q1, . . . , qr , q0) for r ≥ ld . If r = ld then q′ = d , and in the other
cases q′ < d from III.2.c of Lemma 2.13 again. �
Definition 2.25 (Cofinality of d ). Let d̄ = (d ; K̄) where K̄ = K1, . . . , Kt and
d ∈ Dm(K1, . . . , Kt). We say d̄ has cofinality κ (= �, �1, or �2) if ∀∗h1, . . . , ht
cof(d ; h1, . . . , ht) = κ.

The next lemma reformulates the cofinality of a description in a purely syntactic
manner. For the purposes of this paper, the reader can take the following lemma as
the definition of cof(d̄ ).

Lemma 2.26. Let d̄ = (d ; K̄) where K̄ = K1, . . . , Kt and d ∈ Dm(K1, . . . , Kt).
Then cof(d̄ ) is determined as follows.

1. If d = αi,j , then cof(d̄ ) = �.
2. If d = ·r , then cof(d̄ ) = �1 if r = 1, and cof(d ) = �2 if r > 1.
3. If d = hi(l + 1)(d1, . . . , dl , d0), and Ki = Sr1 , then cof(d̄ ) = � if l = r − 1,
and if l < r − 1 then cof(d̄ ) = cof d0.

4. If d = hsi (l + 1)(d1, . . . , dl , d0), then cof(d̄ ) = cof(dl ).

Note that cof(d̄ ) depends on the measure sequence K̄ as well as d . However,
it is clear form the definition that if d ∈ Dm(K̄) and K̄ ′ is a measure sequence
extending K̄ , then cof(d ; K̄) = cof(d ; K̄ ′). Later we will be considering extensions
of measure sequences, but we will not be changing the individual measures. Thus,
we will generally just write cof(d ).
Again, we do not give a detailed proof of Lemma 2.26 but illustrate the proof
with an example.

Example. We use the same measure sequence K̄ and description d (f4) from
the previous example. According to Lemma 2.26 we should have cof(d ) =
cof(h2(2)(h4(1)(·2), ·3)) = cof(·3) = �2. To see this, consider four functions
h1, . . . , h4 of the appropriate types corresponding to K1, . . . , K4. We show that
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the ordinal (d ; h1, . . . , h4) has cofinality �2. Suppose α < (d ; h̄). Representing α
with respect toW 4

1 we have

∀∗W 4
1
�1, . . . , �4 α(�1, . . . , �4) < (d ; h̄)(�̄) = h1(2)(α3,1, h2(2)(h4(1)(�2), �3)).

Since K1 = S31 (i.e., K1 = S
r
1 with r = 3), and this description begins with h1(2),

that is, begins with an invariant smaller than the r value, we have that there is a
function g with [g]W 4

1
< (h2(2)(h4(1)(·2), ·3); h̄) such that

∀∗W 4
1
�1, . . . , �4 α(�1, . . . , �4) < h1(3)(α3,1, g(�̄), h2(2)(h4(1)(�2), �3)).

Thus, the map

[g]W 4
1

→ [�̄ 
→ h1(3)(α3,1, g(�̄), h2(2)(h4(1)(�2), �3))]W 4

1

is cofinal from (h2(2)(h4(1)(·2), ·3); h̄) to (d ; h̄).
Since K2 = S31 , and we use h2(2) in the bound for [g], we have that there is a
function g2 with [g2]W 4

1
< (·3; h̄) such that

∀∗W 4
1
�̄ α(�̄) < h1(3)(α3,1, h2(3)(h4(1)(�2), g2(�̄), �3), h2(2)(h4(1)(�2), �3)).

So, the map

[g2]W 4
1

→ [�̄ 
→ h1(3)(α3,1, h2(3)(h4(1)(�2), g2(�̄), �3), h2(2)(h4(1)(�2), �3))]W 4

1

is cofinal from (·3, h̄) to (d ; h̄).
Finally, (·3; h̄) has cofinality �2, since if [g2]W 4

1
< (·3; h̄) then ∀W 4

1
�̄ g2(�̄) < �3,

and so there is a function h : �1 → �1 such that ∀W 4
1
�̄ g2(�̄) < h(�2). The map

sending [h]W 1
1
to the [�̄ 
→ h(�2)]W 4

1
is thus cofinal from�2 to (·3; h̄) (this last part is

just the argument that�4 = (·3; h̄) has cofinality�2). Altogether, we have produced
a cofinal map from �2 into (d ; h̄), so (d ; h̄) has cofinality �2.

Proposition 2.27. Let p̄ = (p; S̄) = (p;S1, . . . , St) where p ∈ Dm(S̄). Let
=
p = (p; S̄, K) where K = Sn1 if cof(p) = �2, and K = W

n
1 if cof(p) = �1.

Let j ≤ k(p) and j ≤ t + 1. If cof(p) = �2, then kt+1, which represents the
function corresponding to K , occurs in the functional representation of Lj(=p), that is,
Lj(=p) /∈ Dm(S1, . . . , St). If cof(p) = �1, then �t+1,n , which represents the largest
ordinal corresponding to K , occurs in the functional representation of Lj(=p).
Proof. By reverse induction on k(p). We suppose cof(p) = �2, the other case
being similar. Then K = Sn1 for some n ≥ 1.
If k(p) = ∞, then p = ·r . Then r > 1 as cof(p) = �2 and then kt+1(1)(·r−1)
is a subdescription of Lj(=p) from cases I and II.3.a. in Definition 2.18 of the L
operation (using here that j ≤ t + 1).
If k(p) < ∞, then p must be of the form p = h(s)i (l + 1)(q1, . . . , ql , q0) (if
p = αi,j then cof(p) = �). Suppose first that p has the symbol s , so p is of
the form p = hsi (l + 1)(q1, . . . , ql , q0). So, j ≤ k(p) = i . Since cof(p) = �2, we
have cof(ql ) = �2. By induction, kt+1 appears in the functional representation of
Li+1(ql) (Li+1(ql ) here is computed with respect to S̄�K). Since ql is strictly greater
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than all q1, . . . , ql−1, and k(q1), . . . , k(ql) ≥ i +1, it follows from Lemma 2.20 that
Li+1(ql) is greater than or equal to all q1, . . . , ql−1. Since Li+1(ql ) has kt+1 in its
functional representation, and the others do not, Li+1(ql ) is strictly greater than
q1, . . . , ql−1. Thus,

Li (=p) = hi(l + 1)(q1, . . . , ql−1,Li+1(ql ), q0)
from case II.1.d. in Definition 2.18 (we are assuming here that l ≥ 2, the case l = 1
is easier). So, kt+1 occurs in the functional representation of Li(=p), and it follows
easily that it also therefore appears in the functional representation of Lj(=p).
Suppose now thatp = hi(l+1)(q1, . . . , ql , q0). Then hi(l+1) is a proper invariant
of hi (i.e., Ki = S

ri
1 and l + 1 < ri ), as otherwise cof(p) = �. Also, cof(q0) = �2,

and so by induction kt+1 appears in the functional representation of Li+1(q0).
Arguing as in the previous case, we have that

Li(=p) = hi(l + 2)(q1, . . . , ql ,Li+1(q0), q0),
using case II.1.c. of Definition 2.18, and we are done as before. �
The converse of Proposition 2.27 is also true. We state this next.

Proposition 2.28. Let p̄ = (p; S̄) = (p;S1, . . . , St) where p ∈ Dm(S̄). If
cof(p) = � then for any sequence K̄ and any j ≤ k(p), if =p = (p; S̄ , K̄), then
Lj(=p) (if defined ) is in Dm(S̄) (that is, Lj(=p) does not involve any of the measures
from K̄).
Proof. Assume cof(p̄) = �. We proceed by reverse induction on j. If j = ∞
then p = ·r , and this case cannot occur from (2) of Lemma 2.26. Assume
now 1 ≤ j ≤ t. If j < k(p), then by induction Lj+1(=p) ∈ Dm(S̄) and then
from II.2. and II.3. of Definition 2.18 it follows that Lj(=p) ∈ Dm(S̄) as well.
Assume now that j = k(p). If p = αi,j , then from II.1.a. of 2.18 we see that
Lj(=p) ∈ Dm(S̄). Suppose p = hk(l + 1)(d1, . . . , dl , d0) with Kk = Sr1 . If l = r − 1
then Lj(=p) = hsk(l + 1)(d1, . . . , dl , d0) and the result is immediate. If l < r − 1
then cof(p) = cof(d0). By induction, Lj+1(d0) (if defined; here and below we
mean computed with respect to the sequence S̄, K̄) is in Dm(S̄). From II.1.c.
of 2.18 we have that Lj(=p) is either of the form hsk(l + 1)(d1, . . . , dl , d0), or of
the form hk(l + 2)(d1, . . . , dl ,Lj+1(d0), d0), or equal to d0. In all cases, these
descriptions lie in Dm(S̄). Suppose now that p = hsk(l + 1)(d1, . . . , dl , d0). In this
case cof(p) = cof(dl ). By induction Lj+1(dl ), if defined, lies in Dm(S̄). From
II.1.d. of 2.18 we have that Lj+1(=p) is of the form hk(l + 1)(d1, . . . ,Lj+1(dl ), d0)
or hsk((l)(d1, . . . , dl−1, d0) or d0. The result follows in all cases. �

§3. Representation of cardinals below �15. We state our main result.
Theorem 3.1. Let m > 0, S1, . . . , St ∈

⋃
i(W

i
1 ∪ Si1) be a sequence of canonical

measures. Let d = d (fm) ∈ Dm(S1, . . . , St) be defined and satisfy condition D with
respect to S1, . . . , St . Then, (id; d ;Wm; S̄) is a cardinal, where id : �13 → �13 is the
identity function.

Remark 3.2. As mentioned previously, the converse is also true, that is, every
successor cardinal below the predecessor of �15 is of the form (id; d ;W

m; S̄).
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In [2] this was shown for the measures Wm
3 , however the argument given there

works also for the Wm. Namely, it was shown in [2] that if g is strictly greater
than the identity function (almost everywhere with respect to an appropriate mea-
sure), then one can show that (g; d ;Wm

3 ; S̄) is not a cardinal. This was, in fact, the
“main theorem” on descriptions from [2]. This argument carries over exactly for
the measureWm (the measuresWm orWm

3 do not really play a role in the proof).

For the remainder of this paper, d̄ (or p̄, q̄, etc.) will denote a tuple d̄ = (d ; S̄),
where S̄ is a sequence of measures each of which is in

⋃
i(W

i
1 ∪ Si1), m > 0 is an

integer, andd ∈ Dm(S̄). The strategy of our proof is as follows.Firstwewill consider
for d̄ = (d ; S̄) the list of descriptions d = q1 > q2 > · · · > qn in Dm(S̄) which
satisfy condition D. Each p̄ = (p; S̄, K̄) where p ∈ Dm(S̄ , K̄) for some sequence of
measures K̄ (each of which is in

⋃
i(W

i
1 ∪Si1)) will be naturally associated to one of

the qi . The set of p̄ associated to a certain qi will be called the block of qi . We will
assign ordinals to the p̄ which will in turn assign an ordinal to each block which
we will call the depth of the block qi . Being added in a proper way these depths will
give an ordinal 
d̄ . Then we will show that (id; d ;W

m; S̄) = ℵ�+
d̄+1.
We recall some terminology associated with the upper-bound arguments of [2].

Definition 3.3. Let p̄ = (p; T̄ ), q̄ = (q; Ū ), where p ∈ Dm(T̄ ) and q ∈ Dm(Ū )
for some m > 0. Then we define q̄ ≺′ p̄ to hold iff q = L(p) and Ū = T̄�K for
some K ∈ ⋃

i(W
i
1 ∪ Si1). Here L(p) denotes the L operation with respect to the

measures T̄ .

Remark 3.4. From Remark 2.19 we are justified in writing ≺′ instead of ≺′
m.

Definition 3.5. Given d̄ = (d ; S̄) we let Td̄ be the tree with root node d̄ and
successor relation given by ≺′. We further require all the nodes of Td̄ to have
descriptions which satisfy condition D. We let ≺ be the tree relation in Td̄ .
Note that restricting to nodes satisfying condition D has the effect of restricting
to a subtree. That is, if q̄ ≺′ p̄ and q̄ satisfies condition D then so does p̄.
So, ≺ on Td̄ is the transitive closure of the ≺′ relation. Td̄ is the tree of finite
descending chains in ≺′ starting from d̄ . As we move along a branch of Td̄ we
successively apply the L operation and then add a new measure to the sequence.
As in [2], we define the rank function on the nodes of the tree Td̄ in the slightly
nonstandard manner by |p̄| = (supq̄≺′p̄ |q̄|) + 1, and |Td̄ | = |d̄ | (so the rank of all
nodes is a successor ordinal).
The significance of the tree Td̄ lies in one of the main results of [2]. It was
shown there that the ordinal (id;d ;Wm; S̄) is at most the cardinal successor of the
supremum of the ordinals (id;p;Wm; S̄, K̄) where p̄ = (p; S̄, K̄) is an immediate
successor of d̄ in Td̄ . This is how the upper-bound for (id; d ;W

m; S̄) was obtained
in [2] (we will be more precise later). The reader of this paper does not need to be
familiar with the proofs of these results.
Given a fixed d̄ = (d ; S̄), we employ a notational convention for q̄ of the
form q̄ = (q; S̄, K̄). When writing the functional representation of such a q, we
will use the symbols hi(j), hsi (j), αi,j when referring to the measures in S̄, and
ki(j), ksi (j), �i,j when to the measures in K̄ . For example, if S̄ = (S

3
1 , S

4
1 ,W

3
1 ),
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K̄ = (S41 ,W
4
1 ), then a functional representation for q = q

(f4) might look like
h1(3)(α3,1, h2(1)(k4(2)(�5,2, ·3)), ·4).
Our main technical definition to follow is that of the o–sequence of q̄ = (q; S̄, K̄)
relative to d̄ = (d ; S̄). This will be a sequence of formal terms of the form ki(·r) or
�i,j . Such terms are essentially the functional representations of certain descriptions
(technically, ki(1)(·r) is a description, but this is a trivial notational difference). The
ordering < on descriptions thus orders these terms as well. Although it is just a
specialization of the general definition, we explicitly give the definition next. We are
justified in using the same symbol < to denote this ordering.

Definition 3.6. The ordering < on terms of the form �i,j , ki(·r) is given as
follows.

1. �i,j < �k,l iff (i, j) <lex (k, l).
2. �i,j < kl (·r) for all i, j, l, r.
3. ki(·r) < kj(·s) ⇐⇒ (r, i) <lex (s, j).

The next definition is made for the ordering of terms of Definition 3.6, but the
definition is completely general and can be made for any linear order.

Definition 3.7. Let v̄ = (v(0), v(1), . . . , v(l)) be a sequence of terms of the form
ki(·r) or �i,j . The canonical increasing subsequence v̄′ of v̄ is definedby: v′(i) = v(ki),
where k0 = 0 and in general ki+1 is the least k > ki such that v(k) > v(ki) (using
the order of 3.6). If such a k does not exist then the definition stops at v′(i).

Definition 3.8 (The o–sequence of q, oseqd̄ (q)).
Let d̄ = (d ; S̄) where d ∈ Dm(S̄), and let q ∈ Dm(S̄; K̄). Then oseqd̄ (q) is the
sequence of terms of the form ki(·r) or �i,j defined inductively as follows. If q = ·r
or q = αi,j we define oseqd̄ (q) = ∅. If q = �i,j we set oseqd̄ (q) = �i,j . In the other
cases q is of the form q = g(d1, d2, . . . , dl , d0)whereg stands for an invariant of some
h or some k function (with or without the symbol s). Note that each subdescription
di is defined relative to the same sequence of measures S̄, K̄ . We define

oseqd̄ (q) =

⎧⎪⎨
⎪⎩
[oseqd̄ (d0)

�oseqd̄ (d1)
�
. . .�oseqd̄ (dl )]

′
if g = h(s)i (l + 1),

oseqd̄ (d0) if g = k(s)i (l + 1) ∧ d0 �= ·r ,
ki(·r) if g = k(s)i (l + 1) ∧ d0 = ·r .

Here ′ denotes the operation of Definition 3.7.

We define also a variation of oseqd̄ (q) which we denote oseq
∗
d̄
(q). This is defined

exactly as oseqd̄ (q), except that in the first case we do not apply the operation
′

to the concatenated sequence. Now, each term t = �i,j or t = ki(·r) may appear
several times in the sequence. For each such term t we will attach superscripts to the
occurrences of this term in oseq∗

d̄
(q). The occurrences of this term will thus be of

the form t1, t2, . . . , tc . The attachment of the superscripts is defined (inductively) as
follows. If ta , tb both correspond to subdescriptions of p = g(p1, . . . , pl , p0) (where
p is a subdescription of q) then a < b if ta corresponds to a subdescription of pi
which appears to the left of the subdescription pj corresponding to tb . If ta , tb both
correspond to subdescriptions of pi , the ordering of a, b is given by induction. We
officially consider the attached superscripts to be part of the definition of oseq∗

d̄
(q).
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Note that in the inductive definition of oseq∗
d̄
(q) where q = g(d1, . . . , d� , d0), we

place oseq∗
d̄
(d0) before the terms in oseq∗d̄ (di) for i > 0. However, in placing the

superscripts on the terms of the oseq∗
d̄
(q), we consider d0 placed after the di terms.

Example. For (S̄, K̄) = (S1, S2, K3, K4, K5) with, say, all measures equal to S41 ,
and q the description

q = h1(3)(h2(3)(k3(·2), k4(·2), ·3), h2(3)(k3(·2), k5(·3), ·4), h2(3)(k3(·2), k5(·3), ·5)),
we have

oseqd̄ (q) =(k3(·2), k5(·3)), and
oseq∗

d̄
(q) =(k33(·2), k25(·3), k13(·2), k14 (·2), k23 (·2), k15(·3)).

Note that we can recover oseqd̄ (q) from oseq
∗
d̄
(q) by removing the superscripts

and then taking the canonical increasing subsequence.
Note also that oseqd̄ (q) and oseq

∗
d̄
(q) don’t really depend on d but only on

the specification of which measures in the sequence for q̄ are to be considered
the S̄ measures and which the K̄ measures. Nevertheless, it is suggestive to write
oseqd̄ (q) since we will be applying this definition to various q̄ ∈ Td̄ , and d̄ = (d ; S̄)
will determine the initial segment of measures for q̄. We may write oseqd̄ (q) and
oseqd̄ (q̄) interchangeably.
The o–sequence is the main technical tool in our main result, and perhaps some
comments about its intuition are in order. The intuitive idea behind the o–sequence
is to “linearize” the description with respect to the K̄ measures. By linear we mean
avoiding functional composition among the k functions. Also in the intuition is the
idea that the h functions (and ordinals αi,j) are fixed while the k functions (and �i,j
ordinals) are “variable.” Roughly speaking, this means that we think of a function
ki as coming from an arbitrarily largemeasure Sr1 . The idea is that we should be able
to replace terms involving composition such as ki(kj(·r)) by just kj(·r) since as we
take the supremum over j the ranks of two such descriptions should give the same
value (this value should not depend on j either, but we need to keep the largest k
function in the composition as an aid to comparing different terms). Moreover, it
is important in our main embedding argument (Lemma 3.34) that compositions of
the k functions do not occur.
The following easy proposition should help orient the reader.

Proposition 3.9. Let d̄ = (d ;S1, . . . , St) where d ∈ Dm(S̄) and let
q ∈ Dm(S̄, K̄). Then the following are equivalent:
1. q /∈ Dm(S̄).
2. The functional representation of q contains a k(s)i or �i,j .
3. oseqd̄ (q) �= ∅.
Proof. If q /∈ Dm(S̄), then q must contain a subdescription involving a measure
in the K̄ sequence. That is, it must either contain a subdescription beginning with
k(s)i or else contain a subdescription of the form �i,j . Clearly if q contains either of
these terms in its functional representation then q /∈ Dm(S̄). So, (1) is equivalent
to (2). The fact that (3) implies (2) is obvious. To see that (1) implies (3) it is
enough to show that oseq∗

d̄
(q) �= ∅, for then oseqd̄ (q) is nonempty as well. We

show this implication by reverse induction on k(q). We cannot have k(q) = ∞ as
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then q = ·r ∈ Dm(S̄) which contradicts (1). Suppose that k(q) ≤ t. If q = αi,j
then we again violate (1). If q = h(s)i (l + 1)(q1, . . . , ql , q0), then for some i we must
have qi /∈ Dm(S̄) and so by induction oseq∗d̄ (qi) �= ∅ and thus oseq∗

d̄
(q) �= ∅ as

well. Assume now k(q) > t. If q = �i,j , then oseq∗d̄ (q) = �i,j �= ∅. So suppose
q = k(s)i (l + 1)(q1, . . . , ql , q0). If q0 = ·r then oseq∗d̄ (q) = ki(·r) �= ∅. Otherwise,
oseq∗

d̄
(q) = oseq∗

d̄
(q0). Since k(q) < k(q0) <∞, q0 /∈ Dm(S̄), and so by induction

oseq∗
d̄
(q0) �= ∅. �

For d̄ = (d ; S̄), q̄ = (q; S̄, K̄), we define supd̄ (q) = supK̄(q) for notational
convenience,
For future purposes, we note that the ordering of Definition 3.6 refines to an
ordering of terms from oseq∗

d̄
(q), that is, terms of the form �ai,j or k

a
i (·r). We order

as in 3.6, using the superscript only to break ties. Formally, this is given in the
following definition. We use the same symbol < to denote this ordering.

Definition 3.10. The ordering terms of the form �ai,j , k
a
i (·r) is given as follows.

1. �ai,j < �
b
k,l iff (i, j, a) <lex (k, l, b).

2. �ai,j < k
b
l (·r) for all i, j, a, l, r, b.

3. kai (·r) < kbj (·s ) ⇐⇒ (r, i, a) <lex (s, j, b).

We are now ready to proceed toward the definition of the ordinal 
d̄ .

Definition 3.11 (Level ofpwith respect to d̄). Let d̄ = (d ; S̄)where d ∈ Dm(S̄).
Let p ∈ Dm(S̄, K̄). We define levd̄ (p), the level of p with respect to d̄ , to be the
countable ordinal defined as follows. Assume first that oseqd̄ (p) �= ∅ (recall here
Proposition 3.9). Let w = (w(0), . . . , w(l−1)) = oseqd̄ (p), where l is the length of
the o–sequence. Recall each termw(a) in this sequence is of the formw(a) = ki(·r)
orw(a) = �i,j . Define #(w(a)) = r in the first case, and #(w(a)) = 0 in the second.
Then we set (note this ordinal product is written in reverse order):

levd̄ (p) =
0∏

i=l−1
��

#w(i)
= ��

#w(l−1) · · ·��#w(0) .

If oseqd̄ (p) = ∅, set levd̄ (p) = 1.
Intuitively, levd̄ (p) attempts to compute the supremum over the K̄ measures of
the rank of p̄ = (p; S̄ , K̄) in the tree T ′

d̄
which is defined just as Td̄ except all nodes

q̄ with q < p and q ∈ Dm(S̄) are declared terminal. Roughly speaking, we are
computing the supremum over K̄ of the rank to the next description defined with
respect to just the S̄ measures.

Example. If p = h1(3)(h2(2)(�3,2, ·1), h2(2)(�3,1, k4(·1)), ·2), then
oseqd̄ (p) = 〈�3,2, k4(·1)〉.

So, levd̄ (p) = �
�#k4(·1) ·��#�3,2 = �� ·� = ��+1.

Lemma 3.12. Fix d̄ = (d ; S̄), where d ∈ Dm(S̄). Then the set of levels {levd̄ (p) |
p ∈ Dm(S̄, K̄) for some K̄} is finite.
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Proof. Let S̄ = S1, . . . , St , and d ∈ Dm(S̄). We first show by reverse induction
on k that there is a bound on the lengths of oseqd̄ (p) for the p with k(p) ≥ k. If
k > t and k(p) ≥ k, then p is of the form p = k(s)i (l + 1)(p1, . . . , pl , p0), p = ·r ,
or p = �i,j . In all these cases, oseqd̄ (p) has length at most 1. Suppose now k ≤ t.
If Sk = W

rk
1 , then if k(p) ≥ k either k(p) > k (and these cases are bounded by

induction) or p = αi,j in which case oseqd̄ (p) = ∅. If Sk = Srk1 and k(p) ≥ k,
then either k(p) > k or p is of the form p = h(s)k (l + 1)(p1, . . . , pl , p0). From the
definition, oseqd̄ (p) has length at most the sum of the lengths of the oseqd̄ (pi). By
induction these lengths are bounded, and since l + 1 ≤ rk , the result follows.
Next, observe that there are only finitely many possibilities for #(w(a)) for a term
w(a) of oseqd̄ (p). This is because any term of the o–sequence of the form ki(·r)
must have r ≤ m as p ∈ Dm(S̄, K̄). The lemma now follows immediately. �
We now group the p̄ = (p; S̄, K̄) into blocks.

Definition 3.13 (Block Bd̄ (q), depth(Bd̄ (q))). Fix d̄ = (d ; S̄), d ∈ Dm(S̄), with
d satisfying condition D. For q ∈ Dm(S̄), q ≤ d , and q satisfying condition D, we
define the block, Bd̄ (q), as the set of all p̄ = (p; S̄ , K̄) with supK̄(p) = q (here
p ∈ Dm(S̄, K̄), and we allow the K̄ sequence to be empty). We also define the depth
of a block by depth(Bd̄ (q)) = max{levd̄ (p) : p̄ ∈ Bd̄ (q)}.
Observe that the number of blocks is the number of descriptions q ∈ Dm(S̄) with
q ≤ d and q satisfying condition D, which is clearly finite. Let us enumerate them in
decreasing order: d = q1 > q2 > · · · > qn. Therefore the number of blocks is also
finite and equal to n.
Note that every p̄ = (p; S̄ , K̄) with p ≤ d is in one of these blocks. This is
immediate from (1) of Lemma 2.22. Also, every block Bd̄ (q) is non-empty by (2)
of Lemma 2.22.

Definition 3.14. Let d̄ = (d ; S̄) where d ∈ Dm(S̄) satisfies condition D. Let
q = q1 > q2 > · · · > qn enumerate the q ∈ Dm(S̄) satisfying condition D and with
q ≤ d . Then we define


d̄ = depth(Bd̄ (qn)) + · · ·+ depth(Bd̄ (q3)) + depth(Bd̄ (q2)).
Note that we do not include the topmost block in the sum defining 
d̄ . The
intuitive reason for that is that there are no nodes p̄ in Td̄ which lie in the block of
q1 = d , since for any p̄ ∈ Td̄ and p̄ �= d̄ we must have p ≤ L(d̄ ). The reader may
wish to skip to the end of Section 4 where we consider an example which illustrates
our definitions.
We next give three facts about the o–sequence which we will use in the following
proposition.

Fact 3.15. Let d̄ = (d ; S̄) where d ∈ Dm(S̄), and p̄ = (p; S̄ , K̄) with p ∈
Dm(S̄, K̄). Supposep < ·r . Then all terms of the o–sequence oseqd̄ (p) are of the form
�a,b or ka(·c) for some c < r.
Proof. By reverse induction on k(p). If k(p) = ∞ (i.e., p = ·r′), then
oseqd̄ (p) = ∅ and there is nothing to prove. If p = αi,j or p = �i,j the result
is also immediate. Suppose p = h(s)i (l + 1)(f1, . . . , fl , f0). Since p < ·r , from
I.2. of Lemma 2.13 we have f0 < ·r . Also, from the definition of description
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we have fj < f0 for all 1 ≤ j ≤ l . So, by induction oseqd̄ (f0) and all
the oseqd̄ (fj) contain only terms of the form �a,b or ki(·c) for c < r. Since
oseqd̄ (p) = [oseqd̄ (f0)

�oseqd̄ (f1)
� · · ·�oseqd̄ (fl )]′ in this case, the result then

follows immediately for oseqd̄ (p). Suppose next thatp = k
(s)
i (l+1)(f1, . . . , fl , f0).

If f0 = ·c for some c, then oseqd̄ (p) is the single term ki(·c). Since p < ·r , it again
follows from I.2. of Lemma 2.13 that c < r. If f0 is not of the form ·c , then
oseqd̄ (p) = oseqd̄ (f0). From I.2. of 2.13 we have f0 < ·r . By induction, oseqd̄ (f0)
has only terms of the form �a,b or ki(·c) for c < r, and the result follows for
oseqd̄ (p). �
Fact 3.16. Let d̄ = (d ; S̄) where d ∈ Dm(S̄), and S̄ = S1, . . . , St . Let also
p̄ = (p; S̄, K̄) with p ∈ Dm(S̄, K̄). Suppose p ≥ ·r and t < k(p) < ∞. Then
oseqd̄ (p) consists of a single term of the form ki(·c) where c ≥ r and i ≥ k(p).
Proof. Since t < k(p) < ∞, clearly p /∈ Dm(S̄) and so by Proposition 3.9
we have oseqd̄ (p) �= ∅. Since k(p) > t it is also clear from the definition of the
o–sequence that oseqd̄ (p) consists of a single term. We prove the fact by reverse
induction on k(p). The case p = �i,j cannot occur, as then p < ·1 ≤ ·r . So, suppose
p = k(s)i (l + 1)(f1, . . . , fl , f0). If f0 is of the form ·c , then oseqd̄ (p) = ki(·c).
Since p ≥ ·r we have from I.2. of Lemma 2.13 that ·c ≥ ·r which means c ≥ r from
IV of Lemma 2.13. Also, in this case i = k(p). If f0 is not of the form ·c , then
oseqd̄ (p) = oseqd̄ (f0). From I.2. of 2.13 again we have that f0 ≥ ·r . By induction
we have oseqd̄ (f0) is of the form ki(·c) where c ≥ r and i ≥ k(f0) > k(p). �
Fact 3.17. Let d̄ = (d ; S̄) where d ∈ Dm(S̄) and S̄ = S1, . . . , St . Let
also p̄1 = (p1; S̄, K̄), p̄2 = (p2; S̄, K̄), where p1, p2 ∈ Dm(S̄, K̄). Suppose
t < k(p1), k(p2) < ∞. If p1 ≤ p2 then oseqd̄ (p1) ≤ oseqd̄ (p2) in the ordering
of terms given in Definition 3.6.

Proof. As in Fact 3.16, oseqd̄ (p1) and oseqd̄ (p2) each consist of a single term.
We prove the fact by reverse induction on min{k(p1), k(p2)}. If p1 = p2 the result
is trivial, so assume p1 < p2. First assume k(p1) < k(p2). If p1 is of the form �i,j
(so k(p1) = i) the result follows since either oseqd̄ (p2) is of the form ka(·b) which is
greater that the term �i,j , or else oseqd̄ (p2) = �a,b where a ≥ k(p2) > k(p1) = i . In
the latter case, �a,b > �i,j asa > i . Ifp1 is of the formp1 = k

(s)
i (l+1)(f1, . . . , fl , f0),

then from I.2. of Lemma 2.13 we have f0 < p2. Suppose first in this case that f0
is of the form f0 = ·b . Thus, oseqd̄ (p1) = ki(·b). From II.2. of Lemma 2.13 we
have ·b < p1 and so ·b < p2. From Fact 3.16 we have that oseqd̄ (p2) = kj(·c) where
c ≥ b and j ≥ k(p2) > k(p1) = i . So, (c, j) >lex (b, i) and so from Definition 3.6
we have oseqd̄ (p2) > oseqd̄ (p1). Suppose next in this case that f0 is not of the
form ·b . Thus, oseqd̄ (p1) = oseqd̄ (f0). Since f0 < p2, by induction we have that
oseqd̄ (f0) ≤ oseqd̄ (p2) and we are done.
Next assume that k(p1) > k(p2). The case p2 = �i,j cannot occur as we would
have then that p1 > p2. So assume p2 = k

(s)
i (l + 1)(g1, . . . , gl , g0). From II.2. of

Lemma 2.13 we have p1 ≤ g0. Suppose first that g0 = ·b , so oseqd̄ (p2) = ki(·b).
We cannot have p1 = ·b since k(p1) < ∞. So, p1 < ·b . From Fact 3.15, and since
oseqd̄ (p1) consists of a single term, oseqd̄ (p1) is either of the form �i,j orka(·c)where
c < b. In either case we have from Definition 3.6 that oseqd̄ (p1) < oseqd̄ (p2).
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Suppose next that g0 is not of the form ·b . Thus, oseqd̄ (p2) = oseqd̄ (g0). Since
p1 ≤ g0, by induction we have oseqd̄ (p1) ≤ oseqd̄ (g0) = oseqd̄ (p2).
Finally, assume k(p1) = k(p2). If p1 = �i,j , then p2 = �i,a for some a. Since
p1 < p2 we have j < a from III.1 of Lemma 2.13. So from Definition 3.6 we have
oseqd̄ (p1) = �i,j < �i,a = oseqd̄ (p2). So, we may assume that p1 and p2 are of the

forms p1 = k
(s)
i (l + 1)(f1, . . . , fl , f0) and p2 = k

(s)
i (l

′ + 1)(g1, . . . , gl ′ , g0). From
III.2.a. of Lemma 2.13 we must have f0 ≤ g0. If f0 = ·b , g0 = ·c for some b, c,
then from IV of Lemma 2.13 we have b ≤ c. Thus, oseqd̄ (p1) = ki(·b) ≤ ki(·c) =
oseqd̄ (p2). Iff0 is of the formf0 = ·b and g0 is not of this form, then ·b ≤ g0. From
Fact 3.16 we have oseqd̄ (g0) = ka(·c) where c ≥ b and a ≥ k(g0) > k(p2) = i . So,
(c, a) >lex (b, i) and thus oseqd̄ (p1) = ki(·b) < ka(·c) = oseqd̄ (g0) = oseqd̄ (p2).
If g0 is of the form g0 = ·c , and f0 is not of this form, then f0 ≤ ·c . Since f0 is
not of this form, f0 < ·c . So, from Fact 3.15 oseqd̄ (f0) is a single term of the form
�a,j or ka(·b) where b < c. In either case, oseqd̄ (p1) < ki(·c) = oseqd̄ (p2). Lastly,
suppose neither f0 nor g0 is of the form ·b . Since f0 ≤ g0, by induction we have
that oseqd̄ (f0) ≤ oseqd̄ (g0) and we are done since oseqd̄ (p1) = oseqd̄ (f0) and
oseqd̄ (p2) = oseqd̄ (g0). �

Fact 3.18. Let d̄ = (d ; S̄) where d ∈ Dm(S̄) and S̄ = S1, . . . , St . Let also
p̄1 = (p1; S̄, K̄), p̄2 = (p2; S̄, K̄), where p1, p2 ∈ Dm(S̄, K̄). Suppose p1, p2 < ·r .
Then the following hold.

1. If supK̄ (p1) < ·r then oseqd̄ (p1) consists of terms (if any) of the form �a,b ,
ka(·c) for c ≤ r − 2.

2. If supK̄(p1) = ·r then oseqd̄ (p1) is a single term ka(·r−1).
3. If supK̄(p1), supK̄(p2) = ·r and p1 ≤ p2, then oseqd̄ (p1) ≤ oseqd̄ (p2).

Proof. We prove by reverse induction on k that if k(p1) = k then (1) and (2)
hold, and that if k = min{k(p1), k(p2)}, then (3) holds.
If k = ∞, then p1 is of the form ·c , and has an empty o–sequence, so (1) is
trivial. Also, supK̄(p1) = p1, so the hypothesis of (2) is not satisfied. Likewise, (3)
is vacuously true.
Suppose next that t < k < ∞. An immediate induction using (3) of
Definitions 2.21 and 3.8 gives that oseqd̄ (p1), oseqd̄ (p2) are single terms, and that
supK̄(p1) = supK̄(oseqd̄ (p1)), and likewise for p2. If either oseqd̄ (p1) or oseqd̄ (p2)
is of the form ka(·c), then we must have c ≤ r − 1 since supK̄(ka(·c)) = ·c+1 and
we must have supK̄(ka(·c)) = supK̄(pi) ≤ ·r Also, if supK̄(pi) = ·r , then c = r − 1.
This shows (1) and (2). Part (3) follows immediately from Fact 3.17.
Suppose then that k ≤ t, and k(p1) = k. If p1 = αa,b , then oseqd̄ (p1) = ∅, and
(1) is trivial. Also, (2) holds as the hypothesis is not satisfied (since supK̄ αa,b =
αa,b �= ·r). Assume next that p1 = h(s)k (l + 1)(f1, . . . , fl , f0). If supK̄(f0) < ·r
then supK̄(fi) ≤ supK̄ (f0) < ·r , and so by induction oseqd̄ (fi) consists of terms
�a,b , ka(·c) for c ≤ r − 2, and thus oseqd̄ (p1) also consists of terms of this form. If
sup(f0) = ·r , then by induction oseqd̄ (f0) = ka(·r−1). For i > 0, either oseqd̄ (fi)
will be a sequence of terms of the form �a,b , ka′(·c) for c ≤ r − 2, in which case
the terms of oseqd̄ (fi) will all be cancelled in forming oseqd̄ (p1), or else will be a
single term of the form ka′(·r−1). In the latter case, by induction and (3) we have
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that a′ ≤ a, and thus oseqd̄ (fi) will also be cancelled. Thus, oseqd̄ (p1) = ka(·r−1).
This shows (1) and (2).
To show (3), consider now p1 = h

(s)
k1
(l1 + 1)(f1, . . . , fl1 , f0) and also p2 =

h(s)k2 (l2 + 1)(g1, . . . , gl2 , g0). Recall k = min{k1, k2}, p1, p2 < ·r , and supK̄(p1) =
supK̄(p2) = ·r .
Suppose first that k = k1 < k2. We must have f0 /∈ Dm(K̄), as otherwise from
Definition 2.21 we would have supK̄(p1) �= ·r . Also, ·r = supK̄(p1) = supK̄(f0)
fromDefinition 2.21. From (2), oseqd̄ (p1) is the single term oseqd̄ (f0) (which must
be ka(·r−1)). Also, f0 < p1 ≤ p2. By induction, oseqd̄ (f0) ≤ oseqd̄ (p2), and we
are done.
Suppose next that k = k2 < k1. From Lemma 2.13 we have that p1 ≤ g0 (p1 = g0
is possible in this case). As in the previous case, using supK̄(p2) = ·r we get that
supK̄(g0) = ·r , and oseqd̄ (p2) consists of the single term oseqd̄ (g0). By induction
we have that oseqd̄ (p1) ≤ oseqd̄ (g0) = oseqd̄ (p2).
Finally, suppose that k = k1 = k2. Again, since supK̄(p1) = supK̄(p2) = ·r ,
we have that f0, g0 /∈ Dm(K̄) and supK̄(f0) = supK̄(g0) = ·r . Since from (2)
oseqd̄ (p1), oseqd̄ (p2) consists of single terms, we have oseqd̄ (p1) = oseqd̄ (f0) and
oseqd̄ (p2) = oseqd̄ (g0). From Lemma 2.13 we have that f0 ≤ g0. By induction,
oseqd̄ (f0) ≤ oseqd̄ (g0), and we are done. �
Proposition 3.19. Fix d̄ = (d ; S̄) with d ∈ Dm(S̄), and let p̄ = (p; S̄ , S∗)
where p = L(d̄ ). Suppose q̄ ∈ Dm(S̄, S∗, K̄). Then levp̄(q) ≤ levd̄ (q). Moreover, if
oseqd̄ (q) starts with the term corresponding to the S

∗ measure, then strict inequality
holds. If oseqd̄ (q) does not start with this term, then supS∗,K̄(q) = supK̄(q).

Proof. We consider the case S∗ = Sr∗1 , the case S
∗ =Wr∗

1 being easier. Extend-
ing our notational convention slightly, we use terms hi(j), αi,j corresponding to
the S̄ measures, k∗ corresponding to S∗, and ki(j), �i,j corresponding to the K̄
measures.
We may consider the o–sequences of q defined relative to d̄ and p̄. Let us
fix them: ud = oseqd̄ (q) and up = oseqp̄(q). We want to analyze the relation-
ship between these two sequences. Recall the definition of the o–sequence. In that
definition we concatenated recursively the o–sequences of the corresponding subde-
scriptions (and then took the canonical increasing subsequence). We can repeat
the same constructions with the only difference that we stop when the subde-
scription is of the form k(s)∗ (j)(. . . ), for some j. Suppose that happens a times.
Then

ud = [u1�oseqd̄ (k
(s)
∗ (j1)(. . . ))

� . . .�ua�oseqd̄ (k
(s)
∗ (ja)(. . . ))

�ua+1]′,

up = [u1�oseqp̄(k
(s)
∗ (j1)(. . . ))

� . . .�ua�oseqp̄(k
(s)
∗ (ja)(. . . ))

�ua+1]′.

In other words, the difference between ud and up is determined only by the o–
sequences of the subdescriptions starting with an invariant of k∗. Let us call these
subdescriptions s1, . . . , sa , so for 1 ≤ b ≤ a we have sb is of the form sb =
k(s)∗ (jb)(f1, . . . , fl , f0).
We first claim that for each b we either have oseqd̄ (sb) = oseqp̄(sb) or else
oseqd̄ (sb) = k∗(·r) and oseqp̄(sb) is a sequence of terms each of which is less
than ·r . Granting this claim, it is straightforward to show that levp̄(q) ≤ levd̄ (q)
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(we use here the fact that ordinals of the form ��
r

are closed under multiplica-
tion). To see the claim, consider sb = k

(s)
∗ (jb)(f1, . . . , fl , f0). From the definition

of the o–sequence we have that oseqd̄ (sb) is of the form k∗(·r), ki(·r), or �i,j .
First suppose that f0 = ·r . In this case oseqd̄ (sb) = k∗(·r) From the definition
of the o–sequence we also have oseqp̄(sb) = [oseqp̄(f1)

� . . .�oseqp̄(fl)]
′. For

each 1 ≤ i ≤ l , fi < ·r , and so from Fact 3.15 we have that oseqd̄ (fi) has
only terms which are less than ·r . So, oseqp̄(sb) is a sequence of terms strictly
less than ·r .
Next suppose that f0 is not of the form ·r . Thus oseqd̄ (sb) = oseqd̄ (f0) which is
a single term of the form ki(·r) or �i,j . Suppose oseqd̄ (f0) = ki(·r) for some i . Then
oseqp̄(sb) = [ki(·r)�oseqp̄(f1) . . .�oseqp̄(fl)]′. From the definition of description
we have that for all 1 ≤ e ≤ l that fe < f0. From Fact 3.17 it follows that either
oseqp̄(fe) = ∅ or else is a single term which is less than or equal to the term ki(·r)
in the ordering of Definition 3.6. Thus, all of the terms from the oseqp̄(fe) will
be canceled when we compute oseqp̄(sb). Hence, oseqp̄(sb) = ki(·r) = oseqd̄ (sb).
The case where oseqd̄ (f0) = �i,j is argued exactly the same way. This completes the
proof of the first statement of the proposition.
To see the second statement of the proposition, suppose oseqd̄ (q) starts with a

termof the formk∗(·r). In this case u1 = ∅ and s1 is of the form s1 = k(s)∗ (j1)(· · · , ·r).
We argued above that in this case we have levp̄(s1) < levd̄ (s1). Since u1 = ∅,
it now follows that levp̄(q) < levd̄ (q). This proves the second statement of the
proposition.
Finally, to see the third statement of the proposition suppose oseqd̄ (q̄) begins
with a term of the form ki(·r) or �i,j . To prove the third statement it suffices to show
the following claim: if q ∈ Dm(S̄, S∗, K̄) and oseqd̄ (q) does not begin with a k∗
term, then supK̄(q) = supS∗,K̄(q).We prove this claim by reverse induction on k(q).
If k(q) > t + 1 (where S̄ = S1, . . . , St), then the result follows from Lemma 2.23.
If k(q) = t + 1, then q is of the form q = k(s)∗ (l + 1)(f1, . . . , fl , f0). Also, f0 �= ·r
for any r since in that case oseqd̄ (q) = k∗(·r). It follows that oseqd̄ (f0) �= ∅. By
Lemma 2.23 we have supK̄ (f0) = supS∗,K̄(f0). From the definition of supremum
we then have supK̄(q) = supK̄(f0) = supS∗,K̄(f0) = supS∗ ,K̄(q) (for the first
equality we use (4) of Definition 2.21, and for the third equality we use (3) of
2.21). Suppose finally that k(q) ≤ t. If q = αi,j the result is trivial, so assume
q = h(s)i (l + 1)(f1, . . . , fl , f0). Let 0 ≤ j ≤ l be least so that oseqd̄ (fj) �= ∅.
Recall that by Proposition 3.9 this is equivalent to saying fj /∈ Dm(S̄). By def-
inition of the o–sequence, oseqd̄ (q) starts with oseqd̄ (fj), so oseqd̄ (fj) does
not start with a k∗ term. By induction, supK̄(fj) = supS∗,K̄(fj). We cannot
have fj ∈ Dm(S̄, S∗) as then oseqd̄ (fj) begins with a k∗ term. This is because
fj /∈ Dm(S̄), and so oseqd̄ (fj) �= ∅ from Proposition 3.9. But since S∗ is the
only measure after the S̄ sequence, oseqd̄ (fj) can only contain terms of the form
k∗(·r). Therefore, by the comments just before Proposition 2.24, supK̄ (fj) > fj
and also supS∗ ,K̄(fj) > fj . From (2) of 2.22 we have that for all j

′ < j that
supK̄(fj′) = supS∗,K̄(fj′) = fj′ and so from (4) of Definition 2.21 it follows that
supK̄(q) = supS∗,K̄(q). �
Lemma 3.20. Let d̄ = (d, S̄), and p̄ be a node in Td̄ below d̄ . Then 
p̄ < 
d̄ .
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Proof. By induction on the rank of d̄ , we may assume that p̄ has description
p = L(d̄ ). So, p̄ = (L(d̄ ); S̄ , S∗) for somemeasure S∗. In keeping with the previous
conventions, we denote terms corresponding to the measure S∗ by k∗ (we use this
notation even though we could have S∗ = Wr

1 in which case the term would be of
the form �∗i,j).
Let Bd̄ (q1), . . . ,Bd̄ (qn) be all the blocks of d̄ where q1 = d > q2 = p >
q3 > · · · > qn and qi ∈ Dm(S̄). Each qi for i ≥ 2 is also a description in
Dm(S̄, S∗) which is less than or equal to p. However, between qi and qi+1 there
may be several descriptions in Dm(S̄, S∗). Thus, each d̄–block Bd̄ (qi), i ≥ 2,
may split into several p̄–blocks. Let si1 > s

i
2 > · · · > siei enumerate all the

s ∈ Dm(S̄, S∗) with qi+1 < s ≤ qi . So, si1 = qi > si2 > · · · > siei > qi+1.
Thus, the d̄–block Bd̄ (qi) splits into ei many p̄–blocks, namely the Bp̄(s

i
j) for

1 ≤ j ≤ ei . The idea of the proof is to show that the sum of the depth(Bp̄(sij)) for all
1 ≤ j ≤ ei is no greater than depth(Bd̄ (qi)). We state this precisely in the following
claim.

Claim 1. With notation as above:

1. For any i ≥ 2,∑1
j=ei depth(Bp̄(s

i
j)) ≤ depth(Bd̄ (qi)).

2. If i = 2 (that is, si1 = qi = p), then
∑2
j=ei depth(Bp̄(s

i
j)) < depth(Bd̄ (qi)).

Proof. Consider qi for i ≥ 2 and the corresponding block Bd̄ (qi). We let e
denote ei . Again let si1 = qi > s

i
2 > · · · > sie > qi+1 as above so Bd̄ (qi) splits into

the p̄–blocks Bp̄(sij) for 1 ≤ j ≤ e.
First suppose that e = 1. In this case,Bd̄ (qi) = Bp̄(qi). For any q ∈ Dm(S̄, S∗, K̄),
for any sequence of measures K̄ , Proposition 3.19 gives that levp̄(q) ≤ levd̄ (q). Then
(1) of the claim follows immediately since the left-hand side of the inequality is equal
to levp̄(q) and the right-hand side to levd̄ (q) for some q ∈ Bd̄ (qi). Still assuming
e = 1, suppose now that i = 2. In this case the left-hand side of the inequality in
(2) is empty, which gives value 0, while the right-hand side is at least 1 by definition
of depth(Bd̄ (qi)).
Suppose next that e > 1, so Bd̄ (qi) splits into emany blocks Bp̄(s

i
j) for 1 ≤ j ≤ e.

Let 2 ≤ j′ ≤ e be such that depth(Bp̄(sij′)) is maximal among depth(Bp̄(si2)), . . . ,
depth(Bp̄(sie)). Let q

′ ∈ Bp̄(sij′) be such that levp̄(q′) = depth(Bp̄(sij′)). Say
q′ ∈ Dm(S̄, S∗, K̄). From the last statement of Proposition 3.19 we must have
that oseqd̄ (q

′) begins with a k∗ term as otherwise supS∗,K̄ (q
′) = supK̄ (q

′) which
is impossible as supK̄(q

′) = sij′ while supS∗,K̄(q
′) = qi and sij′ �= qi as j′ ≥ 2.

From the second statement of Proposition 3.19 we have levp̄(q′) < levd̄ (q
′). Also,

since oseqd̄ (q
′) �= ∅ we must that levd̄ (q′) > 1 and is an ordinal of the form �α

for some α ≥ 1. Since ordinals of this form are closed under addition, we have∑2
j=e depth(Bp̄(s

i
j)) ≤ levp̄(q′) · (e − 1) < levd̄ (q′) ≤ depth(Bd̄ (qi)). This gives (2)

of the claim. If depth(Bp̄(si1)) ≤ levp̄(q′), then the left-hand side of the inequality
of (1) of the claim is at most levp̄(q′) · e which is still less than the right-hand side.
If depth(Bp̄(si1)) > levp̄(q

′), then the left-hand side of (1) is equal to depth(Bp̄(si1))
as this ordinal is closed under addition. But, depth(Bp̄(si1)) ≤ depth(Bd̄ (qi)) from
Proposition 3.19. This verifies (1) of the claim. �
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Lemma 3.20 is an immediate consequence of the last claim:


p̄ =
3∑
i=n

⎛
⎝

1∑
j=ei

depth(Bp̄(sij))

⎞
⎠+

2∑
j=e2

depth(Bp̄(s2j ))

<

3∑
i=n

depth(Bd̄ (qi)) + depth(Bd̄ (q2)) = 
d̄ . �
Corollary 3.21. Let d ∈ Dm(S̄), and satisfy condition D. Then we have
(id; d ;Wm; S̄) ≤ ℵ�+
d̄+1.
Proof. Lemma 3.20 and a trivial induction show that the rank of the tree Td̄
(in the usual sense of rank) is at most 
d̄ . However, |Td̄ | is at most one more than
the usual rank (it is exactly one more if the rank is infinite). So, |Td̄ | ≤ 
d̄ + 1. By
the results of [2] (see Remark 3.2), (id; d ;Wm; S̄) ≤ ℵ�+|Td̄ |. So (id; d ;Wm; S̄) ≤
ℵ�+
d̄+1. Note here that if d is the minimal description in Dm(S̄) then 
d̄ = 0 (as
the sum defining 
d̄ is empty) and the upper bound becomes ℵ�+1 = �13. �
We now head towards our main result which is that the lower bound for
(id; d ;Wm; S̄) is also ℵ�+
d̄+1.
We recall the following fact.

Theorem 3.22 (Martin). Assume κ → κκ. Then for any measure � on κ, the
ultrapower j�(κ) is a cardinal.

Proof. See [2]. �
Our strategy for the rest of the proof is to embed the ultrapower of �13 by a
certain measure corresponding to 
d̄ (made precise below) into (id; d̄ ;W

m; S̄).
UsingTheorem3.22, thiswill give the lower bound.We require first some embedding
lemmas.

Definition 3.23 (Strong embedding). Let (Di,<Di ), (Ei ,<Ei ), 1 ≤ i ≤ n
be well-orderings of length < �13, and Mi , Ni measures on Di , Ei . Let D =
D1 ⊕ · · · ⊕ Dl , E = E1 ⊕ · · · ⊕ El , the sum of the order types. We say (D, {Mi})
strongly embeds into (E, {Ni}) if there is a measure � on κ < �13, and a functionH
with the following properties:

1. ∀∗�	 H (	) = ([φ1(	)]M1 , . . . , [φl (	)]Ml ), where φi(	) : Di → Ei is order-
preserving.

2. For all Ai ⊆ Ei , 1 ≤ i ≤ n, of Ni measure 1, ∀∗�	 ∀i ∀∗Miα ∈ Di (φi(	))(α) ∈
Ai .

In writing properties (1) and (2) of Definition 3.23, we will usually just write φi
instead of φi(	), the dependence on 	 being understood.
If (Di,Mi ) strongly embeds into (Ei ,Ni ) for all 1 ≤ i ≤ n, then D = ⊕Di
strongly embeds into E = ⊕Ei . Namely, if the measures �i and functions Hi
witness the strong embeddability of (Di,Mi) into (Ei,Ni ), then the productmeasure
� = �1 × · · · × �n and the function H (	1, . . . , 	n) = (H1(	1), . . . ,Hn(	n)) witness
the strong embeddability of D into E.
In Definition 3.24 belowwe implicitly use the fact that if � is a measure on α < �13
and � < �13, then j�(�) < �

1
3. Recall our comments about this fact in Section 2.
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Definition 3.24. Given the ordering D = D1 ⊕ · · · ⊕ Dn (of order-type < �13)
and measuresMi on Di , let �D denote the measure on n-tuples from �

1
3 induced by

the weak partition relation on �13, functions f : D → �13 of the correct type, and the
Mi . That is, A ⊆ (�13)n has �D measure one iff there is a c.u.b. C ⊆ �13 such that for
all f = (f1 ⊕ · · · ⊕ fn) : D → C of the correct type, ([f1]M1 , . . . , [fn]Mn ) ∈ A.
Proposition 3.25. If (D, {Mi}), 1 ≤ i ≤ n, strongly embeds into (E, {Ni}), then
j�D (�

1
3) ≤ j�E (�13).

Proof. Let �, H witness the strong embeddability. We define an embedding 

from j�D (�

1
3) to j�E (�

1
3).Define
([F ]�D ) = [G ]�E , where for g = (g1⊕· · ·⊕gn) : E →

�13 of the correct type,

G([g1]E1 , . . . , [gn]En ) = [	 → F ([g1 ◦ φ1]M1 , . . . , [gn ◦ φn]Mn )]�,
where H (	) = ([φ1]M1 , . . . , [φn]Mn). Using the properties of H , this is easily well-
defined and an embedding. �
Proposition 3.26. LetO be an order-type of length< �13, and letM be a measure
on O. Let D = O ⊕ · · · ⊕ O be the n-fold sum of O, and letMi =M for 1 ≤ i ≤ n.
Let E be the order-type of �1 ×O ordered lexicographically, and let N =W 1

1 ×M .
Then (D, {Mi}) strongly embeds into (E,N).
Proof. Let � = Wn

1 . For ᾱ = (α1, . . . , αn) ∈ (�1)n, let H (ᾱ) be the n-tuple of
ordinals represented by the function (which we also call H (ᾱ)) H (ᾱ) : D → E
defined by H (ᾱ)(i, �) = (αi , �) where here we identify D with pairs (i, �) ∈
{1, . . . , n} × O ordered lexicographically. It is straightforward to check (1) and
(2) of Definition 3.23. �
Proposition 3.27. Let O be an order type of length < �13, and � a measure on O.
Let 0 ≤ k < l , m > 0. Let D be lexicographic order on (�k+1)m ×O. LetM be the
product measureM = (Sk1 )

m × � if k > 0 and letM = (W 1
1 )
m × � if k = 0. Let E

be lexicographic ordering on�l+1×O and letN be the measure Sl1× �. Then (D,M )
strongly embeds into (E,N).

Proof. We prove the result for k > 0, the other case being similar. Let
� = Sl+m1 . Define H ([h]W l+m

1
) = [φ]M , where φ : D → E is defined as follows.

φ([f1]Wk
1
, . . . , [fm]Wk

1
, �) = ([g]W l

1
, �), where

g(�1, . . . , �l ) = h(�1, . . . , �k, f1(�1, . . . , �k), . . . , fm(�1, . . . , �k), �k+1, . . . , �l ).

This is easily well-defined, and gives a strong embedding. �
By a sub-basicorder-typewemean either the ordinal 1 (i.e., the order-typeof a sin-
gle point 0) or lexicographic ordering on�k1+1×· · ·×�km+1 for somek1, . . . , km ∈ �.
To each sub-basic order type D we associate a measureM . If D = 1 thenM is the
principal measure on 0, and otherwise letM be the productmeasure Sk11 ×· · ·×Skm1 ,
where we use here W 1

1 in place of S
ki
1 whenever ki = 0. By a basic order-type D

we mean an order-type of the form D = D1 ⊕ · · · ⊕ Dl where each Di is a sub-
basic order-type. We associate to D the measures {Mi} where Mi is the measure
associated to the sub-basic order-typeDi .
To each sub-basic order-typeD, we associate an ordinal c(D) as follows. IfD = 1,
then c(D) = 1. If D = �k1+1 × · · · × �km+1, then c(D) = ��

km · · ·��k2 · ��k1 .
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We then extend the c function to basic order-types D = D1 ⊕ · · · ⊕Dl by defining
c(D) = c(D1) + · · ·+ c(Dl ).
Proposition 3.28. Let D be a basic order-type and E = D ⊕ 1. Then j�D (�13) <
j�E (�

1
3).

Proof. Define 
 from j�D (�
1
3) to j�E (�

1
3) by 
([F ]j�D ) = [G ]j�E where forf : D →

�13 of the correct type and α < �
1
3 with α > sup(f) we define G([f], α) = F ([f]).

Note that [f] actually refers to the tuple of ordinals (. . . , [fi ]Mi , . . . ); we make this
notational identification below aswell. This is easily an embedding andmaps j�D(�

1
3)

to a proper initial segment of j�E (�
1
3), namely to those [G ] satisfyingG([f], α) < α

for �E almost all pairs ([f], α). �
Lemma 3.29. For D a basic order-type with corresponding measure �D as in
Definition 3.24, j�D (�

1
3) ≥ ℵ�+c(D)+1.

Proof. An easy induction on the length of D, |D|, using Propositions 3.26,
3.27, and 3.28. For example, the inductive step at D = �3 would be: j��3 (�

1
3) ≥

supn j�(�2)n (�
1
3) ≥ supn ℵ�+��·n+1 = ℵ��2 . The first inequality comes from Proposi-

tion 3.27 and the second inequality is from induction. Since cof j�(�
1
3) > � for any

measure �, we then have j��3 (�
1
3) ≥ ℵ��2+1 = ℵ�+��2+1 = ℵ�+c(D)+1. �

Suppose now M = M1 ×M2 × · · · ×Mk is a product of measures where each
Mj if of the formW 1

1 or S
r
1 . We define the arity function r by lettingMj = S

r(j)
1 ,

if Mj is of the form Sr1 , and letting r(j) = 0 if Mj = W
1
1 . Assume the measures

Mi are such that if i < j then r(i) ≤ r(j). Let 
 = (p1, . . . , pk) be a permutation
of k. Let D be theM measure one set of (�1, . . . , �k) which are in general position,
that is, if i < j then if r(i) = r(j) = 0 we have �i < �j , and if r(i), r(j) > 0 then
we have �i(1) < �j(1) (recall Definition 2.5 and the comments immediately after).
D is ordered lexicographically by 
.
Let 
∗ = (q1, . . . , ql ) = (ps1 , . . . , psl ), where l ≤ k, be the canonical increasing
subsequence of 
. That is, q1 = p1 (i.e., s1 = 1), and qi+1 = psi+1 where si+1 is the
least integer greater than si such that psi+1 > psi . Thus, q1 < q2 < · · · < ql = k. Let
N be the product measure

∏l
i=1Mqi where the terms in the product are written in

the same order as inM , that isMpsa is written beforeMpsb iff psa < psb iff a < b.
Let E be lexicographic ordering on tuples (α1, . . . , αl ) with αi < �r(qi )+1.
Notice that (D,M ) and (E,N) are sub-basic order-types.

Lemma 3.30. With (D,M ), (E,N) as above, (E,N) strongly embeds into (D,M ).

Proof. Let � = M1 × · · · × Mq1−1 ×
∏k
j=q1
M+j , where (W

1
1 )
+ = S11 , and

(Sr1)
+ = Sr+11 . Fix 	̄ = (	1, . . . , 	k) ∈ dom(�). Let hj : dom(<r(j)+1) → �1

represent 	j if r(j) > 0. Set H (	̄) = [φ]N , where φ(α1, . . . , αl ) = (�1, . . . , �k) is
defined as follows. First, �1, . . . , �q1−1 = 	1, . . . , 	q1−1. Next, suppose qi ≤ j < qi+1.
If r(j) = 0, set �j = hj(αi). If r(j) > 0 and r(qi) = 0, set �j = [gj ], where
gj(�1, . . . , �r(j)) = hj(αi , �1, . . . , �r(j)). Otherwise, r(qi) > 0, and we set �j = [gj ],
where gj is defined as follows. If j = qi , then

gj(�1, . . . , �r(qi )) = hj(�1, . . . , �r(qi )−1, fi(�1, . . . , �r(qi )), fi(1)(�r(qi ))),
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where [fi ] = αi . In this formula, if r(qi) = 1, then the term fi(�1, . . . , �r(qi )) is
omitted, and the right-hand side is hj(�1, fi(�1)). If j > qi then we set

gj(�1, . . . , �r(j)) = hj(�1, . . . , �r(j), fi(1)(�r(j))).

This is easily checked to be well-defined and a strong embedding. �
Remark 3.31. The proof of Lemma 3.30 also shows if 
′ is any subsequence of
the canonical increasing subsequence 
∗ of 
, and E ′, N ′ the corresponding order
and product measure, then (E ′, N ′) strongly embeds into (D,M ).

Proposition 3.32. Let d̄ = (d ; S̄) and consider a block Bd̄ (q) (so q = qi for
some i ≥ 2) which is nontrivial, that is, with depth(Bd̄ (q)) > 1. Then there is a
p̄ = (p; S̄, K̄) ∈ Bd̄ (q) with levd̄ (p) = depth(Bd̄ (q)) where p is of the form p = �a,b ,
p = ka(·r). or p = h(s)k (l + 1)(f1, . . . , fl , f0). In the last case, there is a p̄′ ∈ Bd̄ (q)
with levd̄ (p

′) = depth(Bd̄ (q)) and such that p
′ is of the form

p′ = h(s)k (r)(g1, . . . , gr−1, g0),

where Sk = Sr1 (that is, p
′ has maximal possible length).

Proof. Say d ∈ Dm(S̄) and recall that q ∈ Dm(S̄) as well. Note first that
cof(q) > �. For if cof(q) = �, then the block Bd̄ (q) would be trivial (i.e., consist
only of q) and so depth(Bd̄ (q)) = 1. For suppose Bd̄ (q) is not trivial and let p̄ =
(p; S̄ , K̄) for some measure sequence K̄ be such that supK̄(p) = q �= p. Note that
L(q; S̄, K̄) is defined and p ≤ L(q; S̄, K̄) by the maximality of L(q; S̄, K̄) among
those descriptions in Dm(S̄, K̄) which are less than q. By Proposition 2.28 we have
thatL(q; S̄, K̄) ∈ Dm(S̄). Thus,L(q; S̄, K̄) = L(q; S̄). But then by Proposition 2.24
we have supK̄(p) ≤ L(q; S̄), a contradiction.
Suppose p̄ = (p; S̄ ; K̄) ∈ Bd̄ (q) has maximum possible level. Since p̄ ∈ Bd̄ (q),
supK̄(p) = q. Say S̄ = S1, . . . , St and K̄ = Kt+1 . . . , Ku . Ifk(p) > t, then inspecting
the definition of the o–sequence we see that oseqd̄ (p) consists of a single term of the
form �a,b or ka(·r), and we are done (it is easy to write a p′ ∈ Dm(S̄, L̄), for some
L̄, with p′ of maximal length and with p′ having o–sequence also a single term with
the same level).
So, suppose k(p) ≤ t. Consider the case q = h(s)k (l +1)(f1, . . . , fl , f0), in which
case p must have the form

p = h(s)k′ (l
′ + 1)(f′

1, . . . , f
′
l ′ , f

′
0),

where k, k′ ≤ t. Say, Sk′ = Sr′1 . Note that k′ ≤ k as supK̄(p) = q, using (3) of
Lemma 2.22. We must show that we may without loss of generality take l ′ = r′ − 1,
possibly by changing p. Let e = r′ − l ′ ≥ 1. If e = 1 then we are done, so suppose
e > 1.
Suppose first that supK̄ (f

′
0) > f

′
0, that is, f

′
0 involves the measures K̄ (i.e.,

f′
0 /∈ Dm(S̄)). We may assume without loss of generality that p does not have the
symbol s , as removing this symbol does not change the block or the level. Let L̄
denote the sequence of measures of length e(u − t) obtained by replacing each
Ki ∈ K̄ by e copies of itself. So,

L̄ = Kt+1, . . . , Kt+1, Kt+2, . . . , Kt+2, . . . , Ku, . . . , Ku.
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Consider then

p̃ = hk′(r′)(
e,1(f′
1), . . . , 
e,1(f

′
l ′), f

′
l ′+1, . . . , f

′
r′−1, f

′′
0 ),

where f′
l ′+j = 
e,j(f

′
0), and here we interpret f

′
r′ as defining f

′′
0 (that is, when

j = r′ − l ′). The map 
e,j maps descriptions d ∈ Dm(S̄, K̄) to descriptions in
Dm(S̄, L̄). It is defined by replacing all references to measures Kk ∈ K̄ with the
measure Lt+e(k−t−1)+j ∈ L̄, that is, we replace Kk by the jth copy of Kk in the L̄
sequence.
More formally, 
e,j is defined inductively through the following clauses. for d ∈

Dm(S̄, K̄) we define 
e,j(d ) ∈ Dm(S̄, L̄) as follows.
1. If k(d ) ≤ t and d = αk,b , then 
e,j(d ) = d .
2. If k(d ) ≤ t and d = h(s)k (l + 1)(f1, . . . , fl , f0), then


e,j(d ) = h
(s)
k (l + 1)(
e,j(f1), . . . , 
e,j(fl ), 
e,j(f0)).

3. If k(d ) > t and d = �k,b , then 
e,j(d ) = �k′ ,b where k′ = t+ e(k− t− 1)+ j.
4. If k(d ) > t and d = h(s)k (l + 1)(f1, . . . , fl , f0), then


e,j(d ) = h
(s)
k′ (l + 1)(
e,j(f1), . . . , 
e,j(fl ), 
e,j(f0)),

where k′ = t + e(k − t − 1) + j.
A straightforward induction shows that 
e,j is order-preserving and that for any
d ∈ Dm(S̄, K̄) that supK̄(d ) = supL̄(
e,j(d )). Also, if d /∈ Dm(S̄) and j < j′, then

e,j(d ) < 
e,j′(d ). It follows that


e,1(f′
1) < · · · < 
e,1(f′

l ′) < 
e,1(f
′
0) = f

′
l ′+1 < 
e,2(f

′
0) = f

′
l ′+2

< · · · < 
e,e(f′
0) = f

′
r′ = f

′′
0 .

and thus p̃ ∈ Dm(S̄ , L̄). To finish this case, we show that p and p̃ have the same
level. Let

p′ = hk′(l ′ + 1)(
e,1(f′
1), . . . , 
e,1(f

′
l ′), f

′′
0 )

= hk′(l ′ + 1)(
e,1(f′
1), . . . , 
e,1(f

′
l ′), 
e,e(f

′
0))

and recall
p = hk′(l ′ + 1)(f′

1, . . . , f
′
l ′ , f

′
0).

Clearly levd (p̃) ≥ levd (p′) as oseqd (p′) is a subsequence of oseqd (p̃). So, it suffices
to show that levd (p′) = levd (p). First note that oseqd (
e,1(f

′
i )) is obtained from

oseqd (f
′
i ) by replacing each term of the form �i,b or ki(·r) by �i′ ,b or ki′(·r) where

i ′ = t + e(i − t − 1) + 1. Likewise, oseqd (
e,e(f′
0)) is obtained from oseqd (f

′
0) by

replacing each of these terms by �i′′ ,b or ki′′ (·r), where i ′′ = t+e(i−t−1)+e (recall
e = r′ − l ′ > 1). Since e(i − t − 1) + 1 < e(i − t − 1) + e < e((i + 1)− t − 1) + 1,
it follows that in forming the o–sequences for p and p′, exactly the same set of
corresponding terms will cancel. Thus, the o–sequences will be identical except that
terms �i,b or ki(·r) in the o–sequence of p will correspond to terms of the form �i′ ,b
or ki′ (·r) as described above. Since these corresponding terms contribute the same
ordinal to the level, we have that levd (p′) = levd (p).
To illustrate with an example, the o–sequence for p, before cancelling terms,
might look like

k4(·4), k3(·5), k3(·5), k4(·5),
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where the first two terms are the o–sequence for f′
0 and the next two are the o–

sequence for f′
1 (so l

′ = 1 here). If e = 10, the o–sequence for p′ before cancelling
might then look like (we assume for simplicity that t = 0)

k40(·4), k30(·5), k21(·5), k31(·5).
The o–sequence for p would then be k4(·4), k3(·5), k4(·5), and the o–sequence for p′
would be k40(·4), k30(·5), k31(·5). Both of these yield the level ��5 · ��5 · ��4 .
Now consider the case where f′

0 ∈ Dm(S̄). In this case we must have k′ = k, as
otherwise from (4) of Definition 2.21 we would have that k(supK̄ p) = k

′ < k =
k(q), a contradiction as supK̄ p = q. FromDefinition 2.21 it now easily follows that
p is of the form

p = h(s)k (l
′ + 1)(f1, . . . , fl , f′

l+1, . . . , f
′
l ′ , f0)

for some f′
l+1, . . . , f

′
l ′ when q does not have the symbol s , and of the form

p = h(s)k (l
′ + 1)(f1, . . . , f′

l , f
′
l+1, . . . , f

′
l ′ , f0)

for some f′
l < fl , f

′
l+1, . . . , f

′
l ′ when q has the symbol s .

Suppose first q does not have the symbol s . We must have cof(f0) > �,
as otherwise Bd̄ (q) is empty. From Proposition 2.27 it follows that for some
measure M (either of the form Wb

1 or S
b
1 ) that L(f0; S̄, K̄ ,M ) involves the

term corresponding to the measure M in its functional representation (that is,
L(f0; S̄, K̄ ,M ) /∈ Dm(S̄, K̄)). Consider now the predescription (recall Sk = Sr1)

p′ = hk(r)(f1, . . . , fl , gl+1, . . . , gr−1, f0),

where for l + 1 ≤ j ≤ r − 1 we let gj = Lk+1(f0; S̄ , K̄ ,M1, . . . ,Mj−l ) where each
Ma =M .
We show that p′ is actually a description. Clearly gj < f0 for each j. By maxi-
mality of gj+1 among the descriptions inDm(S̄, K̄ ,M1, . . . ,Mj) which are less than
f0, it follows that gj ≤ gj+1, and since gj+1 /∈ Dm(S̄, K̄ ,M1, . . . ,Mj−1) we have
gj < gj+1. The maximality argument also shows that gl+1 > fj , and thus p′ is a
description.
Suppose now q = hsk(l + 1)(f1, . . . , fl , f0),

p = h(s)k (l
′ + 1)(f1, . . . , fl−1, f′

l , . . . , f
′
l ′ , f0),

where f′
l < fl . Since supK̄(p) = d , from Definition 2.21 we have that supK̄(f

′
l ) =

fl . We may therefore assume without loss of generality that supK̄(f
′
l ′) > f

′
l ′ , as

otherwise we may delete f′
l ′ without affecting the level of p. Let g = supK̄ (fl ′). We

must have cof(g) > � as otherwise supK̄(f
′
l ′) ≤ Lk+1(g; S̄) < g, a contradiction.

From Proposition 2.27 there is a measure M such that Lk+1(g; S̄, K̄ ,M ) involves
the term corresponding to the measureM . We then finish as in the previous case,
considering now

p′ = hk(r)(f1, . . . , fl−1, f′
l , . . . , f

′
l ′ , f

′
l ′+1, . . . , f

′
r−1, f0),

where for j > l ′, f′
j = Lk+1(g; S̄ , K̄ ,M1, . . . ,Mj−l ′) (where again allMj are equal

toM ).
Finally, we consider the remaining possibilities for q. We cannot have q = αi,j as
then q would not satisfy condition D. The remaining case is when q is of the form
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q = ·r for some r. If p̄ ∈ Bd̄ (q) then from (1) and (2) of Fact 3.18 we have that
levd̄ (p̄) ≤ ��

r−1
. On the other hand, any p of the form

p = kk(r + 1)(f1, . . . , fr, ·r−1),
whereKk = Sr1 , has level�

�r−1 (it has o–sequence kk(·r−1)), and supK̄(p) = ·r = q.
So, p has maximal length and levd̄ (p) = depth(Bd̄ (q)). �
Proposition 3.33. For every block Bd̄ (q) as in Proposition 3.32 there is a p̄ =
(p; S̄ , K̄) as in Proposition 3.32 with the additional property that if ka(·r) and kb(·s)
are terms in oseqd̄ (pi), and r < s , then a < b.

Proof. The proof is similar to that of Proposition 3.32. Let p̄ = (p; S̄ ; K̄)
be as in Proposition‘3.32. Let L̄ be the sequence of measures �K0, . . . , �Km, where
q ∈ Dm(S̄), p ∈ Dm(S̄ , K̄), and �Kj = �K for all j. We let Li,j denote the jth mea-
sure in �Ki . We define a map 
 from Dm(S̄, K̄) to Dm(S̄, L̄) through the following
cases.

1. If d = αk,b or d = ·r , then 
(d ) = d .
2. If k(d ) ≤ t and d = h(s)k (l + 1)(f1, . . . , fl , f0), then


(d ) = h(s)k (l + 1)(
(f1), . . . , 
(fl ), 
(f0)).

3. If k(d ) > t and d = �k,b , then k(d ) = d .
4. If k(d ) > t and d = h(s)k (l + 1)(f1, . . . , fl , f0), with f0 �= ·r , then


(d ) = h(s)k (l + 1)(f1, . . . , fl , 
(f0)).

5. If k(d ) > t and d = h(s)k (l + 1)(f1, . . . , fl , ·r) then


(d ) = h(s)k (f1, . . . , fl , hr,k(·r)).
We first show that if d1, d2 ∈ Dm(S̄, K̄) and d1 < d2, then 
(d1) < 
(d2). If
either d1 or d2 is of the form αk,b or �k,b , the result is easy. Say d1 = h

(s)
k1
(l1 + 1)

(f1, . . . , fl1 , f0), and d2 = h
(s)
k2
(l2 + 1)(g1, . . . , gl2 , g0) We proceed by reverse induc-

tion on k = min{k1, k2}. Assume first k ≤ t. If k = k1 < k2, then f0 < d1 < d2,
and by induction 
(f0) < 
(d2) which gives (using Lemma 2.13)


(d1) = h
(s)
k1
(l1 + 1)(
(f1), . . . , 
(fl1), 
(f0)) < 
(d2).

If k = k2 < k1, then d1 ≤ g0 (by Lemma 2.13). If d1 = g0 then 
(d1) = 
(g0) and so

(d1) < h

(s)
k2
(l2+1)(
(g1), . . . , 
(gl2), 
(g0)) = 
(d2). If d1 < g0 then 
(d1) < 
(g0)

by induction, and the result also follows. So, suppose k = k1 = k2. If there is a
least a such that fa �= ga , then we must have fa < ga and so 
(fa) < 
(ga) by
induction which gives 
(d1) < 
(d2). If there is no such a, then there is also no
such disagreement between 
(d1) and 
(d2), and inspecting the cases in Lemma 2.13
shows that 
(d1) < 
(d2).
Next assume k > t. Let f00 = d1, and define f

1
0 , . . . , f

n
0 as follows. If f

i
0 =

h(s)ki (f
′
0, . . . , f

′
l , f

′
0) and f

′
0 is not of the form ·r , then set fi+10 = f′

0. If f
′
0 = ·r ,

then stop and set n = i . Likewise define g00 , . . . , g
m
0 starting with d2. Since d1 < d2,
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it follows from Lemma 2.13 that fn0 ≤ gm0 . Suppose fn0 = h(s)k′ (f′
1, . . . , f

′
l , ·r) and

gm0 = h
(s)
k′′ (g

′
1, . . . , g

′
m, ·s). From Lemma 2.13 we must have r ≤ s . By definition,


(fn0 ) = h
(s)
k′ (f

′
1, . . . , f

′
l , hr,k′(·r)), and 
(gm0 ) = h(s)k′′ (g ′1, . . . , g ′m, hs,k′′(·s )). If r < s

then hr,k′(·r) < hs,k′′(·s), and from Lemma 2.13 we easily have that 
(d1) < 
(d2).
If r = s , then k′ ≤ k′′. If k′ < k′′, it follows that hr,k′(·r) < hs,k′′(·s ) and it again
follows that 
(d1) < 
(d2). So suppose r = s and k′ = k′′. So, hr,k′(·r)) = hs,k′′(·s ).
Iffn0 < g

m
0 , then fromLemma 2.13 we have that 
(f

n
0 ) < 
(g

m
0 ). FromLemma 2.13

we then have that 
(d1) < 
(d2). Finally, if fn0 = g
m
0 , then if f

n−j
0 = gm−j0 we

also have 
(fn−j0 ) = 
(gm−j0 ). If there is a least j such that fn−j0 �= gm−j0 , then
fn−j0 < gm−j0 and since 
(fn−j+10 ) = 
(gm−j+10 ) we have from Lemma 2.13 that

(fn−j0 ) < 
(gm−j0 ), and then that 
(d1) < 
(d2). If there is no such j, then n < m
and Lemma 2.13 also gives that 
(d1) < 
(d2).
Since d1 < d2 implies 
(d1) < 
(d2), and since we easily have that 
(d ) ≥ d ,
in all cases in the definition of 
(d ) we see that 
(d ) is a valid description, for
any d ∈ Dm(S̄, K̄). So, 
(p) ∈ Dm(S̄, K̄), and clearly has maximal length since p
does. A straightforward induction shows that p ∈ Dm(S̄) iff 
(d ) ∈ Dm(S̄) for any
d ∈ Dm(S̄, K̄), and that supK̄ (d ) = supL̄(
(d )). Thus, 
(p) ∈ Bd̄ (q). From the
definition of 
(p) it is clear that if ka(·r) and kb(·s) are terms in oseq∗d̄ (
(p)) and
r < s , then a < b (since any measure Kr,i occurs before any measures Ks,j in the
enumeration of L̄).
It remains to show that levd̄ (
(p)) = levd̄ (p). For this, note that terms of
oseq∗

d̄
(
(p)) are obtained from those of oseq∗

d̄
(p) by replacing terms of the form

ka(·r) by kr,a(·r). For two such terms we have ka(·r) ≤ kb(·s ) iff kr,a(·r) ≤ ks,b(·s ).
Thus, exactly the same terms will cancel in going from oseq∗

d̄
(p) to oseqd̄ (p) as in

going from oseq∗
d̄
(
(p)) to oseqd̄ (
(p)). This shows that levd̄ (
(p)) = levd̄ (p). �

We now prove our main lemma.

Lemma 3.34. Fix d̄ = (d ; S̄) where d ∈ Dm(S̄), and satisfies condition D. Then
(id; d ;Wm; S̄) ≥ ℵ�+
d̄+1.

Let d = q1 > q2 > · · · > qn enumerate the q ∈ Dm(S̄) below d satisfying
condition D, so the number of d̄–blocks is also n.
For 2 ≤ i ≤ n such that depth(Bd̄ (qi)) > 1, let p̄i be as in Propositions 3.32, 3.33.
We refer to these blocks as the nontrivial blocks. For the trivial blocks, let p̄i = q̄i .
For each nontrivial block Bd̄ (qi), let p̄i = (pi ; S̄, K̄

i), where K̄ i = (Ki1, . . . , K
i
ui ).

For each nontrivial block Bd̄ (qi), 2 ≤ i ≤ n, let wi = oseqd̄ (pi) and w∗
i =

oseq∗
d̄
(pi). Recall thatw∗

i is a sequence of terms of the form �
a
i,j and k

a
i (·r) and that

these terms are ordered by Definition 3.10. Recall also that wi is obtained from w∗
i

by first removing the superscripts from the terms, and then taking the canonical
increasing subsequence (using Definition 3.6). The ordinal levd̄ (pi) (which is equal
to depth(Bd̄ (qi))) was then derived from wi (Definition 3.11). Let li = lh(wi) − 1
and l∗i = lh(w

∗
i )− 1.

For each 2 ≤ i ≤ n we define two sub-basic order-measures (Di,Mi), (Ei ,Ni)
as follows. First assume that the block Bd̄ (qi) is nontrivial, that is, the sequence
oseqd̄ (pi) �= ∅.
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To define (Di,Mi), consider the sequence of terms (w∗
i (0), . . . , w

∗
i (l

∗
i )) from

w∗
i = oseq

∗
d̄
(pi). Let (ti0, . . . , t

i
l∗i
) be the same set of terms but written in increasing

order according to the ordering of Definition 3.10. Let 
i be the permutation
of {0, 1, . . . .l∗i } which gives this rearrangement, that is, w∗

i (j) = t
i

i (j)
. To each

term t = tij of this sequence we associate a measure M
i
j as follows. If t = �i,j ,

then we associate the measure Mij = W
1
1 . If t = k

a
b (·r) then we set Mij = Sr1 .

Let M∗
i = M

i
0 × · · · ×Mil∗i . For convenience, we consider the domain of M∗

i to
be the (measure one) set of tuples (�i0, . . . , �

i
l∗i
) such that �ij ∈ dom(Mij ), �ij <

�ij+1, and if M
i
j , M

i
j+1 are both of the form S

r
1 (for possibly different values of

r), then [�ij(1)]W 1
1
< [�ij+1(1)]W 1

1
. Let Di be the set of these tuples (�i0, . . . , �

i
l∗i
)

ordered by:

(�i0, . . . , �
i
l∗i
) < (�i0, . . . , �

i
l∗i
)↔ (�i
(0), . . . , �i
(l∗i )) <lex (�

i

(0), . . . , �

i

(l∗i )
).

We define (Ei ,Ni) as follows. Let (ui0, . . . , u
i
l∗i
) be the same sequence of terms

as (ti0, . . . , t
i
l∗i
) except that we have removed the superscripts from the terms. Let

j0, j1, . . . , je be the canonical increasing subsequence of ui
(0), . . . , u
i

(l∗i )
using the

ordering of Definition 3.6. That is, j0 = 
(0), and jl+1 is the least integer greater
than jl such that ui
(l+1) > u

i

(l) (in the order of 3.6). Thus, u

i
j0
, . . . , uije enumer-

ates the o–sequence oseqd̄ (pi). Let Ni be the product measure M
i
j0
× · · · ×Mije .

Let Ei be lexicographic ordering on the tuples (�ij0 , . . . , �
i
je
) where again �ijk ∈

dom(Mijk ) (and we restrict to the analogous measure one set as in the definition
of Di).
For trivial blocks Bd̄ (qi) we let Di = Ei = 1 and Mi = Ni = the principal
measure on {∅}.
Finally, we set E = En ⊕ · · · ⊕ E2 and D = Dn ⊕ · · · ⊕D2. So, we have defined
the basic types (E, {Ni}) and (D, {Mi}). FromDefinition 3.24 we have also defined
the order measures �D and �E on (�

1
3)
n−1.

Example. Suppose oseq∗
d̄
(pi) = (�11,1, k

1
5 (·1), k25(·1), �11,2, k13(·2), k11 (·2)). Then

(ti0, . . . , t
i
5) = (�

1
1,1, �

1
1,2, k

1
5(·1), k25 (·1), k11(·2), k13(·2)). The measure Mi is equal to

Mi =W 1
1 ×W 1

1 ×S11 ×S11 ×S21 ×S21 . The permutation 
i is equal to (0, 2, 3, 1, 5, 4).
Also, (ui0, . . . , u

i
5) = (�1,1, �1,2, k5(·1), k5(·1), k1(·2), k3(·2)). So, j0 = 0, j1 = 2, and

j3 = 5. Thus, Ni =W 1
1 × S11 × S21 .

Notice that for all nontrivial blocks i , (Ei ,Ni) is the order type and measure
corresponding to a subsequence of the canonical sequence of 
i (it may be a proper
subsequence since in the tij we keep the superscripts on the terms while for the u

i
j

we do not). In the example just considered, the canonical increasing subsequence
of 
i would be (0, 2, 3, 5), while (j0, j1, j2) is the proper subsequence (0, 2, 5).
From Lemma 3.30 we have that j�E (�

1
3) ≤ j�D (�13). From Lemma 3.29 we have

that j�E (�
1
3) ≥ ℵ�+c(E)+1. The ordinal c(E) is just the ordinal 
d̄ and so j�E (�13) ≥

ℵ�+
d̄+1. From Corollary 3.21 we have that (id;d ;Wm; S̄) ≤ ℵ�+
d̄+1. Putting this
together we have:

j�D (�
1
3) ≥ j�E (�13) ≥ ℵ�+
d̄+1 ≥ (id; d ;Wm; S̄).
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In the remainder of the proof we show that that j�D (�
1
3) ≤ (id; d ;Wm; S̄), which

shows that equality holds in the above inequalities, and completes the proof of
Lemma 3.34.
We define an embedding φ : j�D (�

1
3) → (id; d ;Wm; S̄). Fix [G ]�D , where

G : (�13)
n−1 → �13. φ([G ]�D ) will be represented with respect to W

m, S1, . . . , St
(as in the definition of (id; d ;Wm; S̄)) by φ([G ]�D )(f, h1, . . . , ht). That is, φ([G ]�D )
is represented in the ultrapower by the measureWm by the function

(. . . , [f]S
1 , . . . ) 
→ φ([G ]�D )([f]).
Here, and below, we use [f] to abbreviate (. . . , [f]S
1 , . . . ) ∈ (�m+1)(m−1)!. The value
φ([G ]�D )([f]) is then represented with respect to the measure S1 by the function
[h1] 
→ φ([G ]�D )([f], [h1])), etc., and where

φ([G ]�D )(f, h1, . . . , ht) = G([g]),

where g : D → �13 is defined as follows. As usual, [h1] here means [h1]Wr
1
if S1 = Sr1 ,

and if S1 = Wr
1 then [h1] simply means h1 (in this case h1 ∈ (�1)r). We have also

suppressed writing the equivalence class notation.
It remains to define g, and for this it suffices to define gi = g � Di for each i .
In the following, by “block i” we mean the block Bd̄ (qi). If i is a trivial block,
that is, Di = 1, then set gi(0) = (id;pi ;f; h1, . . . , ht). Recall that pi = qi in this
case. Fix a nontrivial block i . To ease notation, let t∗ = (t0, . . . , tl∗) be the terms
of oseq∗

d̄
(pi) written in increasing order (in the order 3.10), and write Kt+1, . . . , Ku

for Kt+1(i), . . . , Kui (i) (so pi ∈ Dm(S̄, K̄)). Recall each term tl of oseq∗d̄ (pi) is of
the form tl = �ai,j or tl = k

a
i (·r).

We must define gi(�0, . . . , �l∗) where �̄ is as in the definition of Di . Fix such
�0, . . . , �l∗ , and for �l > �1, let �l = [�l ]Wrl

1
, where �l : dom(<rl ) → �1 is of the

correct type and tl = kai (·rl ).
Finally, define gi(�0, . . . , �l∗) = (id;pi ;f; h1, . . . , ht ;�0, . . . , �l∗)∗. Roughly
speaking, this is defined as (id;pi ;f; h1, . . . , ht ;kt+1, . . . , ku), except that for sub-
descriptions q of pi corresponding to terms tl of oseq∗d̄ (pi), the interpretation of
the description, (q; h̄, k̄), is replaced by �l . The key point is that since no functional
composition of the ki functions is involved in interpreting any term from the o–
sequence, the evaluation of these terms is well-defined with respect to the ordinal
product measure Kt+1 × · · · × Ku (where K̄ = Kt+1, . . . , Ku). This, of course, is
not true for the measures S̄ = S1, . . . , St . This is where we use the fact that we
have “linearized” the description with respect to the K̄ measures. A more precise
definition follows. In this definition we recall for convenience our notation.

Definition 3.35. Let d̄ = (d ; S̄) where d ∈ Dm(S̄) and S̄ = S1, . . . , St . Let
pi ∈ Dm(S̄, K̄) and let (t0, . . . , tl∗) be the sequence of terms from oseq∗d̄ (pi) written
in increasing order using the ordering of 3.10. Let h1, . . . , ht be functions in the
function space measures S1, . . . ,St (i.e., if Si =Wr

1 then hi ∈ (�1)r and if Si = Sr1
then hi : dom(<r) → �1 is of the correct type). Let (�0, . . . , �l∗) be an increasing
sequence of ordinals with �j < �rj+1 where rj = 0 if tj = �

a
b,c and rj = r if tj =

kab (·r). We assume that the sequence of functions and ordinals h1, . . . , ht , �0, . . . , �l∗
is in “general position,” that is: (1) if �� ∈ (�1)p occurs before �� ∈ (�1)q in the
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sequence, then �p < �1, (2) If f occurs before g in the sequence then [f(1)] <
[g(1)] where f and g are either functions from some dom(<r) to �1 or ordinals
below �r+1 (recall here Definition 2.5 and the remarks immediately following), and
(3) each hi takes values in a c.u.b. set closed under the hj(1) for all j < i . Likewise
each �i can be represented by �i which takes values in a c.u.b. set closed under all
the hj(1) and all the �j(1). Let f : �m+1 → �13 be of continuous type.
Then we define (id;pi , f; h̄, �̄)∗ = f((pi ; h̄, �̄)∗). Finally, (pi ; h̄, �̄)∗ is defined as
follows.More generally,wedefine (q; h̄ , �̄)∗ for any subdescription q ofpi (including
pi) of the form αi,j , ·r , h(s)i (· · · ), or q = k(s)i (· · · ) or q = �i,j and where in these last
two cases we assume that oseqd̄ (q), which is of the form kb(·r) or �b,c , contributes
a term te = kab (·r) or te = �ab,c to oseq∗d̄ (pi). We let (q; h̄, �̄)∗ be represented
with respect toWm

1 by the function (α1, . . . , αm) 
→ (q; h̄, �̄)∗(ᾱ) which is defined
inductively as follows (for the subdescriptions qi of q we abbreviate (qi ; h̄; �̄)∗(ᾱ)
by writing just (qi)∗(ᾱ)).

1. If q = αi,j then (q; h̄, �̄)∗(ᾱ) = αi,j .
2. If q = ·r then (q; h̄, �̄)∗(α1, . . . , αm) = αr .
3. If q = hi(l + 1)(q1, . . . , ql , q0), then

(q; h̄; �̄)∗(ᾱ) = hi(l + 1)((q1)∗(ᾱ), . . . , (ql )∗(ᾱ), (q0)∗(ᾱ)).

4. If q = hsi (l + 1)(q1, . . . , ql , q0), then

(q; h̄; �̄)∗(ᾱ) = hsi (l + 1)((q1)
∗(ᾱ), . . . , (ql )∗(ᾱ), (q0)∗(ᾱ)).

5. If q = �i,j , and corresponds to te = �ai,j , then

(q; h̄; �̄)∗(ᾱ) = �e < �1.

6. If q = k(s)i (l +1)(q1, . . . , ql , q0), then by assumption oseqd̄ (q) corresponds to
a term, say te = kab (·r) or te = �ab,c , of oseq∗d̄ (pi). Then

(q; h̄; �̄)∗(ᾱ) = �e(α1, . . . , αr)

in the first case, and (q; h̄; �̄)∗(ᾱ) = �e in the second case.

Note that the definition in case (6) makes sense since if te = kab (·r), then �e is
represented by �e : dom(<r)→ �1.
Remark 3.36. We have not necessarily defined (q; h̄, �̄)∗ for all subdescriptions
ofpi . If we start frompi and descend along a branch of the “tree of subdescriptions”
of pi , we have defined (q; h̄, �̄)∗ up to and including the first point where q is of
the form q = �i,j or q = k

(s)
i (l + 1)(q1, . . . , ql , q0). In the latter case, for example,

we have not necessarily defined the (qj ; h̄, �̄)∗. This is enough, however, to give a
definition of (pi ; h̄, �̄)∗.

We first note that for fixed h1, . . . , ht, �0, . . . , �l∗ in general position that (pi ; h̄, �̄)∗

is well-defined. This uses two facts. First, the definition of each (q; h̄, �̄)∗ depends
only on the �j and not on the functions �j chosen to represent them. This is clear
from the definition. Second, when q = h(s)i (l + 1)(q1, . . . , ql , q0) then for almost all
ᾱ we have that (q1)∗(ᾱ) < · · · < (ql )∗(ᾱ) < (q0)∗(ᾱ). Recall from the definition
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of oseq∗
d̄
(pi) that if a term kab (·r) of oseq∗d̄ (pi) comes from oseq∗d̄ (qj) and the term

ka
′
b (·r) comes from oseq∗d̄ (qj′) and qj′ is to the right of qj (i.e., 0 < j < j′ or j′ = 0)
then a < a′. This is how we attached the superscripts in the definition of oseq∗

d̄
(pi).

So, to prove this second fact it suffices to show the following claim.

Claim 2. Suppose q < q′ are subdescriptions of pi for which we have defined
(q; h̄, �̄)∗ and (q′; h̄, �̄)∗ (see Remark 3.36). Suppose also that if kab (·r) and ka

′
b (·r)

are terms of oseq∗
d̄
(pi) coming from q and q′ respectively, then a < a′ (and similarly

for terms �ab,c , �
a′
b,c). Then (q; h̄, �̄)

∗ < (q′; h̄, �̄)∗.

Proof. By reverse induction onmin{k(q), k(q′)}. Suppose first that q = h(s)k (l+
1)(q1, . . . , ql , q0) and k(q′) > k. Since q < q′ we have from I.2. of Lemma 2.13
that q0 < q′. By induction, for almost all ᾱ we have (q0; h̄, �̄)∗(ᾱ) < (q′; h̄, �̄)∗(ᾱ)
and using the fact that the hl for l > k and the �e have (almost everywhere) range
in a set closed under hk(1) (and k(q′) > k) it easily follows that (q; h̄, �̄)∗(ᾱ) <
(q′; h̄, �̄)∗(ᾱ). The remaining cases where one of q or q′ has the form h(s)k (. . . ) are
handled by induction in a similar fashion. The cases where one of q, q′ has the
form αi,j or �i,j are essentially trivial. So, suppose q = k

(s)
i (l +1)(q1, . . . , ql , q0) and

q′ = k(s)i′ (l
′+1)(q′1, . . . , q

′
l ′ , q

′
0) (the cases where one of q, q

′ is equal to ·r are easy).
In this case oseqd̄ (q) and oseqd̄ (q

′) both consist of a single term. We consider the
case where oseqd̄ (q) = kb(·r) and oseqd̄ (q′) = kb′(·r), the other cases being similar.
From the definition of the o–sequence and I and II of Lemma 2.13 it follows that
we must have b ≤ b′. If b < b′, then oseqd̄ (q) contributes the term kab (·r) = te
to oseq∗

d̄
(pi) for some a, and oseqd̄ (q

′) contributes the term ka
′
b′ (·r) = te′ . By the

ordering on these terms (Definition 3.10) we have e < e′. We therefore have that
[�e(1)] < [�e′ (1)]. In particular, �e < �e′ almost everywhere and we are done by
case 6 of Definition 3.35. If b = b′ then oseqd̄ (q) contributes the term k

a
b (·r) = te

and oseqd̄ (q
′) contributes the term ka

′
b (·r) = te′ for some a < a′. Again it follows

that e < e′ and we are done (we use now our hypothesis on the superscripts stated
in the claim). �
It follows thatwe have shown that for fixedf and h1, . . . , ht , �0, . . . , �l∗ (in general
position) that (id;pi ;f; h̄, �̄)∗ is well-defined. It thus follows that for fixed G , f,
h1, . . . , ht , that the function gi : Di → �13 defined above is well-defined.
Next, we claim that for fixed G , that ∀∗Wm [f], if [f] = [f′] then ∀∗S1 [h1], if
[h1] = [h′1], . . . , ∀∗St [ht ] if [ht] = [h′t ] then:

∀1 ≤ i ≤ n ∀∗Mi�0, . . . , �l∗i gi (�̄) = f((pi ; h̄, �̄)∗) = f′((pi ; h̄′, �̄)∗) = g ′i (�̄).

To see this, note that we may assume that for i < j ≤ t that hj , h′j have range in
the limit points C ′

i of a c.u.b. set Ci on which hi , h
′
i agree. We may also assume

that all hi have range in the limit points C ′ of a c.u.b. set C defining measure
one sets S
1 on which f and f

′ agree. We may also assume that the h1, . . . , ht
are in general position. Then for Mi almost all (�0, . . . , �l∗) this sequence is in
general position and for each e the function �e representing �e (or �e itself if
Mie =W

1
1 ) has range in C

′∩⋂
i≤t C

′
i . From this and the claim above it follows that

(pi ; h̄, �̄)∗ = (pi ; h̄′, �̄)∗ and that ∀Wm
1
ᾱ (pi ; h̄, �̄)∗(ᾱ) ∈ C ′. From this and the fact

that pi satisfies condition D it follows that f((pi ; h̄, �̄)∗) = f′((pi ; h̄, �̄)∗). We use
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here the fact that if h : (�1)m → C ′ satisfies h(α1, . . . , αm) > αm almost everywhere,
then [h]Wm

1
is a limit of ordinals of the form [h′]Wm

1
where h′ : (�1)m → C is of type


 for some permutation 
. Note again that since we are using the product measure
Mi to quantify over the �0, . . . , �l∗ it is important that no composition of the ki
functions occur in the definition of (pi ; h̄, �̄). We have now shown that for fixed G ,
the ordinal φ(G) is well-defined.
The proofs that φ depends only on [G ]�D , and that φ is one-to-one are similar.
So, suppose [G1]�D = [G2]�D . Let C ⊆ �13 be c.u.b. such that if g : dom(<D) → C
is of the correct type, then G1([g]) = G2([g]). Let C ′ = {α ∈ C : α is the αth
element of C}. Consider f, h1, . . . , ht such that f has range in C ′ and the hi are
of the correct type and in general position. Let g : dom(<D)→ �13 be the function
defined in the definition of φ. Since f has range inC ′, so does g. It remains to show
that g is order-preserving and of uniform cofinality �. The domain of D may be
regarded as lexicographic′ order on the sequences (i, �
i (0), �
i (1), . . . , �
i (l∗i )) where
2 ≤ i ≤ n (recall the blocks correspond to the descriptions q2 > · · · > qn where
q1 = d ), (�0, . . . , �l∗i ) ∈ dom(Mi), and 
i is the permutation of {0, . . . , l∗i } defined
in the definition of Di (so �
i (0), . . . , �
i (l∗i ) corresponds to the order of appearance
of the terms in oseq∗

d̄
(pi)). By lexicographic′ order we mean lexicographic ordering

on the tuples except for the first (integer) coordinate where we use reverse ordering
<′ on the integers (i.e., i <′ j iff i > j).
To show g is order-preserving, we show that for fixed f, h1, . . . , ht , that if

(i, �
i (0), �
i (1), . . . , �
i (l∗i )) <
′
lex (i

′, � ′
i (0), �
′

i (1)
, . . . , � ′
i (l∗i ))

then (pi ; h̄, �̄)∗ < (p′i ; h̄, �̄ ′)
∗. Suppose first that i > i ′. Then, pi ≤ qi < pi′

(if pi′ ≤ qi then qi′ = supK̄(i′) pi′ ≤ qi by (2) of Lemma 2.22). It suffices to
prove that (pi ; h̄, �̄(i)) ≤ (qi ; h̄) < (pi′ ; h̄, �̄(i ′)) (here �̄(i), �̄(i ′) refer to elements
of dom(Mi), dom(Mi′ ), respectively). If pi = qi (that is, Bd̄ (qi) is trivial) then
(pi ; h̄, �̄(i)) = (pi ; h̄) = (qi ; h̄). So, it suffices to show the following.

Claim 3. Supposeq is a subdescription ofpi forwhich (q; h̄, �̄)∗ is defined. Suppose
q′ ∈ Dm(S̄). If q < q′ (respectively q > q′) then (q; h̄, �̄)∗ < (q′; h̄) (respectively
(q; h̄, �̄)∗ > (q′; h̄)) for all h̄, �̄ in general position.

Proof. The proof is by reverse induction on min{k(q), k(q′)} and is similar to
that of claim 2. The cases where min{k(q), k(q′)} ≤ t (recall S̄ = S1, . . . , St) follow
in a straightforward manner by induction. The case where q = ·r is immediate
(since then q, q′ ∈ Dm(S̄)). The remaining case is when q is of the form q =
k(s)i (l + 1)(q1, . . . , ql , q0) and q

′ = ·r . Then oseq∗d̄ (q) consists of a single term
kab (·r′) or �ab,c . In the first case, since q < q′ it follows that r′ < r. In this case we
have that for almost all ᾱ ∈ (�1)m that (q; h̄, �̄)∗(ᾱ) = �e(α1, . . . , αr′) < αr , where
the term kab (·r′) corresponds to the factorMie ofMi (that is, tie = kab (·r′)). The case
where q = �ab,c is clear as then (q; h̄, �̄)

∗ < �1. �
Suppose next that i = i ′. Let p ≤ l∗i be least such that �
i (p) �= � ′
i (p), so we have
�
i (p) < �

′

i (p)
. Say v = kab (·r) or v = �ab,c is the corresponding term of oseq∗d̄ (pi),

that is, ti

i (p)
= v. It suffices now to prove the following claim.
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Claim 4. Suppose q is a subdescription of pi with (q; h̄, �̄)∗ defined. Suppose that
oseq∗

d̄
(q) contains the term v. Then (q; h̄, �̄) < (q; h̄, �̄ ′).

Proof. The proof is again by reverse induction on k(q). Suppose first q =
h(s)i (l + 1)(q1, . . . , ql , q0). Let l̄ ≤ l be the unique integer such that v corre-
sponds to a term of oseq∗

d̄
(ql̄ ). For j < l̄ we must have that (qj ; h̄, �̄)

∗ =
(qj ; h̄, �̄ ′)∗ as the definitions of these ordinals use only �
i (0), . . . , �
i (p−1) where
ti

i (p)

= v (recall that (ti

i (0)
, . . . , ti


i (l∗i )
) enumerates oseq∗

d̄
(pi) and oseq∗d̄ (pi) is

the concatenation of oseq∗
d̄
(q0), oseq∗d̄ (q1), up through oseq

∗
d̄
(ql ) with appropri-

ately labeled superscripts). By induction, (ql̄ ; h̄, �̄)
∗ < (ql̄ ; h̄, �̄

′)∗. That is, for
Wm
1 almost all ᾱ we have that (qj ; h̄, �̄)

∗(ᾱ) = (qj ; h̄, �̄ ′)∗(ᾱ) for j < l̄ and
(ql̄ ; h̄, �̄)

∗(ᾱ) < (ql̄ ; h̄, �̄
′)∗(ᾱ). Since hi : dom(<ri ) → �1 is order-preserving, it

then follows that (q; h̄, �̄)∗(ᾱ) < (q; h̄, �̄ ′)∗(ᾱ). The remaining cases are when
q = �i,j or q = k

(s)
i (l + 1)(q1, . . . , ql , q0). In these cases q contributes a single

term to oseq∗
d̄
(pi) which by assumption must be v = ti
i (p). The result then follows

immediately from �
i (p) < �
′

i (p)
. �

We have shown that for fixed f, h1, . . . , ht that the function g : dom(<D) → �13
is order-preserving when restricted to aMi measure one set. Clearly g has range in
C ′ since f does. Finally, g has uniform cofinality �. To see this, consider one of
the subfunctions gi . If i is a trivial block, then pi = qi has cofinality �. Then gi (0)
(recall the domain of gi is the single point 0 in this case) is equal tof((pi ; h̄)) which
has cofinality � since cof((pi ; h̄)) = � and f is continuous. Suppose i is a nontriv-
ial block. We cannot have pi = αa,b or pi = �a,b as then qi = supK̄(pi) ≤ ·1
and then qi does not satisfy condition D. If pi = k

(s)
i (l + 1)(q1, . . . , ql , q0)

then oseqd̄ (pi) consists of a single term of the form ka(·r) or �a,b and also
qi = supK̄(pi) = ·r+1. Since pi satisfies condition D we must have r = m. However,
this violates qi ∈ Dm(S̄). So, pi has the form pi = hj(l +1)(q1, . . . , ql , q0) and from
Proposition 3.32 we may assume that pi has maximal length, that is, Sj = Sl+11 .
Since f is continuous, to show gi has uniform cofinality � it suffices to show that
the function (�i0, . . . , �

i
l∗i
) 
→ (pi ; h̄, �̄)∗ has uniform cofinality �. This follows from

the fact that hj has uniform cofinality�. Namely, if h′j : dom(<l)×� → �1 induces
hj (i.e., hj(ᾱ) = supn h

′
j(ᾱ, n)) then

(pi ; h̄, �̄)∗(ᾱ) = hj((q1; h̄, �̄)∗(ᾱ), . . . , (q0; h̄, �̄)∗(ᾱ))

is the supremum over n ∈ � of
h′j((q1; h̄, �̄)

∗(ᾱ), . . . , (q0; h̄, �̄)∗(ᾱ), n).

Thus, restricted to an Mi measure one set, the function g is order-preserving, of
uniform cofinality�, andhas range inC ′. An easy argument now shows that there is
a g′ such that [g ′]Mi = [g]Mi , and g ′ is everywhere order-preserving and of uniform
cofinality� andwith range inC . Thus, φ(G) = φ(G ′). This shows φ is well-defined
and one-to-one.
Lastly, we observe that φ([G ]) < (id; d ;Wm; S̄). This follows from the fact that
only the qi for i ≥ 2 were used in defining <D while q1 = d > q2. Namely, it follows
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from Claim 3 that for almost all f, h1, . . . , ht that

sup
�̄

g2(�̄) ≤ f((q2; h̄)) < f((d ; h̄)) = (id; d ;f; h̄).

We may assume without loss of generality that f takes range in a c.u.b. D ⊆ �13
closed under the functionG and also closed under ultrapowers by the measuresMi .
For such f we then have (id; d ;f; h̄) > G([g]).
This completes the proof of Lemma 3.34, and of Theorem 3.1. As we remarked
in the proof of Lemma 3.34, we have actually shown the following.

Theorem 3.37. Let d ∈ Dm(K1, . . . , Kt) satisfy condition D. Then (where 
d̄ is
defined after Definition 3.13):

(id; d ;Wm; K̄) = ℵ�+
d̄+1.
Corollary 3.38. The successor cardinals �13 ≤ ℵα+1 < �15, are exactly the ordinals
of the form (id; d ;Wm; K̄) for some d ∈ Dm(K1, . . . , Kt) satisfying condition D.
Proof. From [2] all successor cardinals in this range are of necessarily of the
form (id; d ;Wm; K̄) (the results of [2] are stated for the ordinals (id; d ;Wm

3 ; K̄)
andf : �m+1 → �13 of the correct type, but they immediately show the current claim
as well). Theorem 3.37 gives the converse. �
Remark 3.39. As mentioned, our definitions are slightly different from those of
[2]. However, a minor variation of our embedding argument shows that the ordinals
(id; d ;Wm

3 ; K̄) as defined in [2] are also cardinals. For the readers familiar with [2],
we briefly mention the changes necessary. Given (d ) or (d )s in D̄m(S̄) satisfying
“condition D” of [2] (which is different from that of this paper) one considers now
the blocks (d )(s) = q1 > q2 > · · · > qn where each qi is now of the form (d ′) or
(d ′)s and satisfies condition D of [2]. The qi of the form qi = (d ′) are regarded
as trivial blocks in the definition of the ordering D used to define �D . The blocks
of the form qi = (d ′)s are treated as in the current paper (so these may or may
not be trivial). One can show that the pi as in Proposition 3.32 can be chosen so
that (pi)s satisfies condition D of [2]. The argument then proceeds as in the current
paper.

§4. Applications. Recall from Section 3 the definitions of a basic order type, D,
the ordinal c(D), and the associated measure �D . Recall also Lemma 3.29, which
says j�D (�

1
3) ≥ ℵ�+c(D)+1.

We show now that equality holds here, thereby providing another representation
for the successor cardinals �13 < ℵα+1 < �15.
Theorem 4.1. For D a basic order type, and associated measure �D , we have
j�D (�

1
3) = ℵ�+c(D)+1.

Proof. Let κ = ℵ�+c(D)+1. From Martin’s theorem (Theorem 3.22), j�D (�13) is
a cardinal, and since cof(j�D (�

1
3)) > �, it is a successor cardinal. From [2], every

successor �13 < ℵα+1 < �15 is of the form (id; d ;Wm; S̄) for some d ∈ Dm(S̄). From
the equality proved in Lemma 3.34,

κ = (id; d ;Wm; S̄) = j�E (�
1
3) = ℵ�+c(E)+1
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for some basic order type E. It thus suffices to show that if D, E are basic order
types with c(D) = c(E), then j�D (�

1
3) = j�E (�

1
3).

This follows from two observations. The first observation is that ifD is the order
type of lexicographic ordering on �l+1 × �k+1 where k < l , and E is the order
type �l+1, then D strongly embeds into E. The proof of this is similar to that of
Proposition 3.27. Let � be the measure S21 . For 	 ∈ dom(�) = �3 represented by
h : dom(<2) → �1, define H (	) : D → E as follows. Fix f1 : dom(<l ) → �1, and
f2 : dom(<k)→ �1 representing (α1, α2) ∈ D. Then H (	)(α1, α2) = [g]W l

1
where

g(�1, . . . , �l ) = h(f2(�1, . . . , �k), f1(�1, . . . , �l )).

It is readily checked thatH is well-defined and gives a strong embedding fromD to
E.
The second observation is that if A, B are sub-basic order types, with c(A) <
c(B), then A ⊕ B strongly embeds into B. The proof is also similar to that of
Proposition 3.27.Consider the caseA = (�k+1)m = �k+1×· · ·×�k+1 andB = �l+1
where k < l (in fact, using the previous paragraph and Propositions 3.26 and 3.27,
the general case can be reduced to this one). Let � = Sm+l1 × S11 . For (	1, 	2) ∈
dom(�) represented by functions h1 : dom(<m+l ) → �1 and h2 : �1 → �1 of the
correct type with [h2(1)]W 1

1
> [h1(1)]W 1

1
, defineH (	1, 	2) : A⊕B → B as follows. If

ᾱ = (α1, . . . , αm) ∈ A, with αi = [fi ]Wk
1
, then define H (	1, 	2)(ᾱ) = [g]W l

1
where

g is given by:

g(�1, . . . , �l ) = h1(�1, . . . , �k−1, f1(�1, . . . , �k), . . . , fm(�1, . . . , �k), �k+1, . . . , �l ).

If α = [f]Wl
1
∈ B, then set H (	1, 	2)(α) = [g]W l

1
where

g(�1, . . . , �l ) = h2(f(�1, . . . , �l )).

As in Propositions 3.26 and 3.27 it can be checked thatH is well-defined and gives
a strong embedding. �
We thus have two ways of representing the successor cardinals below �15, and
the results of this paper give an algorithm for converting from one representation
to the other. Questions about the cardinals below �15 may thus be approached in
either manner. To illustrate this, we compute the cofinality of the successor cardinals
below �15.
Theorem 4.2. Suppose �13 = ℵ�+1 < ℵα+1 < ℵ���+1 = �15. Let α = ��1 + · · ·+
��n , where �� > �1 ≥ · · · ≥ �n be the normal form for α. Then:
• If �n = 0, then cof(κ) = �14 = ℵ�+2.
• If �n > 0, and is a successor ordinal, then cof(κ) = ℵ�·2+1.
• If �n > 0 and is a limit ordinal, then cof(κ) = ℵ��+1.
We note that ℵ�+2, ℵ�·2+1, and ℵ��+1 are the three regular cardinals strictly
between �13 and �

1
5, and are the ultrapowers of �

1
3 by the three normal measures

on �13 (generated by the c.u.b. filter and the possible cofinalities �, �1, �2). This is
proved in [2].
Sketch of proof. The proof in all cases is similar, so suppose �n > 0 and is a
limit. Thus, �n = �ml + �ml−1 + · · · + �m1 , where ml ≥ ml−1 ≥ · · · ≥ m1 > 0.
For 1 ≤ i ≤ n, let Di be the sub-basic order type corresponding to �i , that is,
c(Di) = ��i .
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LetD = D1⊕· · ·⊕Dn. Thus,Dn is lexicographic ordering on�m1+1×· · ·×�ml+1.
Also,ℵα+1 = j�D (�13) fromTheorem4.1.Let �2 be the�2–cofinal normalmeasure on
�13. We embed j�2 (�

1
3) cofinally into j�D (�

1
3). Given [F ]�2 , let 
([F ]�2 ) = [G ]�D , where

for g = (gn, . . . , g1) : <D→ �13 of the correct type, G([gn], . . . , [g1]) = F (sup g1).
Easily, 
 is well-defined and strictly increasing. An easy partition argument using
the weak partition relation on �13 shows that 
 is also cofinal. �
Finally, we close by considering an example which illustrates the arguments of this
paper. Let S̄ = (S31 , S

2
1 ),m = 2, and d ∈ Dm(S̄) with functional representation d =

h1(1)(·2). Letκ = (id; d ;W 2; S̄). The table in figure 1 lists the descriptions q1, . . . , q7
determining the blocksB2, . . . , B7, thepi giving the depth of each (nontrivial) block,
and the depth ri = depth(Bd̄ (qi)) of each block.

q1 = h1(1)(·2)
q2 = h1(2)(h2(1)(·1), ·2)

p2 = h1(3)(h2(1)(·1), k3(1)(·1), ·2)
r2 = ��

q3 = hs1 (2)(h2(1)(·1), ·2)
p3 = h1(3)(h2(2)(�4,1, ·1), k5(1)(·1), ·2)
r3 = �� · � = ��+1

q4 = h1(2)(·1, ·2)
p4 = h1(3)(·1, k6(1)(·1), ·2)
r4 = ��

q5 = h1(3)(·1, h2(1)(·1), ·2)
r5 = 1

q6 = hs1 (3)(·1, h2(1)(·1), ·2)
p6 = h1(3)(·1, h2(2)(�8,1, ·1), ·2)
r6 = �

q7 = hs1 (1)(·1, ·2)
p7 = h1(3)(�9,1, k10(1)(·1), ·2)
r7 = �� · � = ��+1

Figure 1. Example showing the blocks and depths for a certain description.

Thus, κ = ℵ��+1+�+1+��+��+1+��+1 = ℵ��+1·2+��+1. From Theorem 4.2,
cof(κ) = ℵ��+1.
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