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We investigate the onset of the classical magnetohydrodynamic (MHD) tearing
instability (TI) and focus on non-modal (transient) growth rather than the tearing
mode. With the help of pseudospectral theory, the operators of the linear equations
are shown to be highly non-normal, resulting in the possibility of significant transient
growth at the onset of the TI. This possibility increases as the Lundquist number S
increases. In particular, we find evidence, numerically, that the maximum possible
transient growth, measured in the L2-norm, for the classical set-up of current sheets
unstable to the TI, scales as O(S1/4) on time scales of O(S1/4) for S � 1. This
behaviour is much faster than the time scale O(S1/2) when the solution behaviour is
dominated by the tearing mode. The size of transient growth obtained is dependent
on the form of the initial perturbation. Optimal initial conditions for the maximum
possible transient growth are determined, which take the form of wave packets and
can be thought of as noise concentrated at the current sheet. We also examine how
the structure of the eigenvalue spectrum relates to physical quantities.

Key words: plasma instabilities

1. Introduction
In magnetohydrodynamics (MHD), the tearing instability (TI) occurs in highly

sheared magnetic field configurations called current sheets. In a current sheet there
is a thin (compared to larger length scales outside the current sheet) layer of intense
current density where the magnetic field changes direction rapidly. If the conditions
of the TI are met, the current sheet begins to ‘tear’ or, to be more precise, the
topology of the magnetic field changes to form multiple islands (or plasmoids in
three dimensions) of magnetic flux. Since the seminal work of Furth, Kileen &
Rosenbluth (1963), the onset of the TI has been traditionally studied using normal
mode analysis, to the extent that the terms ‘tearing instability’ and ‘tearing mode’
are often used synonymously.

Recent studies that address the linear onset of TI in high aspect ratio current sheets,
also known as the plasmoid instability (PI), (e.g. Loureiro, Schekochihin & Cowley
2007; Bhattacharjee et al. 2009; Pucci & Velli 2014; Tenerani et al. 2016; Uzdensky &
Loureiro 2016) do so from the point of view of normal mode analysis. For the TI (and
the PI), however, normal mode analysis cannot give a complete picture of its linear
onset. The operators in the equations describing the onset of the TI are non-normal.
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This means that the eigenmodes are not orthogonal and for the application in hand
are heavily ill conditioned (Borba et al. 1994). Therefore, although eigenmodes may
be damped as t→∞, they can result in significant transient (or algebraic) growth
within a finite time. Performing normal mode analysis on equations with non-normal
operators results in the translation to a later time when the transient growth has been
damped away. Therefore, if significant transient growth is possible, it is ignored in
normal mode analysis.

Although stability theory in plasma physics is dominated by normal mode
(eigenvalue) analysis, studies of non-modal behaviour are on the increase. In the
MHD literature, one early suggestion that subcritical behaviour may be important for
the tearing instability was made by Dahlburg et al. (1983), although the mechanism
was thought to be nonlinear rather than linear. Later, Dahlburg (1994) studied the
algebraic growth of current sheets in ideal MHD as a possible route to turbulent
reconnection through the creation of smaller length scales. Borba et al. (1994)
investigated the eigenmodes of resistive MHD using pseudospectra but did not focus
on the TI. They argue that the non-orthogonality of the eigenmodes implies that
normal mode analysis can only describe instability growth on a long time scale
(of O(S1/2), where S is the Lundquist number that will be defined later). Other
researchers have recognized the importance of non-modal growth in other MHD
applications, including kinematic dynamo theory (e.g. Farrell & Ioannou 1999a,b;
Livermore & Jackson 2006; Chen et al. 2018), the magnetorotational instability (e.g.
Squire & Bhattacharjee 2014a,b) and the tearing instability (MacTaggart & Stewart
2017). There is also a growing interest in the subcritical transition to turbulence in
tokamak plasmas (e.g. Landremann, Plunk & Dorland 2015; van Wyk et al. 2016) and
the non-modal consequences of shearing on microinstabilities (e.g. Newton, Cowley
& Loureiro 2010).

The purpose of this article is to investigate the non-modal transient growth at the
onset of the classical TI. In particular, our aim is to determine the dependence of
the maximum possible transient growth on the Lundquist number and to understand
the relationship between the eigenvalue spectrum and the underlying physics. We
solve the linearized equations numerically and use pseudospectral theory to help us
understand how the spectrum relates to (i) the transient growth and (ii) the optimal
initial conditions that give rise to the maximum possible transient growth.

2. Model description
To study the TI, we consider the non-dimensional, incompressible, visco-resistive

MHD equations

∂u
∂t
+ (u · ∇)u=−∇p+ (∇×B)×B+

1
Re
∇

2u, (2.1)

∂B
∂t
=∇× (u×B)+

1
S
∇

2B, (2.2)

∇ ·B=∇ · u= 0, (2.3)

where B is the magnetic field, u is the velocity, p is the plasma pressure, Re is the
Reynolds number and S is the Lundquist number.

For our background equilibrium,

p0 = p0(x), B0 = B0(x)ez, u0 =U0(x)ez, (2.4a−c)
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where the subscript 0 corresponds to the equilibrium and

0=−∇p0 + (∇×B0)×B0 +
1

Re
∇

2u0, (2.5)

0=∇× (u0 ×B0). (2.6)

Magnetic diffusion is not included in the background equilibrium (2.6) as we are only
interested in time scales much shorter than the global magnetic diffusion time scale.
Clearly, for the assumed forms of the equilibrium magnetic and velocity fields (2.4)2
and (2.4)3, equation (2.6) is satisfied. Once u0 and B0 are chosen, the background
pressure p0 is determined from (2.5).

We will now linearize equations (2.1) and (2.2) about a background equilibrium by
setting (u,B, p)= (u0,B0, p0)+ (u1,B1, p1) and focus on the two-dimensional version
of the equations. Assuming perturbations of the form

u1 = [u(x, t), 0, uz(x, t)]T exp(ikz), B1 = [b(x, t), 0, bz(x, t)]T exp(ikz), (2.7a,b)

the linearized form of (2.1) and (2.2) can be written as

∂

∂t
(D2
− k2)u= LB0b− LU0u+

1
Re
(D2
− k2)2u, (2.8)

∂b
∂t
= ik(B0u+U0b)+

1
S
(D2
− k2)b, (2.9)

where

LU0 = ik[U0(D2
− k2)−U′′0 ], LB0 = ik[B0(D2

− k2)− B′′0], D= ∂/∂x, (2.10a,b)

and the prime refers to differentiation with respect to x in the background equilibrium
fields. Equations (2.8) and (2.9) have essentially the same form as those obtained with
reduced MHD in the presence of a large guide field (e.g. Loureiro et al. 2007).

To complete the set-up of the model, we require boundary conditions for (2.8)
and (2.9). In this paper we will consider no-slip and perfectly conducting boundary
conditions,

u=Du= b= 0 at x=±d, (2.11)

where d is a non-dimensional distance. Since the tearing instability grows in a thin
boundary layer at x = 0, the choice of boundary conditions should not have a large
effect on the initial development of the instability if d is sufficiently large.

To facilitate the discussion of our analysis later, we rewrite (2.8) and (2.9) in the
form

∂

∂t
Mv = Lv, (2.12)

where v = (u, b)T,

M =
(

D2
− k2 0
0 I

)
, L=


1

Re
(D2
− k2)2 − LU0 LB0

ikB0 ikU0 +
1
S
(D2
− k2)

 ,
(2.13a,b)

and I represents the identity operator.
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3. Numerical implementation
In this section we describe briefly the numerical techniques used to discretize

and study the behaviour of (2.12). Henceforth, we will describe matrices rather
than operators and eigenvectors rather than eigenmodes as the equations will be
discretized. To signify this change, the notation for a matrix will have the same letter
as the operator it represents but it will now be in bold, e.g. A is an operator and A
is the finite matrix discretization of that operator. In order not to introduce too much
extra notation, eigenvectors will have the same notation as the eigenmodes.

3.1. Solving the eigenvalue problem
Assuming a time dependence of exp(σ t), the initial value problem (2.12) becomes the
generalized eigenvalue problem

σMv = Lv. (3.1)

The matrix M−1L involves (discrete) derivatives (up to fourth order) in x ∈ [−d, d].
It is trivial to move from this domain to [−1, 1] and so we discretize the equations
using a Chebyshev pseudospectral method (Trefethen 1999, 2000). If N is a positive
integer, the N + 1 Chebyshev points are given by

xi = cos
(

iπ
N

)
, i= 0, . . . ,N. (3.2)

Note that we could define the xi with a minus sign in front so as to move from −1
to 1. However, due to the symmetry of our problem, there is no need to make this
step. On the domain [−1, 1] the first order spectral differentiation matrix DN is given
by

(DN)00 =
2N2
+ 1

6
, (DN)NN =−

2N2
+ 1

6
,

(DN)jj =−
xj

2(1− x2
j )

for 1 6 j 6 N − 1,

(DN)ij =
ci

cj

(−1)i+j

xi − xj
for i 6= j.


(3.3)

The above coefficients are defined as

ci =

{
2 for i= 0 or N,
1 for 1 6 i 6 N − 1.

(3.4)

The second order differentiation matrix is given simply by D2
N . Due to the boundary

conditions (2.11), we strip the first and last rows of DN and D2
N .

The above matrices are constructed via polynomial interpolation (Trefethen 2000).
To define a fourth order differentiation matrix, we require a polynomial interpolant that
satisfies two more boundary conditions than that for the second order differentiation
matrix. Again following Trefethen (2000), the resulting fourth order differentiation
matrix is

SN = [diag(1− x2
j )D

4
N − 8diag(xj)D

3
N − 12D2

N]diag
(

1
1− x2

j

)
, (3.5)

where j= 1, . . . ,N − 1 after stripping the first and last rows.
With all the differentiation matrices defined, the matrices of the eigenvalue problem

are constructed as they are displayed in (2.13). We then solve the eigenvalue problem
(3.1) using the QZ algorithm (Golub & Van Loan 1996).
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3.2. Quadrature
Once the eigenvalue spectrum is obtained, this describes the asymptotic phase of the
linear onset of the TI. To aid our understanding of how the transient growth relates
to the spectrum, we require a generalization of the eigenvalue spectrum known as the
pseudospectrum (Borba et al. 1994; Trefethen & Embree 2005). The calculation of
pseudospectra (described in more detail later) and other useful quantities will require
the evaluation of norms. To evaluate norms accurately, we must take into account
appropriate quadrature weights for the spectral discretizations on an irregular grid.
Following the description given in Trefethen (1999), we consider a weight matrix of
the form

W = diag(w1, . . . ,wN,w1, . . . ,wN), (3.6)

with Gauss–Lobatto weights defined by

w2
j =

π

√
d2 − x2

j

2(N + 1)
. (3.7)

If ‖ · ‖ denotes the weighted vector norm that approximates the continuous L2-norm,
then

‖u‖ = ‖Wu‖2, (3.8)

for some vector u of length 2N. The corresponding matrix norm is

‖A‖ = ‖WAW−1
‖2, (3.9)

where A is a 2N × 2N matrix. More detailed descriptions of these and related results
can be found in Reddy, Schmid & Henningson (1993), Trefethen (1999), Trefethen &
Embree (2005). Throughout the rest of this article, the vector and matrix norms that
we will use are those defined in (3.8) and (3.9).

3.3. Matrix projection
One practical issue related to the numerical solution of the eigenvalue problem is
that ‘spurious eigenvalues’ (e.g. Bourne 2003) are generated by the numerical scheme
which do not have any physical interpretation related to the TI. There are various
methods of removing these values, such as solving the equivalent adjoint eigenvalue
problem and removing any eigenvalues that do not appear in both the original and
adjoint calculations (e.g. Stewart et al. 2009). In this article, we bypass the problem
of spurious eigenvalues by projecting M−1L onto a lower-dimensional subspace. That
is, we focus on a (physically interesting) part of the complex plane and only consider
the eigenvalues in this region, cutting out the spurious eigenvalues. This approach
also aids to accelerate calculations. There are many ways to achieve projection.
In this article we make use of the QR algorithm (Golub & Van Loan 1996). Let
B = WM−1LW−1 and V be an 2N × n matrix whose columns are selected linearly
independent eigenvectors of B satisfying BV = VD for some n× n diagonal matrix D
of corresponding eigenvalues. If V = QR is a QR decomposition of V , we can find
an upper-triangular n× n matrix

T = RDR−1, (3.10)

which is the matrix representation of the projection of B onto a space of the selected
eigenvectors.

Later, we will investigate what parts of the eigenvalue spectrum are ‘physically
interesting’, i.e. what parts contribute the largest transient growth. Knowing these
locations will allow us to select a suitable projection using the above method.
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4. Transient growth analysis
4.1. Parameter selection

We will consider a domain size given by d=10, which allows us to make comparisons
with previous work (MacTaggart & Stewart 2017) and is a value large enough to not
allow the boundary conditions to interfere strongly with the onset of the TI. Here we
will only focus on the classical TI and set U0 = 0 and Re= 106. In future work we
will consider the effects of different background flows and current sheet thicknesses.
The background magnetic field equilibrium is given by

B0(x)= tanh(x), (4.1)

corresponding to the Harris sheet (Harris 1962).

4.2. Spectra
The eigenvalue spectrum for the onset of the TI consists of a branched structure below
Re(σ )= 0 and a unique eigenvalue on the positive side of this line corresponding to
the tearing mode. An example of the spectrum is given in figure 1. This spectrum has
been produced with S = 1000, k = 0.5 and N = 700. The spectrum consists of three
main branches (labelled b1, b2 and c) and two (sub)branches connecting b1 and b2 to
c, labelled s1 and s2. This branching structure is qualitatively similar to that found by
Riedel (1986) by means of WKB analysis and also matches other numerical studies
(Goedbloed, Keppens & Poedts 2010; MacTaggart & Stewart 2017). The spectrum is
also symmetric about Im(σ ) = 0. It can easily be demonstrated that (3.1) possesses
the symmetry

σ→ σ ∗, u→−u∗, b→ b∗, (4.2a−c)

for the background equilibria we have selected. The asterisk denotes the complex-
conjugate.

The general branching structure outlined above is maintained as S is increased,
however, the intersections of the b and s branches become more compressed. To
illustrate this, figure 2 displays the part of the spectrum, for the case S= 106, k= 0.5
and N = 2000, where the branches b2 and s2 meet. By the symmetry of (4.2), there
is an equivalent structure at the intersection of b1 and s1.

The b2 branch has been pushed closer to the Re(σ ) = 0 line and the eigenvalues
have become densely packed into a small triangular region. This mirrors the behaviour
of the spectrum of the Orr–Sommerfield operator at the intersection of its eigenvalue
branches for large Re (e.g. Schmid & Henningson 2001). Eigenvalues in such
intersection regions are highly sensitive and full numerical convergence is difficult
to achieve (Kerner 1998). However, it is this sensitivity that makes these regions
important for transient growth, as will be demonstrated later. Despite the numerical
difficulties associated with the calculation of these spectra, our transient growth
calculations, which depend on the spectra, are converged and will be shown to follow
a clear scaling law (see Hanifi, Schmid & Henningson (1996) for a similar situation).

4.3. Pseudospectra
The individual eigenvalues and eigenvectors only describe the behaviour of a linear
instability on a large time scale. They give no information about transient growth that
can occur much sooner. One mathematical structure which can provide information
about transient growth is a generlization of the spectrum known as the pseudospectrum
(Trefethen & Embree 2005).
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FIGURE 1. Eigenvalue spectrum with Re(σ )>−0.5 for S= 103 and k= 0.5. Eigenvalues
are shown as solid dots apart from the unique eigenvalue corresponding to the tearing
mode, which is shown as a hollow circle.

FIGURE 2. Eigenvalue spectrum for S= 106 and k= 0.5 at the intersection of branches
b2 and s2.

Definition 1. Let A=M−1L and ε > 0 be arbitrary. The ε-pseudospectrum σε(A) of A
is the set of z ∈C such that

‖(zI − A)−1
‖> ε−1, (4.3)

where I is the identity matrix.

Note that in this definition we could replace A by B, as defined in § 3.2. All
numerical calculations involving norms will use B in this article due to the spectral
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FIGURE 3. The eigenvalue spectrum and pseudospectra for the projection covering −0.5<
Re(σ ) < 0. Eigenvalues are shown as solid dots. The boundaries of ε-pseudospectra are
for ε = 10−8, . . . , 10−2.

discretization. Note also that pseudospectra are not related to the pseudospectral
discretization of the differential equations described in the previous section, both
topics just share the same name.

To quote the monograph on pseudospectra, Trefethen & Embree (2005) (to
which the reader is directed for a comprehensive account of the subject), ‘the
ε-pseudospectrum is the open subset of the complex plane bounded by the ε−1 level
curve of the norm of the resolvent’. For non-normal matrices, these level curves
can extend O(1) distances from the position of the eigenvalues. For normal matrices,
the curves form O(ε) balls around the eigenvalues. The ε-pseudospectra for the
projection of A, where the eigenvalues satisfying −0.5 < Re(σ ) < 0 are kept, are
shown in figure 3 for a range of ε. This figure has been produced using EigTool
(Wright 2002).

The extension of the level curves far from the position of the eigenvalues,
particularly at the intersection points of the b and s branches, is a clear sign of
the non-normality of A. Further, a level curve is displayed crossing Re(σ ) = 0 into
the positive half-plane. This fact gives important information on the behaviour of
transient growth. To see why, first note that the formal solution of the discretized
version of (2.12) can be written as

v(t)= exp(tA)v(0). (4.4)

In normal mode analysis, the growth rate of the linear onset of an instability is
given by the rightmost eigenvalue,

α(A)= sup
z∈σ(A)

Re(z). (4.5)
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The quantity α(A) is also known as the spectral abscissa of A. An analogous definition
for pseudospectra is

αε(A)= sup
z∈σε (A)

Re(z). (4.6)

The envelope of transient growth is given by ‖exp(tA)‖ for t> 0. This envelope gives
the maximum possible transient growth that can be achieved at a time t optimized over
all normalized initial conditions (Schmid & Henningson 2001). This fact can found
easily from (4.4), i.e.

sup
v(0)

‖v(t)‖2
2

‖v(0)‖2
2
= sup

v(0)

‖exp(tA)v(0)‖2
2

‖v(0)‖2
2

= ‖exp(tA)‖2
2. (4.7)

A simple and practical lower bound on the envelope height is given by

sup
t>0
‖exp(tA)‖>

αε(A)

ε
∀ε > 0. (4.8)

This result is related to the Kreiss matrix theorem (Trefethen & Embree 2005).
For our choice of A, α(A) < 0 describes only an asymptotically decaying solution.

Since the pseudospectra in figure 3 pass beyond Re(σ )= 0, the bound in (4.8) states
that transient growth can be expected. Looking at the level curve for ε = 10−2 in
figure 3, the maximum value of Re(z) ≈ 0.023. Hence, it follows from (4.8) that
supt>0 ‖exp(tA)‖ & 2.23. Later we will demonstrate that the maximum of transient
growth follows a precise scaling as a function of S.

4.4. Transient growth dependence on the spectrum
In order to understand how the transient growth depends on different parts of the
spectrum we will consider four different projections of A (using the parameters
S = 103, k = 0.5 and N = 700) that focus on different parts of C, i.e. on different
groups of eigenvalues. Figure 4 displays the eigenvalue spectra of the four cases
that we consider. Case (a) contains only the c branch with eigenvalues satisfying
−0.5< Re(σ ) < 0. Case (b) includes parts of all three main branches (b1, b2 and c)
and branches s1 and s2. These eigenvalues are in the range −0.25<Re(σ ) < 0. Case
(c) omits the branch connections of b1 with s1 and b2 with s2. These eigenvalues are
in the range −0.1 < Re(σ ) < 0. Case (d) considers a small selection of eigenvalues
in the range −0.01<Re(σ ) < 0, which lie on the three main branches.

Looking at the overall behaviour of the transient growth displayed in figure 5, cases
(a), (c) and (d) are similar in that all reach maximum growth at t ≈ 100–200 and
have similar maxima in the range 3.5–5. The main visual difference between these
cases is that the transient growth in case (a) is smooth, whereas those in cases (c)
and (d) possess many oscillations. This difference is down to only the central branch
of eigenvalues being included in (a), whereas portions of the three main branches are
included in (c) and (d). Case (c) also has a faster initial growth rate compared to
cases (a) and (d) and attains the highest transient growth out of the three cases. The
spectrum of case (c) contains the upper parts of the s branches but not the connection
points with the b branches.

Case (b) is strikingly different to the rest. Its transient growth exhibits a sharp rise
to a maximum that is approximately double that of the other cases. The eigenvalues
considered for case (b) include all the branches and the intersection points. The
transient growth curve in figure 5(b) and the behaviour of the ε-pseudospectra in
figure 3 indicate that the intersection points of the b and s branches in the spectrum
are important for strong transient growth.

https://doi.org/10.1017/S0022377818001009 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818001009


10 D. MacTaggart

(a) (b)

(c) (d)

FIGURE 4. The eigenvalue spectra of projections of A focussing on different parts of C.
Details are given in the main text.

(a) (b)

(c) (d)

FIGURE 5. The transient growth envelopes for the four projections whose spectra are
displayed in figure 4.

4.5. The relationship of physical quantities to the spectrum and transient growth
The previous subsection demonstrated that including the branching structure of the
eigenvalue spectrum in the projection is important for fast and strong transient growth.
We will now focus on how the branches depend on physical quantities, namely forces
and energy balance.

Let us first consider forces in the momentum balance equation (2.1). In the present
set-up of the TI with no equilibrium flow, the viscosity plays little role. This can be
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FIGURE 6. The spectrum of kinematic MHD with the same parameters used for figure 1.

seen by comparing figure 1 with figure 1(a) of MacTaggart & Stewart (2017), which
plots the spectrum for the same parameters but for the inviscid MHD equations. Note
that in MacTaggart & Stewart (2017), time dependence is based on exp(−iσ t) rather
than exp(σ t), so the plot of the spectrum is rotated.

In order to assess the effect of the Lorentz force, we can compare the spectrum
of resistive MHD to that of kinematic MHD. Kinematic MHD is concerned with the
solution of the induction equation and normally does not consider the momentum
equation (the velocity field is prescribed). Here, we can solve a form of kinematic
MHD where the momentum equation is solved but the Lorentz force is removed. In
the linearized equations, this is equivalent to setting LB0 = 0. Figure 6 displays the
spectrum of kinematic MHD for the same parameters used for figure 1.

Notice that the c branch is the only one remaining and that this system is
asymptotically stable to linear perturbations. From the results of the previous
subsection, this means that the possible transient growth is much more limited. This
result makes sense physically since the energy source of the TI is the equilibrium
magnetic field and the bending of field lines via the Lorentz force can lead to larger
perturbations.

Another way to consider what physical quantities play a role in transient growth is
to determine the energy balance. Borba et al. (1994) did this for inviscid MHD and
we will extend the analysis for the present visco-resistive case. Using the notation of
§ 2, the application of vector calculus leads to

d
dt

1
2

∫
(|u1|

2
+ |B1|

2) dV =
∫
[j1 · (u0 ×B1)− j0 · (u1 ×B1)] dV −

1
S

∫
|∇×B1|

2 dV

−

∫
(u1 · ∇)u0 · u1 dV −

1
Re

∫
|∇× u1|

2 dV, (4.9)

where j0 = ∇ × B0 and j1 = ∇ × B1. The integrals associated with the diffusion
terms are either zero or negative (including the negative sign), so these terms can
only describe decay and not transient growth. The first integral on the right-hand
side describes how energy can be taken from the equilibrium magnetic field and
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FIGURE 7. The transient growth envelopes for k= 0.5 and S= 103, . . . , 106.

background flow due to the effect of the Lorentz force, leading to transient growth.
The third integral on the right-hand side describes how transient growth is possible,
without the aid of the Lorentz force, by the perturbed flow extracting energy from the
equilibrium flow. In the examples considered so far, the terms involving u0 are zero.
This fact, combined with the large Reynolds number we have selected (Re = 106)
explains the similarity of the spectra of the viscous and inviscid cases.

4.6. Scaling of maximum transient growth
We now return to the projection of A with eigenvalues in the range −0.5<Re(σ )<0.
Since we are considering the case k = 0.5, we take Re(σ ) = −0.5 as the ‘lower
boundary’ of our projection. Beyond this point, only the c branch continues and this
part of the spectrum does not contribute significantly to transient growth, as would
be expected from the analysis above. In order to determine how the transient growth
scales with the Lundquist number S, we explicitly calculate ‖exp(tA)‖ for t ∈ [0, 300]
and S= 10n, n= 3, 4, 5, 6. The transient growth envelopes are shown in figure 7 and
are calculated with N = 2000.

After an initial perturbation, all the curves follow the same gradient before they
each turn toward their maxima. Each curve contains a ‘hump’ where it reaches its
maximum and this is due to the inclusion of the branch intersection points of b and
s in the spectrum, as in case (b) from § 4.4. If we consider the maximum transient
growth of each curve and the times when the maxima occur, we can find a simple
scaling law. These quantities are displayed in figure 8.

Figure 8 demonstrates that the maximum transient growth, max ‖exp(tA)‖, and the
time at which it occurs, tmax, both depend linearly on S1/4. This simple scaling relation
is robust for ‘tearing-unstable’ wavenumbers, i.e. 0< k< 1. Figure 9 demonstrates the
same scaling profiles for k= 0.2 and k= 0.8.

The projection we have used for the cases k = 0.2 and k = 0.8 is the same as
that for the k = 0.5 case. This means that for the k = 0.2 case, more eigenvalues
on the c branch are used beyond the point where the c and b branches meet. For
the k = 0.8 case, however, the spectrum is truncated before the b branches meet the
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FIGURE 8. The maximum transient growth, max ‖exp(tA)‖, and the time when it occurs,
tmax, as a function of S1/4. The dashed lines are lines of best fit.

(a) (b)

(c) (d)

FIGURE 9. The maximum transient growth, max ‖exp(tA)‖, and the time when it occurs,
tmax, as a function of S1/4. The dashed lines are lines of best fit. (a) and (b) refer to
k= 0.2, (c) and (d) refer to k= 0.8.

c branch. Despite these different truncations of the spectra, since both cases include
the vital (as emphasized by the previous analysis) branch points, the optimal transient
growth is insensitive to the different truncation locations and follows the same scaling
law as the k = 0.5 case. Our numerical results suggest the scaling that a maximum
transient growth of O(S1/4), optimized using the L2-norm, is possible in a time of
O(S1/4) for S� 1.
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FIGURE 10. The optimal initial conditions that produce the maximum transient growth at
t= 50 for S= 104 and k= 0.5.

4.7. Optimal initial perturbations
As well as determining the maximum possible transient growth at any time t, we can
also determine the initial condition which produces that growth at time t. This can be
achieved via a singular value decomposition (SVD),

exp(tA)= UΣV ∗, (4.10)

where U and V are unitary matrices and Σ is a matrix containing the singular values
ordered by size. The asterisk denotes the complex-conjugate transpose. The first
column of V corresponds to the optimal initial condition (Schmid & Henningson
2001; Trefethen & Embree 2005). To illustrate the form of such initial conditions,
figure 10 displays the non-zero parts of u and b at t= 0 which produce the maximum
transient growth at time t= 50, for S= 104 and k= 0.5. The forms shown in figure 10
have a striking resemblance to ‘wave packets’ located at the current sheet. Such wave
packet solutions can be understood with the help of pseudospectral theory. A definition
of pseudospectra equivalent to Definition 1 is

Definition 2. σε(A) is the set of z ∈C such that

‖(zI − A)p‖< ε, (4.11)

for some vector p with ‖p‖ = 1.

The vector p is known as a pseudomode and can be thought of as a generalization
of an eigenmode in the same way that a pseudospectrum is a generalization of
a spectrum. That is, a pseudomode grows algebraically and an eigenmode grows
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exponentially. For the onset of the TI, this algebraic growth can be much faster
and greater, within a fixed time, than the exponential growth of the tearing mode.
Pseudomodes have a close relationship to the WKB approximation of eigenmodes
(Obrist & Schmid 2010), resulting in their wave packet form. They can also be
interpreted as ‘noise’ in the system (Vanneste & Byatt-Smith 2007). Further details
of the theory of pseudomodes can be found in the monograph of Trefethen & Embree
(2005).

5. Conclusions
5.1. Summary

In this article we have studied the non-modal onset of the classical tearing instability
for visco-resistive MHD. We have paid particular attention to the eigenvalue spectrum
of the linearized MHD equations. We demonstrate that the branching structure of the
spectrum, which exists in the ‘damped half-plane’ of C, is important for transient
growth. We reveal this behaviour through the calculation of pseudospectra and by
finding the maximum possible transient growth due to subsets of the spectrum. The
spectrum branches are also closely linked to the Lorentz force, which is needed for
strong transient growth. The importance of the Lorentz force in driving transient
growth is also found from considering the energy balance of the system. A simple
scaling law is determined for tearing-unstable wavenumbers, revealing that the
maximum possible transient growth, measured in the L2-norm, can grow to O(S1/4)

in a time of O(S1/4). Optimal initial conditions which produce the maximum transient
growth are shown to take the shape of wave packets and can be interpreted as noise
in the system. Although significant transient growth is possible during the linear onset
of the TI for S� 1, it will only occur if the form of the initial perturbation allows
it. Both non-modal and modal growth are required to give a complete description of
the linear onset of the TI.

5.2. Discussion
5.2.1. Tearing-stable cases

In this article we have focussed on wavenumbers for which the current sheet is
unstable to the TI (0< k<1). For wavenumbers k>1, transient growth is also possible
and its maximum possible size increases with increasing S. There does not, however,
appear to be a simple scaling law as we derived for tearing-unstable values of k.
Figure 11 displays the optimal initial conditions that produce the maximum size of
transient growth at t= 50 for S= 104 and k= 1.01 (the size of this optimal transient
growth is 11.94).

In this example, the optimal initial conditions take the form of two wave packets on
either side of the current sheet. Perturbations such as those shown in figure 11 should
be used as initial conditions in nonlinear MHD simulations in order to determine the
nonlinear consequences of linear transient growth. It may be the case that optimal
initial conditions, through transient growth, can excite the tearing instability for values
of k which are linearly stable in normal mode analysis.

5.2.2. Choice of norm
Unlike asymptotic stability, the size of transient growth is dependent on the norm

used to measure it. Optimizing with respect to different norms will give different
results. Therefore, in calculations of transient growth, it is important to choose a norm
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FIGURE 11. The optimal initial conditions that produce the maximum transient growth at
t= 50 for S= 104 and k= 1.01.

with a clear physical meaning. In this article, we have focussed on the L2-norm, which
can be thought of as the ‘root mean square’ of the variables and measures typical
size that the variables can be amplified to. Other useful norms are the infinity norm,
which measures the maximum amplitude of the perturbation and the energy norm. For
a given k, the energy norm (disturbance kinetic plus magnetic energies) can be written
as (e.g. MacTaggart & Stewart 2017)

‖v‖2
E =

1
2k2

∫ d

−d
(|Du|2 + k2

|u|2 + |Db|2 + k2
|b|2) dx=

1
2k2
‖Dv‖2

2 +
1
2
‖v‖2

2, (5.1)

where use has been made of (2.3)1 and (2.3)2. Notice from (5.1) that if a certain value
of transient growth is found in the L2-norm, this is a lower bound of the resulting
energy measure. The converse is not generally true, however, as a large measure in
the energy norm need not imply a large L2-norm. With regard to transient growth
in the TI, however, there is still the possibility of increasing transient growth with
increasing S, optimized with respect to the energy norm. This result was first looked
at in MacTaggart & Stewart (2017). Using the technique described in MacTaggart &
Stewart (2017) we present, in figure 12, numerical estimates of the maximum growth
envelopes for different values of S. As in our previous analysis using the L2-norm,
we take k= 0.5 and consider the contribution from asymptotically stable modes with
eigenvalues in the range −0.5< Im(σ ) < 0. The resolution is N = 1600.

Although the shapes and maxima of the transient growth envelopes in figure 12
are different compared to those in figure 7, there is still an increasing possibility of
significant transient growth as S increases. Further work is required, using both the L2-
norm and the energy norm, to investigate transient growth at very high (astrophysical)
values of S.

https://doi.org/10.1017/S0022377818001009 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818001009


Non-modal tearing instability 17

FIGURE 12. The maximum energy growth envelopes for different S.

5.2.3. Transient growth in other TI research?
Simulations of the TI have generally skipped directly to the nonlinear phase of the

instability, e.g. the GEM Magnetic Reconnection Challenge (Birn et al. 2001a; Birn
& Hesse 2001b), or have been interpreted in terms of the tearing mode. In some high
Lundquist number simulations, such as Samtaney et al. (2009) with S= 104, transient
growth is not reported. However, significant transient amplification will only occur if
the initial condition (perturbation) is of a suitable form. It is therefore possible for
transient growth not to be detected in simulations if the initial condition is not one
that leads to significant transient growth. We have shown that optimal initial conditions
take the form of wave packets, which can be interpreted as noise. Interestingly, recent
simulations by Huang, Comisso & Bhattacharjee (2017) clearly show that different
levels of noise in the initial condition affect when current sheet disruption occurs
(see their figure 12). It is not unreasonable to suggest that different noise patterns
could lead to different transient growth, affecting when current sheet disruption takes
place. A systematic study of how initial conditions, transient growth and nonlinear
consequences are related in MHD simulations will be carried out in future work.
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