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We present results of ≈300 miscible Newtonian displacement flow experiments carried
out in a dimensionally scaled laboratory set-up. Annulus eccentricity, density difference
and viscosity of the fluids are varied, over a wide range of laminar Reynolds numbers.
Comparisons with predictions from the two-dimensional gap-averaged (2DGA) model
of Carrasco-Teja et al. (J. Fluid Mech., vol. 605, 2008, pp. 293–327) show excellent
agreement in predicting the underlying competition between buoyancy and eccentricity,
which results in either top side or slumping flows. Other features of the experiments
are not predicted as well. The main discrepancy results from a variety of dispersive
effects that are not present in the 2DGA model, e.g. dispersion within the annular gap
and due to azimuthal secondary flows. We find that dispersive effects dominate to the
extent that the slumping flows are best described by bulk diffusive spreading of the
height-averaged concentrations, relative to the mean flow. A variety of flow structures
and wave-like instabilities are discussed. The study is relevant to the oilfield process of
primary cementing of horizontal wells.

Key words: multiphase flow, Hele-Shaw flows

1. Introduction

Primary cementing is an industrial operation that has attracted the attention of the fluid
mechanics community for 2–3 decades (Nelson 1990; Bittleston, Ferguson & Frigaard
2002). It remains inadequately understood due to both complexity and evolution of the
industrial process. In this operation a sequence of fluids is pumped down the inside of a
steel casing, to the bottom of an oil or gas well, returning upwards in the annular space
between formation wall and exterior of the casing; figure 1(a). The aim of the process is to
remove the drilling fluid and other residue from the well, replacing it with a cement slurry.

Avoiding excessive contamination and ensuring that the cement slurry bonds well with
both the steel casing and formation wall, means that the fully set cement can form an
effective hydraulic seal of the annulus as well as give structural support. Hydraulic zonal
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FIGURE 1. Horizontal primary cementing: (a) typical fluid sequence in a displacement; (b) unit
displacement operation in horizontal section illustrating top and slumping modes; (c) model
set-up from Carrasco-Teja et al. (2008).

isolation is needed for two main reasons: leakage compromises well productivity and can
have environmental/health consequences, e.g. polluted aquifers, subsurface ecosystems,
methane emissions. Leakage within the well is difficult to locate and expensive to fix.
Since the late 1990s there has been a worldwide trend towards drilling horizontal wells,
meaning that the last part of the well is approximately horizontal, to align with the
hydrocarbon-bearing reservoir; figure 1(a). For example, in British Columbia, vertical
wells accounted for >75 % of wells drilled prior to 2000 but ≈95 % of wells drilled in
the last decade have been horizontal (Trudel et al. 2019).

From the fluid mechanics perspective, since the fluids involved in cementing exhibit
significant density contrasts, it is not surprising that displacement flows in horizontal wells
behave quite differently from those in vertical wells. Trudel et al. (2019) found that over
28 % of British Columbia wells drilled in 2010–2018 reported leakage, albeit often minor.
Although precise causality was not determined, what is clear is that significant numbers
of wells are not sealing adequately and from this perspective the cementing operation has
failed. There are many difficulties with cementing and indeed many of those specific to
deviated and horizontal wells were known long before the upsurge in horizontal drilling
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Displacement flows in eccentric horizontal annuli 905 A7-3

(Keller et al. 1987). In this paper we focus only on fluid mechanics issues in horizontal
narrow eccentric annular displacement flows.

As illustrated in figure 1(a) the flow consists of a sequence of fluids, each displacing the
fluid in front. A typical mean annular gap is 2–3 cm, production casing outer diameters
are 114–245 mm (4.5–9.625 in.) and lengths of cemented casing can be 102–103 m, i.e.
the annulus is relatively narrow and very long. The fluid volumes pumped are such that
we can consider each displacement problem as consisting of two fluids only. Typically
one or more preflushes (spacers or washes) precede the cement slurries. The drilling
mud can be oil based or water based with different formulations according to the desired
function: drilling, removing cuttings or conditioning the well. Muds are non-Newtonian
shear thinning fluids, often with a yield stress. Washes (typically Newtonian with low
density and viscosity) are sometimes used to prepare the interval to be cemented. The idea
is to leave the walls water wet to ease the bonding of cement and improve displacement
of the mud. Spacer fluids are rheologically designed to remove the drilling mud and also
provide a buffer between mud and cement, since these may be chemically incompatible.
Cement slurries are shear thinning, often thixotropic and with a modest yield stress.

In this preliminary study we only consider Newtonian fluids. First, there does not
appear to be a comprehensive experimental study of Newtonian displacement flows in
horizontal annuli. Secondly, building our knowledge on simpler fluids will allow us to
draw conclusions before introducing non-Newtonian complexities. Thirdly, although there
are definitely flow features that arise due to rheology, in particular the yield stress, the
theoretical understanding of horizontal cementing that exists focuses primarily on the
competition between buoyancy and eccentricity: rheology is often a secondary effect.

In the 1990s a range of studies were performed to validate general understanding of
vertical well displacements, as captured in design rules such as Couturier et al. (1990).
Experiments date back to the 1960s (McLean, Manry & Whitaker 1967) and have used
both field fluids and rheologically similar laboratory fluids. Extensive studies such as
Jakobsen et al. (1991), Tehrani, Ferguson & Bittleston (1992) and Tehrani, Bittleston &
Long (1993) were compared favourably with simulation tools of the time. A notable feature
of these experiments was that measurement was primarily via conductivity probes, e.g.
positioned azimuthally around the annulus close to the exit. This method has the advantage
of giving an objective measure of the concentration of the fluids that pass between the
probes: generally, a salt is used to increase conductivity of one fluid. Integrated over time
these measurements give a direct measure of the displacement efficiency, i.e. how much of
the in situ fluid has been displaced. However, displacement efficiency is a crude measure
when defects are typically on the narrow side of the eccentric annulus. Maleki & Frigaard
(2019) show that displacement efficiencies as high as 90 % can result from flows with
obviously poor displacement.

Conductivity can give more local information, e.g. an azimuthal distribution of
displacement efficiency as in Tehrani et al. (1992), or by the use of multiple axial banks of
probes as in Lund et al. (2018) and Skadsem et al. (2019). However, typically the number
of probes remains limited and spatio-temporal features of the flow remain obscured,
e.g. the distribution of fluids across the annular gap. More recent studies have tended
to use visualization of the flow, as with Malekmohammadi et al. (2010) and Deawwanich
(2013). Visualization has distinct advantages in that one can observe flow structures in the
fluid, perform post-processing for quantitative information and observe e.g. residual fluid
channels, wall layers and flow instabilities. To be effective, the fluids are coloured/dyed
and at least one should be transparent. This can limit the range of fluids available with
suitable rheological properties, which is the drawback.
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905 A7-4 A. Renteria and I. A. Frigaard

In the vertical part of the well a positive buoyancy gradient aids displacement (Couturier
et al. 1990): density differences in the range 0–300 kg m−3 are common. Therefore, it is
usual that more dense fluids displace less dense fluids in the preceding horizontal sections,
but not always, e.g. washes are typically less dense than drilling mud. Eccentricity of the
annulus towards the bottom of the well is usual, due to the high density of the steel casing.
Eccentricity promotes flow along the wider part of the well whereas density differences
promote density stable stratification. Thus, for a unit operation of fluid 2 displacing fluid
1, two characteristic flow types are common: ‘top side’ or slumping (figure 1b). If the
interface fully stratifies fluid displacement will be ineffective. The ideal situation involves
a steadily propagating displacement front. This framework conceptualizes theoretical
understanding of horizontal cementing displacements, insofar as it has developed, and
rests on the work of Carrasco-Teja et al. (2008).

This paper presents the results of approximately 300 laboratory experiments, carried
out using Newtonian fluids in a dimensionally scaled and purpose-built eccentric annular
apparatus. The focus is on understanding the main effects of buoyancy, eccentricity and
viscosity ratio, on the effectiveness of displacement, exposing the physical phenomena
observable in experiments and analysing flow regimes. The paper advances partly in
parallel with predictions from the model developed by Carrasco-Teja et al. (2008), which
we outline below in § 2. Section 3 deals with experimental design. This starts with a
dimensional analysis, then describes the choice of fluids, features of the experimental
apparatus, visualization and test procedures. The results are presented in three sections.
In § 4 we look at the main competition between buoyancy and eccentricity in terms of
whether the front advances primarily on the top or bottom side (figure 1b), and comparing
with model predictions of the same. Section 5 deals with displacement front dynamics.
We highlight some of the difficulties in visualizing the displacement flow in such long
domains. We compare front velocities with model predictions and finally we characterize
the experimental displacements as an advection–diffusion process. Finally, § 6 outlines
some of the flow instabilities observed in the experiments. The paper ends with a short
discussion. A sequel to our study is directed towards a comparison of the experiments
reported in this paper with three-dimensional (3-D) simulations.

2. Modelling primary cementing flows

Carrasco-Teja et al. (2008) use a Hele-Shaw scaling approach, resulting in
simplifications that allow for both quick numerical simulation and analysis. Hence
questions such as whether the displacement is steady or stratifies can be answered. The
underlying Hele-Shaw model is identical with that analysed earlier for vertical annular
displacement flows (Bittleston et al. 2002; Pelipenko & Frigaard 2004a,b,c) and to that
recently extended towards other flow regimes (Maleki & Frigaard 2017, 2018, 2019).
Variants of the underlying model are becoming widespread (Aranha et al. 2012; Tardy
& Bittleston 2016) as are apparently similar engineering software, developed in-house
by many companies. This style of model has also become regularly used industrially for
cementing case studies, job designs and post-job evaluations, e.g. Osayande et al. (2004),
Bogaerts et al. (2015), Guo et al. (2015) and Tardy et al. (2017). In general, model results
compare favourably with evidence of cement positioning from post-placement logging of
wells. However, well cementing is not an operation that is easily accessible to allow direct
measurement of the flow or finished cement integrity. This motivates both laboratory-scale
experiments and computational simulation.

There have been attempts to extend the Hele-Shaw style of displacement model in
various directions. Firstly, movement of the casing is used to improve displacement, e.g. by
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Displacement flows in eccentric horizontal annuli 905 A7-5

rotation, and this has been addressed by Carrasco-Teja & Frigaard (2009), Carrasco-Teja
& Frigaard (2010), Tardy & Bittleston (2016) and Tardy (2018). Three-dimensional
simulations of annular displacement flows were first developed in the late 1990s but
were too slow for practical usage (Szabo & Hassager 1997; Vefring et al. 1997). In
recent years interest has revived in these methods as open source and other computational
codes have become widely accessible and multi-processor computations have made such
calculations manageable at reasonable resolutions over increasingly long annuli and even
for non-Newtonian fluids, e.g. Kragset & Skadsem (2018), Etrati & Frigaard (2019) and
Skadsem et al. (2019). Those 3-D simulations that have been published certainly expose
flow features not present in Hele-Shaw models: inertial effects and flow features on
the scale of the annular gap. The main restriction computationally is to have resolution
of gap-scale features, e.g. Allouche, Frigaard & Sona (2000) and Zare, Roustaei &
Frigaard (2017), while studying azimuthal features of secondary flows and the lengthwise
development along the annulus, over industrially relevant lengths. In a displacement
flow where unsteady features are to be resolved, the time scale of flow also increases
proportionate to the length of annulus, making the computational cost severe. Realistically,
we are not yet able to simulate a full well using these methods in a scientifically rigorous
way, but lengths of the order of tens of metres are feasible.

We now outline the Newtonian version of the mathematical model of Carrasco-Teja
et al. (2008), which is identical with that described in Bittleston et al. (2002) and
recently extended by Maleki & Frigaard (2017). It is the latter of these that we use
for our computations later in the paper. Simplification results from the premise that the
annular gap is narrow relative to azimuthal and axial length scales. This reduces the
Navier–Stokes equations to a shear flow in the direction of the modified pressure gradient,
at leading order. Integration across the gap width and cross-differentiation eliminates
the pressure, resulting in a 2-D elliptic problem for the gap-averaged streamfunction Ψ .
The streamfunction equation is coupled to a transport equation for the gap-averaged fluid
concentrations

∂

∂t
[Hc̄] + ∂

∂φ
[Hv̄ c̄] + ∂

∂ξ
[Hw̄ c̄] = 0. (2.1)

Here, c̄ ∈ [0, 1] is the concentration of displacing fluid 2, φ ∈ [0, 1] denotes the azimuthal
coordinate and ξ the axial coordinate, measured from the start of the annulus. The annular
half-gap width H is defined by

H(φ) = 1 + e cos πφ, (2.2)

which is a narrow-gap approximation: e ∈ [0, 1] is the eccentricity; see figure 1(c).
The annulus is initially full of fluid 1, which is displaced by fluid 2. Due to the large
Péclet number molecular diffusion has been ignored. We note that the gap-averaged
approximation of the advective transport effectively neglects dispersion on the scale of
the gap, which is a deficiency exposed in this paper. Boundary conditions for (2.1) are
the symmetry of concentration at φ = 0, 1, and specification of inflow fluid concentration
at ξ = 0, Z, i.e. c̄ = 1. Averaged velocity components in the (φ, ξ)-directions are (v̄, w̄)
which are defined in terms of a streamfunction Ψ

∂Ψ

∂φ
= Hw̄,

∂Ψ

∂ξ
= −Hv̄. (2.3a,b)
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905 A7-6 A. Renteria and I. A. Frigaard

For Newtonian fluids the elliptic equation for the streamfunction is

∇ ·
[

3μ(c̄)
H3

∇Ψ +
(

0,
ρ(c̄) sin πφ

St

)]
= 0, (2.4)

where St is a Stokes number, defined later; see Bittleston et al. (2002) for Herschel–Bulkley
fluids. The dimensionless viscosity μ(c̄) and density ρ(c̄) depend on the fluids present in
the annulus, i.e. c̄. Boundary conditions are

Ψ (0, ξ, t) = 0, Ψ (1, ξ, t) = 1, (2.5a,b)

∂Ψ

∂ξ
(φ, Z, t) = 0,

∂Ψ

∂ξ
(φ, 0, t) = 0. (2.6a,b)

To recover dimensional quantities, the axial and azimuthal velocities have been scaled
with the mean imposed flow velocity, ŵ0, lengths with the half-circumference, π(r̂o +
r̂i)/2, viscosity and density are scaled with the displaced fluid 1 properties. A shear stress
scale is defined as μ̂1ŵ0/d̂, where d̂ = (r̂o − r̂i)/2. The pressure gradient balances with
the leading-order shear-stress scale, as usual in a Hele-Shaw flow, defining the pressure
scale.

In Carrasco-Teja et al. (2008), as well as solving the above two-dimensional
gap-averaged (2DGA) model for a range of flows, the authors consider explicitly the
competition between density differences (buoyancy) and annular eccentricity that results
in the top side and slumping displacements illustrated in figure 1(b). In the top side
displacement the effects of eccentricity (e > 0) are dominant and the displacement front
advances along the wider top of the annulus. If fluid 2 is denser this stratification eventually
results in a density unstable situation. In the slumping displacement the front slumps to the
bottom of the annulus and elongates. Carrasco-Teja et al. (2008) use a thin-film/lubrication
style model (applied to the Hele-Shaw model above), to show that the interface may
elongate to an extent where buoyancy effects reduce and a steadily propagating front
results. For other parameters, the slump continues to stretch out: an unsteady displacement.
Analysis of the thin-film/lubrication model allows for parametric predictions to be made
of the transition between steady and unsteady displacement regimes.

3. Experimental design

Before describing our experimental set-up, we give an overview of the field setting that
we are attempting to simulate and discuss dimensional analysis of a typical displacement.
Annular displacement proceeds from the bottom of the well upwards to surface. Thus,
any horizontal section of a well is typically at the start of the displacement. The steel
casing/liner to be cemented in place is the production casing and would commonly have
outer diameter in the range 114–245 mm (4.5–9.625 in.). Larger diameters occur for the
previous casings, found higher up in the well; see figure 1(a). The borehole diameter
typically leaves a mean annular gap of 20–30 mm, so that an aspect ratio of radial and
circumferential length scales, δ = (r̂0 − r̂i)/(r̂0 + r̂i)π ∈ [0.03, 0.1] is to be expected. The
borehole may be relatively smooth or uneven, due to geological variations and drilling
practices. The well trajectory varies along the annulus, eventually becoming vertical and
cemented sections are ∼ 102–103 m in length.

Here we consider only a long straight horizontal section of annulus. Dimensional
analysis of the displacement flow of two Newtonian fluids along a uniform horizontal
eccentric annulus shows that there are seven different non-dimensional parameters
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Displacement flows in eccentric horizontal annuli 905 A7-7

involved: the aspect ratio δ; the Reynolds number, Re = ρ̂1ŵ0d̂/μ̂1; the Péclet number
Pe = ŵ0d̂/D̂; the Stokes number, St = μ̂1ŵ0/(ρ̂1ĝ(d̂)2); the density ratio, ρ = ρ̂2/ρ̂1; the
viscosity ratio, μ̂2/μ̂1; and the eccentricity, e = Δr̂/(r̂o − r̂i). Note that Δr̂ (hence e)
might also be negative; see figure 1(c). Possibly also relevant is the scaled length, which
determines the time scale of the displacement. Simplification comes from the high Péclet
number, meaning that molecular diffusion is not relevant.

The narrow-gap approach of Carrasco-Teja et al. (2008) combines the density ratio
and Stokes number to give a buoyancy number: b = (ρ̂2 − ρ̂1)ĝd̂2/(μ̂1ŵ0), and neglects
inertial effects under the assumption that δRe � 1. This leaves only (b, e, μ̂2/μ̂1). The
buoyancy number balances buoyant and viscous stresses over the scale of the annular
gap: b > 0, corresponds to a heavier fluid displacing a lighter one and vice versa. Since
buoyancy is one of the main flow-controlling parameters in these flows, we study a
wide range b = −103 to 103, typical of field conditions. Although we compare against
the predictions of Carrasco-Teja et al. (2008), in practice δRe � 1 is not always found.
Although laminar regimes are preferred in cementing horizontal wells, Re ∼ 1–1000 are
common. We consider a similar range for our experiments.

Regarding rheology, here we use pairs of Newtonian fluids. Direct flow visualization
is the main method used for analysis and therefore use transparent fluids. In most of
our experiments one fluid is water. To achieve different densities we have used aqueous
solutions of NaCl and CaCl2 at different concentrations. More viscous fluids were prepared
with different proportions of glycerol and water. Isodense displacements with enhanced
viscosity difference were achieved by increasing the density of the less viscous fluid using
salt. Table 1 shows examples of displacing and displaced fluids used. The viscosity ratios
achieved are in the range of 0.09–12, which modestly covers field values. Depending on
the density and viscosity ratios, these pairings might be considered to represent any of:
mud/wash, mud/spacer, wash/spacer, spacer/cement combinations, as there is no universal
practice for fluid property selection.

To summarize, discounting non-Newtonian effects for now, we can achieve dimensional
similarity with respect to field conditions for laminar displacement flows, under the above
considerations. Although the main dimensionless parameters are e, b, μ̂2/μ̂1, as we move
away from narrow-gap approximation regimes inertia may become important δRe �� 1.
We have conducted ≈300 experiments to explore these parameters, with approximately
20 % of these repeated to validate the apparatus and measurement techniques. A summary
of the parametric space explored is given in table 2.

3.1. Annular apparatus
Figure 2 shows a simplified version of the flow loop used. The central component of the
set-up is a 4.8 m long transparent annulus. The length is achieved by joining four 1.2 m
sections, with annulus formed by an inner aluminium pipe (outer diameter 34.925 mm)
and an outer Plexiglass pipe (inner diameter 44.45 mm). The aluminium pipe was specially
machined to a 0.127 mm outer diameter tolerance and is connected using an internal pipe
joint. The outer transparent pipes are joined together within a collar held by the friction
of an o-ring seal, with small gap between pipes to allow thermal expansion and avoid
cracking. The general dimensions of our apparatus are listed in table 3. While not a very
narrow gap, we note that δ is in the lower part of the range typical of horizontal wells.
The annulus length was made to be sufficient for laminar flows to develop, based on either
annular gap or circumferential length scales.
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Fluid 2 (displacing) Fluid 1 (displaced) Δρ̂ (%) μ̂2/μ̂1

NaCl (10.57 % vol.) Water 6.56 1.30
NaCl (15.85 % vol.) Water 9.51 1.31
NaCl (21.13 % vol.) Water 12.13 1.54
NaCl (25.53 % vol.) Water 16.58 2.15
Water NaCl (10.57 % vol.) −6.56 0.77
Water NaCl (15.85 % vol.) −9.51 0.77
Water NaCl (21.13 % vol.) −12.13 0.65
Water NaCl (25.53 % vol.) −16.58 0.46
Glycerol (20 % wt.) Water 4.61 1.55
Glycerol (48 % wt.) Water 10.74 4.65
Glycerol (62 % wt.) Water 13.58 11.56
Water Glycerol (20 % wt.) −4.61 0.65
Water Glycerol (48 % wt.) −10.74 0.21
Water Glycerol (62 % wt.) −13.58 0.086
Glycerol (48 % wt.) NaCl (15.79 % wt.) ∼0.03 0.76
Glycerol (62 % wt.) NaCl (19.44 % wt.) ∼0.06 1.35
Glycerol (20 % wt.) NaCl (6.43 % wt.) ∼0.03 0.94
CaCl2 (4.9 % wt.) Water 2.60 1.08
CaCl2 (4.9 % wt.) NaCl (4.0 % wt.) ∼0.02 0.95
CaCl2 (7.9 % wt.) NaCl (4.0 % wt.) 3.20 0.95
Water CaCl2 (4.9 % wt.) −2.60 0.92
NaCl (4.0 % wt.) CaCl2 (4.9 % wt.) −3.20 1.05

TABLE 1. Typical fluids pairs and formulations.

Parameter Values/range

e = Δr̂/(r̂o − r̂i) −0.07, 0.46, 0.73
b = (ρ̂2 − ρ̂1)ĝd̂2/(μ̂1ŵ0) [−529, 996]
μ̂2/μ̂1 [0.09, 11.56]
Re [2.6, 817]

TABLE 2. Dimensionless parameter ranges of our experimental study.

Displaced

fluid

Outlet

Sliding valve

Displacing

fluid

Purge

Q

Flow direction

Eccentricity

adjustment

Flow rate

Flow straightener Fish tanks

Cam 2 Cam 0 Cam 1 Cam 3

e e e e e

FIGURE 2. Experimental set-up schematic.
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Displacement flows in eccentric horizontal annuli 905 A7-9

Length per section l̂ 1.2 m
Total length Ẑ 4.8 m
Gap width (concentric) r̂0 − r̂i 0.00476 m
Circumferential scale (π/2)(r̂0 − r̂i) 0.06 m
Radial to circumferential ratio δ = (r̂0 − r̂i)/(r̂0 + r̂i)π 0.038
Longitudinal to circumferential ratio Ẑ/(π/2)(r̂0 + r̂i) 78
Eccentricity e [−1, 1]

TABLE 3. Apparatus dimensions.

Camera

Back view

Bottom view

Front view

Top view
Mirror

Mirror

(b)(a) (c)
Split clamp collar

Adjustment KNOB

STUD

Thin wire

Inner pipe joint

Collar

Compressive spring

Spring end guide

Indicator pin

position screw

FIGURE 3. (a) Transverse cut of eccentricity adjustment device. (b) Fully eccentric position.
(c) Cross-sectional view of the mirror arrangement.

A positive displacement pump delivers the displacing fluid at a constant flow rate for the
experiment. An additional centrifugal pump is used to fill the annulus with the displaced
fluid and for cleaning between experiments. Both pumps are controlled by a variable
frequency driver (VFD). In the displacing fluid line we have installed a manually operated
globe valve and bypass, in order to vary the flow rate below the VFD rate. Downstream
of the gate valve, a flow straightener is attached to the inner aluminium pipe to mitigate
entry and development effects. An electromagnetic flow meter records the imposed flow
rate. The flow meter accuracy, pumps and globe valve were calibrated by measuring the
mass of fluid pumped over a fixed time interval.

3.1.1. Eccentricity adjustment
We are able to set the eccentricity of the inner pipe, anywhere from resting at the bottom

of the Plexiglas pipe (e = 1), to reaching the top (e = −1). The eccentricity of each section
is set using 5 in-house made eccentricity devices. The design of the device is based on a
1.587 mm diameter wire that cross the collar and it is fastened to the inner pipe (figure 3a).
In one end, the wire crosses a stud (threaded) and then it is clamped to an adjustment knob.
On the other end, the wire is fixed to a spring-indicator assembly. To raise/lower the inner
aluminium pipe (see figure 3b), the adjustment knob is turned and distance measured on a
dial. This allows us to set the eccentric displacement within a tolerance of 0.254 mm.

One practical difficulty of scaling down is that the annular gap becomes very small,
so that deflection of the inner body must be minimized. The eccentricity devices provide
support to the inner aluminium pipe at the ends of each section. We estimate the bending
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using an elastic beam equation (uniform load with fixed ends). This gives an estimate
of maximum deflection: (Ŵl̂4)/(384ÊÎ) ≈ 0.01 mm, where Ŵ is the unit weight of the
pipe (N m−1), Ê is Young’s modulus (N m−2) and Î is the second moment of area (m4).
This deflection is an order of magnitude below both the tolerance of the eccentricity
measurement and the acrylic pipe OD tolerance. Moreover, during the experiment the
annulus is filled with fluid, which reduces the effective Ŵ via buoyancy.

3.1.2. Flow visualization
Each section of the annulus is contained inside a transparent rectangular Plexiglas box,

(a fish tank), filled with glycerol. The purpose of the tank is to minimize optical aberrations
due to different air–Plexiglas diffraction indices, and due to curvature of the pipe. The
annulus visualization is enhanced by a mirror arrangement, illustrated in figure 3(c).
Two first-surface mirrors are placed at 45◦ angles from the two back vertices of the fish
tank. In this way, the bottom, back and top views of the annulus are reflected to the
camera.

Our main quantitative measurement is visual. The small aspect ratio of the set-up limits
the field of view that a single camera can provide at a reasonable resolution across the
annular gap. To overcome this, the experiment is recorded with four cameras in series.
The first and last cameras, Cam 2 and Cam 3 are positioned to give a resolution of
approximately 2 pixel mm−1. Cam 0 and Cam 1 have approximate resolution 1 pixel mm−1

at the laboratory working distance. Slightly different frame rates (1–4 f.p.s.) are used to
avoid data collapse issues on the network during download.

3.2. Test procedure
The fluids are prepared/mixed and held in two tanks. A sample of each fluid was taken
before starting each experiment. Densities were measured using an electrical densiometer.
Viscosities were measured using a Malvern Kinexus rheometer at the in-site recorded
temperature of the fluid. The displacing fluid is marked using non-waterproof black ink to
provide contrast. The displaced fluid remains transparent. Each experiment proceeded as
follows: (i) The eccentricity devices are set. (ii) The displaced fluid is slowly placed inside
the annulus. (iii) The slide valve is moved to the closed position and the entrance is purged
of the displaced fluid. (iv) The displacing fluid is circulated in bypass mode until the flow
rate readings are stable. (v) Image acquisition is set on. (vi) The sliding valve is opened
and the bypass closed: displacement flow starts. The experiment ends after 5 litres of fluid
are collected in the outflow tank (approximately 2 annulus volumes).

4. Buoyancy and eccentricity

Our first aim is to explore the qualitative picture of Carrasco-Teja et al. (2008); namely,
that the main competition for the displacement front dynamics is between the effects
of eccentricity and buoyancy. Eccentricity influences all fluids to move faster where
the gap is widest. Buoyancy drives stable stratification of the displacement front. Our
experiments involved 3 fixed eccentricities: mild (e = −0.07), moderate (e = 0.46) and
strong (e = 0.73), and a wide range of b. Eccentricities are positive in the downwards
direction.
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FIGURE 4. Initial classification of the type of displacement for each experiment, mapped in
the buoyancy vs eccentricity plane; the colour bar represents the viscosity ratio μ̂2/μ̂1.

4.1. Visual classification
Our initial classification was visual, based on observation of the evolution of the
displacement front in the front view of the annulus over the entire length. Where
the observed behaviour was consistent throughout the experiment, we classified the
displacement as either a slumping or top side displacement; see e.g. figure 1(b). Slumping
displacements involve the displacing fluid moving towards the bottom of the annulus, with
the front generally flowing faster than fluids at the top. This needs b > 0, and sufficiently
large to overcome effects of eccentricity e > 0. A front flowing to the top of the annulus
occurs both for b < 0 and also for sufficiently high eccentricities with b > 0.

The results of this initial classification are shown in figure 4. This figure represents each
experiment by one symbol. The colour of the symbol used reflects the size of the viscosity
ratio μ̂2/μ̂1, and the shape indicates the flow type. For large enough |b| the classification
is intuitive, separating into top and slumping displacements. For b < 0 both eccentricity
(e > 0) and buoyancy cooperate to drive the front upwards to the top side and |b| � 1 is
not needed.

Also in figure 4 are a number of points that did not fit the initial classification. These
are usually found for 0 ≤ b � 100, in a range of b that increases with e, at the frontier
between top and slumping displacements. Different behaviours were observed for these,
sometimes combined. Firstly, the trend towards top or slumping was not consistently
followed at the start of the displacement, possibly moving from top to bottom, or
vice versa, as the front propagated downstream. Secondly, many of these displacements
showed significant dispersion of the displacement front in the streamwise direction.
Thirdly, some displacements showed unsteady or unstable behaviour. We will illustrate
some of these behaviours in § 4.2. We have labelled these intermediate flows as I/D
(inconsistent/dispersive).

For each I/D displacement, by looking closely at the cameras from all four sections of
the annulus, and by using the frontal side view and three mirror images, we could classify
the I/D flows further according to the dominant behaviour on each annular section.
Although a variety of behaviours is observed, sufficiently far along the flow loop each
flow appears to finally settle and propagate either as a top or slumping displacement, e.g.
by the third/fourth section of the annulus.
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FIGURE 5. Classification of displacements using fully developed flow behaviour: experiments
vs 2DGA simulations. Buoyancy number b increases from top to bottom in the series of figures.
The legend in the figure should be used to interpret the agreement between the classification
from the experiment and its respective simulation, e.g. a + over a triangle shows that the 2DGA
computation predicts the same behaviour of the front in the last section of the apparatus.

We may also make the same visual classification by running the two-dimensional
gap-averaged (2DGA) model for each experiment. This shows the same trends as the
experiments, but with no I/D displacements. The 2DGA model is based on a fully
developed flow locally, whereas the experiments are developing both temporally and
spatially. Thus, the dynamics of the 2DGA is restricted. An initial observation from
both experiment and theory (model) is that the viscosity ratio μ̂2/μ̂1 is not particularly
important, provided that |b| � 1.

Figure 5 shows the experimental data again, after classifying I/D displacements
according to their final behaviour. Also in figure 5 are the results from classifying
the 2DGA simulations. We observe that the classification is largely consistent between
the experiments and the 2DGA model. While the transition between top and slumping
displacements is evidently not only due to (b, e), these are the dominant parameters.
Figure 6 shows the results of this classification for pairs of experiments that were repeated.
The visual classification based on the fully developed flow is highly repeatable.

To illustrate consistently classified displacements, figure 7 shows example results from
a slumping experiment (e = 0.46, b = 518.51, μ̂2/μ̂1 = 1.50, Re = 40.15) and a top side
displacement (e = 0.46, b = −290.65, μ̂2/μ̂1 = 0.76, Re = 38.12). The frontal view and
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FIGURE 6. Repeatability of the fully developed flow classification. Deviation of the markers
away from the dotted line indicates slight variation in b for repeated experiments.

Front view

Bottom view
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FIGURE 7. Examples of displacement types showing only the first and last sections of the
apparatus. (a) Slumping displacement: e = 0.46, b = 518.51, μ̂2/μ̂1 = 1.50, Re = 40.15, left
and right pictures taken at t̂ = 24 & 215 s, respectively. (b) Top displacement: e = 0.46, b =
−290.65, μ̂2/μ̂1 = 0.76, Re = 38.12, left and right pictures taken at t̂ = 17 & 102 s, respectively.
Note that the displacing fluid is shown white in (b). Gravity acts parallel to the coordinate, ŷ,
shown in the front views. The horizontal arrow indicates the direction of the axial coordinate ξ̂ .
True aspect ratio of these images, per section of apparatus, is 24:1.

either bottom or top view are shown, for two of the cameras at times for which the
displacement front is present. We can see in both cases there is some evolution of the
front at the last camera position, suggesting further spreading/elongation of the interface.
The vertical stripes in the bottom view of figure 7(a) are the fish tank supports. A picture
defect on the top view of the first camera in figure 7(b) is due to air bubbles within the fish
tank, which can cause reflections. These are easy to identify as they do not change in time.

Figure 8 shows the same experiment as figure 7(a), simulated with the 2DGA model
for an unwrapped half-annulus (similar to the front view of the cameras, but radially
averaged across the gap). The frames are a time sequence showing fluid 1 (blue) displaced
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0
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ξ

φ

FIGURE 8. Example of a slumping side displacement computed with the 2DGA model. Same
parameters as in figure 7(a). Dimensionless time in each concentration plot from top to bottom:
0.5, 10.5, 30.5, 60. The full length of the apparatus is simulated and presented here for an
unwrapped half-annulus, φ = 0 corresponds to the top side and φ = 1 corresponds to the bottom
of the annulus.

by fluid 2 (red). As well as the colourmap which depicts the fluid concentrations,
these figures show in white the streamlines of the flow, i.e. contours of Ψ . The inflow
condition is a uniform axial velocity at the start of the annulus. We observe that the
front slumps to the bottom side and advances along the annulus, stretching slightly as
it progresses. Ahead and behind the front the streamlines are parallel, but are distorted
close to the front, where interesting secondary flows occur (Carrasco-Teja et al. 2008).
We see the qualitative similarity between 2DGA and experimental results. However, the
front velocities measured in the experiment are not the same as the fluid velocities, as we
explore in later in § 5.

4.2. Inconsistent and dispersive displacement
We now present a number of examples of I/D displacements to illustrate some of the
intermediate behaviours; see figure 9. Figure 9(a) shows results from an experiment with
e = 0.46, b = 136.58, μ̂2/μ̂1 = 1.23. Here the front slumps to the bottom side initially,
but the tip of the displacement front does not propagate along the bottom side; instead
just above. Later in the experiment the flow remains a slumping displacement but with
significant dispersion close to the front. The 2DGA model is also a slumping displacement.

Figure 9(b) shows results from an experiment with e = 0.46, b = 49.93, μ̂2/μ̂1 = 5, i.e.
smaller buoyancy than the previous example, but larger viscosity ratio. The front slumps to
the bottom initially. The tip of the front is again just above the bottom of the annulus. We
observe in the bottom view that a thin varicose layer of fluid 1 persists along the bottom
side at this stage. The bottom side residual fluid is slowly displaced as the main front
advances (a feature also seen in the 2DGA). Later in the experiment the flow eventually
becomes a top displacement, with a more significant channel of residual bottom side fluid
slowly displaced. The interface between the elongating stratified layers appears unstable,
possibly due to the density unstable configuration. Comparing these two cases, it is hard to
draw firm conclusions, except that although the viscosity ratio has increased significantly
in figure 9(b), which should aid displacement, the reduction in b appears to dominate in
that the final flow is a top side displacement.

4.3. Bottom side residual fluid
The phenomenon of bottom side residual fluid seen in the last example can be more
persistent, particularly as the eccentricity is increased. Figure 10 shows results from a
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FIGURE 9. Inconsistent/dispersive displacement examples showing only the first and last
sections of the apparatus. (a) e = 0.46, b = 136.58, μ̂2/μ̂1 = 1.23, Re = 74.02, left and right
pictures taken at t̂ = 13 & 122 s, respectively. (b) e = 0.46, b = 49.93, μ̂2/μ̂1 = 5, Re = 380.86,
left and right pictures taken at t̂ = 6 & 28 s, respectively. Gravity is parallel to the coordinate ŷ,
as shown in the front views. True aspect ratio of these images, per section of apparatus, is 24:1.

Front view

Bottom view

1.2 m 1.2 m

Front view

Bottom view

ξ̂ ξ̂

ŷ ŷ

(b)(a)

FIGURE 10. Experiments with bottom side residual layers showing only the first section of the
apparatus. Both examples have same e = 0.73, and μ̂2/μ̂1 = 1.29. (a) b = 152.71, Re = 95.25,
t̂ = 14 s. (b) b = 855.15, Re = 17.01, t̂ = 28 s. True aspect ratio of these images, per section of
apparatus, is 24:1.

pair of experiments with e = 0.73, μ̂2/μ̂1 = 1.29. For the first experiment b = 152.71
and the second b = 855.15: the change in b is due to a decrease in the imposed flow rate
(hence Re). In both cases the flow slumps but a slowly thinning residual fluid channel is
left behind on the bottom side.

The 2DGA model simulations of these two experiments are shown in figure 11. We see
that for the first (faster) displacement the residual layer is fairly uniform in thickness and
appears to remain stable. Although fluid 1 (blue) is less dense we note that the buoyancy
term in (2.4) vanishes on top and bottom sides of the annulus (sin πφ = 0), regardless of
the density difference. On the other hand, for b = 855.15 we see that the initial slump
of the front is more severe and appears to trap a thicker layer of mixed fluid on the
bottom side. As this layer is thicker, the density gradient can act azimuthally away from
the bottom side and density driven instabilities result. Given a sufficiently long time, the
first simulation with b = 152.71 might also develop density driven instabilities.

5. Displacement front dynamics

For most of this section we focus on slumping displacements, found generally for b > 0.
For top side displacements with b < 0, eccentricity and buoyancy conspire to rapidly
elongate the front along the upper part of the annulus. These displacement flows are
inefficient from the industrial perspective. In contrast, b > 0 slumping displacements
are typically density stable, are more common industrially and the 2DGA model may
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FIGURE 11. Simulation results using the 2DGA model for the experiments shown in figure 10.
(a) Same parameters as in figure 10(a), dimensionless time in each concentration plot from top
to bottom: 0.5, 11, 42, 73. (b) Same parameters as in figure 10(b), dimensionless time in each
concentration plot from top to bottom: 0.5, 10.5, 39, 58. The full length of the apparatus is
simulated and presented here.

admit steady travelling wave displacement solutions (Carrasco-Teja et al. 2008). We now
consider the front dynamics from the experimental perspective.

5.1. Image analysis
On each camera the frame-to-frame evolution of pixel intensity gives a qualitative
visualization of the flow. In a grey scale the intensity ranges from 0 (black) to 255 (white).
The displacing fluid is dyed with a concentration of 600 mgL of black non-waterproof ink
providing contrast; also easier to observe dispersive fingering. Higher concentrations of
ink increase the risk of particles depositing on and staining the walls.

Proper illumination is key to obtain high quality data. Commonly, a way of controlling
the illumination and reducing the noise environment is achieved by performing the
experiment in a dark room with diffuse back lighting on the visualization window.
Indeed this method has been used successfully in the laboratory for the past decade to
quantify miscible pipe flow displacements in similar flow regimes (Taghavi et al. 2010;
Alba, Taghavi & Frigaard 2013; Etrati & Frigaard 2018a). For the pipe flow the path of
light to the camera is much simpler and when the images are calibrated the pixel value
can represent a line integral of concentration through the pipe. Here, however, due to
the annular set-up and mirror system effective lighting is more complicated. First, the
inner aluminium pipe is exposed and reflects light in all directions due to its curvature.
Reflections are captured by the camera as completely white values that do not change over
the displacement, and although some filtering can be applied, data are missed. Positioning
the light source from any preferred direction worsens the reflections. The mirror system
reduces the space available for a diffuse light source to be placed close to the annulus while
also reflecting the light source. Moreover, the acrylic fish tank also acts as a reflecting
surface to a lesser degree. The above limitations meant that the light source needed
to be more distant. Thus, our solution was to use the LED ceiling illumination in the
laboratory combined with using strategically located white/black backgrounds as well as a
dulling spray on the surface of the acrylic box. With this approach reflections were largely
eliminated.

We normalized the intensity values, at a given frame, using two independent references.
A black image reference (Imin) is taken by filling the apparatus entirely with the displacing
fluid. A white image reference (Imax ) is taken with the apparatus filled, only, with the
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FIGURE 12. Examples of height-averaged concentrations C̄y(ξ̂ , t̂) obtained from the front view
in the four cameras (a–d) e = 0.46, μ̂2/μ̂1 = 1.48, b = 71.74, Re = 299.12. Time increases
from left to right in the curves and on each figure. At the beginning of the experiment, C̄y = 0
represents the annulus filled only with displaced fluid. At later times, curves with C̄y > 0 indicate
the displacing fluid front moving across the field of view.

transparent displaced fluid. The normalized intensity value is: IN = (I − Imax)/(Imin −
Imax). This macroscopic normalization sets a suitable scale for the signal of interest
which is then equivalent to a concentration field i.e. IN ∈ [0, 1]. We can follow areas
of undisplaced fluid around 360 degrees in the annulus using the mirror views. Note,
however, the pixel area in the sensor of the camera simply collects photons over a frame
integration time, transformed into a pixel intensity value. Unlike the simple backlit pipe
geometries, the light path is more complex and is obstructed e.g. by the centre body.
Thus, with the exception of fully dark or fully light images, we feel that intermediate
pixel values give only qualitative (or comparative) information regarding intermediate
fluid concentrations. Although below we do use the normalized intensities to represent
averaged fluid concentrations, we remain conscious of this limitation.

For further processing, normalized pixel intensities are taken as a form of
height-averaged concentration of fluid 2; say C(ξ̂ , ŷ, t̂), with (ξ̂ , ŷ) representing the plane
of the side image of the annulus. We integrate these concentrations in height to give
C̄y(ξ̂ , t̂), which may be plotted either as a spatio-temporal map or as concentration curves.
Examples of concentration curves C̄y(ξ̂ , t̂) plotted at successive times, calculated from the
different cameras, are presented in figure 12. As discussed earlier, pixel resolution and
frame timing of the four cameras is different, and we can see the different resolutions in
these images. For large and small C̄y(ξ̂ , t̂), the curves are more noisy due to dispersive
effects, refraction and reduced volume at top and bottom of the annulus. The two
intermediate cameras also have the lower spatial resolution.

To calculate a front velocity, for a given fixed concentration, we capture the front
position ξ̂ = Ẑf (C̄y, t̂), from curves such as in figure 12, and divide by t̂: ŵf (C̄y, t̂) =
Ẑf (C̄y, t̂)/t̂. This method has the disadvantage that the initial flow development influences
Ẑf (C̄y, t̂), and effects of initial displacement anomalies decay only as 1/t̂. However, the
method is relatively robust. The alternative is to differentiate between two curves in
figure 12. While this gives a local value that ignores the start-up phase, it is vulnerable
to the differences in camera resolution and frame rate between the different sections of
the annulus, i.e. §§ 2 and 3 have noticeably noisy front velocities by this method. The
calculated front velocities typically approach a constant value as the front propagates
along the annulus. We take values of front velocity late in the experiments as our reference
values. Typically this would come from § 3. Sometimes, late in the displacement after the
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FIGURE 13. Front velocity calculation based on ŵf (C̄y, t̂) = Ẑf (C̄y, t̂)/t̂ for repeated pairs of
experiments.

displacing fluid has begun to exit the annulus, exit effects are observed in § 4. Typically
this is for larger value of b.

To negate the effects of noise at low and high C̄y , we evaluate ŵf at 2 intermediate
values: C̄y = 0.3, 0.7, in order to understand the front dynamics. Note that the relatively
large threshold also has the effect of reducing reliance on the upper and lower parts of the
annulus, where view the concentration most tangentially to the centre body surface, i.e. it is
closer to taking the radial average as is done in the 2DGA model. To test consistency of the
methodology we have compared the calculations of ŵf on our repeated sets of experiments;
see figure 13. We find good repeatability except for two cases where b ∼ O(10), in which
case the experiments were amongst those initially classified as I/D. Note too that physical
parameters in repeated experiments are not exactly identical.

5.2. Steady and unsteady displacements
In an ideal situation, fluid 2 displaces fluid 1 perfectly. This means that there is a
displacement front that advances at the same (pumping) speed steadily along the annulus.
In the 2DGA model the gap averaging eliminates viscous wall layers and this ideal
displacement is mathematically possible. Indeed this is the situation investigated by
Carrasco-Teja et al. (2008), both computationally and then theoretically for large b. For
b � 1 the existence of such a steady displacement depends on the eccentricity and
viscosity ratio: b determines how far along the annulus the interface must slump in order
for buoyancy effects to diminish and the steady state to emerge. The transient interface
approaches this steady state asymptotically. When there is no steady state, the slumping
displacement continues to slump and elongate into a stratified flow as the displacement
progresses: an unsteady displacement

For the experiment, we would like to make the same distinction as above. However,
every displacement is dispersive to some extent. Thus a degree of pragmatism is needed
to define a steady displacement. As threshold for the experimental data we categorize
steady flows by ŵf (C̄y = 0.3) − ŵf (C̄y = 0.7) ≤ 0.1ŵ0, and unsteady flows otherwise.
Figure 14(a) shows an example of a steady displacement flow. The figure shows the
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FIGURE 14. Examples of approximated front velocities at C̄y(ξ̂ , t̂) = 0.3 (x) and C̄y(ξ̂ , t̂) = 0.7
(+) for section S1 (1–1.2 m) to S3 (2.4–3.6 m) in the apparatus. (a) Same experiment as figure 12.
(b) e = −0.07, μ̂2/μ̂1 = 1.49, b = 69.08, Re = 304.55.

front velocity calculated from the first 3 cameras at C̄y = 0.3 and 0.7. We observe that
the smaller concentration has the higher velocity, i.e. the front is elongating slightly, but
the two velocities are converging. The mean velocity is 0.126 m s−1, and we note that the
converged velocities are larger than the mean velocity, which is due to dispersion within
the annulus.

An example of an unsteady displacement is shown in figure 14(b). This is qualitatively
similar to the steady displacement, except that the front velocities do not approach the
same value, (here ŵ0 = 0.117 m s−1). The parameters are close to figure 14(a), except
for the change in eccentricity. We often see larger fluctuations in the front speed for the
unsteady displacements, which may correspond to wave-like instabilities that we discuss
later.

Figure 15 shows the front velocities computed from the 2DGA model for the same
parameters as the experiments in figure 14. The 2DGA results converge to approximately
the mean flow velocity for the steady displacement, since dispersion is much less
significant for the 2DGA model, only driven by a secondary gap-averaged flow.
Additionally, the convergence at the start of the displacement, towards front velocities
close to the final value, is much faster. We note that the method used for the front velocity
of the 2DGA is the same as that for the experiments, although the computational results
are sufficiently well behaved to be able to differentiate numerically using local values
of Ẑf (C̄y, t̂). The asymptotic approach of the front velocities to constant values appears
similar for both experiments and simulation. This is because initial effects on front lengths
decay as 1/t̂ when we approach a steady front velocity.

Figure 16 shows the results of classifying the experiments, compared to the same
classification applied to the 2DGA simulation results. We see that the agreement is very
good at intermediate eccentricity and for larger b. At smaller e we have a discrepancy at
low b ∼ O(10), which is where the slumping/top classification was least reliable. Over the
same ranges of b our experiments were not classified as slumping for the e = 0.46, 0.73.

Why the comparisons at e = 0.73 are worse than those at e = 0.46 is not clear. It may be
that the displacement flows take longer to become fully developed. The threshold criterion
may also be too strict for the experimental classification. The 2DGA model supports
the view that the flow may still be developing despite the long length of annulus. The
asymptotic theory of Carrasco-Teja et al. (2008) assumes that the interface continues to
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FIGURE 15. Front velocities from the 2DGA simulations corresponding to figure 14(a,b),
respectively. C̄y = 0.3 in blue (x), C̄y = 0.7 in green (+).
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FIGURE 16. Steady/unsteady classifications for slumping displacements and e = 0.73, & 0.46,
according to the threshold. Comparison between experimental data (filled blue symbols) and the
corresponding 2DGA simulations (larger white symbols). The colour bar represents the viscosity
ratio (μ̂2/μ̂1) of the experiment.

stretch driven by b � 1, as we have in many of our experiments. In this theory, the final
stretched stratified finger has dynamics governed only by e and μ̂2/μ̂1, which classify
steady versus unsteady. The fact that we are still seeing dependency on b might suggest
that we have not attained this asymptotic limit, despite the relatively long annulus.

5.3. Dispersion and experimental front velocities

As observed in the previous section, front velocities based on arrival time (i.e. Ẑf (C̄y, t̂)/t̂)
are larger for the experiments than the 2DGA simulations. The difference is significant in
many cases. In figure 17 we have computed a mean front velocity ( ˆ̄wf = 0.5[ŵf (C̄y =
0.3) + ŵf (C̄y = 0.7)]), and used this to compare experimental and simulation values
for selected slumping displacements. The data quality was not uniformly good for all
slumping displacements and thus only a subset of 56 experiments was selected. We see that
experimental values can be up to 50 % larger. Interestingly, although this ratio does tend to
be larger for the larger values of b, there is in fact a wide range of values at each eccentricity
and for quite different ranges of b. This tends to suggest that dispersion phenomena are
the cause of discrepancy, rather than non-convergence as inferred at the end of the last
section.

Figure 18 plots the normalized mean front velocity ˆ̄wf ,exp/ŵ0 in the bRe vs Re plane.
The normalized front velocity generally decreases with Re. Note that bRe = ρ̂1(ρ̂2 −
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FIGURE 17. Ratio of front velocities ˆ̄wf ,exp/ ˆ̄wf ,sim (colour bar) computed for selected slumping
displacements in the viscosity ratio vs buoyancy plane at a given eccentricity. (a) e = −0.07,
(b) e = 0.46, (c) e = 0.73.
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FIGURE 18. Normalized mean front velocity ˆ̄wf ,exp/ŵ0 (colour bar) located in the bRe vs Re
plane. Each marker represents one test for different eccentricities: e = −0.07 (circle), e = 0.46
(square), e = 0.73 (triangle).

ρ̂1)ĝd̂3/μ̂2
1, which is independent of the mean flow velocity. This parameter is effectively

the square of an Archimedes number or alternately can be considered as the square of a
Reynolds number (say Rei), in which the velocity scale is found by a balance of buoyancy
and inertial effects. In studies without an imposed flow this parameter plays a critical role
in the transition between viscous and inertial dominated behaviour, e.g. in vertical pipe
exchange flows, Seon and co-authors found a transition at Rei ≈ 50, with more viscous
dominated flows found at larger pipe inclinations, (Seon et al. 2005, 2007). Here, the
situation is complicated by both the geometry and by the mean flow. The effects of
including an imposed mean flow are studied at length by Taghavi et al. (2012), Alba et al.
(2013) and Etrati & Frigaard (2018a), including the effects of pipe inclination and viscosity
ratio. There is indeed still a transition to progressively inertial/mixed flows at sufficiently
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large bRe. The range of the bulk of our data spans 40 �
√

bRe � 400, suggesting that we
might also be seeing this viscous–inertial transition, although note that the transitional Rei
depend on duct geometry.

Returning to the large discrepancy in experimental front velocities, relative to both
2DGA values and to the mean flow, we consider that this is mostly due to different
mechanisms of dispersion as follows. First, although the fluids are miscible, for our
mean annular gap width, for typical mean velocities and for the molecular diffusivity
of water, the Péclet number is in the range: 105 ≤ Pe ≤ 106. This experimental range is
far outside the usual Taylor dispersion limits for flow in a duct, i.e. over the length of
our annulus. Thus, we do not expect gap-averaged diffusive effects to be dominant (i.e.
no fully developed Taylor dispersion). Instead we must think of local advective effects on
intermediate time scales.

Secondly, as the narrow-gap limit of the annulus is a plane channel, we may expect
centreline velocities ≈50 % larger than the mean velocity. Under the same axial pressure
gradient, top side velocities scale with the local gap size ∼(d̂(1 + e))2 compared to the
mean flow. Bottom side velocities scale with ∼(d̂(1 − e))2. At large eccentricities the
narrow-gap approximation becomes less valid on the top side of the annulus and for
progressively circular geometries the ratio of maximal to mean velocity increases further
(towards 2 for a circular pipe). Thus, finding maximal experimental front velocities 50 %
larger than the simulated version (where the model velocity is gap-averaged) is certainly
in the range of possibilities for dispersive motion across the annular gap. However, note
that flows would disperse more along the wider upper part of the annulus, compensating
for the effect of slumping.

Thirdly, we should consider azimuthal effects and might get some idea of these from
the dynamics of simpler models such as the 2DGA. As illustrated within the steady
state computations of Carrasco-Teja et al. (2008), for an eccentric annulus a steady state
displacement necessarily means a secondary flow in which bottom side fluid 1 is pushed
to the top side ahead of the front and top side fluid 2 is moved to the bottom side behind
the front. For a Newtonian fluid in the narrow-gap limit, it is interesting to note that the
size of the corrective flow (∼e), is in fact driven by the difference in top and bottom side
velocities far upstream/downstream of the front. Interestingly, this has a similar magnitude
to the gap-scale dispersion discussed above, but the secondary flow should counter the
bias in gap-scale dispersion.

The narrow-gap and azimuthal effects described above are both advective and we might
consequently expect that the net effect would also be advective. To verify this we have
plotted our experimental values of C̄y(ξ̂ , t̂) against the similarity variable (ξ̂ − ŵ0 t̂)/t̂,
with the expectation that the data would collapse onto one curve at large times. It did
not, although the same treatment of the simulation data showed the 2DGA results to be
advection dominated.

Instead and perhaps surprisingly, given our distance from the usual Taylor dispersion
regime, the data did collapse well against the diffusive similarity variable (ξ̂ − ŵ0 t̂)/

√
t̂.

Figure 19 shows the results of this data collapse for the two displacements considered
earlier in figures 14(a) and 14(b).

Also shown in figure 19 is the result of approximating the collapsed data to a
complementary error function. Although the fit is not perfect at the tails of the distribution
(top and bottom of the annulus), due to imaging/visualization artifacts, this gives rise
to a representative bulk diffusivity D̂, which characterizes the spreading of C̄y(ξ̂ , t̂)
relative to the mean flow, i.e. along the annulus. We have not made our approximations
in any rigorous way: simply by eye. The main point is to identify that this linear
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FIGURE 19. The result of plotting C̄y(ξ̂ , t̂) against (ξ̂ − ŵ0 t̂)/
√

t̂ for the experiments of
figures 14(a) and 14(b), respectively. The solid red line shows a fit using the complementary
error function C̄y = 0.5erfc((ξ̂ − ŵ0 t̂)/(2

√
D̂t̂)), with diffusivity: (a) D̂ = 0.001 m2 s−1;

(b) D̂ = 0.01 m2 s−1. The data correspond to the second section of the apparatus (ξ̂ = 1.2 −
2.4 m in both cases.)
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FIGURE 20. The result of plotting D̂ against Δŵf = [ŵf (C̄y = 0.3) − ŵf (C̄y = 0.7)] for
selected slumping classified experiments. e = −0.07 in blue (circle), e = 0.46 in green (square)
and e = 0.73 in red (upside-down triangle).

advection–diffusion analogy describes well the behaviour of both steady and unsteady
slumping displacements. Secondly, we can get some idea of the range of D̂. The tails of
the collapsed data make a more rigorous fitting procedure difficult and we recall our earlier
reservation about what exactly our image intensities mean quantitatively.

The bulk diffusivities we have estimated fall mostly in the range D̂ ∈ [4 ×
10−4, 0.025] m2 s−1. The bulk diffusivity range is slightly wider than that observed
by Alba et al. (2013), who considered pipe flow displacements, but with comparable
values in the mid-range. With no mean flow, horizontal pipe exchange flows are also
largely diffusive (Seon et al. 2007). Figure 20 plots D̂ against the difference in front
velocities: ŵf (C̄y = 0.3) − ŵf (C̄y = 0.7). We see that there is a clear positive correlation
between these variables. Interestingly, the larger bulk diffusivities are found for e = −0.07
and lowest for the intermediate eccentricity, e = 0.46, indicating competing effects of
eccentricity.
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One source of diffusive behaviour is of course the gravitational spreading of the
slumping. Indeed this is a strong feature of the asymptotic models of Carrasco-Teja
et al. (2008). The slumping is expected to increase with b, but also would be resisted
by the difficulty of motion on the bottom side as e increases. Perhaps this competition
accounts for the non-monotone change in D̂ with e. The range of b > 0 is also smaller for
e = −0.07, which makes the larger D̂ unexpected. In other words it seems that slumping
cannot account for all the diffusive behaviour.

Apart from the in-gap and azimuthal effects discussed earlier, another dispersive effect
may arise from the imaging method itself. In viewing a side image of the annulus the
degree of gap dispersion will be different at different heights due to curvature and will
be affected visually by the centre body. Even if we had an asymptotically narrow-gap
annulus, the side view of the annulus averages dispersive effects at different azimuthal
positions, effectively smearing the gap-scale dispersion. Potentially this smearing of
dispersive effects is similar to the effects of rapid cross-gap diffusion (as in classical Taylor
dispersion), and perhaps then contributes to the measurement of an axial bulk diffusion.
It is hard to quantify this effect. These concerns make us reluctant to analyse causes of
bulk diffusion further, with the experimental data. An ongoing 3-D computational study
of the same displacement flows will we hope be a better tool for understanding where
contributions to a bulk diffusivity come from.

6. Instabilities

Many of the experiments that we have run, for both b < 0 and b > 0, exhibit wavy
instabilities of the interface as it becomes stratified. Stratification occurs for larger values
of |b|, affected mainly by e. Since the stratification is generally density stable, we might
suppose that the interface is stabilized by larger |b|. Generally, this is the case. Here, we
give mostly a descriptive treatment of these. We do not compare with 2DGA results as
for the results presented earlier we have imposed symmetry conditions at top/bottom of
the annulus, which will suppress symmetry breaking and we have no inertia in the model.
This is not to say that models such as 2DGA cannot represent instabilities, e.g. (Tardy &
Bittleston 2016).

Figure 21 classifies stable and wavy interfaces in the plane of μ̂2/μ̂1 versus |b| for a
given eccentricity. Apart from stabilization with increasing |b|, we see that there is little
variation in the occurrence of instability with the viscosity ratio μ̂2/μ̂1. Secondly, we see
that wavy instabilities occur primarily at large eccentricities.

Examples of unstable wavy interfaces are shown in figure 22(a,b) for b < 0 and
figure 22(c,d) for b > 0. For b < 0 the displacement of figure 22(a,b) is evidently more
wavy and unstable than that of figure 22(c,d). For figure 22(c,d) the instabilities are
broadly similar, involving both sinuous propagation of the front along the bottom side
and what appear to be Kelvin–Helmholtz (K–H) wavy structures. The waves observed
are certainly reminiscent of inviscid inertial instabilities and the Reynolds numbers are
significant in most of our experiments.

Various authors have developed reduced inertial models for two-layer flows in
multi-phase settings, e.g. Fullmer, Ransom & de Bertodano (2014), Picchi et al. (2017),
Picchi et al. (2018), Etrati & Frigaard (2018b) and de Bertodano et al. (2017), driven
partly by the widespread interest in gravity currents (which we do not review). In such
models a K–H instability analysis often proves effective. The role of parameters such as
viscosity ratio and eccentricity in this type of (approximate) analysis is to influence the
underlying base stratified flow that is destabilized, e.g. by defining the mean velocities of
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FIGURE 21. Classification of the interface for each experiment mapped in the viscosity ratio vs
|b| plane. (a) e = −0.07, (b) e = 0.46, (c) e = 0.73.
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ŷ

ŷ

ŷ
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FIGURE 22. Experiments with unstable interface. The displacing fluid is white in (a) and
(b), both show only the second section of the apparatus. (a) e = 0.46, μ̂2/μ̂1 = 0.20, b =
−5.01, Re = 189.35, t̂ = 13 s. (b) e = −0.07, μ̂2/μ̂1 = 0.09, b = −2.68, Re = 79.25, t̂ = 7 s.
(c) Shows only the last section of the apparatus, e = 0.46, μ̂2/μ̂1 = 1.21, b = 0.06, Re = 46.42,
t̂ = 18 s. (d) Shows only the first section of the apparatus, e = 0.46, μ̂2/μ̂1 = 0.89, b = 1.36,
Re = 68.36, t̂ = 5 s. Gravity acts parallel to ŷ, in front views. Flow direction is from left to right.
True aspect ratio of these images, per section of apparatus, is 24:1.

each fluid stream. We have not carried out such an analysis, although it might be effective
in a more focused study.

Figure 23 plots our interface classification in the Re-bRe plane. We have split our
data into those previously classified as slumping and top side displacements. We
see in figure 23(a) that the slumping displacements are predominantly stable. These
displacements are almost all for b > 0, where the slumping flow is stably stratified.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

71
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.713


905 A7-26 A. Renteria and I. A. Frigaard

101
–2

–1

1

2

2

1

0

3

Stable interface Wavy interface

bRe

bRe

3
(×104)

(×104)

0

101

102

102

Re
103

103

(b)

(a)

FIGURE 23. Interface classification mapped in the Re–bRe plane. (a) Shows only the slumping
displacements, (b) shows only the top side displacements.

We also note that although there are unsteady displacements in which the interface
elongates, eccentricity combats this tendency by slowing motion on the bottom side. Also
many of these displacements are classified as steady. Thus, the main K–H mechanism of a
velocity difference between fluid streams is reduced, relative to the top side displacements.

For the top side displacements in figure 23(b), we see the data have both positive and
negative b. There is no stabilizing mechanism to prevent these flows from stratifying.
Here, the data with b < 0 are stably stratified and we see for bRe < 0 that unstable/wavy
interfaces result at larger Re. Most of the data have modest viscosity ratios. Our
interpretation is that this is due to eccentricity which allows different mean velocities to
develop in the 2 fluid streams. Increasing Re at constant bRe is a flow rate effect (recall
bRe is independent of the imposed flow). Thus, increasing Re amplifies the eccentricity
induced velocity differences and eventually a K–H mechanism induces instability.

For bRe > 0, there appears to be a transition both for larger μ̂2/μ̂1 at large Re and simply
as Re is increased. The Re mechanism is likely as described above, but possibly we are also
seeing some effects of viscosity stratification inducing instability. In fact in looking closely
at these displacements no single clear picture emerges. All these displacements stratify
unstably so density-driven instability may occur. Some of the stable interfaces here are
amongst those initially classified as I/D displacements and are in fact rather diffuse due
to dispersive effects, i.e. there is no clear interface to classify. For others that are stable
at higher Re we must also take into account the fact that these are displacement flows of
finite duration, not experiments designed to study stratified flow instability. In particular,
the experimental duration is approximately two annular volumes pumped and for some of
these flows that may be insufficient time for an instability to develop.

7. Summary

In this paper we have presented the results of ≈300 displacement flow experiments
carried out in a scaled laboratory set-up, to resemble parameter ranges encountered in
the oilfield operation of horizontal primary cementing. These flows have non-negligible
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inertia, significant buoyancy between fluids and are complicated by the eccentric annular
geometry. Rheological effects can be important, but often are dominated by these features,
and therefore this preliminary study has considered Newtonian fluids.

The focus of the paper has been on making both qualitative and quantitative
comparisons between the experimental results and the 2DGA model analysed in depth
by Carrasco-Teja et al. (2008). Two main behaviours are observed in the experiments: top
side and slumping displacements. These flow types are predicted well by the 2DGA model.
However, other features of the experiments are not predicted as well.

The main discrepancy comes from gap averaging of the model, which is an essential
feature of the Hele-Shaw approach. This means that dispersive effects can only be partly
represented in the model. We have seen that in nearly all cases the front velocities
determined from the experiments exceed those of the model and attribute this discrepancy
to various forms of dispersion. In the experiments these dispersive effects are hard to
separate, but we may infer that to some extent gap-scale dispersion competes against that
of azimuthal secondary flows, insofar as effects of eccentricity are concerned.

The high degree of dispersion and other visualization difficulties at high/low
height-averaged concentrations, mean that significant thresholding of the image data is
needed in order to robustly compute front velocities. A consequence of this is that it
is difficult to infer from the data whether or not a given displacement flow is steady:
consequently, model and experiments only partly agree.

We find that dispersive effects dominate to the extent that the slumping flows are best
described by bulk diffusive spreading of the height-averaged concentrations, relative to
the mean flow. Bulk axial diffusivities D̂ are in the range [4 × 10−4, 0.025] m2 s−1, scale
approximately with ˆ̄wf d̂(1 − e) and decrease with Re.

Our slumping flows are stably stratified and in general show no interfacial instabilities.
In contrast the top side displacements often result in elongating interfaces that are
unstably stratified and which move rapidly along the top side of the annulus. This
combination results in many instances of wave-like instability, exhibiting K–H type
behaviour. Significant dispersion is, however, often present in these flows, which can smear
the interfaces and stabilize the flow, at least for the limited duration of the experiment.

Dispersive effects, inertial effects and instabilities lie largely beyond the ability of the
2DGA model to predict. Although the underlying theory of Carrasco-Teja et al. (2008)
remains qualitatively correct and a useful framework in which to consider this industrial
process, it is clear that the model needs improvement. One direction would be to model the
advective fluxes better, e.g. along the lines of Tardy & Bittleston (2016). Including some
limited form of inertial nonlinearity within the Hele-Shaw approach, e.g. analogous to a
Forchheimer-/Ergun-type closure, is a different direction we are considering developing.
In adopting such approaches to extending the 2DGA model, at some point a fully 3-D
computation becomes the pragmatic approach. In a companion study we will report the
results of comparing our experiments with 3-D computations.

With regard to direct applicability of our results, the fluid pairings in our experiments
can be interpreted as any of the fluids used in primary cementing, where a range of
viscosity and density differences is possible. As with the real well and real fluids, within
the experiments it is not always easy to isolate 1 physical effect, e.g. in increasing
density we often increase viscosity also. Equally, field settings encompass significantly
more variations in physical parameters and in particular the well geometry. Roughness
of the walls and irregularity defects are fairly common, but beyond the scope here.
In practice, wells vary from vertical to horizontal (and slightly beyond), according to
reservoir configurations. Again, we have studied an acknowledged simplification.
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