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Abstract
We review the empirical comparison of Stochastic Actor-oriented Models (SAOMs) and Temporal
Exponential Random Graph Models (TERGMs) by Leifeld & Cranmer in this journal [Network Science
7(1):20–51, 2019].When specifying their TERGM, they use exogenous nodal attributes calculated from the
outcome networks’ observed degrees instead of endogenous ERGM equivalents of structural effects as used
in the SAOM. This turns the modeled endogeneity into circularity and obtained results are tautological.
In consequence, their out-of-sample predictions using TERGMs are based on out-of-sample information
and thereby predict the future using observations from the future. Thus, their analysis rests on erroneous
model specifications that invalidate the article’s conclusions. Finally, beyond these specific points, we argue
that their evaluation metric—tie-level predictive accuracy—is unsuited for the task of comparing model
performance.

Keywords: SAOM; ERGM; TERGM; statistical modeling; dynamic networks; inferential network analysis; longitudinal
networks

1. Introduction
The past couple of decades have seen important advances in statistical network modeling, includ-
ing the proliferation of statistical network models for making inference on a range of questions
across the social and natural sciences. Applied researchers and statisticians alike are interested in
identifying the appropriate modeling solution for a given research problem. In a recent article in
this journal, “A theoretical and empirical comparison of the temporal exponential random graph
model and the stochastic actor-oriented model”, Leifeld & Cranmer (2019a) seek to contribute to
this goal.1 They compare two statistical methods for the analysis of longitudinal network data:
the Stochastic Actor-oriented Model (SAOM) and a variant of a Temporal Exponential Random
Graph Model (TERGM).2 In this article Leifeld & Cranmer (2019a) present a theoretical dis-
cussion, a simulation study, and an empirical application. While the theoretical and simulation
sections are presented as indeterminate—“it is usually not possible to choose the SAOM or the
TERGM [. . . ] purely on theoretical grounds” (p. 46, see also p. 20)—their empirical comparison
provides them with conclusive results: “when considering out-of-sample predictive performance,
the TERGM outperformed the SAOM by a substantial margin” and “even on the type of data for
which the SAOM was designed and which the developers of the SAOM use as an expository case,
the TERGM out-performed the SAOM” (p. 46).
© The Author(s), 2022. Published by Cambridge University Press.
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This is a strong claim, especially as Leifeld & Cranmer (2019a) recommend researchers “not to
put too much stock into the a priori selection of a model” and instead “contrast the out-of-sample
(or in-sample) predictive performance of the two models.” Indeed, again based on the empirical
results, they claim that the SAOM would have to have “its updating assumptions met with a high
degree of precision [. . . ] for that specific model to outperform the more general TERGM” (p. 46).
Though in their abstract, Leifeld & Cranmer (2019a) state they “do not aim to make a general
claim about either being superior to the other across all specifications,” their recommendations in
the conclusion are clear.

Leifeld & Cranmer (2019a) provide access to all replication materials for the published article
(Leifeld & Cranmer, 2019b). We explore a number of surprising findings: why one model out-
performed the other by substantial margins, even though both model the same structures in the
analyzed network; why Leifeld & Cranmer (2019a) had obtained empirical results suggesting that
there is no evidence for transitive closure operating between waves; and why some coefficients
seemed too large to be non-degenerate, in contrast with the vast established literature on model
specification in ERGMs (e.g., Snijders et al., 2006; Robins et al., 2007).

All these observations are explained by the fact that Leifeld & Cranmer (2019a) replaced
endogenous degree effects, typically used in ERGMS and also in the SAOM, by nodal covariates
calculated from the observed outcome network. By doing so, instead of explaining differences
in nodal degrees as an emerging popularity-based process, they explain the degrees of a node
with fixed node covariates that are informed from the empirical data used as the dependent vari-
able (i.e., a transformation the dependent variable is used among the explanatory (independent)
variables). Furthermore, when they use this model for out-of-sample predictions, they use degree
information from the future to predict future nodal degrees. The incorrect model specification and
the use of future information to predict the future are entirely responsible for the “substantial mar-
gin” between these models in the empirical comparison since they do not repeat this error in the
SAOM specification. Thus, the SAOM and the TERGM estimated by Leifeld & Cranmer (2019a)
do not have “the same specification” (p. 42). When this is corrected, there is little to discriminate
the models in terms of performance. The other surprising findings are similarly explained. Jointly,
this invalidates Leifeld & Cranmer’s (2019a) comparative results.

In the next section, we present the error in Leifeld & Cranmer’s (2019a) specification of the
TERGM and explain its consequences. We show that a conventional model specification does
not yield the differing results between the SAOM and the TERGM as presented in this article.
Next, we illustrate how the specification error is carried over into the out-of-sample prediction.
Again, we show that a conventional model does not yield differing out-of-sample predictions.
Finally, we outline why tie-level predictive performance is a poor metric to discriminate between
the compared models, as the TERGM explicitly models the location of ties, while the SAOM only
models their embedding in structures.

2. Empirical model specification
In this section, we first introduce the ERGM and TERGM. Second, we highlight the error in the
specification by reference to the code and explain its consequences. Third, we show that analy-
sis in line with the appropriate ERG specification does not support Leifeld & Cranmer’s (2019a)
conclusions and that there is no difference in out-of-sample performance.

2.1 ERGMs and TERGMs
The TERGM has an Exponential Random Graph Model (ERGM) at its core. As an exponen-
tial family model, the ERGM comes with well-known properties (Wasserman & Pattison, 1996;
Robins et al., 2007; Lusher et al., 2013). The ERGM defines the probability to observe a network
based on endogenous network terms and exogenous covariates. The most commonly used statis-
tics are counts of substructures, for example, the number of reciprocated ties or the number of
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in-stars of some order, which may be combined with nodal or dyadic attributes. The statistics
that are typically used are based on principled assumptions about the dependencies among the
ties (Frank & Strauss, 1986; Snijders et al., 2006). The expected prevalence of these statistics is
determined by a statistical parameter. The probability to observe the realization x of a network is
given by

pERGM (X = x) = κ−1exp

(∑
k

θksk(x)

)
,

where X is the random network state, θ is a statistical parameter, and s(x) is a vector of statistics
describing the network; κ is a normalizing constant.

For later use, we elaborate the difference between endogenous and exogenous effects. We rep-
resent the network by its adjacency matrix x = (xij), where xij is the indicator of the tie from node
i to node j. An effect is exogenous if it is a linear function of the xij, and endogenous if it is not.
Dependence considerations for networks (see the cited ERGM literature) lead to effects depend-
ing on subgraph counts, which are equivalent to products of tie indicators. Examples are counts
of two-stars, representing degree variability, and counts of triangles or other triadic configura-
tions, representing transitivity. Endogenous effects imply emergence in the evolution of networks
and imply dependence between the tie indicator variables, which is essential for representing a
network by a statistical model. In contrast, the impact of nodal and dyadic covariates is usually
represented by exogenous effects.

The TERGM is a model for network panel data where the t’th network observation is modeled
by an ERGM in which functions of the preceding network observations can enter as exogenous
variables. Various ways to specify this have been proposed (Robins & Pattison, 2001; Hanneke
et al., 2010; Desmarais & Cranmer, 2012; Krivitsky & Handcock, 2014). The TERGM for two
waves at times t-1 and t can be represented by the conditional probability function

pTERGM(X(t)= x(t)|X(t − 1)= x(t − 1))

= κ−1exp

(∑
k

θksk(x(t))+
∑
h

θhzh(x(t), x(t − 1))

)
(1)

where x(t) and x(t-1) are the realizations, X(t) and X(t-1) are the random networks, s(x(t)) is a
vector of statistics for network x(t) like above, and z(x(t), x(t-1)) is a vector of statistics of both
networks. For the parameter θ , we denote by θk those pertaining to s(x(t)) and by θh those per-
taining to z(x(t), x(t-1)). The difference with the standard ERGM lies in the extra statistics zh(x(t),
x(t-1)) that are memory terms depending on the networks at time t as well as time t–1. These are
usually exogenous effects, that is, linear functions of the tie statistics xij(t). A basic example of
such a statistic representing the match between the two consecutive observations is the number of
identical tie variables,

zh(x(t), x(t − 1))=
∑
ij

(
1− ∣∣xij(t)− xij(t − 1)

∣∣),
called the dyadic stability term by Leifeld & Cranmer (2019a); it can be rewritten as a linear
function of xij(t), modeling inertia.

2.2 Themodel specification in Leifeld & Cranmer’s (2019a) TERGM
We now evaluate Leifeld & Cranmer’s (2019a) model specification based on the replication script
empirical.R (Leifeld & Cranmer, 2019b). Leifeld & Cranmer (2019a) use the btergm package for all
analyses, which uses functionality for the established “ergm” and “RSiena” package in R (Hunter
et al., 2008; Ripley et al., 2021). Leifeld & Cranmer (2019a) state that they use “the same specifica-
tion” (p. 42) in their TERGM as in the SAOM and give the statistics used in Equations (15)–(21)
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in their article. The ERGM equivalents of the SAOM terms “in-degree popularity,” “out-degree
popularity,” and “out-degree activity” (Equations (19)–(21)) are “in-2-stars,” “mixed 2-paths,” and
“out-2-stars” (Frank & Strauss, 1986). The replication script allows to identify how they have
translated Equations (19)–(21) used as endogenous effects in the SAOM to statistics used in the
TERGM.

The specification can be found on lines 243–247 of the empirical script:

tergm.0.firstthree <− mtergm(friendship[1:3] ∼ edges + mutual
+ ttriple + transitiveties + ctriple + nodeicov(“idegsqrt”)
+ nodeicov(“odegsqrt”) + nodeocov(“odegsqrt”) + nodeofactor(“sex”)
+ nodeifactor(“sex”) + nodematch(“sex”) + edgecov(primary)
+ memory(“stability”), control = control.ergm(MCMC.samplesize = 5000,
MCMC.interval = 3000))

The three terms nodeicov(“idegsqrt”) + nodeicov(“odegsqrt”) + nodeocov
(“odegsqrt”) are meant to correspond to the endogenous effects “in-degree popular-
ity,” “out-degree popularity,” and “out-degree activity”, in the SAOM. However, rather than
endogenous network terms, “idegsqrt’’ and “odegsqrt” refer to exogenous vertex attributes
representing a square root transformation of nodes’ indegree and outdegree in the dependent
variable, respectively, as defined in lines 222–230 of the script:

for (i in 1:length(friendship)) {
s <− adjust(sex, friendship[[i]])
friendship[[i]] <− network(friendship[[i]])
friendship[[i]] <− set.vertex.attribute(friendship[[i]], “sex”, s)
idegsqrt <− sqrt(degree(friendship[[i]], cmode = “indegree”))
friendship[[i]] <− set.vertex.attribute(friendship[[i]], “idegsqrt”,
idegsqrt)
odegsqrt <− sqrt(degree(friendship[[i]], cmode = “outdegree”))
friendship[[i]] <− set.vertex.attribute(friendship[[i]], “odegsqrt”,
odegsqrt)

}

This means that the terms nodeicov(“idegsqrt”) + nodeicov(“odegsqrt”) +
nodeocov(“odegsqrt”) model (i) the tendency of nodes with high observed indegree to
receive ties, (ii) the tendency of nodes with high observed outdegree to receive ties, and (iii) the
tendency of nodes with high observed outdegree to send ties, respectively. The first and third of
these express, respectively, that the indegrees predicted in the model are similar to observed inde-
grees, and that outdegrees predicted in the model are similar to observed outdegrees. These are
tautological terms, by definition receiving high parameter estimates in networks. The second term
expresses that modeled indegrees are similar to observed outdegrees. This is a circular term at
the level of networks, but not a direct tautology, and the resulting parameter estimate is small. An
intuitive way of conceiving of what is happening is that a crucial summary—vertex degrees—of
the observed dependent network is used to predict this same feature of the dependent network.

This specification means that the model is not of the form (1), but of the form

pTERGM; LC(X(t)= x(t)|X(t − 1)= x(t − 1); xobs)

= κ−1exp

(∑
k

θksk(x(t))+
∑
h

θhzh(x(t), x(t − 1)) (2)

+
∑
l

φl ul(x(t), xobs(t))

)
.
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Added to the model (1) is a further set of statistics, here denoted ul(x(t), xobs(t)), that is depen-
dent on a particular realization xobs(t) of the networks. A positive parameter associated with these
statistics ul(x(t), xobs(t)), expressing an aspect of the similarity between x(t) and xobs(t), implies
that any realization of the network that is closer to the actual observation according to this match
has a higher probability to be observed. Thus, the appropriate endogenous specification (1) is
turned into circularity. This gives no indication about the salient features of a network, but only
artificially improves the fit of the model to this particular dataset without uncovering any depen-
dencies. Leifeld & Cranmer’s (2019a) analysis uses three such terms, depending on the observed
indegree and outdegree sequences. These are exogenous terms treating the observed network as a
covariate for itself. Taken to the extreme, in this spirit we could include the entire observed net-
work as a dyadic covariate among the predictors of the network—this would lead to perfect fit of
the model, but would have no explanatory value whatsoever.

Moreover, as the degree sequence is used in the estimation of parameters, it also impacts the
parameter estimates of other statistics directly through the strong correlations between statistics
in network models. Thus, not only are the parameters φl associated with statistics ul(x(t), xobs(t))
tautological, but also all other model parameters θk and θh will be systematically distorted. In the
analysis by Leifeld & Cranmer (2019a), this can be seen in the astonishing finding that there is
no support for transitivity in friendship dynamics. As we show in the following subsection, we
find clear support for transitivity when replacing the circular exogenous terms with conventional
endogenous terms, in line with the very vast literature on friendship networks.

2.3 Replication with correct ERGM terms
In this section, we replicate the analysis by Leifeld & Cranmer (2019a) using conventional ERGM
terms instead of the artificially exogenous variables3. A model that would be the direct analogue
of the SAOM specification has the three star-statistics, transitive and cyclic triples, all of which
are sufficient statistics in a Markov graph derived from first principles and assumptions about
dependence among the ties (Frank & Strauss, 1986). This Markov model cannot be estimated,
something which is to be expected for most networks4. While the pseudo-maximum likelihood
estimation (MLE) can be determined—that is, pseudo-MLE will produce parameter estimates—
these estimates correspond to a degenerate model5.

Following standard practice (Snijders et al., 2006; Hunter & Handcock, 2006; Lusher et al.,
2013), we have to replace the star statistics and the triadic statistics with non-degenerate ones, in
particular their equivalent, geometrically weighted statistics, derived from another set of prin-
cipled dependence assumptions (Robins et al., 2009), in order to specify a model that can be
estimated. We substitute the terms nodeicov(“idegsqrt”), nodeicov(“odegsqrt”), and
nodeocov(“odegsqrt”) with the ERGM terms that model degree dispersion, in particular
geometrically weighted in-stars, two-paths, and geometrically weighted out-stars (statnet terms
gwidegree, twopath, and gwodegree). Further, we substitute the triadic terms transitive
triplets (ttriple and ctriple) with their geometrically weighted versions (dgwesp(type =
“OTP”) and dgwesp(type = “ITP”)).

In the SAOM analysis, we also substitute the terms for transitive and cyclic triplets with the
geometrically weighted versions. This is done for two reasons. First, even though model terms
in ERGM and SAOM analyses are necessarily different in their dependence assumptions (Block
et al., 2019), using geometrically weighted versions in both makes the results more comparable.
Second, the specification in the tutorial article from 2010 is not “canonical” as claimed by Leifeld
& Cranmer (2019a) (p. 42), and so a more contemporary specification should be used for both
models.

The results from both models, presented in Table 1, are remarkably similar. The “Transitive
ties” parameter and the “GWESP Transitive” parameter need to be interpreted together, as both
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Table 1. Results of TERGM and SAOM analysis using standard endogenous ERGM terms

SAOM analysis TERGM analysis

est. s.e. est. s.e.

Rate period 1 8.38 ◦ (1.55) 0.73 ◦ (0.08) Memory


Rate period 2 8.66 ◦ (1.39)


Outdegree (density) −1.84 ◦ (0.66) −2.98 ◦ (0.43) Edges


Reciprocity 1.61 *** (0.28) 2.03 *** (0.37) Reciprocity


Transitive ties −0.16 (0.33) −2.16 *** (0.46) Transitive ties


GWESP transitive 1.76 *** (0.34) 2.84 *** (0.34) GWESP transitive


GWESP cyclic −0.27 (0.27) −0.52 ** (0.12) GWESP cyclic


Indegree-popularity (sqrt) −0.29 (0.27) 1.07 (0.70) GW Indegree


Outdegree-popularity −0.10 (0.07) −0.06 (0.03) Two-paths


Outdegree-activity (sqrt) 0.01 (0.12) −0.65 (0.52) GW outdegree
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Same primary class 0.39 * (0.20) 0.44 * (0.17) Same primary class


Boy alter −0.12 (0.17) −0.06 (0.15) Boy alter
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Boy ego 0.37 * (0.19) 0.25 * (0.13) Boy ego


Same sex 0.71 ** (0.19) 0.53 ** (0.15) Same sex

Notes: All analyses performed using standard best practises. Significance levels: * = 0.05; ** = 0.01; *** = 0.001; ◦ = not tested.

model the same tendency of transitive closure, but with different functional forms. The combi-
nation of parameters shows that both models find a strong tendency toward friendships being
transitive. No endogenous sorting of degrees is found, while the impact of the exogenous covari-
ates “Same primary class” and sex is in the same direction. Themain difference is that the “GWESP
cyclic” term is significant in the TERGManalysis but not in the SAOManalysis. This will be related
to the different formulations of the various GWESP and transitivity terms in this ERGM-type and
SAOM-type model as outlined in Block et al. (2019), but some differences are to be expected
because the models are different (see literature cited in footnote 1). We conclude that the substan-
tive insights we can draw from either model are not very different, but that understanding how
these differences come about is a more complex task than attributing this to simple differences in
model fit.

2.4 Out-of-sample prediction
Out-of-sample analysis plays a major role in Leifeld & Cranmer’s (2019a) results and final recom-
mendations. In out-of-sample analysis, a dataset is split into training data and test data. Leifeld
& Cranmer (2019a) choose the first three waves of the Knecht network data as training data and
the test data is the fourth wave. Out-of-sample analysis estimates a model using the training data,
after which data beyond the training data are simulated based on those estimates and compared to
the test data. Importantly, the model should use no information from the test data to generate the
predictions. However, the “out-of-sample” prediction using Leifeld & Cranmer’s (2019a) TERGM
specification violates this principle.

We saw above that in the estimation of parameters for each wave the empirically observed
degree sequences for waves at the end of the period were extracted and used as exogenous nodal
covariates in the model of change for the period. The same was done to generate likely outcomes
of wave 4 (out-of-sample prediction).

One of the wrapper functions of the btergm package is the “gof” function that facilitates simu-
lating out-of-sample predictions for a specifiedmodel. This “gof” function is prominently applied
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in section 4 of this article for the out-of-sample comparison. The earlier error is repeated here in
lines 254–260:

tergm.0.oos <− gof(tergm.0.firstthree, nsim = nsim,
target = friendship[[4]], formula = friendship[3:4] ∼ edges + mutual
+ ttriple + transitiveties + ctriple + nodeicov(“idegsqrt”)
+ nodeicov(“odegsqrt”) + nodeocov(“odegsqrt”) + nodeofactor(“sex”)
+ nodeifactor(“sex”) + nodematch(“sex”) + edgecov(primary)
+ memory(“stability”), statistics = c(esp, dsp, ideg, geodesic, rocpr),
parallel = parallel, ncpus = ncpus)

The crucial part here is “formula = friendship[3:4] ∼ ...”, which tells the algorithm to
use the “covariates” stored in the network object friendship[[4]] in the simulations. However,
these covariates include square root transformed information about observed indegrees and
outdegrees at wave 4. The “gof” function as used here thus simulates a model using future infor-
mation (the future in- and out-degree of nodes). The same circularity as before is even more
evident here; part of the test data is used to predict the test data. This mistake appears to be
encoded in the btergm package that is used in Leifeld & Cranmer’s (2019a) analysis.

This analysis cannot then be regarded as out-of-sample testing. This circularity has major con-
sequences for the article results. The comparison case, that is, the out-of-sample predictions of the
SAOM, makes no use of any information from the fourth wave, biasing the comparison toward
the TERGM.

2.5 Replication with correctly specified ERGM terms
It would in principle be possible that a properly specified TERGM could still perform substantially
better in out-of-sample prediction, even if the substantive conclusions do not differ much. To test
this, we used the TERGM estimates obtained as outlined above.

The results using the identical metrics for comparison as employed by Leifeld & Cranmer
(2019a) are presented in Figure 1. The GOFs for the auxiliary statistics “Edge-wise shared part-
ners,” “Dyad-wise shared partners,” “Indegree distribution,” and “Geodesic distances” show no
clear trend favoring either model. The ROC and PR curves are, for what they are worth, very
similar between the SAOM and the re-specified TERGM. In sum, these analyses indicate no gain
in predictive value between a correctly specified TERGM and the SAOM corroborating earlier
findings and theoretical understanding of such processes (Block et al., 2018).6

In sum, it was on the basis of a supposed performance margin that Leifeld & Cranmer (2019a)
recommend researchers estimate both models and use the wrapper functions provided in btergm
to identify the one with the better predictive fit. However, we have seen that this comparison
based on the btergm functionality and thus this conclusion is fundamentally undermined by their
repeated error.

3. Using tie-level predictive accuracy as a comparison criterion
Up to this point, we focused on the particular problems of the empirical comparison in Leifeld
& Cranmer’s (2019a) article. In this section, we go beyond that article and discuss using tie-level
predictive accuracy as a goodness-of-fit metric in such model comparisons. This discussion is
based on differences between models like the TERGM that have an auto-regressive component to
explain network structure, on the one hand, and models that treat network structure as emergent
as the SAOM or ERGM, on the other hand.

The defining feature of statistical networkmodels such as the SAOMor the ERGM is that struc-
tures in a network are conceptualized and modeled as the outcome of emergent processes. This
means that ties mutually influence each other’s emergence and disappearance. Examples for such

https://doi.org/10.1017/nws.2022.6 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.6


10 P. Block et al.

Figure 1. Replication of Figures 4 and 5 from Leifeld & Cranmer’s (2019a) article with ERGM terms in the model that do not
use future information. This shows that the claim that there is a substantial margin in performance differences is false.

substructures that tend to stabilize the existence of many types of ties include reciprocation, tran-
sitive closure, and degree centralization. In these cases, ties are more likely if they are mutual,
embedded in transitive groups, or sent/received by actors that are particularly active/popular.
Because these structure emerge endogenously, it is not possible to distinguish between ties as
explanations or outcomes per se (or assigning them either “independent” or “dependent” variable
status). Each tie can be both, influenced in its emergence by other ties and, at the same time, influ-
encing the emergence of other ties—even though longitudinal data sometimes allow to assign such
roles in particular instances. In this modeling framework, the exact location of ties that emerge or
disappear is irrelevant. The focus is firmly on emergent structures of ties, and we are agnostic to
where these structures are located in the network. Thus, clustering in networks, reciprocation, or
degree centralization are understood to emerge endogenously and therefore may appear anywhere
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in a network, not in some exogenously given location. This is true for both the ERGM and the
SAOM.

The TERGM differs from models that are based on endogenous parameters by the additional
inclusion of auto-regressive parameters (or by fully substituting endogenous parameters with
auto-regressive parameters, see Hanneke et al., 2010). These auto-regressive parameters z(x(t),
x(t-1)) appear related to endogenous parameters, but differ in that they predict network struc-
ture by configurations in a past realization of the network. Examples include delayed reciprocity
or delayed transitivity (Robins & Pattison, 2001; Hanneke et al., 2010), that is when a tie at t2
is predicted by an incoming tie at t1, or when a tie at t2 closes a two-path that existed at t1,
respectively. Degree persistence is a further example.7 Here, a high popularity/activity at t1 of
an actor predicts incoming and outgoing ties at t2. These parameters model structure not as
the outcome of endogenous processes, but as resulting from exogenous predictors that are cal-
culated from past realizations of the network. This means the endogenous processes modeled in
ERGMs and SAOMs are exogenized in the auto-regressive parameters of the TERGM; for exam-
ple, reciprocated ties are modeled as mutually stabilizing each other in ERGM and SAOM, but
when modeled with auto-regressive parameters it is modeled as past ties j→i predicting current
ties i→j. This means that auto-regressive parameters predict the location of ties based on the past,
that is, where exactly in the network ties can be expected. They do not model the prevalence of
structures in the modeled network. In the example of using a past tie j→i to predict a current tie
i→j, the term does not care if the tie j→i still exists. In TERGM specifications such as introduced
by Hanneke et al. (2010), only auto-regressive parameters are used, which means that the preva-
lence of structures of interest is not modeled at all in the network under analysis.8 This means
there is a fundamental difference in the way ties are explained between endogenous parameters
and auto-regressive parameters, even if they appear similar on the surface. Auto-regressive param-
eters model the location of ties, while endogenous parameters model the prevalence of structures
in a network. Consequently, parameters of the two types of models are interpreted differently.

This difference in modeling approaches—modeling structure as emergent vs. as predicted by
exogenous variables—has direct implications for which fit criteria are meaningful when assess-
ing model fit of different model types. Auto-regressive parameters optimize the correct location
of ties in their estimation. In comparison, structural parameters do not. Thus, when compar-
ing which model type performs better based on tie-prediction it might favor the model type that
explicitly optimizes this feature in the estimation process. Naturally, the converse is also true.
Comparing these model types based on the prevalence of (modeled) substructures is question-
able when ERGMs or SAOMs explicitly model this characteristic, while the TERGM of Hanneke
et al. (2010) with only auto-regressive parameters does not model this feature. To find an analogy
from a different area of network research, this issue is similar to some approaches that compare
community detection algorithms on the basis of modularity. Those community detection algo-
rithms that maximize modularity tend to fare better on such comparisons than algorithms that
do not maximize it. As such, modularity can only be a meaningful comparison metric if all or no
algorithm under comparison use modularity on their approach.

It is not immediately obvious how these issues translate to the performance of different mod-
els in out-of-sample predictive accuracy as also used by Leifeld & Cranmer (2019a). However, we
believe it might be worth exploring this further before drawing conclusions when using tie pre-
diction as a comparison metric, or when assessing fit in models whose primary goal is uncovering
structure, much more than it is predicting tie location.

4. Conclusion
This article is a post-publication review of the recent article by Leifeld & Cranmer (2019a) in
Networks Science followed by a discussion ofmore general points pertaining tomodel comparison.
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The error of the original authors, which is repeated both in the specification of the model and also
in the out-of-sample analysis, is the use of structural information of the outcome network about
nodal degrees as exogenous predictors. This is most clearly (and consequentially for the conclu-
sions of this article) made for the out-of-sample analysis. Leifeld & Cranmer (2019a) calculate
(a square root transformation of) nodes’ indegrees and outdegrees in the test data and generate
sample networks based on these data that they then compare with the same test data.

This has several consequences. First, the out-of-sample comparison conducted in this article
is undermined by the tautological specification. We found that using correctly specified ERGM
terms resulted in performance no better than that of an analogous SAOM, corroborating previous
analyses that came to the same conclusion of no substantial differences (Block et al., 2018). This
leaves the article with ambivalent results for the empirical section, as well as from the theoretical
discussion, which has been covered in the previous literature more thoroughly, and ambivalent
results from the simulation study. At any rate, there is no basis for suggesting that the TERGM is
superior to the SAOM.

Second, parameter estimates from TERGMs that use the Leifeld & Cranmer (2019a) spec-
ification are contaminated by the inclusion of exogenous structural covariates. The resulting
parameter estimates do not say anything about self-organizing tendencies of the network, neither
about dependence between ties nor about degree centralization of the network. If used, they must
logically have positive parameter estimates. Furthermore, the inclusion of these statistics strongly
affects other parameter estimates in the model, due to high collinearities between modeled statis-
tics. The differing results found by Leifeld & Cranmer (2019a) are a direct consequence of the
circularity introduced into the model specification. One of these surprising results is the absence
of transitive clustering in Leifeld & Cranmer’s (2019a) results. These differences in parameter
estimates disappeared when the model was specified with degree terms modeled endogenously.
As there does not appear to be any general performance improvement from a properly speci-
fied TERGM over the SAOM, we believe we should return the question of which model is better
motivated theoretically.

Third, using tie-level predictive capabilities as indicators for comparison between these model
classes is unsuitable. The auto-regressive parameters in a TERGM are used to predict the loca-
tion of ties in the dependent network, while models such as the SAOM are mainly interested
in the embedding in structures. In summary, we do not advocate for such assessment for the
kinds of highly interdependent data as present in network studies, not least because these types
of model that rely on the generation of stationary stochastic processes generally fare worse than
trivial prediction models in out-of-sample predictions (Block et al., 2018)9.
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Notes
1 Many points that concern the theoretical and principled differences between the models Leifeld & Cranmer (2019a) treat
have been discussed: Schaefer & Marcum (2018) generally discuss SAOMs and (S)(T)ERGMs. Block et al. (2019) focus on
fundamental dependence assumptions between the models, showing that it is not possible to formulate “equivalent” models,
even if the parameter names might suggest otherwise. Block et al. (2018) discuss what Leifeld & Cranmer (2019a) call the
“data-generating process” (DGP), concluding that the TERGM DGP is a purely technical solution to obtain samples under
the model that has no coherent interpretation about a network evolution.
2 A different version of the TERGM is the STERGM of Krivitsky & Handcock (2014) which is implemented in “tergm”
(Krivitsky & Handcock, 2016).
3 We perform this replication analysis with the code provided by Leifeld & Cranmer (2019a), thus leaving all other modeling
and software choices intact.
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4 Issues with Markov models have been extensively treated in Strauss (1986); Jonasson (1999); Snijders (2002); Handcock
(2003); and Schweinberger (2020). How these degeneracies are alleviated by different dependence assumptions is covered, for
example, in Snijders et al. (2006) and Schweinberger (2011).
5 A model with such parameters predicts either near-empty and near-complete networks, neither of which shares any
similarities with observed data. As such, the model is useless for predictions.
6 While it would certainly be possible to optimize the model specification of both the TERGM and the SAOM to improve on
these metrics, especially as the geometrically weighted terms have an internal parameter that can be adjusted, since Leifeld &
Cranmer’s (2019a) purpose was comparison rather than optimization, we only compare similarly specified models here.
7 Degree persistence is close to Leifeld & Cranmer’s (2019a) analysis, had they used observed degree in the explanatory
network instead of the dependent network in their model.
8 It should be noted that such specifications that exogenize all structural parameters have very similar results to continuous-
time models such as the SAOM when inter-observation times are very short and start to perform worse the longer the
observations are apart, as shown by Lerner et al. (2013). Thus, for very short inter-observation times they might be equally
suited while having much lower computational costs.
9 See also Snijders (2010) on marginalization of ERGM and further on the consequence on link pre-diction and residuals for
ERGM (Koskinen et al., 2018).
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