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We show that the techniques for resource control that have been developed by the so-called

light logics can be fruitfully applied also to process algebras. In particular, we present a

restriction of higher-order π-calculus inspired by soft linear logic. We prove that any soft

process terminates in polynomial time. We argue that the class of soft processes may be

naturally enlarged so that interesting processes are expressible, still maintaining the

polynomial bound on executions.

1. Introduction

A term (strongly) terminates if all its reduction sequences are of finite length. As far as

programming languages are concerned, termination means that computation in programs

will eventually stop. In computer science, termination has been extensively investigated in

sequential languages, where strong normalization is a synonym more commonly used.

Termination is however interesting also in concurrency. While large concurrent systems

often are supposed to run forever (e.g. an operating system, or the internet itself), single

components are usually expected to terminate. For instance, if we query a server, we

may want to know that the server does not go on forever trying to compute an answer.

Similarly, when we load an applet we would like to know that the applet will not run

forever on our machine, possibly absorbing all the computing resources. In general, if

the lifetime of a process can be infinite, we may want to know that the process does not

remain alive simply because of nonterminating internal activity, and that, therefore, the

process will eventually accept interactions with the environment.

Another motivation for studying termination in concurrency is to exploit it within

techniques aimed at guaranteeing properties such as responsiveness and lock freedom

(Kobayashi and Sangiorgi 2008), which intuitively indicate that certain communications

or synchronizations will eventually succeed (possibly under some fairness assumption). In

message-passing languages such as those in the π-calculus family (join calculus, higher-

order π-calculus, asynchronous π-calculus, etc.) most liveness properties can be reduced to

instances of lock freedom. Examples, in a client-server system, are the liveness properties

that a client request will eventually be received by the server, or that a server, once

accepted a request, will eventually send back an answer.

However, termination alone may not be enough. If a query to a server produces a

computation that terminates after a very long time, from the client point of view this

may be the same as a nonterminating (or failed) computation. Similarly, an applet loaded

on our machine that starts a very long computation, may engender an unacceptable
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consumption of local resources, and may possibly be considered a ‘denial of service’

attack. In other words, without precise bounds on the time to complete a computation,

termination may be indistinguishable from nontermination.

Type disciplines are among the most general techniques to ensure termination of

programs. Both in the sequential and in the concurrent case, type systems have been

designed to characterize classes of terminating programs. It is interesting that, from the

fact that a program has a type, we may often extract information on the structure of

the program itself (e.g. for the simple types, the program has no self-applications). If

termination (or, more generally, some property of the computation) is the main interest,

it is only this structure that matters, and not the specifics of the types. In this paper we

take this perspective, and apply to a certain class of programs (higher-order π-calculus

terms) the structural restrictions suggested by the types of soft linear logic (Lafont 2004),

a fragment of linear logic (Girard 1987) characterizing polynomial time computations.

Essential contribution of linear logic has been the refinement it allows on the analysis

of computation. The (previously atomic) step of function application is decomposed into

a duplication phase (during which the argument is duplicated the exact number of times

it will be needed during the computation), followed by the application of a linear function

(which will use each argument exactly once). The emphasis here is not on restricting

the class of programs – in many cases, any traditional program (e.g. any λ-term, even a

divergent one) could be annotated with suitable scope information (boxes, in the jargon)

in such a way that the annotated program behaves as the original one. However, the new

annotations embed information on the computational behaviour that was unexpressed

(and inexpressible) before. In particular, boxes delimit those parts of data that will be (or

may be) duplicated or erased during computation.

It is at this stage that one may apply restrictions. By building on the scopes exposed in

the new syntax, we may restrict the computational behaviour of a term. In the sequential

case, several achievements have been obtained via the so-called light logics (Asperti and

Roversi 2002; Girard 1998; Lafont 2004), which allow for type systems for λ-calculus

exactly characterizing several complexity classes (notably, elementary time, polynomial

time, polynomial space and logarithmic space). This is obtained by limitations on the way

the scopes (boxes) may be manipulated. For the larger complexity classes (e.g. elementary

time), one forbids that during computation one scope may enter inside another scope

(their nesting depth remains constant). For the smaller classes (e.g. polynomial time), one

also forbids that a duplicating computation could drive another duplication. The exact

way this is obtained depends on the particular discipline (either à la light linear logic, or

à la soft linear logic).

The aim of this paper is to apply for the first time these technologies to the concurrent

case, in particular to higher-order π-calculus (Sangiorgi and Walker 2001). We closely

follow the pattern we have delineated above. First, we introduce (higher-order) processes,

which we then annotate with explicit scopes, where the new construct ‘!’ marks duplicable

entities. This is indeed a refinement, and not a restriction – any process in the first calculus

may be simulated by an annotated one. We then introduce our main object of study –

annotated processes restricted with the techniques of soft linear logic. We show that

the number of internal actions performed by processes of this calculus is polynomially

https://doi.org/10.1017/S0960129514000310 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000310


Light logics and higher-order processes 971

bounded (Section 4), a property that we call feasible termination. We then present an

extension of the calculus (Section 5) where we relax the constraints on duplication by

taking into account certain visible actions that the processes can perform.

We stress that we used in the paper a pragmatic approach – we take from logic some

tools and techniques that may be suitable to obtain general bounds on the computing

time of processes. We are not looking for a general relation between logical systems

and process algebras that could realize a form of Curry–Howard correspondence among

the two. That would be a much more ambitious goal, for which other techniques – and

different success criteria – should be used.

1.1. Related work

A number of works have recently studied type systems that ensure termination in mobile

processes, e.g. Demangeon et al. (2010a,b) and Yoshida et al. (2001). They are quite

different from the present paper. First, the techniques employed are measure-based

techniques, or logical relations, or combinations of these, rather than techniques inspired

by linear logic, as done here. Secondly, the objective is pure termination, whereas here we

aim at deriving polynomial bounds on the number of steps that lead to termination. (In

some of the measure-based systems bounds can actually be derived, but they are usually

exponential with respect to integer annotations that appear in the types.) Thirdly, with

the exception of Demangeon et al. (2010b), all works analyse name-passing calculi such

as the π-calculus, whereas here we consider higher-order calculi in which terms of the

calculus are exchanged instead of names.

Linear logic has been applied to mobile processes in Ehrhard and Laurent (2010), where

they have studied encodings of π-calculus-like languages into differential interaction nets

(Ehrhard and Regnier 2006), an extension of the multiplicative exponential fragment of

linear logic. The encodings are meant to be tests for the expressiveness of differential

interaction nets; the issue of termination does not arise, as the process calculi encoded

are finitary. In Amadio and Dabrowski (2007), ideas from term rewriting are applied to

a π-calculus enriched with synchronous constructs à la Esterel. Computation in processes

proceeds synchronously, divided into cycles called instants. A static analysis and a finite-

control condition guarantee that, during each instant, the size of a program and the times

it takes to complete the instant are polynomial on the size of the program and the input

values at the beginning of the instant.

2. Higher-order processes

This section introduces the syntax and the operational semantics of processes. We call

HOπ the calculus of processes we are going to define (it is the calculus HOπunit,→,�

in Sangiorgi and Walker (2001)). In HOπ the values exchanged in interactions can be

first-order values and higher-order values, i.e. terms containing processes. For economy,

the only first-order value employed is the unit value �, and the only higher-order values

are parametrized processes, called abstractions (thus we forbid direct communication

of processes; to communicate a process we must add a dummy parameter to it). The
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a〈V 〉.P | a(x).Q →P P | Q[x/V ] (λx.P )V →P P [x/V ]

P →P Q

P | R →P Q | R
P →P Q

(νa)P →P (νa)Q

P ≡ Q Q →P R R ≡ S

P →P S

Fig. 1. The operational semantics of HOπ processes.

process constructs are the empty process, parallel composition, input, output, restriction

and application. Application is the destructor for abstraction: it allows us to instantiate

the formal parameters of an abstraction. Here is the complete grammar:

P ::= 0 | P | P | a(x).P | a〈V 〉.P | (νa)P | VV ;

V ::= � | x | λx.P .

Here, a ranges over a denumerable set C of channels, and x ranges over the denumerable

set of variables. Input, restriction and abstractions are binding constructs, and give rise

in the expected way to the notions of free and bound channels and of free and bound

variables, as well as of α-conversion. Ill-formed terms such as �� can be avoided by means

of a type system. The details are standard and are omitted here; see Sangiorgi and Walker

(2001).

The operational semantics, in reduction style, is presented in Figure 1, and uses the

auxiliary relation of structural congruence, written ≡. This is the smallest congruence

closed under the following rules:

P ≡ Q, if P and Q are α-equivalent;

P | (Q | R) ≡ (P | Q) | R;

P | Q ≡ Q | P ;

(νa)((νb)P ) ≡ (νb)((νa)P );

((νa)P | Q) ≡ ((νa)P ) | Q, if a is not free in Q.

Unlike other presentations of structural congruence, we disallow the garbage-collection

laws P | 0 ≡ P and (νa)0 ≡ 0, which are troublesome for our resource-sensitive analysis.

The reduction relation is written →P, and is defined on processes without free variables.

In general, the relation →P is nonterminating. The prototypical example of a nonter-

minating process is the following process OMEGA:

OMEGA = (νa)(DELTA � | a〈DELTA〉), where DELTA = λy.(a(x).(x � | a〈x〉)).

Indeed, it holds that OMEGA →2
P OMEGA. Variants of the construction employed for

OMEGA can be used to show that process recursion can be modelled in HOπ. An example

of this construction is the following SERVER process. It accepts a request y on channel

b and forwards it along c. After that, it can handle another request from b. In contrast

to OMEGA, SERVER is terminating, because there is no infinite reduction sequence

starting from SERVER. Yet, the number of requests SERVER can handle is unlimited,
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i.e. SERVER can be engaged in an infinite sequence of interactions with its environment.

SERVER = (νa)(COMP � | a〈COMP〉);
COMP = λz.(a(x).(b(y).c〈y〉.a〈x〉 | x�)).

A remark on notation: in this paper, ! is the linear logic operator (more precisely,

an operator derived from linear logic), and should not be confused with the replication

operator often used in process calculi such as the π-calculus.

3. Linearizing processes

Linear logic can be seen as a way to decompose the type of functions A → B into a

refined type !A � B. Since the argument (in A) may be used several (or zero) times to

compute the result in B, we first turn the input into a duplicable and erasable object of

type !A. We now duplicate (or erase) it the number of times it is needed, and finally we

use each of the copies exactly once to obtain the result (this is the linear function space

�). The richer language of types (with the new constructors ! and �) is matched by

new term constructs, whose goal is to explicitly enclose in marked scopes (boxes) those

subterms that may be erased or duplicated. In the process we described above, there

are three main ingredients: (i) the mark on a duplicable/erasable entity; (ii) its actual

duplication/erasure and (iii) the linear use of the copies. For reasons that cannot be

discussed here (see Wadler (1994) for the notation we will use) we may adopt a syntax

where the second step (duplication) is not made fully explicit (thus resulting in a simpler

language), and where the crucial distinction is made between linear functions (denoted

by the usual syntax λx.P – but interpreted in a strictly linear way: x occurs once in P ),

and nonlinear functions, denoted with λ!x.P , where the x may occur several (or zero)

times in P . When a nonlinear function is applied, its actual argument will be duplicated

or erased. We enclose the argument in a box to record this fact, using an eponymous

unary operator ! also on terms. Since we want to control the computational behaviour

of duplicable entities, a term in a !-box is protected and cannot be reduced. Only when it

will be fed to a (nonlinear) function, and thus (transparently) duplicated, its box will be

opened (the mark ! disappears) and the content will be reduced.

The constructs on terms arising from linear logic have a natural counterpart in higher-

order processes, where communication and abstraction play similar roles. This section

introduces a linearization of HOπ, that we here dub LHOπ. The grammars of processes

and values are as follows:

P ::= 0 | P | P | a(x).P | a(!x).P | a〈V 〉.P | (νa)P | VV ;

V ::= � | x | λx.P | λ!x.P | !V .

On top of the grammar, we must enforce the linearity constraints, which are expressed

by the rules in Figure 2. They prove judgements in the form Γ �P P and Γ �V V , where

Γ is a context consisting of a finite set of variables – a single variable may appear in Γ

either as x or as !x, but not both. Examples of contexts are x, !y; or x, y, z; or the empty

context �. As usual, we write !Γ when all variables of the context (if any) are !-marked. A
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!Γ �P 0

Γ, !Λ �P P Δ, !Λ �P Q

Γ,Δ, !Λ �P P | Q
Γ, x �P P

Γ �P a(x).P

Γ, !x �P P

Γ �P a(!x).P

Γ, !Λ �V V Δ, !Λ �P P

Γ,Δ, !Λ �P a〈V 〉.P
Γ �P P

Γ �P (νa)P

Γ, !Λ �V V Δ, !Λ �V W

Γ,Δ, !Λ �P VW !Γ �V � !Γ, x �V x

!Γ, !x �V x

Γ, x �P P

Γ �V λx.P

Γ, !x �P P

Γ �V λ!x.P

!Γ �V V

!Γ �V!V

Fig. 2. Processes and values in LHOπ.

a〈V 〉.P | a(x).Q →L P | Q[x/V ] (λx.P )V →L P [x/V ]

a〈!V 〉.P | a(!x).Q →L P | Q[x/V ] (λ!x.P )!V →L P [x/V ]

P →L Q

P | R →L Q | R
P →L Q

(νa)P →L (νa)Q

P ≡ Q Q →L R R ≡ S

P →L S

Fig. 3. The operational semantics of LHOπ processes.

process P (respectively, a value V ) is well formed iff there is a context Γ such that Γ �P P

(respectively, Γ �V V ). In the rules with two premises, observe the implicit contractions

on !-marked variables in the context – they allow for transparent duplication. The depth

of a (occurrence of a) variable x in a process or value is the number of instances of the

! operator it is enclosed into. As an example, if P = (!x)(y), then x has depth 1, while y

has depth 0.

A judgement Γ �P P can informally be interpreted as follows. Any variable appearing

as x in Γ must occur free exactly once in P ; moreover the only occurrence of x is at

depth 0 in P (that is, it is not in the scope of any !). On the other hand, any variable y

appearing as !y in Γ may occur free any number of times in P , at any depth. Variables

like x are linear, while those like y are nonlinear. Nonlinear variables may only be bound

by nonlinear binders (which have a ! to recall this fact).

The operational semantics of LHOπ is a slight variation on the one of HOπ, and

can be found in Figure 3. The two versions of communication and abstraction (i.e. the

linear and the nonlinear one) are governed by two distinct rules. In the nonlinear case

the argument to the function (or the value sent through a channel) must be in the correct

duplicable form !V . Well formation is preserved by reduction:
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Lemma 1 (subject reduction). If �P P and P →L Q, then �P Q.

Proof. This can be proved simply by way of four substitution lemmas. We write

π : Γ �P P when π is a derivation for the given judgement. Under the hypothesis

� �SV V , it holds that

• If π : Γ, x �P R, then Γ �SP R[x/V ].

• If π : Γ, x �V W , then Γ �SV W [x/V ].

• If π : Γ, !x �P R, then Γ �SP R[x/V ].

• If π : Γ, !x �V W , then Γ �SV W [x/V ].

They can all be proved by an induction on the structure of π.

3.1. Embedding processes into linear processes

Processes (and values) can be embedded into linear processes (and values) as follows:

[�]V = �; [λx.P ]V = λ!x.[P ]P;

[0]P = 0; [x]V = x;

[P | Q]P = [P ]P | [Q]P; [a(x).P ]P = a(!x).[P ]P;

[a〈V 〉.P ]P = a〈![V ]V〉.[P ]P; [(νa)P ]P = (νa)[P ]P;

[VW ]P = [V ]V![W ]V.

Linear abstractions and linear inputs never appear in processes obtained via [·]P: whenever

a value is sent through a channel or passed to a function, it is made duplicable. The

embedding induces a simulation of processes by linear processes:

Proposition 1 (simulation). For every process P , [P ]P is well formed. Moreover, P →P Q

iff [P ]P →L [Q]P.

Proof. The following can be proved by induction on P and V : !Γ �P [P ]P and

!Γ �V [V ]V whenever Γ ⊇ FV(P ) and Δ ⊇ FV(V ). This implies that [P ]P is well formed

for every P . The fact that P →P Q iff [P ]P →L [Q]P can be proved by an induction on

the structure of P .

By applying the map [·]P to our example process, SERVER, a linear process SERVER!

can be obtained

SERVER! = (νa)(COMP !(!�) | a〈!COMP !〉);
COMP ! = λ!z.(a(!x).(b(!y).c〈!y〉.a〈!x〉 | x(!�))).

4. Termination in bounded time: soft processes

In view of Proposition 1, LHOπ admits nonterminating processes. Indeed, the prototypical

divergent process from Section 2 can be translated into a linear process:

OMEGA! = (νa)((DELTA!(!�)) | a〈!DELTA!〉),

where

DELTA! = λ!y.(a(!x).(x (!�) | a〈!x〉)).
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#Γ �SP 0

Γ,#Λ �SP P Δ,#Λ �SP Q

Γ,Δ,#Λ �SP P | Q
Γ, x �SP P

Γ �SP a(x).P

Γ, !x �SP P

Γ �SP a(!x).P

Γ,#x �SP P

Γ �SP a(!x).P

Γ,#Λ �SV V Δ,#Λ �SP P

Γ,Δ,#Λ �SP a〈V 〉.P

Γ �SP P

Γ �SP (νa)P

Γ,#Λ �SV V Δ,#Λ �SV W

Γ,Δ,#Λ �SP VW #Γ �SV �

#Γ, x �SV x #Γ,#x �SV x

Γ, x �SP P

Γ �SV λx.P

Γ,#x �SP P

Γ �SV λ!x.P

Γ, !x �SP P

Γ �SV λ!x.P

Γ �SV V

!Γ,#Δ �SV!V

Fig. 4. Processes and values in SHOπ.

The process OMEGA! cannot be terminating, since OMEGA itself does not terminate.

The more expressive syntax, however, may reveal why a process does not terminate.

If we trace its execution, we see that the divergence of OMEGA! comes from DELTA!,

where x appears free twice in the inner body (x (!�) | a〈!x〉): once in the scope of the

! operator, once outside any !. When a value is substituted for x (and thus duplicated)

one of the two copies interacts with the other, being copied again. It is this cyclic

phenomenon (called modal impredicativity in Dal Lago et al. (2009)) that is responsible for

nontermination.

The linear logic community has studied in depth the impact of unbalanced and multiple

boxes on the complexity of computation, and singled out several (different) sufficient

conditions for ensuring not only termination, but termination with prescribed bounds.

We will adopt here the conditions arising from Lafont’s analysis (and formalized in soft

linear logic, SLL (Lafont 2004)), leaving to further work the usage of other criteria. We

thus introduce the calculus SHOπ of soft processes, for which we will prove termination

in polynomial time. In our view, this is the main contribution of the paper.

Soft processes share grammar and operational semantics with linear processes (Sec-

tion 3), but are subjected to stronger constraints, expressed by the well-formation rules of

Figure 4. A context Γ can now contain a variable x in at most one of three different forms:

x, !x, or #x. The implicit contraction (or weakening) happens on #-marked variables, but

none of them may ever appear inside a !-box. In the last rule it is implicitly assumed that

the context Γ in the premise is composed only of linear variables, if any (otherwise the

context !Γ of the conclusion would be ill formed). Indeed, the rules amount to say that, if

Γ �SP P (and similarly for values), then (i) any linear variable x in Γ occurs exactly once

in P , and at depth 0 (this is as in LHOπ); (ii) any nonlinear variable !x occurs exactly

once in P , and at depth 1; (iii) any nonlinear variable #x may occur any number of times

in P , all of its occurrences being at level 0. As a result, any bound variable appears in
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the scope of the binder always at a same level. As in LHOπ, well-formed processes are

closed by reduction. Before proving that, we need the following two lemmas:

Lemma 2 (weakening lemma). If Γ �SV V , then Γ,#Δ �SV V .

Proof. A simple induction on the structure of a derivation π for Γ �SV V .

Lemma 3. If Γ �SP P and P ≡ Q, then Γ �SP Q.

Proof. By cases.

Proposition 2 (subject reduction). If �SP P and P →L Q, then �SP Q.

Proof. We prove the following lemmas. Let � �SV V , then

• If π : Γ, x �SP R, then Γ �SP R[x/V ].

• If π : Γ, x �SV W , then Γ �SV W [x/V ].

• If π : Γ,#x �SP R, then Γ �SP R[x/V ].

• If π : Γ,#x �SV W , then Γ �SV W [x/V ].

• If π : Γ, !x �SP R, then Γ �SP R[x/V ].

• If π : Γ, !x �SV W , then Γ �SV W [x/V ].

These are all proved by induction on the structure of π. Just some inductive cases:

• If π is

Γ, x �SV �

then �[x/V ] is simply � and a derivation for Γ �SV � is trivial to be constructed.

• If π is

Γ, x �SV x

then x[x/V ] is V itself, and a derivation for Γ �SV V can be constructed by Lemma 2.

With these lemmas at hand, we can easily prove the thesis by induction on any derivation

ρ of P →P Q:

• Suppose ρ is

a〈V 〉.P | a(x).Q →L P | Q[x/V ]

From � �SP a〈V 〉.P | a(x).Q, it follows that � �SP P , � �SV V and x �SP Q. As a

consequence, � �SP Q[x/V ], and finally � �SP P | Q[x/V ].

• Suppose ρ is

σ : P →L Q

P | R →L Q | R.
From � �SP P | R, it follows that � �SP P and � �SP R. By induction hypothesis on

σ, this yields � �SP Q, and in turn � �SP Q | R.

• Suppose ρ is

σ : P →L Q

(νa)P →L (νa)Q.

From � �SP (νa)P , if follows that � �SP P . By induction hypothesis on σ, this yields

� �SP Q, and in turn � �SP (νa)Q.
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• Suppose ρ is

σ : P ≡ Q Q →L R R ≡ S

P →L S .

From � �SP P , it follows by Lemma 3 that � �SP Q, from the inductive hypothesis

that � �SP R and again by Lemma 3 that � �SP S .

This concludes the proof.

The nonterminating process OMEGA! which started this section is not a soft process,

because the bound variable x appears twice, once at depth 0 and once at depth 1. And

this is good news: we would like SHOπ to be a calculus of terminating processes, at

least! This has some drawbacks, however: SERVER! is not a soft process. Indeed, SHOπ

is not able to discriminate between SERVER! and OMEGA!, which share a very similar

structure. We will come back to this after we proved our main result on the polynomial

bound on reduction sequences for soft processes.

4.1. Feasible termination

This section is devoted to the proof of feasible termination for soft processes. We prove that

the length of any reduction sequence from a soft process P is bounded by a polynomial on

the size of P . Moreover, the size of any process along the reduction is itself polynomially

bounded.

The proof proceeds similarly to the one for SLL proof-nets in Lafont (2004). The idea

is relatively simple: a weight is assigned to every process and is proved to decrease at

any normalization step. The weight of a process can be proved to be an upper bound on

the size of the process. Finally, a polynomial bound on the weight of a process holds.

Altogether, this implies feasible termination.

Before embarking in the proofs, we need some preliminary definitions. First of all, the

size of a process P (respectively, a value V ) is defined simply as the number of symbols

in it and is denoted as |P | (respectively, |V |). Another crucial attribute of processes and

values is their box depth, namely the maximum nesting of ! operators inside them; for a

process P and a value V , it is denoted either as B(P ) or as B(V ). The duplicability factor

D(P ) of a process P is the maximum number of free occurrences of a variable x for every

binder in P ; similarly for values. The precise definition follows, where FO(x, P ) denotes

the number of free occurrences on x in P :

D(�) = D(x) = D(0) = 1;

D(λx.P ) = D(λ!x.P ) = max{D(P ),FO(x, P )};
D(!V ) = D(V );

D(P | Q) = max{D(P ),D(Q)};
D(a(x).P ) = D(a(!x).P ) = max{D(P ),FO(x, P )};

D(a〈V 〉.P ) = max{D(V ),D(P )};
D((νa)P ) = D(P );

D(VW ) = max{D(V ),D(W )}.
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Finally, we can define the weight of processes and values. A notion of weight parametrized

on a natural number n can be given as follows, by induction on the structure of processes

and values:

Wn(�) = Wn(x) = Wn(0) = 1;

Wn(λx.P ) = Wn(λ!x.P ) = Wn(P );

Wn(!V ) = n · Wn(V ) + 1;

Wn(P | Q) = Wn(P ) + Wn(Q) + 1;

Wn(a(x).P ) = Wn(a(!x).P ) = Wn(P ) + 1;

Wn(a〈V 〉.P ) = Wn(V ) + Wn(P );

Wn((νa)P ) = Wn(P );

Wn(VW ) = Wn(V ) + Wn(W ) + 1.

Now, the weight W (P ) of a process P is WD(P )(P ). Similarly for values.

The first auxiliary result is about structural congruence. As one would expect, two

structurally congruent terms have identical sizes, box depths, duplicability factors and

weights:

Proposition 3. If P ≡ Q, then |P | = |Q|, B(P ) = B(Q) and D(P ) = D(Q). Moreover, for

every n, Wn(P ) = Wn(Q).

Observe that Proposition 3 would not hold in presence of structural congruence rules like

P | 0 ≡ P and (νa)0 ≡ 0. How does D(P ) evolve along reduction? Actually, it cannot

grow:

Lemma 4. If �SP Q and Q →L P , then D(Q) � D(P ).

Proof. As an auxiliary lemma, we can prove that whenever Γ �SP P and � �SV V ,Δ �SV

W , both D(P [x/V ]) � max{D(P ),D(V )} and D(W [x/V ]) � max{D(W ),D(V )}. This is

an easy induction on derivations for Γ �SP P and Δ �SV W . The thesis follows.

The weight of a process is an upper bound to the size of the process itself. This means

that bounding the weight of a process implies bounding its size. Moreover, the weight of

a process strictly decreases at any reduction step.

Lemma 5. For every P , W (P ) � |P |.

Proof. By induction on P , strengthening the induction hypothesis with a similar

statement for values. In the induction, observe that D(P ),D(V ) � 1 for every process

P and value V .

Proposition 4. If �SP Q and Q →L P , then W (Q) > W (P ).

Proof. As an auxiliary result, we need to prove the following (slightly modifications of)

substitution lemmas. Let � �SV V and n � m � 1:

• If π : Γ, x �SP R, then Wm(R[x/V ]) � Wn(R) + Wn(V ).

• If π : Γ, x �SV W , then Wm(W [x/V ]) � Wn(W ) + Wn(V ).
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• If π : Γ,#x �SP R, then Wm(R[x/V ]) � Wn(R) + FO(x, R) · Wn(V ).

• If π : Γ,#x �SV W , then Wm(W [x/V ]) � Wn(W ) + FO(x,W ) · Wn(V ).

• If π : Γ, !x �SP R, then Wm(R[x/V ]) � Wn(R) + n · Wn(V ).

• If π : Γ, !x �SV W , then Wm(W [x/V ]) � Wn(W ) + n · Wn(V ).

This is an induction on π. An inductive case:

• If π is
Γ, x �SV Z

!Γ, !x,#Δ �SV!Z

then W =!Z and (!Z)[x/V ] is simply !(Z[x/V ]). As a consequence

Wm(W [x/V ]) = m · Wm(Z[x/V ]) + 1 � n · (Wn(Z) + Wn(V )) + 1

= n · Wn(Z) + n · Wn(V ) + 1 = Wn(!Z) + n · Wn(V )

= Wn(W ) + n · Wn(V ).

With the above observations at hand, we can easily prove the thesis by induction on any

derivation ρ of P →P Q:

• Suppose ρ is

a〈V 〉.R | a(x).S →L R | S[x/V ]

From � �SP a〈V 〉.R | a(x).S , it follows that � �SP R, � �SV V and x �SP S . As a

consequence, since D(Q) � D(P ),

W (P ) = W (a〈V 〉.R | a(x).S) = WD(P )(V ) + WD(P )(R) + WD(P )(S) + 2

� WD(Q)(S[x/V ]) + WD(Q)(R) + 2 > WD(Q)(S[x/V ]) + WD(Q)(R) + 1

= WD(Q)(S[x/V ] | R).

• Suppose ρ is

a〈!V 〉.R | a(!x).S →L R | S[x/V ].

From � �SP a〈!V 〉.R | a(!x).S , it follows that � �SP R, � �SV V and either !x �SP S

or #x �SP S . In the former case:

W (P ) = W (a〈!V 〉.R | a(!x).S) = WD(P )(!V ) + WD(P )(R) + WD(P )(S) + 2

= D(P ) · WD(P )(V ) + WD(P )(R) + WD(P )(S) + 3

� WD(Q)(S[x/V ]) + WD(Q)(R) + 3

> WD(Q)(S[x/V ]) + WD(Q)(R) + 1

= WD(Q)(S[x/V ] | R).

In the latter case:

W (P ) = W (a〈!V 〉.R | a(!x).S) = WD(P )(!V ) + WD(P )(R) + WD(P )(S) + 2

= D(P ) · WD(P )(V ) + WD(P )(R) + WD(P )(S) + 3

� FO(x, S) · WD(P )(V ) + WD(P )(R) + WD(P )(S) + 3

� WD(Q)(S[x/V ]) + WD(Q)(R) + 3

> WD(Q)(S[x/V ]) + WD(Q)(R) + 1 = WD(Q)(S[x/V ] | R).
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• Suppose ρ is

σ : R →L S

R | T →L S | T .

From � �SP R | T , it follows that � �SP R and � �SP T . By induction hypothesis

on σ, this yields W (R) > W (S), and in turn W (R) = W (R) + W (T ) + 1 > W (S) +

W (T ) + 1 = W (S).

This concludes the proof.

Lemma 5 and Proposition 4 together imply that the weight is an upper bound to both

the number of reduction steps, a process can perform and the size of any reduct. So, the

only missing tale is bounding the weight itself:

Proposition 5. For every process P , W (P ) � |P |B(P )+1.

Proof. By induction on P , enriching the thesis with an analogous statement for values:

W (V ) � |V |B(V )+1.

Putting all the ingredients together, we reach our soundness result with respect to

polynomial time:

Theorem 1. There is a family of polynomials {pn}n∈N such that for every process P and

for every m, if P →m
L Q, then m, |Q| � pB(P )(|P |).

The polynomials in Theorem 1 depend on terms, so the bound on the number of internal

actions is not polynomial, strictly speaking. Please observe, however, that all processes

with the same box depth b are governed by the same polynomial pb, similarly to what

happens in soft linear logic.

4.2. Beyond feasible termination: polytime soundness in presence of external actions

One way wonder how much of the feasibility of SHOπ holds when we consider not only

the internal evolution of processes, but also the possible interaction with the environment.

In this subsection, we extend the result of Theorem 1 to labelled semantics, thus giving a

positive answer to the question.

We define a labelled semantics for soft processes. The sets FN(P ) and FN(V ) of free

names of P and V can be easily defined. Labels are actions of three possible kinds:

• The silent action τ.

• An input action in the form a(V ).

• An output action in the form (νa1, . . . , an)b〈V 〉, where {a1, . . . , an} ⊆ FN(V ) − {b}.
We frequently use the notation 
a for the sequence of channels a1, . . . , an. If n = 0 we

simply use the notation b〈V 〉 for the output action (νa1, . . . , an)b〈V 〉.
Actions are denoted with letters like μ, ξ. Rules defining the ternary relation P

μ
−→ Q can

be found in Figure 5. All rules are easy adaptations of the ones of HOπ (see, for example,

Sangiorgi (1996)).

It is not so difficult to prove, by induction on the structure of derivations for the labelled

semantics, that
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a(x).P
a(V )−→ P [x/V ] a(!x).P

a(!V )−→ P [x/V ] a〈V 〉.P a〈V 〉−→ P

(λx.P )V
τ−→ P [x/V ] (λ!x.P )!V

τ−→ P [x/V ]

P
μ−→ Q

P | R μ−→ Q | R

P
(ν�b)a〈V 〉−→ Q R

a(V )−→ S �b ∩ FN(R) = ∅
P | R τ−→ (ν�b)(Q | S)

P
μ−→ Q a /∈ FN(μ)

(νa)P
μ−→ (νa)Q

P
(ν�b)c〈V 〉−→ Q a ∈ FN(V ) − {b1 . . . , bn} a 
= c

(νa)P
(νa,�b)c〈V 〉−→ Q

Fig. 5. A labelled semantics for SHOπ.

• If P
(ν
a)b〈V 〉

−→ Q, then W (Q) + W (V ) < W (P ).

• If P
a(V )
−→ Q, then W (Q) < W (V ) + W (P ).

• If P
τ−→ Q, then W (Q) < W (P ).

In other words, the weight of the underlying process can only increase along inputs, but

in that case it increases by at most the weight of the received process. Dually, the weight

of the sent process is lost whenever an output is performed.

As a consequence, we have the following result:

Theorem 2. Suppose that

P0

μ1−→ P1

μ2−→ · · ·
μn−→ Pn,

and suppose that the input actions appearing in μ1, . . . , μn are a1(V1),. . . ,am(Vm), where

m � n. Then

n, |Pi| � pmax{B(P ),B(V1),...,B(Vm)}(|P0| +

m∑
j=1

|Vj |),

where the pk are polynomials.

Please notice that the result above does not guarantee that, along a possibly complex

interaction with the environment, the number of internal actions is bounded by the size

of the last input. In this sense, Theorem 2 is weaker than feasible reactivity as proposed

in Amadio and Dabrowski (2007). What Theorem 2 tells us is that the total amount of

internal activities between n inputs is bounded by the sum of the n received processes.

4.3. Completeness?

Soundness of a formal system with respect to some semantic criterion is useless unless

one shows that the system is also expressive enough. In implicit computational complexity,

programming languages are usually proved both sound and extensionally complete with

respect to a complexity class. Not only any program can be normalized in bounded time,
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but every function in the class can be computed by a program in the system. Preliminary to

any completeness result for SHOπ, however, would be the definition of what a complexity

class of concurrent behaviours should be (as opposed to the well-known definition for

functions or problems). This is an elusive – and very interesting – problem that we cannot

tackle in this preliminary paper and that we leave for future work.

Certainly the expressiveness of SHOπ is weak, if we take into account the visible actions

of the processes (i.e. their interactions with the environment). This is due to the limited

possibilities of copying, and hence also of writing recursive process behaviours. Indeed,

one cannot consider SHOπ, on its own, as a general-purpose calculus for concurrency.

However, we believe that the study of SHOπ, or similar languages, could be fruitful in

establishing bounds on the internal behaviour of parts, or components, of a concurrent

systems; for instance, on the time and space that a process may take to answer a query

from another process (in this case the SHOπ techniques would be applied to the parts

of the syntax of the process that describe its internal computation after the query). Next

section considers a possible direction of development of SHOπ, allowing more freedom

on the external actions of the processes.

Anyway, a minimal completeness result can be given, namely the possibility of

representing all polynomial time functions in SHOπ. This can be done by encoding

soft linear logic into SHOπ through a continuation-passing style translation. This is the

topic of the following section.

4.3.1. Functional completeness through a CPS translation. Proving functional complete-

ness of soft processes is apparently an easy task, since the same result is well known for

soft linear logic (Lafont 2004), soft lambda calculi (Baillot and Mogbil 2004) and type

systems (Gaboardi and Ronchi Della Rocca 2007). However, if one tries to embed, e.g.

Baillot and Mogbil’s soft lambda calculus into SHOπ, he (or she) would immediately

discover that the embedding cannot be the trivial one, because in SHOπ one cannot

form arbitrary abstractions and applications, but only some of those. In the grammar of

processes, in particular, one can only apply a value to another value, while variables can

be only abstracted over processes. In other words, only a CPS fragment of (soft) lambda

calculus seems to be available inside SHOπ.

In this section, we will show polytime functional completeness of SHOπ in three

successive steps.

A soft lambda calculus. A soft lambda calculus can be easily defined along the lines of

Baillot and Mogbil (2004). The classes of terms and values are as follows:

M ::= V | MM;

V ::= x | λx.M | λ!x.M | !V .

As in SHOπ, not all terms and values are well formed, and well-forming rules can be

defined following the ones of SHOπ, in such a way as to guarantee that both:

• the variable x appears once at depth 0 in M for every abstraction λx.M;

• the variable x appears once at depth 1 or at level 0 in M for every abstraction λ!x.M.
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We do not give the well-forming rules here – they would only mimic those of Figure 4.

Reduction semantics can be given both in call-by-name and in call-by-value style. We

here consider the latter, which seems to be more natural in the realm of soft linear logic:

(λx.M)V →L M[x/V ] (λ!x.M)!V →L M[x/V ]

M →L N

ML →L NL

M →L N

VM →L VN
.

The obtained calculus is called Sλ.

The CPS translation. The target language of our transformation is defined as follows:

M ::= VV ;

V ::= x | λp.M | λ〈p, p〉.M |!V | 〈V , V 〉;
p ::= x |!x.

Again, well-forming rules for this language can be given along the lines of those of

SHOπ. Please observe how this calculus is a sub-calculus of SHOπ itself, once the latter

is endowed with (linear) pairs. The operational semantics is an easy variation on the one

of Sλ. This way we have obtained a calculus SλCPS.

Our aim now is to prove that reduction in Sλ can be simulated by reduction in the

SλCPS. To do that, we need to define a translation from the former to the latter. First of

all, Sλ terms can be translated into SλCPS values as follows:

[[V ]] = λε.ε[V ];

[[MN]] = λε.[[M]](λx.[[N]](λy.x〈y, ε〉)).

Moreover, Sλ values can be turned into SλCPS values:

[x] = x;

[λx.M] = λ〈x, ε〉.[[M]]ε;

[λ!x.M] = λ〈!x, ε〉.[[M]]ε;

[!V ] =![V ].

The correctness of the translation above can be proved by following very closely the

one in Plotkin (1975). First of all, we can prove that [·] and [[·]] commute well:

Lemma 6. [[M]][x/[V ]] = [[M[x/V ]]].

The binary operator · : · captures the status of a term after all administrative reduction

steps have been performed. It is defined as follows:

V : Z = Z[V ];

MN : Z = M : λx.[[N]](λy.x〈y, Z〉), if M is not a value;

VM : Z = M : λy.[V ]〈y, Z〉, if M is not a value;

VW : Z = [V ]〈[W ], Z〉.

The following two crucial lemmas can be proved by induction on M and by induction

on the structure of a proof for M →L N, respectively.
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Lemma 7. [[M]]V →∗
L M : V .

Lemma 8. If M →L N, then M : V →∗
L N : V .

Summing up:

Theorem 3. If M →∗
L V , then for every value W , [[M]]W →∗

L W [V ].

Proof. Simply observe that, by Lemmas 7 and 8.

[[M]]W →∗
L M : W →∗

L V : W = W [V ].

Functional completeness. From Theorem 3 and from the functional completeness of soft

lambda calculus (see, e.g. Gaboardi and Ronchi Della Rocca (2007)), it follows that soft

processes are themselves functionally complete. Let f : {0, 1}∗ → {0, 1}∗ be any polytime

function; f is representable by some term M in the soft lambda calculus, by polytime

completeness of the latter. Hence we have:

• a term M of Sλ;

• some representation in Sλ of input binary strings Vs for every s ∈ {0, 1}∗;

• some representation in Sλ of output binary strings Ws for every s ∈ {0, 1}∗;

such that

MVs →∗
L Wf(s) (1)

for every s ∈ {0, 1}∗. It is now easy to construct a soft process that ‘computes’ the same

function by taking inputs on channel a and sending outputs on b. It is simply

P = a(x).[[Mx]][λy.b〈y〉].

Indeed

P
a([Vs])−→ ([[Mx]][λy.b〈y〉])[x/Vs]

= [[MVs]][λy.b〈y〉]
→∗

L (λy.b〈y〉)[Wf(s)]

→L b〈[Wf(s)]〉
b〈[Wf(s)]〉−→ 0.

Clearly, this arguments strongly depends on [·] mapping values representing strings into

values from which the same string can be ‘read off’ easily.

5. An extension to SHOπ: spawning

In this section we propose an extension of SHOπ that allows us to accept processes,

such as SERVER!, capable of performing infinitely many interactions with their external

environment, while maintaining polynomial bounds on the number of internal steps they

can make between any two external actions.
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The reason why SERVER! is not a SHOπ process has to do with the bound variable

x in the subprocess COMP !:

COMP ! = λ!z.(a(!x).(b(!y).c〈!y〉.x(!�) | a〈!x〉)).

The variable appears twice in the body (b(!y).c〈!y〉.x(!�) | a〈!x〉), at two different depths.

This pattern is not permitted in SHOπ, because otherwise also the nonterminating process

OMEGA! would be in the calculus. There is however a major difference between OMEGA!

and SERVER!: in COMP !, one of the two occurrences of x (the one at depth 0) is part of

the continuation of an input on b; moreover, such channel b is only used by SERVER! in

input – SERVER! does not own the output capability. This implies that whatever process

will substitute that occurrence of x, it will be able to interact with the environment only

after an input on b is performed. So, its ‘computational weight’ does not affect the number

of reduction steps made by the process before such an input occurs. This phenomenon,

which does not occur in OMEGA!, can be seen as a form of process spawning: COMP !

can be copied an unbounded number of times, but the rhythm of the copying is dictated

by the input actions at b.

Consider a subset I C of C (where C is the set of all channels which can appear in

processes). The process calculus EHOπ(I C ) is an extension of SHOπ parametrized on

I C . What EHOπ(I C ) adds to SHOπ is precisely the possibility of marking a subprocess

as a component which can be spawned. This is accomplished with a new operator �.

Channels in I C are called input channels, because outputs are forbidden on them. The

syntax of processes and values is enriched as follows:

P ::= . . . | a(�x).P ;

V ::= . . . | λ�x.P | �V ;

but outputs can only be performed on channels not in I C . The term �V is a value (i.e.

a parametrized process) which can be spawned. Spawning itself is performed by passing

a process �V to either an abstraction λ�x.P or an input a(�x).P . In both cases, exactly

one occurrence of x in P is the scope of a � operator, and only one of the following two

conditions holds:

1. The occurrence of x in the scope of a � operator is part of the continuation of an

input channel a, and all other occurrences of x in P are at depth 0.

2. There are no other occurrences of x in P .

The foregoing constraints are enforced by the well-formation rules in Figure 6. The well-

formation rules of EHOπ(I C ) are considerably more complex than the ones of SHOπ.

Judgements have the form Γ �EP P or Γ �EV V , where a variable x can occur in Γ in one

of five different forms.

• As either x, !x or #x: here the meaning is exactly the one from SHOπ (see Section 4).

• As �x: the variable x then appears exactly once in P , in the scope of a spawning

operator �.

• As �x: x occurs at least once in P , once in the scope of a � operator (itself part of

the continuation for an input channel), and possibly many times at depth 0.
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Fig. 6. Processes and values in EHOπ(I C ).

A variable marked as �x can ‘absorb’ the same variable declared as #x in binary

well-formation rules (i.e. the ones for applications, outputs, etc.). Note the special well-

formation rules that are only applicable with an input channel: in that case a portion of

the context �Δ becomes �Δ.

The operational semantics is obtained adding to Figure 3, the following two rules:

a〈�V 〉.P | a(�x).Q →L P | Q[x/V ] (λ�x.P )�V →L P [x/V ] .

As expected,

Lemma 9 (subject reduction). If �EP P and P →L Q, then �EP Q.

The process SERVER! is a EHOπ(I C ) process once COMP ! is considered as a

spawned process and b ∈ I C : define

SERVER� = (νa)(COMP�(!�) | a〈�COMP�〉);
COMP� = λ!z.(a(�x).(b(!y).c〈!y〉.a〈�x〉 | x(!�))).
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Now, consider the following derivations:

� �EV COMP�

� �EV �

� �EV!�

� �EP COMP�(!�)

� �EV COMP�

� �EV �COMP�

� �EP a〈�COMP�〉
� �EP COMP�(!�) | a〈�COMP�〉

� �EP (νa)(COMP�(!�) | a〈�COMP�〉)

x �EV x

#z,�x �EV �x

#z,�x �EP a〈�x〉
y �EV y

!y �EV!y

#z,�x, !y �EP c〈!y〉.a〈�x〉 b ∈ I C

#z,�x �EP b(!y).c〈!y〉.a〈�x〉
#x �EV x

� �EV �

� �EV!�

#x �EP x(!�)

#z,�x �EP b(!y).c〈!y〉.a〈�x〉 | x(!�)

#z �EP a(�x).(b(!y).c〈!y〉.a〈�x〉 | x(!�))

� �EV λ!z.a(�x).(b(!y).c〈!y〉.a〈�x〉 | x(!�)).

The use in EHOπ(I C ) of a distinct set of input channels may still be seen as rigid. For

instance, it prevents from accepting SERVER� in parallel with a client of the server itself

(because the client uses the request channel of the server in output); similarly, it prevents

from accepting re-entrant servers (servers that can invoke themselves). As pointed out

earlier, we are mainly interested in techniques capable of ensuring polynomial bounds on

components of concurrent systems (so for instance, bounds on the server, rather than on

the composition of the server and a client). In any case, this paper represents a preliminary

investigation, and further refinements or extensions of EHOπ(I C ) may well be possible.

5.1. Feasible termination

The proof of feasible termination for EHOπ(I C ) is similar in structure to the one for

SHOπ (see Section 4.1). However, some additional difficulties due to the presence of

spawning arise. We first need to extend the auxiliary notions needed in the proof of

feasible termination for SHOπ. Box depth, duplicability factor and weight of a process

are defined as for soft processes, plus

B(λ�x.P ) = B(P );

B(�V ) = B(V ) + 1;

B(a(�x).P ) = B(P );

D(λ�x.P ) = max{D(P ),FO(x, P )};
D(�V ) = D(V );

D(a(�x).P ) = max{D(P ),FO(x, P )};
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Wn(λ�x.P ) = Wn(P );

Wn(�V ) = n · Wn(V ) + 1;

Wn(a(�x).P ) = Wn(P ) + 1.

Informally, the spawning operator � acts as ! in all the definitions above. The weight

W (P ), still defined as WD(P )(P ) is again an upper bound to the size of P , but it is not

guaranteed to decrease at any reduction step. In particular, spawning can make W (P )

bigger. As a consequence, two new auxiliary notions are needed. The first one is similar to

the weight of processes and values, but is computed without taking into account whatever

happens after an input on a channel a ∈ I C . It is parametric on a natural number n and

is defined as follows:

In(�) = In(x) = In(0) = 1;

In(λx.P ) = In(λ!x.P ) = In(λ�x.P ) = In(P );

In(!V ) = In(�V ) = n · In(V ) + 1;

In(P | Q) = In(P ) + In(Q) + 1;

In(a(x).P ) = In(a(!x).P ) = In(a(�x).P ) =

{
0 if a ∈ I C

In(P ) + 1 otherwise

In(a〈V 〉.P ) = In(V ) + In(P );

In((νa)P ) = In(P );

In(PQ) = In(P ) + In(Q) + 1.

The weight before input I(P ) of a process P is simply ID(P )(P ). As we will see, I(P ) is

guaranteed to decrease at any reduction step, but this time it is not an upper bound to the

size of the underlying process. The second auxiliary notion captures the potential growth

of processes due to spawning and is again parametric on a natural number n:

Pn(�) = Pn(x) = Pn(0) = 0;

Pn(λx.P ) = Pn(λ!x.P ) = Pn(λ�x.P ) = Pn(P )

Pn(!V ) = n · Pn(V );

Pn(�V ) = n · Pn(V ) + n · Wn(V );

Pn(P | Q) = Pn(P ) + Pn(Q);

Pn(a(x).P ) = Pn(a(!x).P ) = Pn(a(�x).P ) =

{
0 if a ∈ I C

Pn(P ) otherwise

Pn(a〈V 〉.P ) = Pn(V ) + Pn(P );

Pn((νa)P ) = Pn(P );

Pn(VW ) = Pn(V ) + Pn(W ).

Again, the potential growth P (P ) of a process P is PD(P )(P ). Proposition 3, Lemmas 4 and

5 from Section 4.1 continue to hold for EHOπ(I C ) and their proofs remain essentially

unchanged. Proposition 4 is true only if the weight before input replaces the weight:
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Proposition 6. If � �SP Q and Q →L P , then I(Q) > I(P ).

The potential growth of a process P cannot increase during reduction. Moreover, the

weight can increase, but at most by the decrease in the potential growth. Formally:

Proposition 7. If � �SP Q and Q →L P , then P (Q) � P (P ) and W (Q) + P (Q) �
W (P ) + P (P ).

Polynomial bounds on all the attributes of processes we have defined can now be proved:

Proposition 8. For every process P , W (P ) � |P |B(P )+1, I(P ) � |P |B(P )+1 and P (P ) �
B(P )W (P ).

Finally, as for SHOπ, we get a polynomial bound on the number of reduction steps from

any process:

Theorem 4. There is a family of polynomials {pn}n∈N such that for every process P and

for every m, if P →m
L Q, then m, |Q| � pB(P )(|P |).

Proofs for the results above have been elided. Their structure, however, reflects the

corresponding proofs for SHOπ (see Section 4.1). As an example, proofs of propositions

6 and 7 are both structured around appropriate substitution lemmas.

6. Conclusions

Goal of this preliminary essay was to verify whether we could apply to process algebra

the technologies for resource control that have been developed in the so-called ‘light

logics’ and have been successfully applied so far to paradigmatic functional programming.

We deliberately adopted a minimalistic approach: applications restricted to values, the

simplest available logic, a purely linear language (i.e. no weakening/erasing on nonmarked

formulas), no types and no search for maximal expressivity.

Various issues remain to be investigated. To begin with, one may wonder whether

other complexity conscious fragments of linear logic can be used in place of SLL as

guideline for box control. SLL is handy, because of its simplicity, but we do believe that

analogous results could be obtained starting from light affine logic (Asperti and Roversi

2002). This would also allow unrestricted erasing of processes, leaving marked boxes only

for duplication. Another possible issue for the future is to synthesize a richer language

of processes, still amenable to the soft (or light) treatment. Section 5 suggests a possible

direction, but many others are possible. Related to this is the general, challenging question

of the meaning of complexity classes in the process realm.

In the paper, we have proved polynomial bounds for SHOπ, obtained from the higher-

order π-calculus by imposing constraints inspired by soft linear logic. We have then

considered an extension of SHOπ, taking into account features specific to processes,

notably the existence of channels: in process calculi a reduction step does not need to

be anonymous, as in the λ-calculus, but may result from an interaction along a channel.

An objective of the extension was to accept processes that are programmed to have

unboundedly many external actions (i.e. interactions with their environment) but that
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remain polynomial on the internal work performed between any two external activities.

Our definition of the extended class, EHOπ(I C ), relies on the notion of input channel –

a channel that is used in a process only in input. This allows us to be more flexible

in the permitted forms of copying. We have proposed EHOπ(I C ) because this class

seems mathematically simple and practically interesting. These claims, however, need to

be sustained by more evidence. Further, other refinements of SHOπ are possible. Again,

more experimentation with examples is needed to understand where to focus attention.

In this paper we have carried out our study on higher-order process calculi, as opposed

to first-order calculi such as the π-calculus, because the former are closer to functional

languages and therefore transporting the ideas from linear logic is more direct. Moving to

first-order calculi, which have explicit recursion operators, may require more sophisticated

techniques.

Summarizing, we started with a question (‘Can ICC be applied to process algebra?’)

and ended up with a positive answer and many more questions. But this is a feature, and

not a bug.
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