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Abstract

Conditional mean risk sharing appears to be effective to distribute total losses amongst participants within
an insurance pool. This paper develops analytical results for this allocation rule in the individual risk
model with dependence induced by the respective position within a graph. Precisely, losses are modelled
by zero-augmented random variables whose joint occurrence distribution and individual claim amount
distributions are based on network structures and can be characterised by graphical models. The Ising
model is adopted for occurrences and loss amounts obey decomposable graphical models that are specific
to each participant. Two graphical structures are thus used: the first one to describe the contagion amongst
member units within the insurance pool and the second one to model the spread of losses inside each
participating unit. The proposed individual risk model is typically useful for modelling operational risks,
catastrophic risks or cybersecurity risks.
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1. Introduction

Graphical models are very useful to decompose probability distributions over a multidimensional
space. Graph-based representations express the conditional dependence structure within the ran-
dom variables or characterise groups of random variables as common factors. They are commonly
used in Bayesian statistics and machine learning. Their popularity has grown in recent years due
to the development of efficient algorithms for performing computationally intensive inference in
high-dimensional models with applications ranging from causal inference, information extraction
to speech recognition, natural language processing and computer vision. Numerous applications
in actuarial science have recently emerged. Lin et al. (2014) considered Bayesian networks (which
are a particular case of graphical models) to perform convolution of loss distributions required
to aggregate risk in the presence of common causal dependencies. Recently, Ramsahai (2020)
showed that some actuarial models in current practice can be expressed graphically to exploit
the advantages of such an approach and concluded that the graphical models can be very useful
for applications, e.g. in the modelling of home insurance property damage. Oberoi et al. (2020)
applied graphical models to simulate economic variables for the purpose of risk calculations over
long time horizons. Chen et al. (2020) modelled interconnectedness in the US property and casu-
alty reinsurance market with a network, both at the level of intra- and inter-group transactions.
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This shows that graphical dependence has a great potential to describe relationships in insurance
studies.

The present paper aims at contributing to the literature on risk sharing when risks are depen-
dent and their distributions can be efficiently summarised with graphical models. To this end,
we use the conditional mean risk-sharing rule proposed by Denuit & Dhaene (2012). According
to this rule, each participant to an insurance pool contributes the conditional expectation of the
loss brought to the pool, given the total loss experienced by the entire pool. This risk-sharing
mechanism is regarded as beneficial by all risk-averse economic agents in the expected utility
setting for choice under risk. If all the conditional expectations involved are non-decreasing func-
tions of the total loss then the conditional mean risk sharing is Pareto-optimal. Denuit (2019,
2020) demonstrated that conditional mean risk sharing is the appropriate theoretical tool to share
losses in collaborative, or Peer-to-Peer (P2P) insurance schemes. More generally, it is an effective
mechanism to distribute total losses amongst participants within an insurance pool.

Denuit & Robert (2020a, 2021) established several attractive properties of the conditional mean
risk-sharing rule. Denuit & Robert (2020b) developed formulas of the conditional mean risk-
sharing rule for multivariate risk distributions for which risks are no more independent. They
considered three important cases: vectors of risks with absolutely continuous distributions, with
discrete distributions or with zero-augmented distributions. They proved for the first and the
third cases that the conditional mean risk-sharing rule is proportional to the ratio of the density
function of the sum of the components of a multivariate weighted version of the vector of the risks
and of the density function of the sum of the risks. Denuit & Robert (2020b) noted that the distri-
bution of the multivariate weighted version of the vector of the risks may belong to the same class
of distributions as the vector of the risks, which is an interesting property for the computation
of the conditional mean risk sharing rule. Several examples are discussed, including Liouville and
infinitely divisible multivariate distributions, for which the conditional mean risk-sharing rules
are linear in the total loss amount, as well as conditionally independent losses correlated by com-
mon latent factors in a multivariate mixture model. These examples, however, provide a limited
number of dependence models that are not necessarily encountered in practice.

In this paper, we assume that the risks can be represented by zero-augmented random variables
whose joint occurrences distributions and claim amount distributions are based on network struc-
tures and may be derived from graphical models. This corresponds to an individual risk model
with dependent occurrences that are correlated according to the position of individual units in a
graph. We focus more specifically on graphical models that have the same “stability” property as
the previous examples considered in Denuit & Robert (2020b), i.e. on graphical models for which
the distribution of the multivariate weighted version of the vector of the risks (that appears in the
conditional mean sharing rule formulas) may be characterised by a network structure belonging
to the same family of graphical models as the vector of the risks.

More specifically, we assume that the random vectors of occurrences obey the Ising model.
This multivariate Bernoulli distribution, named after the physicist Ernst Ising, consists a graph
with nodes representing binary variables. Pairwise relationships amongst the nodes are described
in terms of edges, which induce correlation in the statistical sense. This construction enjoys
the pairwise Markov property in the sense that every pair of Bernoulli occurrence indicators is
conditionally independent given all other variables if the associated nodes are not linked by an
edge.

Severities remain independent between individual units, but inside each of them, the individual
loss amount structures is based on decomposable graphical models. Graphical dependence is thus
used at two levels in the proposed individual model. In the first stage, the Ising model describes
loss contagion amongst individual units. And in the second stage, when a loss occurs for a given
participant, the corresponding severity obeys a specific graphical model describing the spread of
losses within the participant’s organisation (local IT infrastructure in cyber risk, for instance).
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The junction trees of decomposable graphical models are used to obtain an explicit form for the
factorisation of the multivariate distributions of individual claim amounts.

From a methodological point of view, we derive the representation for the conditional mean
risk-sharing rule in a new individual model with graphically dependent occurrence. Precisely,
we apply the general representation derived by Denuit & Robert (2020b) for any multivariate
loss distribution to derive an analytical formula in the individual model considered in this paper.
This formula may be used in particular to design effective simulation procedures to obtain these
contributions. The choice of the Ising model for the random vectors of occurrences and the choice
of decomposable graphical models for claim severities actually lead to expressions that bring into
play random vectors associated to graphical models belonging to the same classes of graphical
models as those of the risks. Numerical illustrations demonstrate the usefulness of the proposed
approach for risk allocation. Moreover, for some graphical dependence structures, this analytical
formula also yields a closed-form expression that can be used for direct evaluation of the respective
participants’ contributions.

The model proposed in this paper is typically useful for modelling operational risk or cyberse-
curity risk. In operational risk management, detailed causal modelling at business process level is
required for the understanding of organisation specific input to highlight the criticality of causal
factors or to identify the potential lack of controls/barriers, for instance. This approach may create
more value than a risk model based solely on actuarial techniques, as argued by Politou & Giudici
(2009). Cyber risks refer to threats to businesses or individuals such as data breaches or mali-
cious cyber hacks on work computer systems. One property that distinguishes cyber risks from
conventional risk is the network environment: IT resources are strongly interconnected inside
the firm, but also between firms by the internet network. Cyber risks emerge from this inter-
connection, therefore the analysis of risk and potential losses may fruitfully take into account
the inter-dependencies between connected nodes of the network through graphical models as
demonstrated by Xie et al. (2010).

The remainder of this paper is organised as follows. Section 2 describes the individual risk
model with correlated loss occurrences obeying Ising multivariate Bernoulli distribution. Section
3 then introduces graphical models describing the spread of losses inside each individual unit,
when a loss occurs, based on decomposable graphical models for absolutely continuous multivari-
ate distributions. The conditional mean risk-sharing rule is discussed in section 4. Using a general
representation result derived in Denuit & Robert (2020b) for correlated losses, we derive the con-
ditional mean risk allocation for the losses in the individual risk model considered in this paper.
These results are applied in section 5 for an extensive numerical illustration demonstrating the
high flexibility of the proposed approach. The final section 6 briefly discusses the results. Detailed
specifications of the graphical models considered in section 5 (number of vertices, number of
edges, sets of maximal cliques, sets of minimal seperators, precision matrices of the associated
multivariate Gaussian random variables, etc.) are provided in Appendix.

2. Individual Risk Model with Joint Occurrences Obeying Ising Graphical Dependence
Structure

2.1 Individual risk model with dependent occurrences

Throughout this paper, we consider n participants to an insurance pool, numbered i€
{1,2,...,n}. Participant i faces a zero-augmented risk X;, that is, X; is a non-negative random
variable with a positive probability mass at zero: P [X; = 0] > 0 and X; possesses a probability
density function over (0, 00).

In accordance with the individual model of risk theory, we write X; =I,C; where I; is a
Bernoulli random variable and C; is a strictly positive, absolutely continuous random variable
modelling the corresponding severity. Contrarily to the classical setting where individual losses are
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Figure 1. Examples of Ising graphs used in this paper.

assumed to be independent, we allow here for some correlation between occurrences. Precisely,
we assume that severities C; are independent and independent of the random vector I = (I3, ..., I;)
gathering possibly correlated Bernoulli random variables modelling the occurrence of losses for
each participant. We refer the reader to Dai et al. (2013) for a review of multivariate Bernoulli
distributions.

In the next section, we present the graphical models used for describing the correlation
structure inside the loss occurrence random vector I.

2.2 Ising model

The Ising model is a classical example of a graphical model for binary random variables in sta-
tistical physics. It was named after the physicist Ernst Ising. Specifically, let V ={1, ..., n} and let
P»(V) denote the unordered subsets of V of size 2 (assuming that n > 2). For E C P,(V), an undi-
rected graph is denoted by G = (V, E) where V is the set of vertices/nodes and E is the set of edges
of G. We associate to each node i € V the Bernoulli random variable I;. Components I; and I; of
the full random vector I interact “ directly” only if i and j are joined by an edge in the graph.

To illustrate this paper, we consider the hypothetical network structures depicted in Figure 1.
We can see there (a) a purely random graph (edges have been chosen randomly), (b) a cluster
graph, (c) a tree graph (edges have been chosen randomly but there is no cycle in the graph),
(d) a lattice graph (nodes are on a lattice), (e) a hub graph (a non-random star-shaped graph),
(f) a circle graph (nodes are on a circle). These graphs can be used to describe a wealth of sit-
uations encountered in risk modelling. Specifically, each node corresponds to a participant to
the insurance pool and edges account for the various relationships existing between participants:
commercial links between firms, connections by rivers or airlines for natural catastrophes or the
spread of epidemics or some physical IT infrastructure in cyber risk. Even if the graphs in Figure 1
are purely hypothetical, they are representative of the variety of situations that can be accounted
for by the Ising model. To keep the same number of participants in all cases, we work here with
n =9 (the number required for populating the lattice graph).
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The distribution of vector I of the Ising model is defined for an undirected graph G = (V, E)
and is characterised by the following exponential family with joint probability mass function:

pr(y) =Plh=y1,.... L=y =exp| Y Ouyi+ Y Oyyiyj — A®) (1)
ieV (if)€E

where y € {0, 1}, 0 = (6) > and the normalising function A( - ) satisfies

ieV,(ij)e

A(0)=log Z exp 290’:‘4— Z Oijyiy;

ye{0,1}" i€V (ij)eE

Here, 6;; € R quantifies the strength of edge (i,j) linking participants i and j. For (i, ) ¢ E, i # j, we
have that I; and I; are conditionally independent, given all other I, k # i, j. For this reason, the
Ising model is said to satisfy the pairwise Markov property.

The Ising model can be generalised in a number of different ways. Equation (1) includes only
pairwise interactions, but it is possible to take into account higher order interactions amongst
the random variables. For example, to include coupling {i, j, k} of order 3, we could add a mono-
mial of the form y;y;yx with corresponding canonical parameter 6;;. Note, however, that higher
order interactions can also be converted to pairwise ones through the introduction of additional
variables so that (1) is enough for practical purposes. See also Dai et al. (2013) for a related
generalisation of the Ising model.

The Ising model does not provide the unique approach to model dependence for multivariate
Bernoulli random vectors. Dependence structures for multivariate binary random variables have
also been characterised, e.g. with weighted trees in Hu et al. (2005) or partially ordered binary trees
in Kizildemir & Privault (2018). Such dependence structures induce dependence orders for these
multivariate Bernoulli distributions like the upper/lower orthant order, the multivariate concor-
dance order, the supermodular order. Such order properties could be transfered to dependent
individual risk models. We then refer to Zhang et al. (2018) for stochastic order comparisons for
the aggregate claim amounts from dependent individual risk models, and to Torrado & Navarro
(2020), Zhang et al. (2020) for stochastic order comparisons for the extreme claim amounts of
these models.

3. Individual Severity Model
3.1 Additive decomposition of individual severities

Since the total losses C; for participant i may be the result of an aggregation of several individual
losses in practice, we assume that the absolutely continuous part of X; may be written as a sum:
Ci= Z]";l Zij where Z; = (Zj1, ..., Zin;) is a vector of non-negative random variables of size n;
{1,2,...}.

Each individual entity thus possesses its own volume measured by the number n; of items
susceptible to produce losses once it has been hit by the peril under consideration. In cyber risk, for
instance, n; corresponds to the number of machines connected to the internal I'T network and the
correlation structure within the random vector Z; reflects the loss control strategy implemented
within the ith individual unit (e.g. firewalls or anti-virus softwares installed on the machines).

Inside each unit, a specific graphical model is used to represent the possible loss spread once it
has been hit (that is, when I; = 1). In the next section, we present the graphical models used for
the random vectors Z;,i € {1,2, ..., n}.
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3.2 Decomposable graphical models

In this section, we assign an undirected graph G; = (V;, E;) to each individual unit i to describe
the spread of losses inside this unit. Whereas, the graph G = (V, E) of section 2 is used to correlate
occurrences between the unit, G; = (V;, E;) is used here at a secondary level to model the impact of
the peril under consideration within unit i once it has been hit (that is, when I; = 1). Considering
cyber risk, for instance, the Ising model on G describes the spread of virus between individual
units within the insurance pool, whereas G; accounts for the impact of the virus once it has entered
the local IT infrastructure of unit i. The undirected graph G; = (V, E;) thus models the spread of
losses inside individual unit i and we associate the components Z;; of the random vector Z; to the
nodes of G;. Henceforth, we denote as fz, the joint probability density function of Z;.

To define decomposable graphical models for Z; yielding tractable expression for fz,, we need
to introduce the following definitions that are stated for a generic graph G = (V, E). For a subset
A C V, the subgraph of G induced by A is henceforth denoted as G4 := (A, E4) with E4 := {(i,j) €
Elie A,je A}

Definition 3.1. (Clique). A graph G = (V, E) is said to be complete if E = P, (V). If G4 is complete
for A C V, A is said to be a clique of G. A maximal clique of G is a clique for which every superset
of vertices of G is not a clique.

Definition 3.2. (Path). Let o, 8 be two distinct nodes in V. A path from « to § is a sequence
Q& =Y, ... Ym = B, m > 1, of distinct nodes such that, for all 1 <i<m, {y;_1,yi} €E. Acycleis a
path from a node to itself.

Definition 3.3. (Separation). Let A,B,C be subsets of V. Then, C is said to separate A from B if any
path from o € A to 8 € B intersects C.

Definition 3.4. (Decomposition). A pair (A,B) of subsets of V is said to be a decomposition of G
if V.= A U B, the subgraph induced by G on A N B is complete and A N B separates A from B. If
A and B are both proper subsets of V (i.e. they are strictly included in V), the decomposition is
said to be proper. A graph G is said to be decomposable if it is either complete or if there exists a
proper decomposition of G into two decomposable subgraphs.

The definition of a decomposable graph is thus recursive. The equivalent notion of chordality
may be easier to handle. A graph G is said to be chordal if all cycles of four or more vertices
have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle.
Proposition 2.5 in Lauritzen (1996) shows that a graph G is decomposable if, and only if, G is a
chordal graph.

In the next definition, a connected component is a subgraph in which any two vertices are
connected to each other by paths, and which is connected to no additional vertices in the rest of

the graph.

Definition 3.5. A subset S of V is a separator in G when Gy\s has more than one connected
component. S is a minimal separator, when it does not contain another separator as a proper
subset.

Whenever a graph G is decomposable, the set S of its minimal separators can be built by the fol-
lowing algorithm. Begin with the empty set S = @. Then, consider a proper decomposition (A,B)
of G such that A N B is of minimal cardinality. If there is no such decomposition, it means that G
is complete and the procedure stops. Otherwise, add A N B to S and apply the same procedure to
the subgraphs G4 and Gp. For any subset S € S, let v(S) denote the number of times it appeared in
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Figure 2. An example of decomposable graph with its junction tree for modelling the distribution of Z;.

the procedure. Notice that this algorithm also produces the set C containing the maximal cliques
of G.

This algorithm is referred to as the junction tree algorithm because the result of this algorithm
can be represented by a factor graph, i.e. a bipartite graph whose vertices are indexed by C and S
(which puts an edge between C € C and S € § if, and only if, CN S = §). The graph obtained this
way is the junction tree. An example is provided in Figure 2 to figure out the procedure followed
in this paper. Figure 2 illustrates the variety of situations covered by the approach proposed in this
paper. It corresponds to the graph describing the spread of losses inside the unit corresponding to
participant 1 in the numerical illustrations of section 5.

Whenever G; is decomposable, the junction tree algorithm can be used to obtain an explicit
formula for the joint probability density function of Z; since it factorises over G; into a products
of marginal distributions over complete subsets. Indeed, if fz.(zc) denotes the density function
of Z¢ = (Zij)je o> and if S; and C; respectively denote the set of minimal separators and maximal

cliques of G; yielded by the junction tree algorithm, it can be shown that

nCeC;ch (zc)
[Tses, fz5(z)"®’

where v (S) is equal to d(S) — 1. Here, d(S) denotes the degree of the node corresponding to S in
the junction tree (i.e. the number of edges connected to this node). We refer the reader to Theorem
4 in Bartlett (2003) for a formal derivation of (2).

fz.(2) = z € (0,00)" (2)

4. Conditional Mean Risk Sharing in the Individual Model with Graphical Dependence

Structure
4.1 Conditional mean sharing rule
We denote by S= Y"1, X; the sum of the individual losses to be distributed amongst the n par-
ticipants. There are several ways to allocate the total losses to the n individuals forming the pool.
In this paper, we use the conditional mean risk-sharing rule presented next.

The distribution of the total losses S amongst the n participants is described by a set of functions
hi, i€{1,2,...,n}, where h;(S) is the part of S attributed to participant i, with Z:;l h;(S) =S.
In the design of a risk-sharing scheme, it is important that the sharing rule between partici-
pants represented by the functions hy, hy, . . ., hy, is both intuitively acceptable and transparent.

https://doi.org/10.1017/51748499521000166 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499521000166

190 Michel Denuit and Christian Y. Robert

In that respect, the conditional mean risk-sharing rule h} proposed by Denuit & Dhaene (2012) is
particularly attractive. It is simply defined as

KA(S) =E[X|Sl,i=1,2,...,n 3)

In words, participant i must contribute the expected value of risk X; brought to the pool, given the
total loss S. Clearly, the conditional mean risk sharing (3) allocates the full risk S as we obviously
have

Y h(S) =) EIXils] =S
i=1 i=1

so that the sum of participants’ contributions covers the entire loss S.

The conditional mean risk-sharing rule has been thoroughly investigated by Denuit (2019,
2020) and Denuit & Robert (2020a, 2021) for individual losses X;. The next section applies this
allocation to the correlated risks considered in this paper.

4.2 Conditional mean sharing rule for dependent zero-augmented risks

Before providing analytical formulas for the conditional mean risk-sharing rule, we define the size-
biased transformation of a risk: the size-biased version X of a non-negative real-valued random
variable X is defined through its distribution function by

t
P[)N(ft]zﬁ /0 xdFx(x)

We are now ready to state the main result of this paper that describes the conditional mean risk-
sharing rule in the individual model with correlated occurrences considered in this paper. This
result is useful to compute individual contributions &7 (s) to total losses s, as precisely explained
later on.

Proposition 4.1. Let X, . .., X, be zero-augmented random variables of the form X; = I;C; with
positive probability masses at 0 and probability density functions over (0, 00). Assume that I, Cy,
..» Cy are independent. Then,

(i) h7(0) =0 and, for any s > 0, the representation

E [Xi] fr,(s) S
Y E[X] fry(s)

K (s) =

holds true where

Tj = Ej + Z IIEj] Ck
k#j
with IV, Ci,...,Cpy 61, . En, all independent, and 1V 4 I|Ij =1.
(ii) If I obeys the Ising model (1) then M ke{1,2,...,n), obeys the Ising model defined on
the graph Gy (x) with parametero[k] = (‘91‘[;])ieV\{k},(i,j)eEV\{k) satisfying, for i € V\{k}, Gi[ik] =
0:i + 01 (i, k) € E), and, for (i,j) € Ev\ s, 01 = 6.

ij
(iii) If C; = Z]";I Zij where Z; has joint probability density function (2) then

n;

~ d :

Gi=)y 2z
=1
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where the random variable K; is valued in {1,2,...,n;}, independent of Z; and of
ZI[I], . ,Zl[.”"] such that P[K; =k] = %[[ZC":F]] for ke{l,2,...,n;}, and the joint probability
density function of Zl[k] is given by

[leecw f, Z (zc) [lceercw fzc (zc)
[sest fp0 @) Tlses\sth fzs (2)"

where C'K) is the subset of C for which node k € C, and S is the subset of S for which node
keC.

fpu @ =

Proof. Let us start with item (i). The announced representation for the conditional mean risk-
sharing rule can be obtained following the lines of Proposition 3.1 (iii) of Denuit & Robert (2020b).
Clearly, h}(0) = 0. Let us now consider s > 0. For any measurable function g, we can write

E[Xig(S)] 2/0 /0 xig(x1 + ...+ x,)dFx(x1, . . ., Xp)

U b dPx(x1, ...,
ZE[XIJ/ / g(x1+...+xn)xl X(xl xn)
0 0

E[Xi]
m%mﬂun+ﬂm @
where the random vector X[ = (X}", (., x1) has joint distribution function Fy; given by
X
" yidFx(y1 - . . yn)
(xl"~-)xn) / / E[X
E[Xi| X1 <x1,...,Xn < x4]
=t e = ) (5)
1

Let us apply (4) to the function g given by

1if Z}’:lxjfs
gxr, .. x0) =1 ij<5 =

0 otherwise

to get the identity
E[xi1 (S =1 | =BGIP [X{7 4.+ X[ <] (6)

Now, we can also write

S
E[XI[S<s]]= / E[X;|S = t]fs(t)dt
0
Taking the derivative of these expressions with respect to s gives

. EXil fyiny, xn(®)
hi(s) = 70 )

Summing identity (7) over i, we obtain

n

5= D EXilfyn, (o)

i=1
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Hence, we end up with
. E[Xi] fyin x5
hi(s) = —; s
Y E[X] A, ()

Considering the risks X; = I;C; with correlated occurrences I; but independent severities C;, we
have

1
Fyin(x1, ..., Xp) = mE[XiIDQ < X1s e X < Xp] ]

i

1
= —E|LGI[,C <x1,....1,C, <
E[I,C/] [1 A1 Cr <x1 n n_xn]]

]
- E[E LCI[LCL <1y s InCo < x| 11, o I ]
E[I,‘Ci] [1 1[1 1= X1 nln xn]|1 n]

Because

E[LCILCy < %15 s InC < X |1 oo I

= B[LCILC; < x)|Tts s In] [ [ P [5G < %111, o In]
j#i
and
E [L;GILC; < x|, ... In]
E [I;Ci]
_ E[LGILG < xi]lLy, ... In) y E [L;Gly, ..., In]
E LG, ..., 1] E [L;C]
E [LCILC; < x|y, ... In] o I;
E LG, ... 1] E (L]

the joint distribution (5) in the individual model with correlated occurrences writes

E [LCILC; < xi]|1h, ..o Iy I;
Fyin(x15...,%,) =E X P|LC <x|IL, ..., I
: ’ E [L,Gi|LL, ..., In] E[L] Jl;! [5G <% n]

We can further rewrite the joint distribution function Fyqy as

Fyin(x1,.. ., %) =E | P[Ci=x] [[ P[5 < xlTh, oo I
j#i

L=1

i+1
distributed as I given I; = 1. This ends the proof of item (i).
Turning to item (ii), it suffices to notice that the joint probability mass function of the random
vector I¥] is given by

py () =pr Wk =1)

We deduce that X! 4 (I{i] Cis oo Ii[i]1Ci—1, Ci, iy Cit1s oo IE] Cn) since the random vector I! is

1
= 3 e e —1> 1) e e e
E[Ik]pI (yl Yk—1 Yik+1 yﬂ)
(k]
—ep| 3 o+ Y 6y ale")
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where Al¥) is the normalising constant entering Ising specification. This completes the proof of
item (ii).
Considering the last item (iii), we know from (5) that the joint probability density function of

the random vector Zl[k] is given by

zkfz; (215 o Z0)

s eer Zn) =
Sz (@15 2Zn) ElZy]

In the factored form of fz give in equation (2), z; only appears in fz.. for C € C*} and in fz for
S € SI¥. The announced formula for f,w then follows by noting that

zr  [lcecw fzc (z0) [Teeew (fze (z¢) zk/E[Zik]) [eecw fzg‘] (zc)
BLZi] Msesm fzs @'~ Toes (fzs (e5) 2e/EZa)"™® ooy (29"

The size-biased version of sums of correlated random variables is studied in section 2.4 of Denuit
& Robert (2020b). We follow the same reasoning here, applied to C; = ZJH;I Zij. Consider a
(measurable) function g and write

E[Cig(Cy)] = /0 xg(x)dFc, (x)

xdF, c,( x)
= sicl [ g e
= E[G|E[g(C))] (8)
Now, inserting the function
lifx<t
gx)=Ix<t]= ©)
0 otherwise
in identity (8), we see that the representation
P[Ci <1]
E[C|C; <t] =E[Ci]] ——— 10
[GilCi <] [’]P[Cift] (10)
is valid for any threshold ¢. Now, (6) allows us to write
E[GIC; <1] ZE Z;Ci < 1]
Z P[Z 20 <]
B P[Zl+ +Zmi§t]
Combining these identities, we get
il -t Zl[f’l = t]
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The latter expression shows that C; can be represented as the mixture

E[Zrl

Zl.[l] -+ Z w1th probability F#r

E[ZIZ

o} d Zl[l2 Ty 4z w1th probability 3t

. [n] [mi] _ . .. ElZin]

Zy" +...+ Z;," with probability 5]
We thus have C; = Z"’ Z;; Kl '35 announced. This ends the proof. O
It is noteworthy that the distributions of the random vectors I'¥), k=1, ..., n, can be char-

acterised as distributions associated to Ising models defined on subgraphs of G, and that the

distribution of the random vectors Zl[k], k=1,...,n;, can be characterised by the same decom-
posable graph G; (and hence with the same set of minimal separators and maximal cliques, S; and
Ci). These properties are very convenient to compute by simulation the conditional mean risk-
sharing rules since it is only needed to use algorithms dedicated to the specific classes of graphical
models of participants’ risks.

We can also mention that distribution (5) is a multivariate weighted version of the distribu-
tion function for X and has been considered by Arratia et al. (2019) in relation to size-biasing
sums of random variables. Multivariate weighted distributions have been reviewed by Navarro
et al. (2006). The weight function w corresponding to (5) is w(x, ..., x,) = x;/E[X;] that has
been considered in Jain & Nanda (1995).

The next example describes a particular case where a closed-form expression can be obtained
for the conditional mean risk-sharing rule.

Example 4.2. (Hub graph and Gamma severities) We consider the case where the participants’
network is characterised by the hub graph (e) in Figure 1. Participant 7 is the central participant
with whom all other participants are related. We assume that these participants are identically
connected with participant 7. More specifically, we have

O7i=a>0,j#7, 0;7;=>0, 0;=y>0,j#7

The Ising model 117 4 |I; =1 corresponds to the case where participants j, j # 7, have inde-
pendent and identically distributed Bernoulli distributions with parameter p =exp (@ +y) /(1 +
exp (o +y)).

The Ising model I'” 4 |I; =1, i # 7, is characterised by a hub graph where participant 7 is still
the central participant and participant j disappears. This Ising model has for parameters

Ori=a, j#£7,i, Orp=a+B>0, O;j=y>0,j#7,i

Note also that the Ising model I|I; =1,1; =1, i # 7, corresponds to the case where participants
j» j # i, 7, have independent and identically distributed Bernoulli distributions with parameter
p=exp(a+y)/(1+exp(x+y)), and that the Ising model I|I; = 1,1I; =0, i # 7, corresponds
to the case where participants j, j # i, 7, have independent and identically distributed Bernoulli
distributions with parameter p’ = exp (y) /(1 +exp (y) ). Weletv =P[[; = 1|[; =1].

For simplicity, we assume that total losses C; have Gamma distributions and we do not use
graphical models for these distributions. We consider the following specifications:

C; ~ Gamma (8,7), Cj~ Gamma(n,t), j#7

The size-biased version of the total losses are C; ~ Gamma (8§ +1,7) and CjNGamma

(n+1,7), j #7. We deduce from the different assumptions that Ty = C; + D kt7 I,Ej ] Ci has a
Gamma mixture distribution characterised by
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6
T; ~ Z (2) PF(1 —p)6_k Gamma (8 + 1+ kn, 7)
k=0

Moreover, for j # 7, Tj = 6]' + 2 ki1 ][c] ] Ci has a Gamma mixture distribution characterised by

5
Tj~v Z (2)1}" (1 —p)s_k Gamma (8 + 1+ (k+ 1)n, 7)
k=0

5
IS ( 2) @) (1= )" Gamma (1 + (k+ . 7)
k=0

Since E [X;j] = P[I; = 1]E [Cj], it follows that

6—k
<6) pr(1—p)” " ootk S+

s 6
ELG1fr (9 =Pl =117e™ ) { ¢ T (5 +1+ k)

k=0
and, forj #7,

E [X;] fr;(s)

> k(1= p)° kg1t N (1 = )oK 1+
= pip =)o Y () (2 (1=p) o, ) 0-p)"
t k T (84 1+ (k+1)n) I (1+ (k+1)n)

k=0
It is now easily seen that the functions h]’-*, j=1,...,9, are ratios of polynomials in s for this
specific example.

5. Numerical lllustrations

In order to demonstrate the usefulness of the graphical model approach presented in this paper,
we consider numerical examples for which the pool is composed of n = 9 participants. Note that
we will provide more detailed comments for the subgroup of three participants {7, 8, 9} in the
remainder of this section.

We use several R packages to generate graphs and simulate occurrence and severity data:
BDgraph for simulating multivariate distributions with different types of underlying graph struc-
tures, GLSE for generating decomposable graphs based on given numbers of vertices and edges in
graphs and igraph for creating graphs from adjacency matrices.

5.1 Ising graphical dependence structures

Claim occurrences for the participants are represented by several Ising models associated to the
six graphs shown in Figure 3. As explained in section 2, these graphs can be used to describe a
wealth of situations encountered in risk modelling. The random graph (a) is associated to the
Erdos-Rényi model, where a graph is constructed by connecting nodes randomly: each edge is
included with a fixed probability independently from every other edge. The cluster graph (b) is a
graph formed from the disjoint union of subgraphs. Such a graph is interesting to model disjoint
communities. The tree graph (c) is a graph in which any two vertices are connected at most by
one path. Such a graph is used when the objects of interest naturally forms a hierarchy. The lat-
tice graph (d) is a graph whose drawing is embedded in Z", and forms a regular tiling. The hub
graph (e) is a graph where a node has connections with many other nodes. Emergence of hub
graphs in real life is a consequence of a scale-free property of the network. The circle graph (f) is
a graph whose vertices can be associated with chords of a circle such that two vertices are adjacent
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(a) Random graph (c) Tree graph (e) Hub graph
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Figure 3. Ising graphs where the three participants {7, 8, 9} have been surrounded.

if and only if the corresponding chords cross each other. The last three graphs have a very regular
structure compared to the first three graphs. When the number of nodes increases, the diversity
of shapes of these graphs makes them possible to get closer to real-life situations.

The participants of the subgroup {7, 8, 9} are linked in different ways according to the graphical
dependence structures under consideration. For the three last graphical dependence structures
((d), (e) and (f)), the three participants 7, 8 and 9 are strongly connected since there exists a path
of length 3 that interconnects them. For the two first graphical dependence structures ((a) and
(b)), there is an edge between participants 8 and 9, and participant 7 is either not connected to the
these two participants in case of (b) or connected but separated by other participants in case of
(a). For the last structure (c), the three participants are separated by at least another participant.
For none of these structures the triplet {7, 8, 9} is a clique.

The values of the probabilities of the univariate Bernoulli distributions are given in Figure 4
for each participant and each graph. For the random graph, the tree graph, the hub graph and the
lattice graph, these probabilities are roughly homogeneous between participants. For the cluster
graph and the circle graph, one or two participants may have a probability of occurrence signifi-
cantly lower than for the other participants. We chose randomly the parameters in such a way that
that there exists at least one participant with a marginal probability of occurrence different from
the other participants.

For the graphical dependence structures (a), (c) and (f), participants 7 and 8 have approxi-
mately the same marginal occurrence probability and participant 9 has a higher probability, while
participant 7 has the higher probability for the structure (e). For the graphical dependence struc-
ture (d), the occurrence probabilities are the same for the three participants. For the graphical
dependence structure (b), the occurrence probability of participant 8 is very low compared to the
other ones.

We also provide in Figure 5 the graphical representations of the correlation matrices for the
Bernoulli random vector I for each graph to visualise the intensity of dependencies between occur-
rences of participants. Notice that the correlation coefficients may be either positive, negative or
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Figure 4. Ising probabilities.
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Figure 5. Correlation matrices for the Ising models.

null, showing the adaptability of the Ising model. However, they are bounded by functions of the
probabilities of the (univariate) Bernoulli distributions: if p;; denotes the correlation coefficient
between I; and I, then

piAp;i (L—piVp))
pi Vv pj (1 —pi Ap))

max <
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where p; = P[I; = 1], as explained, e.g. in Joe (1997), page 2010. Figure 5 shows that very different
correlation patterns emerge from the different graphs, as shown in Figure 1. We observe that the
correlation matrices are relatively sparse and that the significant values may be either positive or
negative. The values of the parameters of the Ising models have been chosen (randomly) to show
the variety of the intensities of dependencies between the nodes of the network.

For the first three graphical dependence structures (a), (b) and (c), for which there is no path
of length 3 between participants 7, 8 and 9, the correlations between their respective occurrences
are close to zero. For the last three Ising graphs for which there is a path of length 3 between these
participants, significant correlations are obtained but the correlation structures may differ signif-
icantly. For the lattice graph (d), participants 7 and 8 have positively correlated occurrences while
participants 8 and 9 have negatively correlated occurrences. For the hub graph (e), participants 7
and 8 have positively correlated occurrences while participants 8 and 9 have uncorrelated occur-
rences. For the circle graph (f), participants 7 and 8, as well as participants 8 and 9, have positively
correlated occurrences.

5.2 Individual severity models

For the graphs G; describing the spread of losses inside each participating unit, we consider the
decomposable graphs given in Figure 6. The numbers of vertices, the numbers of edges, the sets
of maximal cliques and the sets of minimal separators for all graphs are listed in Appendix for
the reader who would like to build their junction tree. We selected (randomly) different shapes
and intensities of interconnectedness, once again to show the flexibility provided by the family of
decomposable graphs. The graph describing the spread of losses inside the unit corresponding to
participant 1 has been analysed in Figure 2. A similar analysis can be performed for the graphs of
the other participants considered in the numerical illustration.

For each participant i, the random vector Z; obeys multivariate LogNormal distribution based
on the decomposable graph G;. LogNormal distributions are traditionally used by actuaries for
rate-making or for the estimation of reserves. The means of the associated multivariate normal
distributions are assumed to be equal to zero and their precision matrices (the inverse of the
variance—covariance matrices) are listed in Appendix. Notice that every multivariate normal dis-
tributions defined on a maximal clique have precision matrices with non-zero entries. Figure 7
displays the histograms of the severities for each participant. They have been obtained with
10° simulations. As aggregations of dependent, LogNormally distributed random variables, their
shape are also close from the one of a LogNormal distribution. The distributions for participants
1,2, 6 and 7 appear to be skewer compared to other participants.

For the subgroup of participants 7, 8 and 9, we observe that the distributions of their aggregated
losses are quite different. Participant 7 has the distribution with the smaller mean and the skewer
distribution in this subgroup, while participant 8 has the larger total losses mean.

5.3 Conditional mean risk-sharing values

The conditional mean risk-sharing values as well as the conditional mean risk-sharing propor-
tions are provided, respectively, in Figures 8 and 9 according to the values of the sum of the risks,
S. These values have been estimated using 10° simulations. Depending on the Ising models, the
shapes and the levels of the conditional mean risk-sharing values and proportions change sig-
nificantly. We can see that the curves of the conditional expectations are non-linear most of the
time.

Let us now focus more specifically to the subgroup of participants 7, 8 and 9. First, notice
that the unconditional participants’ proportions differ between the several Ising graphical depen-
dence structures mainly because of the different values of their marginal occurrence probabilities.
In particular, participant 8 has low proportions for all the values of S for the cluster graphical
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Figure 6. Participants’ graphs G;,i € {1, ..., 9}.

structure compared to the other graphical dependence structures because, as mentioned previ-
ously, her occurrence probability is more than three times smaller than the probabilities for the
other graphical dependence structures.

Second, it can be observed on Figure 8 that, as S becomes large (around 70), the conditional
mean risk-sharing values of participant 8 begins to dominate the conditional mean risk-sharing
values of the other participants except for the cluster graphical structure (for the reason explained
above). This is because the probabilities to observe total losses higher than 20 are only significant
for participant 8 and implies that, when S is large, it is expected that participant 8 contributes
mostly to S.

Third, the conditional mean risk-sharing proportions of participant 7 are roughly constant
whatever the value of S except for the hub graphical dependence structure where her conditional
mean risk-sharing proportions decrease with S, while at the same time, the conditional mean risk-
sharing proportions of participant 8 increase. This can be explained by the fact that the aggregated
losses mean is smaller for participant 7 than for participant 8, and that there exists a negative
correlation between their joint occurrences.

Fourth, for the graphical dependence structures for which participants 8 and 9 are linked by
an edge (structures (a), (b), (d) and (f)), the respective conditional mean risk-sharing proportions
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Figure 8. Conditional mean risk-sharing values.
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Figure 9. Cumulated conditional mean risk-sharing proportions. Dashed lines provide the values of the cumulated (uncon-
ditional) mean risk-sharing proportions.

of these participants vary significantly with S. The conditional mean risk-sharing proportions of
participant 8 are negligible compared to participant 9 for small values of S, while they become
dominant for values of S around and above 80. We conclude that the existence of an edge between
these participants has a strong impact on their conditional mean risk-sharing proportions.

5.4 Alternative scenarios for the tree graphical dependence structure

To understand the impact of some assumptions on the results, we consider alternative scenarios.
Here, we only consider the case of the tree graphical dependence structure (c). The conclusions
are broadly similar for the other graphical dependence structures.

First, we replace the assumption of dependencies between participants by the assumption of
independent occurrences, but assuming the marginal occurrence probabilities of the participants
are the same in both cases. We observe on Figure 10 that the independence assumption mod-
ifies significantly the conditional mean risk-sharing proportions of all participants, but that the
differences between these proportions disappear when S becomes very large.

Second, we replace the assumption that the individual losses (the random variables Z;;) have
a LogNormal distribution by the assumption that they have a Gamma distribution with the
same means and variances (see Figure 11). The conditional mean risk-sharing proportions of the
participants are almost not modified.

Third, we modify the parameters of the LogNormal distributions of the individual losses so that
their variances are multiplied by a factor 4 and their means are left unchanged. The conditional
mean risk-sharing proportions of the participants remain mostly unchanged (see Figure 12).

We deduce from these alternative scenarios that the graphical dependence structure of the
occurrences may have a stronger impact on the conditional mean risk-sharing values than the
distributions of the individual losses or their variabilities.
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Figure 10. Cumulated conditional mean risk-sharing proportions when the participants’ graph structure is the tree graph (left
panel) and when the occurrences of the participants are assumed to be independent with the same marginal probabilities
(right panel).
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Figure 11. Cumulated conditional mean risk-sharing proportions for the tree graphical dependence structure and when the
distributions of individual losses are LogNormal (left panel) and when the distributions of individual losses are Gamma with
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Figure 12. Cumulated conditional mean risk-sharing proportions for the tree graphical dependence structure and when the
distributions of individual losses are LogNormal (left panel) and when the distributions of individual losses are LogNormal
with same means, but with four times greater variances (right panel).
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6. Conclusion and Discussion

The conditional mean risk-sharing rule proposed by Denuit & Dhaene (2012) has proven to be
relevant for actuarial applications when risks are assumed to be independent. Denuit & Robert
(2020b) provides results for the conditional expectations involved in this allocation rule when
risks are no more independent, but their analytical expressions may be difficult to be handled for
general models and when the number of participants is large. Noteworthy exceptions are models
for which these conditional expectations are linear in the total loss amount (e.g. infinitely divisible
multivariate distributions) or models, where risks are conditionally independent losses correlated
by common latent factors in a multivariate mixture model. In this paper, we propose an indi-
vidual model with graphical dependencies that are very convenient to compute the conditional
mean risk-sharing values. Graphical models offer a powerful opportunity to summarise efficiently
the conditional dependence structures through graph-based representations. The choice of the
Ising model for the joint loss occurrences as well as the decomposable graphical models for sever-
ities allows to use the same graphs or sub-graphs of these models to compute the sharing losses
amounts.

The present paper offers practitioners new tools for managing community-based insur-
ance pools when dependencies between participants or dependencies within each participant’s
structure cannot be ignored.
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Appendix
Participant 1’s decomposable graph and precison matrix

e Number of vertices: 10
e Number of edges: 20
e Maximal cliques
-1:531 -2:831 -3:834 -4:83610 -5:82610 -6:8269 -7:729
e Minimal separators
-1 -2:31 -3:83 -483 -5:8610 -6:826 -7:29
e Precision matrix of the Gaussian vector:

1 2 3 4 5 6 7 8 9 10
1 4.51 0 —0.49 0 —0.49 0 0 —0.49 0 0
4 0 0 —0.49 451 0 v 0 0 —6.49 0 0 v
8 —0.49 —(5;49 —0.49 —049 0 ;0.49 0 451 —0.49 _0.49
. ..0. . ._6;49.. . 0 T .0 B ..0.. . ._O..49.. _049 _049 . 451 . ..0.

Participant 2’s decomposable graph and precison matrix

e Number of vertices: 8
e Number of edges: 17
e Maximal cliques
-1:1742 -2:1752 -3:1736 -4:1738
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e Minimal separators
-1 22172 -3:17 -4:173
e Precision matrix of the Gaussian vector:
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Participant 3’s decomposable graph and precison matrix

e Number of vertices: 15

e Number of edges: 30

e Maximal cliques
-1:31116 -2:311112
415 -8:314 -9:571314
Minimal separators

-1. -2:3111 -3:3112
Precision matrix of the Gaussian vector:

-3:311012

-4:31210

-4:31512 10

-561

9

-5:961 -6:2689 -7

-6:69 -7:15 -8:3 -9:14

10 11 15
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—0.33

—0.33

0

0

0

—0.33

4.67

0
0
0
S ,
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—0.33 -0.33

—033 —0.33
0 0
—033 —0.33

0
0
I

o

HoHCEICK:
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0 0
—0.33 0
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Participant 4’s decomposable graph and precison matrix

e Number of vertices: 12

e Number of edges: 18

e Maximal cliques
-1:81 -2:11110 -3:11210 -4:1124 -5:1134 -6:5429 -7:73 -8:
67 -9:1112

e Minimal separators
-1 -2:1 -3:1110 -4:112 -5:114 -6:42 -7:3 -87 -9:11

e Precision matrix of the Gaussian vector:
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o
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o
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|
o
N
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o

0
0
0
41 0 0 0 0 0 0 4.59 0 0
0
0
0

O 000000 o

0 0 —0.41 4.59

cio ocio!

Participant 5’s decomposable graph and precison matrix

e Number of vertices: 8
e Number of edges: 7
e Maximal cliques
-1:13 -2:34 -3:48 -4:68 -5:65 -6:25 -7:27
e Minimal separators
-1 -2:3 -34 -48 -56 -6:5 -7:2
e Precision matrix of the Gaussian vector:

8

4.39 0 —0.61 0 0 0 0
0 4.39 0 0 —0.61 0 —0.61 0
0

—0.61 0 0 4.39 —0.61 0 0

©iNioOiniNIWIN -

oioioio

0
—0.61 0 0 0 0 4.39 0
0
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Participant 6’s decomposable graph and precison matrix

e Number of vertices: 8
e Number of edges: 25
e Maximal cliques
-1:246731 -2:246738 -3:246758
e Minimal separators
-1 -2:24673 -3:24678
e Precision matrix of the Gaussian vector:

1 2 3 4 5 6 7 8

1 4.39 —0.61 —0.61 —0.61 0 —0.61 —0.61 0
| 3 . _061 . ;O;6lv s 4.39. . ”_vo.le' I v0 [ _,Ohél s _061 . v_ov_61v
4 —0.61 —0.61 —0.61 4.39 —0.61 —0.61 —0.61 —0.61
7 I ;0.61 R ;0;61v . ”_0_61' . ”_vo.le' I _vO.le R _,O.él SRR 4..39” . v_Ov.le
8 ‘ HO - >—0.>61> ) ‘—0.61‘ » H—0.6>l‘ o —>0.6>l - ;0.(‘51 - H—O.‘61 - 4>.39>

Participant 7’s decomposable graph and precison matrix

e Number of vertices: 7
e Number of edges: 13
e Maximal cliques
-1:1253 -2:1257 -3:652 -4:143
e Minimal separators
-1. -2:125 -3:52 413
e Precision matrix of the Gaussian vector:

1 2 3 4 5 6 7
1 431 —0.69 —0.69 —0.69 —0.69 0 —0.69
2 —0.69 4.31 —0.69 0 —0.69 —0.69 —0.69
3 —~0.69 —~0.69 431 —0.69 ~0.69 o 0
4 —0.69 . O ” —0‘6.9” v 431 0 0 0
s _Yo' ég vvvvvvvv _069 ........ _069 .......... 0 ............. 431 ....... _0 69 ........ ;0 o
6 0 —0.69 0 0 —0.69 431 0
7 - —0.69 —~0.69 0 o ~0.69 0 431
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Participant 8’s decomposable graph and precison matrix

Number of vertices: 20

Number of edges: 25

e Maximal cliques

-1:81 -2:8618 -3:9186 -4:918 11 -5:910 -6: 1310 -7:313 -8:9
14 -9:2514 -10:2515 -11:51915 -12:415 -13:1618 -14:1214 -15:
1217  -16:820 -17:720

Minimal separators

-1 -2:8 -3:186 -4918 -59 -6:10 -7:13 -89 -9:14 -10:25
-11: 515 -12:15 -13:18 -14:14 -15:12 -16:8 -17:20

Precision matrix of the Gaussian vector:
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Participant 9°s decomposable graph and precison matrix

e Number of vertices: 14

e Number of edges: 20

e Maximal cliques
-1:1714 -2:13147 -3:131453 -4:25 -5:134 -6:94 -7:8910 -8
11121 -9:63

https://doi.org/10.1017/51748499521000166 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499521000166

Annals of Actuarial Science 209

e Minimal separators
-1. -2:147 -3:1314 -4.5 -513 -6:4 -7:9 -8:1 -9:3
Precision matrix of the Gaussian vector:
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